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AN INTRODUCTION TO EXTENDED GEVREY

REGULARITY

NENAD TEOFANOV, FILIP TOMIĆ, AND MILICA ŽIGIĆ

Abstract. Gevrey classes are the most common choice when con-
sidering the regularities of smooth functions that are not analytic.
However, in various situations, it is important to consider smooth-
ness properties that go beyond Gevrey regularity, for example
when initial value problems are ill-posed in Gevrey settings. Ex-
tended Gevrey classes provide a convenient framework for studying
smooth functions that possess weaker regularity than any Gevrey
function. Since the available literature on this topic is scattered,
our aim is to provide an overview to extended Gevrey regularity,
highlighting its most important features. Additionally, we consider
related dual spaces of ultradistributions and review some results on
micro-local analysis in the context of extended Gevrey regularity.
We conclude the paper with a few selected applications that may
motivate further study of the topic.

1. Introduction

Gevrey type regularity was introduced in the study of fundamental
solutions of the heat equation in [1] and subsequently used to describe
regularities stronger than smoothness (C∞-regularity) and weaker than
analyticity. This property turns out to be important in the general
theory of linear partial differential equations, such as hypoellipticity,
local solvability, and propagation of singularities, cf. [2]. In particular,
the Cauchy problem for weakly hyperbolic linear partial differential
equations (PDEs) can be well-posed in certain Gevrey classes, while
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2 AN INTRODUCTION TO EXTENDED GEVREY REGULARITY

at the same time being ill-posed in the class of analytic functions, as
shown in [3, 2].
Since there is a gap between Gevrey regularity and smoothness, it

is important to study classes of smooth functions that do not belong
to any Gevrey class. For example, Jézéquel [4] proved that the trace
formula for Anosov flows in dynamical systems holds for certain inter-
mediate regularity classes, and Cicognani and Lorenz used a different
intermediate regularity when studying the well-posedness of strictly
hyperbolic equations in [5].
A systematic study of smoothness that goes beyond any Gevrey reg-

ularity was proposed in [6, 7]. This was accomplished by introducing
two-parameter dependent sequences of the form (pτp

σ

)p, where τ > 0,
σ > 1. These sequences give rise to classes of ultradifferentiable func-
tions Eτ,σ(Rd), which differ from classical Carleman classes CL(Rd) (cf.
[8]), are larger than Jézéquel’s classes, and which go beyond Komatsu’s
approach to ultradifferentiable functions as described in, for example,
[9]. On one hand, these classes, called Pilipović-Teofanov-Tomić classes
in [10], serve as a prominent example of the generalized matrix ap-
proach to ulradifferentiable functions. On the other hand, they pro-
vide asymptotic estimates in terms of the Lambert functions, which
have proven to be useful in various contexts, as discussed in [5, 11, 12].
Different aspects of the so-called extended Gevrey regularity, i.e., the

regularity of ultradifferentiable functions from Eτ,σ(Rd), have been stud-
ied in a dozen papers published in the last decade. Our aim is to offer
a self-contained introduction to the subject and illuminate its main
features. We provide proofs that, in general, simplify and complement
those in the existing literature. Additionally, we present some new re-
sults, such as Proposition 3.1, Proposition 3.3, and Theorem 3.1 for
the Beurling case, as well as Theorem 3.3.
This survey begins with preliminary Section 2, which covers the main

properties of defining sequences, the Lambert function, and the asso-
ciated function to a given sequence. We emphasize the remarkable
connection between the associated function and the Lambert W func-
tion (see Theorem 2.1), which provides an elegant formulation of decay
properties of the (short-time) Fourier transform of f ∈ Eτ,σ(Rd), as
demonstrated in Proposition 3.4 and Corollary 4.1. In Section 3, we
introduce the extended Gevrey classes Eτ,σ(Rd) and the corresponding
spaces of ultradistributions. We then present their main properties,
such as inverse closedness (Theorem 3.1) and the Paley-Wiener type
theorem (Theorem 3.3).
In Section 4, we give an application of extended Gevrey regular-

ity in micro-local analysis. More precisely, we introduce wave-front
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sets, which detect singularities that are ”stronger” than classical C∞

singularities and, at the same time, ”weaker” than any Gevrey type
singularity.
To provide a flavor of possible applications of extended Gevrey reg-

ularity, in Section 5, we briefly outline some results from [5] and
[10]. More precisely, we present a result from [5] concerning the well-
posedness of strictly hyperbolic equations in E1,2(Rd), and observa-
tions from [10], where the extended Gevrey classes are referred to
as Pilipović-Teofanov-Tomić classes and are considered within the ex-
tended matrix approach to ultradifferentiable classes.
We end this section by introducing some notation that will be used

in the sequel.

1.1. Notation. We use the standard notation: N, N0, Z, R, R+, C,
denote sets of positive integers, non-negative integers, integers, real
numbers, positive real numbers and complex numbers, respectively.
The length of a multi-index α = (α1, . . . , αd) ∈ Nd

0 is denoted by |α| =
α1 + α2 + · · ·+ αd and α! := α1! · · ·αd!. For x = (x1, . . . , xd) ∈ Rd we

denote: |x| := (x21 + . . .+ x2d)
1/2

, xα :=
∏d

j=1 x
αj

j , and Dα = Dα
x :=

Dα1
1 · · ·Dαd

d , where D
αj

j :=

(
−

1

2πi

∂

∂xj

)αj

, j = 1, . . . , d.

We write Lp(Rd), 1 ≤ p ≤ ∞, for the Lebesgue spaces, and S(Rd)
denotes the Schwartz space of infinitely smooth (C∞(Rd)) functions
which, together with their derivatives, decay at infinity faster than any
inverse polynomial. By S ′(Rd) we denote the dual of S(Rd), the space
of tempered distributions, and D′(Rd) is the dual of D(Rd) = C∞

0 (Rd),
the space of compactly supported infinitely smooth functions.
We use brackets 〈f, g〉 to denote the extension of the inner product

〈f, g〉 =
∫
f(t)g(t)dt on L2(Rd) to the dual pairing between a test

function space A and its dual A′: A′〈·, ·〉A = (·, ·).
The notation f = O(g) means that |f(x)| ≤ C|g(x)| for some C > 0

and x in the intersection of domains for f and g. If f = O(g) and
g = O(f), then we write f ≍ g.
The Fourier transform of f ∈ L1(Rd) given by

f̂(ξ) :=

∫

Rd

f(x)e−2πix·ξdx, ξ ∈ Rd,

extends to L2(Rd) by standard approximation procedure.
The convolution between f, g ∈ L1(Rd) is given by (f ∗ g)(t) =∫
f(x)g(t− x)dx.
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Translation, modulation, and dilation operators, T , M , and D re-
spectively, when acting on f ∈ L2(Rd) are defined by

Txf(·) = f(· − x) and Mxf(·) = e2πix·f(·), Daf(·) =
1

a
f(

·

a
),

x ∈ Rd, a > 0. Then for f, g ∈ L2(Rd) the following relations hold:

MyTx = e2πix·yTxMy, (̂Txf) =M−xf̂ , (̂Mxf) = Txf̂ , x, y ∈ Rd.

The Fourier transform, convolution, T , M , and D are extended to
other spaces of functions and distributions in a natural way.

2. Preliminaries

2.1. Defining sequences via Komatsu. Komatsu’s approach to the
theory of ultradistributions (see [9]) is based on sequences of positive
numbers (Mp) = (Mp)p∈N0 ,M0 = 1, which satisfy some of the following
conditions:
(M.1) (logarithmic convexity)

M2
p ≤Mp−1Mp+1, p ∈ N;

(M.2) (stability under the action of ultradifferentiable operators / con-
volution)

(∃A,B > 0) Mp+q ≤ ABp+qMpMq, p, q ∈ N0;

(M.2)′ (stability under the action of differentiable operators)

(∃A,B > 0) Mp+1 ≤ ABpMp, p ∈ N0;

(M.3) (strong non-quasi-analyticity)
∞∑

q=p+1

Mq−1

Mq

≤ Ap
Mp

Mp+1

, p ∈ N;

(M.3)′ (non-quasi-analyticity)
∞∑

p=1

Mp−1

Mp
<∞.

Note that (M.2) ⇒ (M.2)′, and (M.3) ⇒ (M.3)′. In addition, (M.1)
implies MpMq ≤Mp+q, p, q ∈ N0.
Let (Mp) be a positive monotone increasing sequence that satisfies

(M.1). Then (Mp/p!)
1/p, p ∈ N is an almost increasing sequence if

there exists C > 0 such that
(
Mp

p!

