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COUNTEREXAMPLES TO GENERALIZATIONS OF THE ERDŐS B + B + t PROBLEM

ETHAN ACKELSBERG

ABSTRACT. Following their resolution of the Erdős B + B + t problem in [10], Kra Moreira, Richter, and
Robertson posed a number of questions and conjectures related to infinite configurations in positive density
subsets of the integers and other amenable groups in [11]. We give a negative answer to several of the questions
and conjectures in [11] by producing families of counterexamples based on a construction of Ernst Straus.

Included among our counterexamples, we exhibit, for any " > 0, a set A ⊆ ℕ with multiplicative upper
Banach density at least 1 − " such that A does not contain any dilated product set {b1b2t ∶ b1, b2 ∈ B, b1 ≠ b2}

for an infinite set B ⊆ ℕ and t ∈ ℚ>0. We also prove the existence of a set A ⊆ ℕ with additive upper Banach
density at least 1−" such that A does not contain any polynomial configuration {b2

1
+b2+t ∶ b1, b2 ∈ B, b1 < b2}

for an infinite set B ⊆ ℕ and t ∈ ℤ. Counterexamples to some closely related problems are also discussed.

1. INTRODUCTION

In [10], Kra, Moreira, Richter, and Robertson provided a positive resolution to the Erdős B+B+t problem
(asked in [5, 6, 7]) by showing that any positive density subset of the integers contains a shift of an infinite
sumset, i.e. a configuration of the form B⊕B + t = {b1 + b2 + t ∶ b1, b2 ∈ B, b1 ≠ b2} for some infinite set
B ⊆ ℕ and some t ∈ ℤ (and, moreover, B may be taken as a subset of A). One is then left with the natural
question of which other infinite combinatorial configurations can be found in sets of positive density of the
integers or of other amenable groups. The survey article [11] provides an extensive overview of questions
along these lines, with some partial results in both the positive and negative direction. The goal of the present
paper is to provide a negative answer to several of the questions and conjectures posed in [11].

1.1. Sumsets in abelian groups. First, we address the generalization of the Erdős B + B + t problem to
abelian groups. Let Γ be a countable discrete abelian group. A Følner sequence in Γ is a sequence of finite
subsets (ΦN )N∈ℕ of Γ such that for any x ∈ Γ,

lim
N→∞

||(ΦN + x)△ ΦN
||

|ΦN |
= 0.

The upper and lower density of a subset A ⊆ Γ along a Følner sequence Φ = (ΦN )N∈ℕ are given by

dΦ(A) = lim sup
N→∞

||A ∩ ΦN
||

|ΦN |
and d

Φ
(A) = lim inf

N→∞

||A ∩ ΦN
||

|ΦN |

The upper and lower Banach density of A ⊆ Γ are defined by d∗(A) = supΦ dΦ(A) and d∗(A) = infΦ d
Φ
(A),

where the supremum and infimum are taken over all Følner sequences Φ in Γ. In [4], Charamaras and
Mountakis prove a generalization of the main result of [10] for abelian groups whose “even” elements form
a finite index subgroup:

Theorem 1.1 ([4, Corollary 1.12]1). Let Γ be a countable discrete abelian group such that 2Γ = {2x ∶ x ∈
Γ} is a finite index subgroup of Γ. If A ⊆ Γ is a set of positive upper Banach density, then there exists an

infinite set B ⊆ Γ and a shift t ∈ Γ such that

B ⊕ B + t = {b1 + b2 + t ∶ b1, b2 ∈ B, b1 ≠ b2} ⊆ A.

Date: April 29, 2024.
2020 Mathematics Subject Classification. Primary: 05D10; Secondary: 11B13, 11B30.
1The main result of [4] applies to a class of amenable groups under a technical assumption on the set of squares. The result stated

in Theorem 1.1 is the special case of their result in the setting of abelian groups.
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2 ETHAN ACKELSBERG

We prove that the Erdős B + B + t problem for an abelian group Γ has a negative answer whenever 2Γ is
of infinite index, disproving [11, Conjecture 5.14]2.

Theorem 1.2. Suppose Γ is a countable discrete abelian group and 2Γ is a subgroup of infinite index. Then

for any " > 0, there exists A ⊆ Γ such that d∗(A) > 1 − " and if B ⊆ Γ and t ∈ Γ with B ⊕B + t ⊆ A, then

B is finite.

