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We present a theoretical investigation of a whispering gallery mode (WGM) resonator coupled
to a Mach-Zehnder interferometer (MZI) and show a bimodal coincidence transmission spectrum
when the input state is an indistinguishable photon pair. This is due to the doubled WGM phase
shift experienced by the path-entangled state in the interferometer. Further, we model the noise
in a WGM resonance shift measurement comparing photon pairs with a coherent state. At least
a four-fold improvement in the signal-to-noise ratio (SNR) is possible, with clear implications for
quantum-enhanced WGM sensing.

I. INTRODUCTION

Whispering gallery mode (WGM) resonators are opti-
cal cavities with a circular geometry which can take the
form of ring resonators, toroids, spheres and bottles [1, 2].
These high-Q factor resonators have found many applica-
tions in sensing, including in biosensing, where plasmonic
enhancements of the sensing signal using gold nanopar-
ticles [3] have made it possible to detect single small
molecules and enzyme turnover events, for example [4–7].
However, these sensors are far from reaching fundamental
noise limits. Methods for improving the signal-to-noise
ratio (SNR) have the potential to reveal more informa-
tion from sensor signals such as detecting even smaller
conformational changes in biomolecules.

Quantum sensing schemes with WGM sensors are as
yet relatively unexplored. One widely used scheme in
quantum optical sensing is the Mach-Zehnder interfer-
ometer (MZI) for determining an optical phase differ-
ence. With an indistinguishable photon pair as the input
state, the state inside the interferometer is a two-photon
N00N state due to Hong-Ou-Mandel (HOM) interference
at the first beamsplitter. The phase shift between the
two arms is doubled for the two-photon state and the
interference fringes oscillate at double the frequency of
the classical MZI, allowing these phase measurements to
beat the quantum noise limit (QNL) [8]. This scheme has
been demonstrated many times, including with higher or-
der N00N states [9–11].

Typically, the quantum optical MZI has a linear phase
difference introduced between the two arms. In this
paper we investigate the behaviour of an MZI with a
WGM resonance coupled to one of the interferometer
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FIG. 1. Schematic of WGM resonator inside MZI.

arms, which introduces a phase shift and transmission
profile dependent on the frequency detuning and cou-
pling conditions. We use a model for quantum optical
coupling to a WGM resonator based on the operator
valued phasor addition (OVPA) model described in
Ref. [12]. For an indistinguishable photon pair input
state, we derive the output state analytically and show
the WGM coincidence transmission spectrum has two
dips, which is a consequence of doubling the WGM
phase shift. We also demonstrate with a computational
model how this spectral feature can enhance the SNR of
a WGM resonance shift measurement, achieving at least
a factor of 4 improvement in the SNR under reasonable
experimental assumptions.

II. QUANTUM OPTICAL MODEL FOR WGM
COUPLING

We use the OVPA approach described in Ref. [12]
for a quantum optical treatment of coupling an optical
mode in a waveguide to a ring resonator. In this model
the waveguide-ring resonator system is parameterised as
shown in Figure 1.
Coupling to the resonator (for example by evanescent

coupling) is characterised by the amplitude coupling co-
efficient κ and amplitude reflection coefficient r, we use
r to describe the coupling condition since |κ|2 + |r|2 = 1.
The mode in the ring resonator has an amplitude trans-

mission α and phase θ per round trip. The intrinsic Q
factor of the resonator is set by α. The phase θ is de-
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pendent on the detuning δ between the frequency of the
waveguide mode and a WGM, via θ = 2πRnδ/c where R
is the resonator radius and n is the resonator refractive
index. We consider detuning from a single WGM in the
following.