)1/p

≤ C

(
Mq

q!

)1/q

, p ≤ q, and lim
p→∞

M1/p
p = ∞.
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This property is related to inverse closedness in C∞(Rd), see [13].
The Gevrey sequence Mp = p!s, p ∈ N0, s > 1 satisfies (M.1), (M.2),

and (M.3). It is also an almost increasing sequence.
If (Mp) and (Np) satisfy (M.1), then we write Mp ⊂ Np if there exist

constants A > 0 and B > 0 (independent on p) such that

Mp ≤ ABpNp, p ∈ N. (1)

If, instead, for each B > 0 there exists A > 0 such that (1) holds, then
we write

Mp ≺ Np.

Assume that (Mp) satisfies (M.1) and (M.3)′. Then p! ≺ Mp.
Let R denote the set of all sequences of positive numbers monoton-

ically increasing to infinity. For a given sequence (Mp) and (rp) ∈ R
we consider

N0 = 1, Np =Mpr1r2 . . . rp =Mp

p∏

j=1

rj , p ∈ N.

It is easy to see that if (Mp) satisfies (M.1) and (M.3)′, then (Np)
satisfies (M.1) and (M.3)′ as well. In addition, one can find (r̃p) ∈ R
so that (Mp

∏p
j=1 r̃j) satisfies (M.2) if (Mp) does. This follows from the

next lemma.

Lemma 2.1. Let (rp) ∈ R be given. Then there exists (r̃p) ∈ R such
that r̃p ≤ rp, p ∈ N, and

p+q∏

j=1

r̃j ≤ 2p+q

p∏

j=1

r̃j

q∏

j=1

r̃j , p, q ∈ N. (2)

Proof. It is enough to consider the sequence (r̃p) given by r̃1 = r1 and
inductively

r̃j+1 = min

{
rj+1,

j + 1

j
r̃j

}
, j ∈ N.

Then (r̃p) ∈ R and (2) holds. We refer to [14, Lemma 2.3] for details.
�

2.2. Defining sequences for extended Gevrey regularity. To ex-
tend the class of Gevrey type ultradifferentiable functions we consider
two-parameter sequences of the formM τ,σ

p = pτp
σ

, p ∈ N, τ > 0, σ > 1.
¿From Stirling’s formula, and the fact that there exists C > 0 (inde-

pendent of p) such that

sp ≤ Cτpσ, p ∈ N,
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for any s, σ > 1, and τ > 0, it follows that p!s ≤ C1p
τpσ , for a suitable

constant C1 > 0.
The main properties of (M τ,σ

p ) are collected in the next lemma (cf.
[6, Lemmas 2.2 and 3.1]). The proof is given in the Appendix.

Lemma 2.2. Let τ > 0, σ > 1, M τ,σ
0 = 1, and M τ,σ

p = pτp
σ

, p ∈ N.
Then the following properties hold:
(M.1) (M τ,σ

p )2 ≤ M τ,σ
p−1M

τ,σ
p+1, p ∈ N,

(̃M.2) M τ,σ
p+q ≤ Cpσ+qσM τ2σ−1,σ

p M τ2σ−1,σ
q , p, q ∈ N0, for some

constant C ≥ 1,

(̃M.2)′ M τ,σ
p+1 ≤ CpσM τ,σ

p , p ∈ N0, for some constant C ≥ 1,

(M.3)′
∞∑

p=1

M τ,σ
p−1

M τ,σ
p

<∞.

Remark 2.1. From the proof of (̃M.2)′ it follows that (M τ,σ
p ) does

not satisfy (M.2)′, and therefore (M.2) as well. One might expect that
instead the sequence (M τ,σ

p ) satisfies

M τ,σ
p+q ≤ Cpσ+qσM τ,σ

p M τ,σ
q , p, q ∈ N0, (3)

for some constant C > 0. However, if we assume that (3) holds for
e.g. τ = 1, then, for p = q 6= 0, we obtain

p(2p)
σ

≤ (C1p)
2pσ , p ∈ N, with C1 = C/22

σ−1

which gives

p2
σ−1p ≤ C1, for all p ∈ N,

a contradiction. Thus, (̃M.2) is a suitable alternative to (M.2) when
considering (M τ,σ

p ).

Let M τ,σ
p = pτp

σ

, p ∈ N, τ > 0, σ > 1, and (rp) ∈ R. If (r̃p) ∈ R is
chosen as in Lemma 2.1, then the sequence (Np) given by

N0 = 1, Np =M τ,σ
p

p∏

j=1

r̃j, p ∈ N,

satisfies (M.1), (̃M.2), (̃M.2)′, and (M.3)′.
We note that if M τ,σ

p = pτp
σ

, p ∈ N, τ > 0, σ > 1, then the sequence(
Mτ,σ

p

pp

)1/p

, p ∈ N, is an almost increasing sequence since
(

Mτ,σ
p

pp

)1/p

=

pτp
σ−1−1 and pτp

σ−1−1 < qτq
σ−1−1, ⌈(1/τ)1/(σ−1)⌉ < p < q.
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2.3. The Lambert function. The Lambert W function is defined as
the inverse of zez , z ∈ C. By W (x), we denote the restriction of its
principal branch to [0,∞). It is used as a convenient tool to describe
asymptotic behavior in different contexts. We refer to [15] for a review
of some applications of the Lambert W function in pure and applied
mathematics, and to the recent monograph [16] for more details and
generalizations. It is noteworthy that the Lambert function describes
the precise asymptotic behavior of associated function to the sequence
(M τ,σ

p ). This fact was firstly observed in [17].
Some basic properties of the Lambert function W are given below:

(W1) W (0) = 0, W (e) = 1, W (x) is continuous, increasing and
concave on [0,∞),
(W2) W (xex) = x and x = W (x)eW (x), x ≥ 0,
(W3) W can be represented in the form of the absolutely convergent
series

W (x) = ln x− ln(ln x) +
∞∑

k=0

∞∑

m=1

ckm
(ln(ln x))m

(ln x)k+m
, x ≥ x0 > e,

with suitable constants ckm and x0, wherefrom the following estimates
hold:

lnx− ln(ln x) ≤W (x) ≤ ln x−
1

2
ln(ln x), x ≥ e. (4)

The equality in (4) holds if and only if x = e.
Note that (W2) implies

W (x ln x) = ln x, x > 1.

By using (W3) we obtain

W (x) ∼ ln x, x→ ∞,

and therefore

W (Cx) ∼W (x), x→ ∞,

for any C > 0. We refer to [15, 16] for more details about the Lambert
W function.

2.4. Associated functions. Let (Mp) be an increasing sequence pos-
itive numbers which satisfies (M.1), and M0 = 1. Then the Carleman
associated function to the sequence (Mp) is defined by

µ(h) = inf
p∈N

h−pMp, h > 0. (5)

This function is introduced in the study of quasi-analytic functions,
see, e.g. [18]. We use the notation from [19].
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In Komatsu’s treatise of ultradistributions [9], the associated func-
tion to (Mp) is instead given by

T (h) = sup
p>0

ln+
hp

Mp
, h > 0. (6)

Lemma 2.3. Let (Mp) be an increasing sequence positive numbers
which satisfies (M.1), and M0 = 1, and let the functions µ and T
be given by (5) and (6) respectively. Then

µ(h) = e−T (h), h > 0. (7)

Proof. Clearly,

T (h) = sup
p>0

ln+(h
pM−1

p ) = sup
p>0

(− ln+(h
−pMp))

= − inf
p>0

(ln+(h
−pMp)) = − ln+(inf

p>0
(h−pMp))

= − ln+ µ(h), h > 0,

which is (7). �

When (Mp) is (equivalent to) the Gevrey sequence, Mp = psp, p ∈ N,
s > 1, an explicit calculation gives

T (h) =
s

e
h

1
s , h > 0.

Thus (7) implies that there exist constants k > 0, and C > 0 such that

e−kh
1
s ≤ µ(h) ≤ Ce−kh

1
s , h > 0,

see also [19, Ch IV, 2.1].
By using (6) we define the associated function to the sequenceM τ,σ

p =

pτp
σ

, p ∈ N, τ > 0, σ > 1, as follows:

Tτ,σ(h) = sup
p∈N0

ln+
hp

M τ,σ
p
, h > 0. (8)

It is a remarkable fact that Tτ,σ(h) can be expressed via the Lambert
W function.