In fact, we can prove a similar result for higher-order sumsets as well. For k ∈ ℕ and B ⊆ Γ, let

B⊕k =

{
∑

x∈F

x ∶ F ⊆ B, |F | = k

}

.

Theorem 1.3. Let k ∈ ℕ. Suppose Γ is a countable discrete abelian group and kΓ is a subgroup of infinite

index. Then for any " > 0, there exists A ⊆ Γ such that d∗(A) > 1 − " and if B ⊆ Γ and t ∈ Γ with

B⊕k + t ⊆ A, then B is finite.

1.2. Product sets in (ℕ,×). The semigroup (ℕ,×) of positive integers under multiplication has the property
that the subsemigroup of kth powers, {nk ∶ n ∈ ℕ}, has zero (multiplicative) upper Banach density for every
k ≥ 2. With a small amount of additional work, we can use Theorem 1.3 to construct a counterexample in
(ℕ,×) for all k ≥ 2 simultaneously:

Theorem 1.4. Let " > 0. There exists A ⊆ ℕ with d∗
×
(A) > 1 − " such that if B ⊆ ℕ, t ∈ ℚ>0, and k ≥ 2

with

tB⊙k =

{
t

k∏

i=1

bi ∶ b1,… , bk ∈ B, b1 < ⋯ < bk

}
⊆ A,

then B is finite.

The case k = 2 in Theorem 1.4 gives a disproof of [11, Conjecture 5.1].

1.3. Polynomial configurations. Our next counterexample deals with polynomial patterns in the integers.
Seeking a sumset analogue of the Furstenberg–Sárközy theorem [9, 12], Kra, Moreira, Richter, and Robertson
asked whether every set of positive density in the integers contains a configuration of the form

{b2
1
+ b2 ∶ b1, b2 ∈ B, b1 < b2} + t

for some infinite set B ⊆ ℕ and some t ∈ ℤ (see [11, Question 3.13]). We show that the answer is negative
and remains negative for any polynomial of degree at least two in place of the squares:

Theorem 1.5. Let P (x) ∈ ℚ[x] be an integer-valued polynomial3 with deg P ≥ 2. Then for any " > 0, there

exists a set A ⊆ ℕ with d∗(A) > 1 − " such that if B ⊆ ℕ, t ∈ ℤ, and

P (B) ⨹ B + t =
{
P (b1) + b2 + t ∶ b1, b2 ∈ B, b1 < b2

}
⊆ A,

then B is finite.

Remark 1.6. Let us comment briefly on the choice of ordering for the configuration appearing in Theorem
1.5. One could also consider the related configuration P (B)

⨹

B = {P (b1) + b2 ∶ b1, b2 ∈ B, b1 > b2}.
In [11, Example 3.14], a counterexample of an even stronger form is given for this configuration. Namely,
there exists a set A ⊆ ℕ with d(A) = 1 such that A does not contain any set of the form B2

⨹

C = {b2 + c ∶
b ∈ B, c ∈ C, b > c} with B,C ⊆ ℕ infinite, and the only property of the squares used for the proof is that
the set of squares {n2 ∶ n ∈ ℕ} is of zero density, so the argument applies equally well to any polynomial of
degree at least 2.

The configuration P (B) ⨹ B in Theorem 1.5 is better behaved in several respects. First, if A ⊆ ℕ and
d∗(A) = 1, then A contains P (B) ⨹ B for some infinite set B ⊆ ℕ. Second, if A ⊆ ℕ and d∗(A) > 0, then

2Terence Tao has also observed that the condition [Γ ∶ 2Γ] < ∞ in Theorem 1.1 is necessary (see [13]).
3By an integer-valued polynomial, we mean a polynomial taking integer values on the integers. That is, P (ℤ) ⊆ ℤ.
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there are infinite sets B,C ⊆ ℕ such that P (B) ⨹ C ⊆ A, and, moreover, one may choose C ⊆ A − P (0);
see [11, Corollary 3.33].

Theorem 1.5 shows that, despite the improved behavior of ordered sumsets with the polynomial input
being of smaller size, once may still avoid infinite configurations of the form P (B) ⨹ B in all shifts of a set
of positive density. We should note that our proof makes use of the algebraic structure of polynomials in
addition to the fact that P (ℕ) has zero density. A natural lingering question is whether one can construct
counterexamples without this algebraic structure; see Question 5.2 and the accompanying discussion at the
end of the paper.

1.4. Product-sum sets. Finally, we show that [11, Question 3.18], which is a variant of [11, Question 3.13],
also has a negative answer:

Theorem 1.7. For any " > 0, there exists a set A ⊆ ℕ with d∗(A) > 1 − " such that if B ⊆ ℕ, t ∈ ℤ, and

B ◬ B ⨹ B + t =
{
b1 ⋅ b2 + b3 + t ∶ b1, b2, b3 ∈ B, b1 < b2 < b3

}
⊆ A,

then B is finite.

1.5. Remarks about partition regularity versus density regularity. Consider the following families of
sets discussed in the above results:

∙ For an abelian group Γ: Ck-sumset = {A ⊆ Γ ∶ ∃B ⊆ Γ infinite, B⊕k ⊆ A}.
∙ Ck-product set =

{
A ⊆ ℕ ∶ ∃B ⊆ ℕ infinite, B⊙k ⊆ A

}
and Cproduct =

⋃
k≥2 Ck-product set.

∙ For an integer-valued polynomial P (x) ∈ ℚ[x]: CP =
{
A ⊆ ℕ ∶ ∃B ⊆ ℕ infinite, P (B) ⨹ B ⊆ A

}
.

∙ C×,+ = {A ⊆ ℕ ∶ ∃B ⊆ ℕ infinite, B ◬ B ⨹ B ⊆ A}.

Theorems 1.3, 1.4, 1.5, and 1.7 provide examples of sets with density arbitrarily close to 1 not containing
any shift of an element of Ck-sumset, Cproduct, CP , or C×,+, respectively. We can therefore rephrase the main
theorems as showing that these families of configuration together with their shifts are not density regular.
This is made more meaningful by the following observation, which is a simple consequence of Ramsey’s
theorem.

Proposition 1.8. The families Ck-sumset, Cproduct, CP , and C×,+ are partition regular. That is, for each

C ∈
{
Ck-sumset,Cproduct,CP ,C×,+

}
, if C ∈ C and C =

⋃r
i=1

Ci, then Ci ∈ C for some i ∈ {1,… , r}.

Remark 1.9. One can check that each of the families Ck-sumset, Cproduct, CP , and C×,+ contains all thick
sets4 and deduce that every piecewise syndetic set5 contains a shift of each of the configurations we have
considered. The counterexamples we produce below will therefore be examples of non-piecewise syndetic
sets with positive density. Such sets have been explored previously in [3, 2].

2. REVISITING THE STRAUS EXAMPLE

All of the constructions in this paper are based on Ernst Straus’s counterexample to a density version of
Hindman’s theorem:

Theorem 2.1 (Ernst Straus, cf. [1, Theorem 2.20]). Let " > 0. There is a set A ⊆ ℕ with d∗(A) > 1 − "

such that A does not contain any configuration of the form

FS
(
(xn)n∈ℕ

)
+ t =

{
xi1 +⋯ + xik + t ∶ k ∈ ℕ, i1 < ⋯ < ik

}
.

for an infinite sequence x1 < x2 < ⋯ ∈ ℕ and t ∈ ℤ.

4A set is thick if it contains a shift of every finite set, or, equivalently, if it has upper Banach density equal to 1.
5A set is syndetic if it has non-empty intersection with every thick set, or, equivalently, if it has positive lower Banach density. A

piecewise syndetic set is an intersection of a syndetic set with a thick set. The family of piecewise syndetic sets is partition regular.
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Our goal is prove a similar result for the combinatorial configurations mentioned in the introduction, and
the basic approach will be very similar. In order to motivate the new constructions in this paper, let us briefly
review the main ideas in the proof of Theorem 2.1.

The first observation to make is that IP-sets (sets of the form FS((xn)n∈ℕ) for an infinite sequence x1 <

x2 < ⋯ ∈ ℕ) are “divisible” in the following sense: if A contains an IP-set, then A ∩ kℕ contains an IP-set
for every k ∈ ℕ. The idea to prove Theorem 2.1 is then to remove from ℕ an infinite arithmetic progression
ktℕ+ t for each t ∈ ℤ with kt growing sufficiently quickly so that

⋃
t∈ℤ(ktℕ+ t) has small density. Isolating

the essential properties utilized by Straus, we can prove the following general result:

Theorem 2.2. Let Γ be an abelian group. Let C be a family of infinite subsets of Γ, and suppose there is a

family D of subsets of Γ and a Følner sequence Φ with the following properties:

(1) For any C ∈ C and D ∈ D, one has C ∩D ∈ C, and

(2) infD∈D dΦ(D) = 0.