Theorem 2.1. Let τ > 0, σ > 1, M τ,σ
p = pτp

σ

, p ∈ N, and let Tτ,σ(h)
be given by (8). Then

Tτ,σ(h) ≍ τ−
1

σ−1
ln

σ
σ−1 (h)

W
1

σ−1 (ln(h))
, h large enough, (9)

where the hidden constants depend on σ only.
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Proof. The proof follows from [20, Proposition 2] and estimates (30)
given in its proof. More precisely, it can be shown that

Bσ τ
− 1

σ−1
ln

σ
σ−1 (h)

W
1

σ−1 (ln(h))
+B̃τ,σ ≤ Tτ,σ(h) ≤ Aσ τ

− 1
σ−1

ln
σ

σ−1 (h)

W
1

σ−1 (ln(h))
+Ãτ,σ,

(10)

for large enough h > 0, and suitable constants Aσ, Bσ, Ãτ,σ, B̃τ,σ >
0. �

Since Tτ,σ(h), h > 0, is an increasing function, (9) implies that there
exists A > 0 such that

ln
σ

σ−1 (h)

W
1

σ−1 (ln(h))
≤ A

ln
σ

σ−1 (h + a)

W
1

σ−1 (ln(h+ a))
, a > 0, h large enough.

We also notice that (W3) (from subsection 2.3) implies

Tτ,σ(h) ≍

(
lnσ(h)

τ ln(ln(h))

) 1
σ−1

, for h large enough.

2.5. Associated function as a weight function. The approach
to ultradifferentiable functions via defining sequences is equivalent to
the Braun-Meise-Taylor approach based on weight functions, when
the defining sequences satisfy conditions (M.1), (M.2) and (M.3), see
[22, 21]. Since M τ,σ

p = pτp
σ

, p ∈ N, does not satisfy (M.2), to compare
the two approaches in [20], the authors used the technique of weighted
matrices, see [23]. One of the main results from [20] can be stated as
follows.

Proposition 2.1. Let τ > 0, σ > 1, M τ,σ
p = pτp

σ

, p ∈ N, and
let Tτ,σ(h) be the associated function to the sequence (M τ,σ

p ). Then
Tτ,σ(h) ≍ ω(h), where ω is a weight function.

Recall, a weight function is non-negative, continuous, even and in-
creasing function defined on R+ ∪ {0}, ω(0) = 0, if the following con-
ditions hold:
(α) ω(2t) = O(ω(t)), t→ ∞,
(β) ω(t) = O(t), t→ ∞,

(γ) ln t = o(ω(t)), t→ ∞, i.e. lim
t→∞

ln t

ω(t)
= 0,

(δ) ϕ(t) = w(et) is convex.
Some classical examples of weight functions are

ω(t) = lns
+ |t|, ω(t) =

|t|

lns−1(e + |t|)
, s > 1, t ∈ R,
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where ln+ x = max{0, ln x}, x > 0. Moreover, ω(t) = |t|s is a weight
function if and only if 0 < s ≤ 1.
We refer to [23] for the weighted matrices approach to ultradiffer-

entiable functions.It is introduced in order to treat both Braun-Meise-
Taylor and Komatsu methods in a unified way, see also subsection 5.2.

3. Extended Gevrey regularity

3.1. Extended Gevrey classes and their dual spaces. Recall that
the Gevrey space Gt(Rd), t > 1, consists of functions φ ∈ C∞(Rd) such
that for every compact set K ⊂⊂ Rd there are constants h > 0 and
CK > 0 satisfying

|∂αφ(x)| ≤ CKh
|α||α|!t, (11)

for all x ∈ K and for all α ∈ Nd
0.

In a similar fashion we introduce new classes of smooth functions by
using defining sequences M τ,σ

p = pτp
σ

, p ∈ N, τ > 0, σ > 1.

Definition 3.1. Let there be given τ > 0, σ > 1, and let M τ,σ
p = pτp

σ

,
p ∈ N, M τ,σ

0 = 1.
The extended Gevrey class of Roumieu type E{τ,σ}(Rd) is the set of

all φ ∈ C∞(Rd) such that for every compact set K ⊂⊂ Rd there are
constants h > 0 and CK > 0 satisfying

|∂αφ(x)| ≤ CKh
|α|σM τ,σ

|α| , (12)

for all x ∈ K and for all α ∈ Nd
0.

The extended Gevrey class of Beurling type E(τ,σ)(Rd) is the set of
all φ ∈ C∞(Rd) such that for every compact set K ⊂⊂ Rd and for all
h > 0 there is a constant CK,h > 0 satisfying

|∂αφ(x)| ≤ CK,hh
|α|σM τ,σ

|α| , (13)

for all x ∈ K and for all α ∈ Nd
0.

The spaces E{τ,σ}(Rd) and E(τ,σ)(Rd) are in a usual way endowed with
projective and inductive limit topologies respectively, we refer to [6] for
details. In particular, they are nuclear spaces, see [6, Theorem 3.1].
Note that (11), (12) and (13) imply

∪τ>1Gt(Rd) →֒ E(τ,σ)(Rd) →֒ E{τ,σ}(Rd),

where →֒ denotes continuous and dense inclusion.
The set of functions φ ∈ E{τ,σ}(Rd) (φ ∈ E(τ,σ)(Rd)) whose support is

contained in some compact set is denoted by D{τ,σ}(Rd) ( D(τ,σ)(Rd) ).
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We use the abbreviated notation τ, σ for {τ, σ} or (τ, σ) to de-
note Eτ,σ(Rd) = E{τ,σ}(Rd) or Eτ,σ(Rd) = E(τ,σ)(Rd), and similarly for
Dτ,σ(Rd).
Next we give an equivalent description of extended Gevrey classes

by using sequences from R, see subsection 2.2. We note that such
descriptions are important when dealing with integral transforms of
ultradifferentiable functions and related ultradistributions, cf. [24, 25,
14]. The result follows from a lemma which is a modification of [25,
Lemma 3.4], and [24, Lemma 2.2.1].
Put ⌊x⌋ := max{m ∈ N : m ≤ x} (the greatest integer part of

x ∈ R+).

Lemma 3.1. Let there be given σ > 1, a sequence of positive numbers
(ap), (rj) ∈ R, and put

R0,σ = 1, Rp,σ :=

⌊pσ⌋∏

j=1

rj , p ∈ N. (14)

Then the following is true.

i) There exists h > 0 such that

sup
{ ap
hpσ

: p ∈ N0

}
<∞,

if and only if

sup

{
ap
Rp,σ

: p ∈ N0

}
<∞, for any (rj) ∈ R. (15)

ii) There exists (rj) ∈ R such that

sup {Rp,σap : p ∈ N0} <∞,

if and only if

sup
{
hp

σ

ap : p ∈ N0

}
<∞, for every h > 0. (16)

The proof of Lemma 3.1 is given in the Appendix.
Note that in (12) and (13) we could put h⌊|α|

σ⌋ instead of h|α|
σ

(this
follows from the simple inequality ⌊pσ⌋ ≤ pσ ≤ 2⌊pσ⌋, p ∈ N).

Proposition 3.1. Let there be given τ > 0, σ > 1, and letM τ,σ
p = pτp

σ

,
p ∈ N, M τ,σ

0 = 1. Then the following is true:

i) φ ∈ E{τ,σ}(Rd) if and only if for every compact set K ⊂⊂ Rd,
and for any (rp) ∈ R and Rp,σ given by (14), there exists
CK,(rp) > 0 such that

|∂αφ(x)| ≤ CK,(rp)R⌊|α|σ⌋,σM
τ,σ
|α| ,

for all x ∈ K, and all α ∈ Nd
0.
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ii) φ ∈ E(τ,σ)(Rd) if and only if for every compact set K ⊂⊂ Rd

there is a sequence (rp) ∈ R and a constant CK > 0 satisfying

|∂αφ(x)| ≤ CK

M τ,σ
|α|

R⌊|α|σ⌋,σ

for all x ∈ K and for all α ∈ Nd
0, where Rp,σ given by (14).

Proposition 3.1 follows from Lemma 3.1.
We end this subsection by introducing spaces of ulradistributions as

dual spaces of Eτ,σ(Rd), τ > 0, σ > 1. In subsection 3.5 we will prove
a Paley-Wiener type theorem for such ultradistributions.