Then for any " > 0, there exists A ⊆ Γ with d
Φ
(A) > 1 − " such that for any t ∈ Γ, A − t ∉ C.

Taking C = {A ⊆ ℕ ∶ A contains an IP-set} and D = {kℕ ∶ k ∈ ℕ} reproduces Theorem 2.1.

3. KEY LEMMA AND PROOF OF THEOREM 2.2

The key lemma for proving Theorems 2.2 can be interpreted as an approximate version of countable
subadditivity for the upper density along a Følner sequence:

Lemma 3.1. Let Γ be a countable discrete abelian group with a Følner sequence Φ. Let (An)n∈ℕ be a

countable family of subsets of Γ. There exists A ⊆ Γ such that

(1) for any n ∈ ℕ, An ⧵ A is finite, and

(2) dΦ(A) ≤
∑

n∈ℕ dΦ(An).

Proof. Let �n = dΦ(An), and let � =
∑

n∈ℕ �n. If � ≥ 1, there is nothing to prove (one may take A = Γ), so
assume � < 1. By the definition of upper density along Φ, we have

|An ∩ Φk|
|Φk|

≤ �n + "(n, k)

for some "(n, k) ∈ [0, 1] with "(n, k) → 0 as k → ∞.
We will construct a sequence (kn)n∈ℕ be induction, put A′

n
= An ⧵

⋃
k<kn

Φk, and then let A =
⋃

n∈ℕ A′
n
.

Note that property (1) is automatically satisfied (regardless of the choice of (kn)n∈ℕ) since An⧵A ⊆
⋃

k<kn
Φk.

Let k1 = 1. For n ∈ ℕ, given k1,… , kn−1, choose kn > kn−1 such that
n∑

j=1

"(j, k) ≤
1

n

for all k ≥ kn. We check that property (2) is satisfied for this choice of (kn)n∈ℕ. For k ∈ ℕ, let nk = max{n ∈

ℕ ∶ kn ≤ k}. Note that A ∩ Φk =
⋃nk

j=1
A′
j
∩ Φk ⊆

⋃nk
j=1

Aj ∩ Φk. Therefore

|A ∩ Φk|
|Φk|

≤

nk∑

j=1

|Aj ∩ Φk|
|Φk|

≤

nk∑

j=1

�j +

nk∑

j=1

"(j, k) ≤ � +
1

nk
,

so
dΦ(A) ≤ � + lim sup

k→∞

1

nk
= �.

�

Remark 3.2. The proof of Lemma 3.1 does not use that Φ is a Følner sequence nor does it utilize any
algebraic structure of Γ. The same result holds for any notion of upper density on a set obtained by taking a
limit of finitely-supported probability measures.



COUNTEREXAMPLES TO GENERALIZATIONS OF THE ERDŐS B + B + t PROBLEM 5

We can now give a very short proof of Theorem 2.2.

Proof of Theorem 2.2. Let " > 0. By property (2), we may choose a family of sets (Dt)t∈Γ in D such that∑
t∈Γ dΦ(Dt) < ". Then by Lemma 3.1, let S ⊆ Γ such that dΦ(S) < " and (Dt + t) ⧵ S is finite for each

t ∈ Γ. Let A = Γ ⧵ S. Then d
Φ
(A) = 1 − dΦ(S) > 1 − ". Moreover, for each t ∈ Γ, the intersection

(A − t) ∩Dt = Dt ⧵ (St − t) is finite. In particular, (A − t) ∩Dt ∉ C, so by property (1), A − t ∉ C. �

4. CONSTRUCTING THE COUNTEREXAMPLES

Using Theorem 2.2, all that remains in order to prove Theorems 1.3, 1.4, 1.5, and 1.7 is to find the appro-
priate family of sets D for each corresponding collection of combinatorial configurations C.

4.1. Sumsets in abelian groups. Let Γ be a countable discrete abelian group. Recall Ck-sumset = {A ⊆ Γ ∶
∃B ⊆ Γ infinite, B⊕k ⊆ A}.

Lemma 4.1. Let Γ be a countable discrete abelian group and k ∈ ℕ. If C ∈ Ck-sumset and Λ ≤ Γ is a finite

index subgroup with kΓ ⊆ Λ, then C ∩ Λ ∈ Ck-sumset.