Definition 3.2. Let τ > 0 and σ > 1, and let Eτ,σ(Rd) = E{τ,σ}(Rd) or
Eτ,σ(Rd) = E(τ,σ)(Rd). Then u ∈ E ′

τ,σ(R
d) if there exists a compact set

K in Rd and constants ε, C > 0 such that

|(u, ϕ)| ≤ C sup
α∈Nd,x∈K

|Dαϕ(x)|

ε|α|σ |α|τ |α|σ
, ∀ϕ ∈ Eτ,σ(R

d), (17)

and (·, ·) denotes standard dual pairing.
In a similar way D′

τ,σ(R
d) is the dual space of Dτ,σ(Rd).

3.2. Example of a compactly supported function. The non-
quasianalyticity condition (M.3)′ provides the existence of nontrivial
compactly supported functions in Eτ,σ(Rd) which can be formulated as
follows.

Proposition 3.2. Let τ > 0 and σ > 1. For every a > 0 there exists
φa ∈ Eτ,σ(Rd) such that φa ≥ 0, suppφa ⊂ [−a, a]d, and

∫
Rd φa(x) dx =

1.

Of course, any compactly supported Gevrey function from Gτ (Rd)
will suffice. However, the construction in Proposition 3.2, is sharp
in the sense that φa does not belong to any Gevrey class, i.e. φa 6∈⋃

t>1 Gt(Rd). We refer to the proof of [8, Lemma 1.3.6.] for more
details.

Proof. We give a proof when d = 1, and for d ≥ 2 the proof follows by
taking the tensor product.
Since Dτ,σ(R) is closed under dilation and multiplication by a con-

stant, it is enough to show the result for a = 1, and set φ1 = φ.
From

∞∑

p=1

1

(2(p+ 1))
1
m
pσ−1

<∞
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for any m ∈ N0 and any given σ > 1, it follows that there exists a
sequence of nonnegative integers (Nm) such that

∞∑

n=Nm

1

(2(p+ 1))
1
m
pσ−1

<
1

2m
.

Thus the sequence ap, p ∈ N0, given by

ap :=
1

(2(p+ 1))
1
m
pσ−1

, Nm ≤ p < Nm+1,

satisfies
∞∑

n=N1

ap ≤ 1.

Let f ∈ C∞(R) be a non-negative and even function such that

supp f ∈ [−1, 1],
∫ 1

−1
f(x) dx = 1, and fa(x) =

1
a
f
(
x
a

)
. Then we define

the sequence of functions (φp) by

φp := faN1
∗ faN1+1

∗ · · · ∗ fap , p ∈ N0.

Note that

supp φp ⊂ [−1, 1],

∫ 1

−1

φp(x) dx = 1, p ∈ N0,

φ(n)
p = faN1

∗ · · · ∗ faNm
∗ f ′

aNm+1
∗ · · · ∗ f ′

aNm+n
∗ faNm+n+1

∗ · · · ∗ fap ,

and

‖f ′
ap‖1 =

1

ap

∫

R

1

ap

∣∣∣∣f ′

(
x

ap

)∣∣∣∣ dx ≤
c

ap
≤ c (2(p+ 1))

1
m
pσ−1

, (18)

when p ≥ Nm.
Let there be given n ∈ N0 and τ > 0. Then we choose m, p ∈ N0 so

that 1/m < τ , and Nm + n < p.

By using (18) and the fact that (̃M.2)′ implies

M
1
m
,σ

p+q ≤ C̃pσM
1
m
,σ

p

for some C̃ = C̃(q) > 0, we obtain

|φ(n)
p (x)| ≤ cn 2

1
m

∑n
k=1(Nm+k)σ−1

n∏

k=1

(Nm + k + 1)
1
m
(Nm+k)σ−1

≤ cn2
1
m
(Nm+n)σ(Nm + n+ 1)

1
m
(Nm+n+1)σ

≤ Cnσ

nτnσ

,

where C depends on τ .
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The sequence {φ
(n)
p | p = N1, N2, . . . } is a Cauchy sequence for every

n ∈ N0. Thus, it converges to a function φ that satisfies

|φ(n)(x)| ≤ Cnσ

nτnσ

,

for every τ > 0. Therefore, φ ∈ Dτ,σ(R), and by the construction φ ≥ 0,
suppφ ⊂ [−1, 1] and

∫
R φ(x) dx = 1, which completes the proof. �

3.3. Algebra property. Since M τ,σ
p satisfies properties (M.1) and

(̃M.2)′ we have the following.

Proposition 3.3. Eτ,σ(Rd) is closed under the pointwise multiplication
of functions and under the (finite order) differentiation.

Proof. Let us prove that E(τ,σ)(Rd) is closed under pointwise multiplica-

tion, since its closedness under the differentiation follows from (̃M.2)′.
We refer to [6] for the Roumieu case E{τ,σ}(Rd) .
Let φ, ψ ∈ E(τ,σ)(Rd). Let K be a compact subset of Rd. Then for

every h, k > 0 there exist constants CK,h > 0 and CK,k > 0 such that

sup
x∈K

|∂αφ(x)| ≤ CK,hh
|α|σ |α|τ |α|

σ

, and sup
x∈K

|∂αψ(x)| ≤ C̃K,kk
|α|σ |α|τ |α|

σ

<∞.

For simplicity, assume that τ = 1, and the proof for τ > 1 is similar.
By the Leibniz formula and (M.1) we have

|∂α(φψ)(x)| ≤
∑

β≤α

(
α

β

)
|∂α−βφ(x)||∂βψ(x)|

≤ CK,hC̃K,k

∑

β≤α

(
α

β

)
h|α−β|σ |α− β||α−β|σk|β|

σ

|β||β|
σ

≤ CK,hC̃K,k|α|
|α|σ

∑

β≤α

(
α

β

)
h|α−β|σk|β|

σ

, x ∈ K.

By choosing h = k we get
∑

β≤α

(
α

β

)
h|α−β|σk|β|

σ

≤ 2|α|h2
σ |α|σ ≤ (2|α|h2

σ

)|α|
σ

,

and obtain
|∂α(φψ)(x)| ≤ C(2|α|h2

σ

)|α|
σ

|α||α|
σ

,

with C = CK,hC̃K,h.

Thus, for any given h̃ > 0 we can choose h < (h̃/2)1/2
σ

to get

|∂α(φψ)(x)| ≤ Ch̃|α|
σ

|α||α|
σ

,

where C > 0 depends on K and h̃, that is, φψ ∈ E(τ,σ)(Rd). �
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3.4. Inverse closedness and composition. We need some prepara-
tion related to the decompositions that appear when using the gener-
alized Faà di Bruno formula.
Let there be given a multiindex α ∈ Nd. We say that α is decomposed

into parts p1, . . . , ps ∈ Nd with multiplicities m1, . . . , ms ∈ N, if

α = m1p1 +m2p2 + · · ·+msps, (19)

where |pi| ∈ {1, . . . , |α|}, mi ∈ {0, 1, . . . , |α|}, i = 1, . . . , s. If pi =
(pi1, . . . , pid), i ∈ {1, . . . , s}, we put pi < pj when i < j if there exists
k ∈ {1, . . . , d} such that pi1 = pj1, . . . , pik−1

= pjk−1
and pik < pjk . Note

that s ≤ |α| and m = m1 + · · ·+ms ≤ |α|.
The triple (s, p,m) is called the decomposition of α and the set of

all decompositions of the form (19) is denoted by π.
For smooth functions f : R → C and g : Rd → R, the generalized

Faà di Bruno formula is given by

∂α(f(g)) = α!
∑

(s,p,m)∈π

f (m)(g)

s∏

k=1

1

mk!

( 1

pk!
∂pkg

)mk

. (20)

The total number card π of different decompositions of a multiindex
α ∈ Nd given by (19) can be estimated as follows: card π ≤ (1+|α|)d+2,
cf. [26, Remark 2.2].

Theorem 3.1. Let τ > 0, σ > 1. Then the extended Gevrey class
Eτ,σ(Rd) is inverse-closed in C∞(Rd).

Proof. The proof for E{τ,σ}(Rd) is given in [26]. Here we give the proof
for E(τ,σ)(Rd).
Let φ ∈ E(τ,σ)(Rd), φ(x) 6= 0, x ∈ Rd, and let K be a compact set in

Rd.
When d = 1 the proof is straightforward: Let c ∈ (0, 1) be such that

|φ(x)| ≥ c. Then we have
∣∣∣∣∣

(
1

φ(x)

)(α)
∣∣∣∣∣ ≤

α!

|φ(x)|α+1
|φ(α)(x)| ≤ CK,hα!

(
1

c

)
hα

σ

M τ,σ
α ,

so for each h̃ > 0 there is C > 0 such that
∣∣∣∣∣

(
1

φ(x)

)(α)
∣∣∣∣∣ ≤ C(h̃)α

σ

M τ,σ
α ,

that is, 1/φ ∈ E(τ,σ)(Rd).
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When d ≥ 2, we employ the Faà di Bruno formula (20), to obtain
∣∣∣∣∂α

( 1

φ(x)

)∣∣∣∣ ≤ |α|!
∑

(s,p,m)∈π

m!

m1! . . .ms!|φ(x)|m+1

s∏

k=1

( |∂pkφ(x)|
pk!

)mk

,

for arbitrary x ∈ K. Let c ∈ (0, 1) be chosen so that |φ(x)| ≥ c for
x ∈ K. Then

m!

m1! . . .ms!|φ(x)|m+1
≤

sm

cm+1

m1! . . .ms!

m1! . . .ms!
≤ C |α|σ+1,

for a suitable constant C > 0, where we used s,m ≤ |α|, and σ > 1.

It remains to show that for each h̃ > 0 there exists C > 0 such that
s∏

k=1

( |∂pkφ(x)|
pk!

)mk

≤ Ch̃|α|
σ

M τ,σ
|α| . (21)

This can be done by induction with respect to the length of the multi-
index α ∈ Nd. The proof for |α| = 1 is the same as in d = 1. Now,
if (21) holds for |α| < n, the case |α| = n, follows from the induction
step and Proposition 3.3. We omit details. �

Theorem 3.2. Let τ > 0, σ > 1. If f ∈ Eτ,σ(R) and g ∈ Eτ,σ(Rd) is
such that g : Rd → R, then f ◦ g ∈ Eτ,σ(Rd).

The proof of Theorem 3.2 for (the Roumieu case) can be found in
[7]. Theorem 3.1 is a consequence of Theorem 3.2, but, as we see, it
can be proved independently.

3.5. Paley-Wiener theorems. Let E(σ)(Rd) =
⋂

τ>0

E(τ,σ)(R
d) and let

D(σ)(Rd) denote the set of compactly supported elements from E(σ)(Rd).
A more general statement than Proposition 3.4 is given in [17, The-

orem 3.1].

Proposition 3.4. Let σ > 1, and let f ∈ D(σ)(Rd). Then f̂ , the Fourier
transform of f , is analytic function, and for every h > 0 there exists a
constant Ch > 0 such that

|f̂(ξ)| ≤ Ch exp
{
−h

(
ln

σ
σ−1 (|ξ|)/W

1
σ−1 (ln(|ξ|))

)}
, |ξ| large enough,

(22)

where W denotes the Lambert function.

Proof. The analyticity of f follows from the classical Paley-Wiener the-
orem, cf. [8]. It remains to prove (22).
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Let f ∈ D(σ)(Rd), and let K denote the support of f . Since f ∈
D τ

2
,σ(Rd), by Definition 3.1 for every α ∈ Nd we get the following

estimate:

|ξαf̂(ξ)| = |D̂αf(ξ)| ≤ C sup
x∈K

|Dαf(x)| ≤ C
|α|σ+1
1 |α|

τ
2
|α|σ ≤ C2|α|

τ |α|σ , ξ ∈ Rd,

for a suitable constant C2 > 0. Now, the relation between the sequence
(M τ,σ

p ) and its associated function Tτ,σ given by (8) implies that

|f̂(ξ)| ≤ C2 inf
α∈Nd

|α|τ |α|
σ

|ξ||α|
≤ C3e

−Tτ,σ(|ξ|), |ξ| large enough,

for suitable C3 > 0. Then, from the left-hand side of (10) we get

|f̂(ξ)| ≤ C4 exp
{
−Bσ τ

− 1
σ−1

(
ln

σ
σ−1 (|ξ|)/W

1
σ−1 (ln(|ξ|))

)}
, |ξ| large enough,

with C4 = C3e
−B̃τ,σ . For any given h > 0 we choose τ = (Bσ/h)

σ−1, to
obtain (22), which proves the claim. �

We proceed with the Paley-Wiener theorem for u ∈ E ′
(σ)(R

d).

Theorem 3.3. Let σ > 1.

i) If u ∈ E ′
(σ)(R

d) then there exist constants h, C > 0 such that

|û(ξ)| ≤ C exp

{
h
( lnσ |ξ|

W (ln(|ξ|))

) 1
σ−1

}
, for |ξ| large enough.

ii) If u ∈ E ′
(σ)(R

d) and if for every h > 0 there exists C > 0 such
that

|û(ξ)| ≤ C exp

{
−h

( lnσ(|ξ|)

W (ln(|ξ|))

) 1
σ−1

}
, for |ξ| large enough, (23)

then u ∈ E(σ)(Rd).

Proof. i) Fix τ0 > 0 so that u ∈ E ′
(2τ0,σ)

(Rd). By applying (17) to

ϕξ(x) = e−2πix·ξ ∈ E(σ)(Rd), ξ ∈ Rd, we get

|û(ξ)| = |(u, e−2πi·ξ)| ≤ C sup
α∈Nd

sup
x∈K

|Dα(e−2πix·ξ)|

ε|α|σ |α|2τ0|α|σ

≤ C sup
α∈Nd

|ξ||α|

ε|α|σ |α|2τ0|α|σ
≤ C1 sup

α∈Nd

|ξ||α|

|α|τ0|α|σ
= C1 exp{Tτ0,σ(|ξ|)}, ξ ∈ Rd,

where we have used simple inequalities |ξα| ≤ |ξ||α| and ε|α|
σ

|α|2τ0|α|
σ

≥
C ′|α|τ0|α|

σ

for suitable C ′ > 0. Now the the statement follows from
(10).
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ii) It is sufficient to prove that for every τ > 0 there exists constant
C > 0 such that

sup
x∈Rd

|Dαu(x)| ≤ C|α|τ |α|
σ

, α ∈ Nd. (24)

Notice that h > 0 large enough in (10) can be replaced by (1 + |ξ|)
for all ξ ∈ Rd.

For arbitrary τ > 0, we take Aσ be as in (10), and set h = 2Aστ
− 1

σ−1

in (23). Then the Fourier inversion formula, together with (10) and
(23), implies

|Dαu(x)| =

∣∣∣∣
∫

Rd

ξαû(ξ)e2πixξdξ

∣∣∣∣

≤ C

∫

Rd

|ξ||α| exp

{
−2Aστ

− 1
σ−1

( lnσ(1 + |ξ|)

W (ln(1 + |ξ|))

) 1
σ−1

}
dξ

≤ C1 sup
ξ∈Rd

(
|ξ||α| exp{−Tτ,σ(1+|ξ|)}

)∫

Rd

exp

{
−Aσ

( lnσ(1 + |ξ|)

τW (ln(1 + |ξ|))

) 1
σ−1

}
dξ

≤ C2 sup
ξ∈Rd

|ξ||α|

exp{Tτ,σ(|ξ|)}
, ξ ∈ Rd,

for suitable C2 > 0. Then (24) follows from (8). �

4. Wave-front sets for extended Gevrey regularity

4.1. Wave-front set and singular support. Wave-front sets mea-
sure different types of directional singularities. For example,

WF(u) ( WFt(u) ( WFA(u) , t > 1, (25)

where u ∈ D′(Rd), WF is the classical (C∞) wave-front set, WFt is the
Gevrey wave-front set, and WFA is analytic wave-front set, we refer to
[27, 8, 2] for precise definitions.
In this section we introduce wave-front sets which detect singularities

that are ”stronger” then the classical C∞ singularities and ”weaker”
than any Gevrey singularity. Moreover, the usual properties (such as
pseudo-local property), which hold for wave-front sets quoted in (25),
are preserved when considering the new type of singularities.
For simplicity, here we consider wave-front sets WF{τ,σ}(u) in terms

of extended Gevrey regularity of Roumieu type. Results on WF(τ,σ)(u)
of Beurling type are analogous, cf. [7, Remark 3.2].

Definition 4.1. Let u ∈ D′(Rd), τ > 0, σ > 1, and (x0, ξ0) ∈ Rd ×
Rd\{0}. Then (x0, ξ0) 6∈ WF{τ,σ}(u) if there exists a conic neighborhood
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Γ0 of ξ0, a compact set K ⊂⊂ Rd, and φ ∈ D{τ,σ}(Rd), supp φ = K,
φ(x0) 6= 0, and such that

|φ̂u(ξ)| ≤ C
hN

σ

N τNσ

|ξ|N
, N ∈ N , ξ ∈ Γ0 , (26)

for some h > 0 and C > 0.