Proof. Let B ⊆ Γ be an infinite set such that B⊕k ⊆ C . By the pigeonhole principle, there exists x ∈ Γ such
that B′ = B ∩ (Λ + x) is infinite. Since kx ∈ Λ, we conclude B′⊕k ⊆ C ∩ Λ. �

Proof of Theorem 1.3. Let D = {Λ ≤ Γ ∶ kΓ ⊆ Λ and [Γ ∶ Λ] < ∞}. A finite index subgroup Λ ≤ Γ has
uniform density 1

[Γ∶Λ]
, so by Theorem 2.2 and Lemma 4.1, it suffices to show supΛ∈D[Γ ∶ Λ] = ∞. By

assumption, [Γ ∶ kΓ] = ∞, so Γ∕kΓ is an infinite group. Since each element of Γ∕kΓ has order dividing
k, we may write Γ∕kΓ as an infinite direct sum of cyclic groups Γ∕kΓ =

⨁
i∈ℕℤ∕niℤ with ni ∣ k for each

i ∈ ℕ (see, e.g., [8, Theorem 17.2]). The subgroups Λ̃j =
{
(xi)i∈ℕ ∶ xi = 0 for i < j

}
≤ Γ∕kΓ satisfy

[Γ∕kΓ ∶ Λ̃j] =
∏

i<j ni, so supj∈ℕ[Γ∕kΓ ∶ Λ̃j] = ∞. Lifting Λ̃j to a subgroup Λj ≤ Γ, we have Λj ∈ D

and supj∈ℕ[Γ ∶ Λj] = ∞. �

4.2. Product sets in (ℕ,×).

Proof of Theorem 1.4. Consider the group isomorphism ' ∶ (ℚ>0,×) → (
⨁

n∈ℕℤ,+) that maps an element
to its prime factorization. That is, if q =

∏s
i=1

p
ei
i

, where p1 < p2 < … is the increasing enumeration of the
primes, then '(q) = (e1, e2,… , es, 0,…).

Let Φ be a Følner sequence in (ℕ,×), and let Φ̃ be the Følner sequence in (
⨁

n∈ℕℤ,+) given by Φ̃N =

'(ΦN ). By Theorem 1.3, we may find, for each k ≥ 2, a set Ak ⊆
⨁

n∈ℕℤ such that d
Φ̃
(Ak) > 1 − 2−k"

and no shift of Ak contains an infinite k-fold sumset B⊕k. (As stated in the introduction, Theorem 1.3 only
guarantees d∗(Ak) > 1 − 2−k". However, from the conclusion of Theorem 2.2, we see that one may replace
the upper Banach density with the lower density along the Følner sequence Φ̃.)

Put Nk = (
⨁

n∈ℕℤ) ⧵Ak. Then dΦ̃(Nk) < 2−k", so by Lemma 3.1, there exists a set N ⊆
⨁

n∈ℕℤ such
that Nk ⧵N is finite for each k ≥ 2 and dΦ̃(N) < ".

Let A = '−1
(
(
⨁

n∈ℕ ℤ) ⧵N
)
∩ ℕ. Then d∗

×
(A) ≥ d

Φ
(A) = 1 − dΦ̃(N) > 1 − ". Suppose B ⊆ ℕ,

t ∈ ℚ>0, k ≥ 2, and tB⊙k ⊆ A. Then '
(
tB⊙k

)
∩ N = ∅. But ' is a group isomorphism, so we have

'
(
tB⊙k

)
= '(t) + '(B)⊕k. Therefore, from the construction of N , the set

(
'(t) + '(B)⊕k

)
∩Nk is finite.

Hence, removing finitely elements from B, we obtain a cofinite subset B′ ⊆ B such that
(
'(t) + '(B′)⊕k

)
⊆

Ak. By construction, the set Ak − '(t) does not contain any infinite k-fold subset, so we conclude that B′

(and hence B) is a finite set. �



6 ETHAN ACKELSBERG

4.3. Polynomial configurations.

Lemma 4.2. Let P (x) ∈ ℚ[x] be an integer-valued polynomial. Let k ∈ ℕ. If C ∈ CP , then there exists

n ∈ ℕ such that C ∩ (kℕ + P (n) + n) ∈ CP .