Definition 4.1 does not depend on the choice of the cut-off function
φ ∈ D{τ,σ}(Rd) with given properties. We refer to [17, Theorem 4.2]
for the proof of such independence, and note that the inverse closed-
ness property of E{τ,σ}(Rd) (Theorem 3.1) is used in the proof. Thus,
(x0, ξ0) 6∈ WF{τ,σ}(u) if (26) holds for all φ ∈ D{τ,σ}(Rd), suppφ = K,
φ(x0) 6= 0, and sometimes it is convenient to assume that φ(x0) ≡ 1 in
a neighboorhood of x0 ∈ Rd, cf. [2].
Let u ∈ D′(Rd). Then WF{τ,σ}(u) is a closed subset of Rd ×Rd\{0},

and for every τ > 0 and σ > 1 we have

WF(u) ( WF{τ,σ}(u) ( WFt(u) ( WFA(u).

The singular support of a distribution u ∈ D′(Rd) with respect to
extended Gevrey regularity is the complement of the set of points in
which u locally belongs to E{τ,σ}(Rd):

Definition 4.2. Let τ > 0, σ > 1, and u ∈ D′(Rd). Then x0 6∈
singsupp{τ,σ}(u) if and only if there exists a neighborhood Ω of x0 such
that u ∈ E{τ,σ}(Ω).

Here, u ∈ E{τ,σ}(Ω) means that u satisfies the conditions of Definition
3.1, i.e. (12), with Rd replaced by its open subset Ω at each occurrence.
The next result is a consequence of Definition 4.1 and 4.2, we refer

to [7] for the proof.

Theorem 4.1. Let τ > 0, σ > 1, u ∈ D′(Rd), and let π1 : Rd ×
Rd\{0} → Rd be the standard projection given by π1(x, ξ) = x. Then

singsupp{τ,σ}(u) = π1(WF{τ,σ}(u)).

4.2. Characterization of wave-front sets via the STFT. For the
estimates of the short-time Fourier transform it is convenient to con-
sider the following refinement of the associated function Tτ,σ (see (8)).
The two-parameter associated function Tτ,σ(h, k) to the sequence

M τ,σ
p = pτp

σ

, p ∈ N, τ > 0, σ > 1 is given by

Tτ,σ(h, k) = sup
p∈N

ln+
hp

σ

kp

M τ,σ
p

, k > 0. (27)
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When h = 1 we recover the associated function with the sequence
(M τ,σ

p ), i.e.

Tτ,σ(k) = Tτ,σ(1, k), k > 0.

Sharp asymptotic estimates for Tτ,σ(h, k) in terms of the principal
branch of the Lambert function are given in [17].
Here we recall [20, Lemma 2], a simple result which relates Tτ,σ and

Tτ,σ(h, ·), h > 0.

Lemma 4.1. Let Tτ,σ(h, k) be given by (27), and let Tτ,σ(k) be given
by (8). Then for any given h > 0 and τ2 > τ > τ1 > 0 there exists
A,B ∈ R such that

Tτ2,σ(k) + A ≤ Tτ,σ(h, k) ≤ Tτ1,σ(k) +B, k > 0.

It is known that the classical wave-front set WF(u) can be described
by the means of the short-time Fourier transform, see [28]. Related
characterization of WF{τ,σ}(u) is given in [29]. Here we provide a
slightly different statement, and a more detailed proof.
Let there be given f, g ∈ L2(Rd). The short-time Fourier transform

(STFT) of f with respect to the window g is given by

Vgf(x, ξ) =

∫
e−2πitξf(t)g(t− x)dt = 〈f,MξTxg〉, x, ξ ∈ Rd.

We observe that the definition of Vgf makes sense when f and g belong
to any pair of dual spaces, extending the inner product in L2(Rd) as it
is mentioned in section 1.1.
We first observe that if (x0, ξ0) 6∈ WF{τ,σ}(u) then

|φ̂u(ξ)| ≤ C inf
N∈N

hN
σ

N τNσ

|ξ|N
, ξ ∈ Γ0, (28)

for some h > 0, C > 0, and φ satisfying the conditions of Definition
4.1. By (27) (and Lemma 2.3) it follows that (28) is equivalent to

|φ̂u(ξ)| ≤ Ce−Tτ,σ(
1
h
,|ξ|), ξ ∈ Γ0. (29)

Next we resolve WF{τ,σ}(u) of u ∈ D′(Rd) by considering the asymp-
totic behavior of its STFT.
In the sequel φ ∈ DK

{τ,σ}(R
d) means that φ ∈ D{τ,σ}(Rd) and supp φ =

K.

Theorem 4.2. Let u ∈ D′(Rd), and τ > 0, σ > 1. Then (x0, ξ0) 6∈
WF{τ,σ}(u) if and only if there exists a conic neighborhood Γ0 of ξ0, a
compact neighborhood K of x0, and

g ∈ DK0

{τ,σ}(R
d), Kx0 = {y ∈ Rd | y + x0 ∈ K}, g(0) 6= 0, (30)
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such that

|Vgu(x, ξ)| ≤ Ce−Tτ,σ(k,|ξ|), x ∈ K, ξ ∈ Γ0, (31)

for some k > 0, and C > 0.

Proof. We follow the idea presented in [28], and give the proof to en-
lighten the difference between WF(u) and WF{τ,σ}(u).
(⇒) Assume that there is a conic neighborhood Γ of ξ0, a compact

set K1 in Rd, so that for any φ ∈ DK1

{τ,σ}(R
d), such that φ(x0) 6= 0, the

estimate (29) holds for some C, h > 0. Without loss of generality, we

may assume that K1 = Br(x0) for some r > 0.
By (29) it follows that the set

Hh = {eTτ,σ(
1
h
,|ξ|)e−iξ·u(·) | ξ ∈ Γ0}

is weakly bounded, and weakly continuous (since DK1

{τ,σ}(R
d) is

barelled).

Let K = Br/2(x0), and consider the window g ∈ D
Kx0

{τ,σ}(R
d), such

that g 6= 0 on a neighborhood of 0.
Then φ ≡ Txḡ ∈ DK1

{τ,σ}(R
d), and φ 6= 0 on a neighborhood of x0. By

the equicontinuity of Hh it follows that

|〈eTτ,σ(
1
h
,|ξ|)e−iξ·u(·), Txḡ(·)〉| ≤ C1 sup

|α|≤N

sup
t∈K1

|Dαg(t− x)|

= C1 sup
|α|≤N

‖Dαg‖L∞ ≤ C (32)

¿From the definition of STFT it follows that

Vgu(x, ξ) = ûTxḡ(x, ξ), x, ξ ∈ Rd.

This, together with (32) implies

|Vgu(x, ξ)| = |ûTxḡ| ≤ Ce−Tτ,σ(1/h,|ξ|), ξ ∈ Γ,

for all x ∈ K, and for some constants C, h > 0, which gives (31).
Notice that we actually proved that (31) holds for any g satisfying

(30).

(⇐) Let the window g ∈ D
Kx0

{τ,σ}(R
d), g 6= 0 in a neighborhood of 0.

Then ψ = Tx0 ḡ ∈ DK
{τ,σ}(R

d), ψ(x0) 6= 0, and

|ψ̂u(ξ)| = |Vgu(x0, ξ)| ≤ Ae−Tτ,σ(k,|ξ|) ≤ C
hN

σ

N τNσ

|ξ|N
, N ∈ N, ξ ∈ Γ0,

for some C > 0 and h = 1/k > 0, and the proof is complete. �

By using Lemma 4.1 and Theorem 2.1 we can express the decay
estimate (31) in terms of the Lambert function as follows.
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Corollary 4.1. Let u ∈ D′(Rd), τ > 0, σ > 1, and let W denote
the Lambert function. If (x0, ξ0) 6∈ WF{τ,σ}(u) then there exists a conic
neighborhood Γ0 of ξ0, a compact neighborhoodK of x0, and g satisfying
(30) such that

|Vgu(x, ξ)| ≤ Ce
−c

(
lnσ(|ξ|)

τ2W (ln(|ξ|))

) 1
σ−1

, x ∈ K, ξ ∈ Γ0,

for some c > 0, C > 0, and any τ2 > τ .
Conversely, if there exists a conic neighborhood Γ0 of ξ0, a compact

neighborhood K of x0, and g satisfying (30) such that

|Vgu(x, ξ)| ≤ Ce
−c

(
lnσ(|ξ|)

τ1W (ln(|ξ|))

) 1
σ−1

, x ∈ K, ξ ∈ Γ0, (33)

holds for some c > 0, C > 0, and τ1 < τ , then (x0, ξ0) 6∈ WF{τ,σ}(u).

As a combination of results from Theorem 3.3 ii) and Theorem 4.1,
we can use Corollary 4.1 to characterize local regularity of u ∈ D′(Rd).
Namely if (33) holds, then x0 6∈ singsupp{τ,σ}(u), so that u ∈ E{τ,σ}(Ω)
in a neighborhood Ω of x0 (see Definition 4.2).

4.3. Propagation of singularities. One of the main properties of
wave-front sets is microlocal hypoelipticity. We first recall the notion
of the characteristic set of an operator and the main property of its
principal symbol.
If P (x,D) =

∑
|α|≤m aα(x)D

α is a differential operator of order m in

Rd and aα ∈ C∞(Rd), |α| ≤ m, then its characteristic set is given by

Char(P (x,D)) =
⋃

x∈Rd

{
(x, ξ) ∈ Rd × Rd\{0} | Pm(x, ξ) = 0

}
.

Here Pm(x, ξ) =
∑

|α|=m aα(x)ξ
α ∈ C∞(Rd×Rd\{0}) is the principal

symbol of P (x,D). If Char(P (x,D)) = ∅, then the operator P (x,D) is
hypoelliptic.
Noe, for the Roumieu wave-front WF{τ,σ}(u) we have the following

theorem on the paopagation of singularities.

Theorem 4.3. Let τ > 0, σ ≥ 1, u ∈ D′(Rd) and let P (x,D) =∑
|α|≤m aα(x)D

α be partial differential operator of order m such that

aα(x) ∈ E{τ,σ}(Rd), |α| ≤ m. Then

WF{2σ−1τ,σ}(f) ⊆ WF{2σ−1τ,σ}(u) ⊆ WF{τ,σ}(f) ∪ Char(P (x,D)),

where P (x,D)u = f in D′(Rd). In particular,

WF0,σ(f) ⊆ WF0,σ(u) ⊆ WF0,σ(f) ∪ Char(P (x,D)), (34)

where WF0,σ(u) =
⋂

τ>0WF{τ,σ}(u).
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The proof of Theorem 4.3 uses inverse closedness (Theorem 3.1),
Paley-Wiener type estimates (Theorem 3.3), and contains nontrivial
modifications of the proof of [8, Theorem 8.6.1]. We refer to [7] for a
detailed proof. Note that if σ = 1 and τ > 1, we recover the result for
propagation of singularities when the coefficients are Gevrey regular
functions, and WF0,σ(f) = WF0,σ(u) in (34) reveals the hypoellipticity
of (P (x,D).

5. Applications

5.1. A strictly hyperbolic partial-differential equation. Cicog-
nani and Lorenz in [5] considered the Cauchy problem for strictly hy-
perbolic m-th order partial-differential equations (PDEs) of the form

Dm
t u =

m−1∑

j=0

Am−j(t, x,Dx)D
j
tu+ f(t, x),

Dk−1
t u(0, x) = gk(x), (t, x) ∈ [0, T ]× Rd, k = 1, . . . , m, (35)

where

Am−j(t, x,Dx) =
∑

|γ|+j≤m

am−j,γ(t, x)D
γ
x,

where f and gk, k = 1, . . . , m, satisfy certain Sobolev type regularity
conditions (cf. (SH3-W) and (SH4-W) in [5]).
and studied well-posedness when the coefficients are low-regular in
time, and smooth in space. More precisely, it is assumed that the
coefficients am−j,γ satisfy conditions of the form

|Dβ
xam−j,γ(t, x)−D

β
xam−j,γ(s, x)| ≤ CK|β|µ(|t−s|), 0 ≤ |t−s| ≤ 1, x ∈ Rd,

(36)
where µ is a modulus of continuity, and (K|β|) is a defining sequence
(also called a weight sequence).
The modulus of continuity µ is used to describe the (low) regularity

in time, whereas (K|β|) describes the regularity in space.
When µ is a weak modulus of continuity,

µ(s) = s(log
1

s
+ 1) log[m](

1

s
), s > 1,

(Log-Log[m]-Lip-continuity), a suitable weight function η which defines
the solution space is chosen to be

η(s) = log(s)(log[m](s))1+ε + cm,

where ε > 0 is arbitrarily small and cm > 0 such that η(s) ≥ 1 for all
s > 1.
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We refer to [5] for a detailed analysis of (35), and note that the
relation between the modulus of continuity µ and the weight function
η is given by

lim
|ξ|→∞

µ( 1
〈ξ〉
)〈ξ〉

η(〈ξ〉)
= 0, 〈ξ〉2 = 1 + |ξ|2, ξ ∈ Rd,

while the condition which links the weight sequence (Kp) to the weight
function η is given by

inf
p∈N

Kp

〈ξ〉p
≤ Ce−hη(〈ξ〉),

for some h, C > 0, which is essentially the relation between the Carle-
man associated function and the Komatsu associated function as given
in Lemma 2.3.
One of the conclusions in [5] is that the Cauchy problem (35) is well-

posed if am−j,γ(t, x) ∈ E{1,2}(Rd) uniformly in x for every fixed t. In

other words, the sequence (K|β|) in (36) is given by Kp = pp
2

.

5.2. Generalized definition of ultradifferentiable classes. It is
recently demonstrated in [10] that the extended Gevrey classes are
prominent example of ultradifferentiable functions defined in the frame-
work of generalized weighted matrices approach.
The main idea behind the weighted matrices approach as given in [30]

and [23] is to establish a general framework for considering the Braun-
Meise-Taylor and Komatsu approach to ultradifferentiable functions
in a unified way. To include the extended Gevrey classes which are
called PTT-classes in [11] and [10] (after Pilipović-Teofanov-Tomić),
the so-called exponential sequences Φ = (Φp)p∈N, and the related gen-
eralized weighted matrix setting are introduced in [10]. One of the
main observations in [10] is that the exponential sequences Φ (such as
(hp

σ

)p∈N, for some h > 0) yield ”ultradifferentiable classes beyond geo-
metric growth factors”, under mild regularity and growth assumptions
on Φ. In such context, PTT-classes constitute a genuine examples of
of ultradifferentiable functions defined by weight matrices.
This approach reveals that, apart from stability properties mentioned

in Section 3, PTT-classes enjoy almost analytic extension [31], and al-
most harmonic extension [32]. Moreover, PTT-classes are a convenient
tool for the study of Borel mappings. More precisely, the asymptotic
Borel mapping, which sends a function into its series of asymptotic
expansion in a sector, is known to be surjective for arbitrary open-
ings in the framework of ultraholomorphic classes associated with se-
quences of rapid growth. By using the PTT-classes E{τ,σ}(Rd), given
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by M τ,σ
p = pτp

σ

, p ∈ N, τ > 0, 1 < σ < 2, Jiménez-Garrido, Lastra
and Sanz, presented a constructive proof of the surjectivity of the Borel
map in sectors of the complex plane for the ultraholomorphic class as-
sociated with those specific sequences. In fact, the asymptotic behavior
of the associated function given in terms of the Lambert function (see
Theorem 2.1) plays a prominent role in these investigations. We refer
to [11] for more details.

Appendix

Proof. (proof of Lemma 2.2) (M.1) obviously holds for p = 1. For
p− 1 ∈ N we observe that ln xτx

σ

= τxσ ln x is a convex function when
x > 1, which implies

2τpσ ln p ≤ τ(p− 1)σ ln(p− 1) + τ(p + 1)σ ln(p+ 1),

and (M.1) follows after taking exponential.

To show (̃M.2) we use (p+ q)σ ≤ 2σ−1(pσ + qσ) which implies

(p+ q)τ(p+q)σ ≤ (p+ q)τ2
σ−1pσ(p+ q)τ2

σ−1qσ , p, q ∈ N.

The logarithm of the first term on the right hand side of the inequality
can be estimated as follows:

τ2σ−1pσ ln(p+ q) = τ2σ−1pσ
(
ln p+ ln

(
1 +

q

p

))

≤ τ2σ−1pσ ln p+ τ2σ−1qpσ−1

≤ τ2σ−1pσ ln p+ τ2σ−1(p+ q)σ.