Proof. Let B ⊆ ℕ be an infinite set such that P (B) ⨹ B ⊆ A. Let D ∈ ℕ such that D ⋅ P (x) ∈ ℤ[x]
has integer coefficients. Then for any k ∈ ℕ, if n ≡ m (mod Dk), then P (n) ≡ P (m) (mod k). By the
pigeonhole principle, there exists n ∈ {0, 1,… , Dk − 1} such that B′ = B ∩ (Dkℕ + n) is infinite. Then
P (B′) ⨹ B

′ ⊆ A ∩ (kℕ + P (n) + n). �

As suggested by Lemma 4.2, the relevant family D for applying Theorem 2.2 will be the family of sets
of the form Dk =

⋃
n∈ℕ (kℕ + P (n) + n) for k ∈ ℕ. In order to show that such sets have arbitrarliy small

density (condition (2) in Theorem 2.2), we use the following property of polynomials:

Lemma 4.3. Let P (x) ∈ ℚ[x] be an integer-valued polynomial with deg P ≥ 2. Let ℙP be the set of prime

numbers p ∈ ℙ such that P (ℤ) represents every residue mod p. That is,

ℙP = {p ∈ ℙ ∶ ∀r ∈ ℤ, ∃n ∈ ℤ, P (n) ≡ r (mod p)} .

Then ∑

p∈ℙ⧵ℙP

1

p
= ∞.

Proof. Let us first reduce to the case that P has integer coefficients. Let D ∈ ℕ such that Q(x) = D ⋅P (x) ∈
ℤ[x]. For any prime p ∈ ℙ with p ∤ D, we have p ∈ ℙP if and only if p ∈ ℙQ, since D is invertible mod p.
Therefore, ℙP ⊆ ℙQ ∪ {p ∈ ℙ ∶ p ∣ D}. The set {p ∈ ℙ ∶ p ∣ D} is finite, so

∑

p∈ℙ⧵ℙP

1

p
= ∞ ⟺

∑

p∈ℙ⧵ℙQ

1

p
= ∞.

We may therefore assume without loss of generality that P has integer coefficients. In this case, P is
well-defined mod p for every p ∈ ℙ, so p ∈ ℙP if and only if P acts as a permutation on ℤ∕pℤ; that is, P is
a permutation polynomial mod p. If ℙP is finite, there is nothing to prove, so suppose ℙP is infinite. Then
P is a composition of Dickson polynomials6 and linear polynomials by [14, Theorem 2]. Hence, we may
assume P = P1◦P2◦… ◦Pr, where each Pi(x) is either linear or a Dickson polynomial. Since degP ≥ 2, at
least one of the polynomials Pi has deg Pi ≥ 2 and is therefore a Dickson polynomial. Let i ∈ {1,… , r} such
that Pi is a Dickson polynomial, say Pi = Dni

(ai, x) for some ai ∈ ℤ and ni ≥ 2. If p ∈ ℙP , then Pi must be
a permutation polynomial mod p, so either p ∣ ai and gcd(ni, p − 1) = 1 or p ∤ ai and gcd(ni, p

2 − 1) = 1. In
particular, if q is a prime factor of ni and p ∈ ℙP , then q ∤ p−1. Therefore, for any prime factor q ∈ ℙ of ni,

{p ∈ ℙ ∶ p ≡ 1 (mod q)} ⊆ ℙ ⧵ ℙP .

By Dirichlet’s theorem on primes in arithmetic progressions, it follows that
∑

p∈ℙ⧵ℙP

1

p
= ∞.

�

Proof of Theorem 1.5. For each k ∈ ℕ, let Dk =
⋃

n∈ℕ (kℕ + P (n) + n), and let D =
{
Dk ∶ k ∈ ℕ

}
. Note

that Dk has uniform density equal to |Rk|
k

, where Rk = {P (n) + n mod k ∶ n ∈ ℤ} ⊆ ℤ∕kℤ. Therefore, by

Theorem 2.2 and Lemma 4.2, it suffices to show infk∈ℕ
|Rk|
k

= 0.
Let ℙP+x be the set as in Lemma 4.3 for the polynomial P (x) + x. We will consider k of the form

k =
∏s

i=1
pi with p1,… , ps ∈ ℙ ⧵ℙP+x distinct. By the Chinese remainder theorem, P (n) + n ≡ r (mod k)

6The Dickson polynomials are defined recursively by D0(a, x) = 2, D1(a, x) = x, and Dn(a, x) = xDn−1(a, x) − aDn−2(a, x), and
a Dickson polynomial Dn(a, x) (considered as a polynomial in x with a ∈ ℤ fixed) is a permutation polynomial mod p if and only
if either p ∣ a and gcd(n, p − 1) = 1 or p ∤ a and gcd(n, p2 − 1) = 1; see [14, Lemma 1.4].
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if and only if P (n)+n ≡ r (mod pi) for every i ∈ {1,… , s}. Therefore, |Rk| ≤
∏s

i=1
|Rpi

|. By the definition
of ℙP+x, we have |Rpi

| ≤ pi − 1, so

|Rk|
k

≤

s∏

i=1

|Rpi
|

pi
≤

s∏

i=1

(
1 −

1

pi

)
.