By taking exponential we obtain

(p+ q)τ2
σ−1pσ ≤ pτ2

σ−1pσeτ2
σ−1(p+q)σ ,

and by replacing the roles of p and q we get

(p + q)τ2
σ−1qσ ≤ qτ2

σ−1qσeτ2
σ−1(p+q)σ ,

thus

(p+ q)τ(p+q)σ ≤ pτ2
σ−1pσqτ2

σ−1qσeτ2
σ(p+q)σ ,

and (̃M.2) is proved.

Let us show that (̃M.2)′ holds true. Put σ = n + δ where n ∈ N,
0 < δ ≤ 1. If σ 6∈ N then n = ⌊σ⌋, 0 < δ < 1, while n = σ − 1, δ = 1,
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if σ ∈ N. By the binomial formula we have:

(p+ 1)σ ≤ (p+ 1)n(pδ + 1)

= pσ +

n∑

k=1

(
n

k

)
pσ−k +

n∑

k=0

(
n

k

)
pn−k

= pσ + 2npσ−1 + 2npn

≤ pσ + 2n+1pσ−δ,

wherefrom

τ(p + 1)σ ln(1 + p) ≤ τpσ ln(1 + p) + τ2n+1qσpσ−δ ln(1 + p). (37)

The first term on the right hand side of the inequality (37) can be
estimated by

τpσ ln(1 + p) = τpσ ln p(1 +
1

p
) = τpσ(ln p+ ln(1 +

1

p
))

≤ τpσ ln p+ τpσ−1 ≤ τpσ ln p+ τpσ,

while for the second term we use

τ2n+1pσ−δ ln(1 + p) = τ2n+1pσ−δ(ln p+ ln(1 +
1

p
))

≤ τ2n+1pσC + τ2n+1pσ ln 2 .

Here we used p−δ ln p ≤ C for some C > 0. Thus we have

τ(p+ 1)σ ln(1 + p) ≤ τpσ ln p+ τpσ(1 + 2n+1C̃),

with C̃ = C + ln 2. By taking exponential we obtain

(p+ 1)τ(p+1)σ ≤ BpσM τ,σ
p ,

for some B > 0, which gives (̃M.2)′.
To prove (M.3)′ we use 2 ≤ (1 + 1/p)p, p ∈ N, which gives

τ pσ−1 ln 2 ≤ τpσ ln
(
1 +

1

p

)
≤ τpσ−1, p ∈ N,

i.e.

2τp
σ−1

≤
(
1 +

1

p

)τpσ

≤ eτp
σ−1

, p ∈ N. (38)

The left hand side of (38) and

pσ ≥ (p− 1)σ−1p = (p− 1)σ + (p− 1)σ−1, p ∈ N,
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give
∞∑

p=1

(p− 1)τ(p−1)σ

pτpσ
≤

∞∑

p=1

(p− 1)τ(p−1)σ

pτ((p−1)σ+(p−1)σ−1)

=
∞∑

p=1

(
(1−

1

p
)τ(p−1)σ

)
1

pτ(p−1)σ−1

≤
∞∑

p=1

1

(2p)τ(p−1)σ−1 <∞,

which is (M.3)′. �

Proof. (proof of Lemma 3.1) i) (⇒) Let ap ≤ Chp
σ

, p ∈ N0, for some
C, h > 0, let (rj) be any sequence in R, and let j0 ∈ N0 be such that
h

rj
≤ 1, for all j ≥ j0. Then

ap ≤ Chp
σ

= C

j0∏

j=1

h

pσ∏

j=j0+1

rj
h

rj
≤ Chj0

pσ∏

j=1

rj ≤ C1

pσ∏

j=1

rj = C1Rp,σ,

for large enough p ∈ N0 and suitable C1 > 0. This proves (15).
(⇐) The opposite part we prove by contradiction. Assume that (15)

holds for arbitrary (rj) ∈ R, and that

sup
{ ap
hpσ

: p ∈ N0

}
= ∞ for every h > 0.

Thus, for every n ∈ N and h := n there exists pn ∈ N such that

apn
n⌊pσn⌋

> n.

If n = 1, then there exists p1 ∈ N such that ap1 > 1, and obviously

ap1
r1r2 . . . r⌊pσ1 ⌋

> 1

if r1 = r2 = · · · = r⌊pσ1 ⌋ = 1.
Similarly, when n = 2, there exists p2 > p1 such that ⌊pσ2⌋ > ⌊pσ1⌋,

and
ap2
2⌊p

σ
2 ⌋
> 2.

By choosing r⌊pσ1 ⌋+1 = r⌊pσ1 ⌋+2 = · · · = r⌊pσ2 ⌋ = 2 we get
∏⌊pσ2 ⌋

j=1 rj =

2⌊p
σ
2 ⌋−⌊pσ1 ⌋, wherefrom

ap2
r1 . . . r⌊pσ2 ⌋

≥
ap2
2⌊p

σ
2 ⌋
> 2.
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Next, we take p3 > p2 such that ⌊pσ3⌋ > ⌊pσ2⌋, and

ap3
3⌊p

σ
3 ⌋
> 3,

so we can choose r⌊pσ2 ⌋+1 = r⌊pσ2 ⌋+2 = · · · = r⌊pσ3 ⌋ = 3 to obtain

⌊pσ3 ⌋∏

j=1

rj = 1⌊p
σ
1 ⌋ · 2⌊p

σ
2 ⌋−⌊pσ1 ⌋ · 3⌊p

σ
3 ⌋−⌊pσ2 ⌋ =

(
1

2

)⌊pσ1 ⌋
(
2

3

)⌊pσ2 ⌋

3⌊p
σ
3 ⌋ < 3⌊p

σ
3 ⌋.

Thus for n = 3 we get

ap3
r1 . . . r⌊pσ3 ⌋

=
ap3∏⌊pσ3 ⌋
j=1 rj

>
ap3
3⌊p

σ
3 ⌋
> 3.

In the same fashion for any n + 1 ∈ N we can find pn+1 > pn such
that ⌊pσn+1⌋ > ⌊pσn⌋, and by choosing

r⌊pσn⌋+1 = r⌊pσn⌋+2 = · · · = r⌊pσn+1⌋
= n+ 1

we obtain
apn+1∏⌊pσn⌋

j=1 rj · (n+ 1)⌊p
σ
n+1⌋−⌊pσn⌋

>
apn+1

(n+ 1)⌊p
σ
n+1⌋

> n+ 1.

By the construction it follows that (rj) ∈ R, and for the sequence

Rp,σ =

⌊pσn⌋∏

j=1

rj

we obtain sup

{
ap
Rp,σ

: p ∈ N0

}
= ∞, which contradicts (15).

ii) (⇒) follows similarly as in i).
(⇐) Let (16) holds for every h > 0, and put

Ch := sup
{
hp

σ

ap : p ∈ N0

}
, for h ≥ 1.

We define

H0 = 1, Hj := sup

{
hj

Ch

: h ≥ 1

}
, j ∈ N.

It is easy to see that (Hj) is a well defined sequence which satisfies
(M.1), and that Hj/h

j tends to infinity as j → ∞, for all h ≥ 1.

Therefore (rj) ∈ R, where rj =
Hj

Hj−1
, j ∈ N. We note that

Hpσap = sup

{
hp

σ

Ch
: h ≥ 1

}
ap ≤ 1,
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and finally

Rp,σap =
( pσ∏

j=1

rj

)
ap = Hpσap ≤ 1,

which gives the statement. �
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[11] Jiménez-Garrido, J.; Lastra, A.; Sanz, J. Extension Operators for Some
Ultraholomorphic Classes Defined by Sequences of Rapid Growth; Constr.
Approx., 2023. https://doi.org/10.1007/s00365-023-09663-z
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[17] Pilipović, S.; Teofanov, N.; Tomić, F. A Paley–Wiener theorem in extended
Gevrey regularity. J. Pseudo-Differ. Oper. Appl. 2020, 11, 593–612.

[18] Katznelson, Y. An Introduction to Harmonic Analysis ; John Wiley & Sons,
Inc., 1968.

http://arxiv.org/abs/2402.16426


30 AN INTRODUCTION TO EXTENDED GEVREY REGULARITY

[19] Gelfand, I. M.; Shilov, G. E. Generalized Functions II ; Academic Press,
New York, 1968.
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