We have thus shown

inf
k∈ℕ

|Rk|
k

≤
∏

p∈ℙ⧵ℙP+x

(
1 −

1

p

)
.

But by Lemma 4.3, the infinite product
∏

p∈ℙ⧵ℙP+x

(
1 − 1

p

)
is equal to 0, so we are done. �

Remark 4.4. The family {P (x) ∈ ℚ[x] ∶ P is integer-valued and degP ≥ 2} is countable, so the set A in
Theorem 1.5 can be chosen independent of the polynomial P by another application of Lemma 3.1.

4.4. Product-sum sets.

Lemma 4.5. Let C ∈ C×,+. Then for any k ∈ ℕ, there exists n ∈ ℕ such that A ∩ (kℕ + n2 + n) ∈ C×,+.

Proof. Let B ⊆ ℕ be an infinite set such that B ◬ B ⨹ B ⊆ A. By the pigeonhole principle, let n ∈
{0, 1,… , k − 1} such that B′ = B ∩ (kℕ + n) is infinite. Then B′

◬ B
′

⨹ B
′ ⊆ A ∩ (kℕ + n2 + n). �

The family D =
{⋃

n∈ℕ

(
kℕ + n2 + n

)
∶ k ∈ ℕ

}
is the same family of sets that appeared in the proof of

Theorem 1.5 for P (x) = x2, so the same argument proves Theorem 1.7.

5. CONCLUDING REMARKS

Each of Theorems 1.3, 1.4, 1.5, and 1.7 can be strengthened as follows. Instead of simply concluding
that B is a finite set, we may make the stronger conclusion that |B| ≤ Mt, where Mt is some finite bound
depending on t. That is, each shift of the set A not only does not contain any infinite configuration of the
desired type, but it in fact only contains configurations of bounded size. This can be deduced using the
following variant of Theorem 2.2:

Theorem 5.1. Let Γ be an abelian group. For each m ∈ ℕ, let Cm be a family of subsets of Γ and of

cardinality at least m such that C1 ⊇ C2 ⊇ … . Suppose there are families D1 ⊆ D2 ⊆ … of subsets of Γ
and a Følner sequence Φ with the following properties:

(1) For any m, r ∈ ℕ, there exists M = M(m, r) ∈ ℕ such that if C ∈ CM and D ∈ Dr, then C ∩D ∈ Cm,

and

(2) inf r∈ℕ infD∈Dr
dΦ(D) = 0.

Then for any " > 0, there exists A ⊆ Γ with d
Φ
(A) > 1 − " and (Mt)t∈Γ in ℕ such that for any t ∈ Γ,

A − t ∉ CMt
.

Theorem 5.1 can be proved along exactly the same lines as Theorem 2.2, and the claimed strengthenings
of Theorems 1.3, 1.4, 1.5, and 1.7 hold by similar arguments to those presented in Section 4. To avoid sig-
nificant repetition, we omit the proofs and leave the details to the interested reader.

In the proof of Theorem 1.5, the reason we work with polynomials P (x) ∈ ℚ[x] with degP ≥ 2 is that
the set of values P (ℤ) ⊆ ℤ is sparse (of zero upper Banach density). This is a key aspect of what allows for
property (2) in Theorem 2.2 to hold. A natural question, then, is whether the polynomial structure is really
needed, or if the same result holds for arbitrary sparse sequences.

Question 5.2. Does there exist an increasing function f ∶ ℕ → ℕ such that limn→∞
f (n)

n
= ∞ with the

following property: for any A ⊆ ℕ with d(A) > 0, there exists an infinite set B ⊆ ℕ and t ∈ ℤ such that

f (B) ⨹ B + t =
{
f (b1) + b2 + t ∶ b1, b2 ∈ B, b1 < b2

}
⊆ A?
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