The input-output relation for the waveguide mode cou-
pled to the WGM resonator is:

âout = t(ω)âin + F̂ (ω). (1)

This differs from the expression relating classical mode
amplitudes by the extra term F̂ (ω) corresponding to
noise operators. This must be included to satisfy the
commutation relations for âout.
The complex amplitude transmission past the WGM

resonator at frequency ω, t(ω), is:

t(ω) =

(
r − αeiθ

1− r∗αeiθ

)
. (2)

T (ω) = |t(ω)|2 is the classical WGM transmission spec-
trum. The coupling condition may be varied through
three regimes by changing r: r > α undercoupling, r = α
critical coupling, and r < α overcoupling.
Noise operators F̂ (ω) couple the WGM to the bath of

thermal modes in the environment around the resonator
using a continuous set of beamsplitters to model losses,
an approach due to Loudon [13]:

F̂ (ω) = −i|κ|2
√
Γ(ω)

∞∑
n=0

(r∗)n

×
∫ (n+1)L

0

dz exp(iξ(ω)[(n+ 1)L− z]) ŝ(z, ω)(3)

where ξ(ω) = n(ω)(ω/c)+Γ(ω) for ring resonator refrac-
tive index n(ω), and Γ(ω) is the loss per unit distance
around the ring resonator. The continuous set of beam-
splitters couple the modes ŝ(z, ω) to the WGM at posi-
tion z on the ring, integrated up to the ring resonator
circumference L.

III. WGM RESONATOR COUPLED TO MZI

Now we put the quantum optical model for the WGM
resonator into a MZI as shown in Figure 1, such that it is
coupled to one arm of the interferometer. The following
sections investigate the consequences of this for coher-
ent states and indistinguishable photon pairs at the MZI
input modes.

A. Coherent State Input

First we consider the situation with quasi-classical
light at the input to the MZI. If a coherent state with
complex amplitude β is the input to mode â1 in the MZI,
the amplitudes interfering on the second beamsplitter are

1√
2
β and

1√
2
t(ω)β. The mode coupled to the WGM res-

onator experiences both a phase change and optical loss
described by the transmission spectrum t(ω). The optical
intensities at the output modes 7, 8 are then:

I7,8(ω) =
1

4
|(1± t(ω))β|2 (4)

The I7(ω) spectrum has the form of a transmission dip
similar to the transmission spectrum for a quasi-classical
mode in a single waveguide coupled directly to a WGM
resonance.

B. Indistinguishable Photon Pair Input

For the input state we take a simple expression for a
photon pair at the input ports of the first beamsplitter:

|ψin⟩ = â†1â
†
2|0, 0⟩1,2 ⊗ |0⟩env (5)

where |0⟩env is the vacuum state for the environment, or
a thermal bath of oscillators at temperature 0 K, which
is acted on by the noise operators in the quantum WGM
model. First we find the state in modes 5 and 6 after
coupling to the WGM resonator.
Writing the relation between input (â1, â2) and output

(â5, â6) modes in terms of a transfer matrix M:(
â5
â6

)
=

1√
2

(
it(ω) t(ω)
1 i

)(
â1
â2

)
+

(
F̂ (ω)
0

)
(6)

âout =
1√
2
Mâin + F̂(ω) (7)

The output state in modes 5 and 6 after coupling to

the WGM is given by substituting for â†in = (â†1, â
†
2) in

the initial input state (Equation 5):

|ψ5,6⟩ =
√
2i

2

( 1

(t∗(ω))2
A(ω)|2, 0⟩5,6+ |0, 2⟩5,6

)
⊗|0⟩env

− i

(t∗(ω))2
A(ω)|1, 0⟩5,6 ⊗ F̂ †(ω)|0⟩env

+
i

2(t∗(ω))2
A(ω)|0, 0⟩5,6 ⊗ F̂ †2(ω)|0⟩env. (8)

A(ω) is a normalisation factor. The probability of the
state |0, 2⟩5,6 should always be 1/2, so we normalise the
other three terms with the parameter A(ω):

A2(ω)

[
1

2|t(ω)|4
+

1

|t(ω)|4
|env⟨0|F̂ F̂ †|0⟩env|2

+
1

4|t(ω)|4
|env⟨0|F̂ 2F̂ †2|0⟩env|2

]
=

1

2
. (9)
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The expectation values of noise operators F̂ are evaluated
using the commutation relation for the output mode am-
plitudes and using Equation 6, as described by Alsing et
al. [12], leading to:

A(ω) = |t(ω)|2
[
1 + 2

(
1− |t(ω)|2

)2
+ 2

(
1− |t(ω)|2

)4]−1/2

.
(10)

As expected for the output state Equation 8, the

photon pairs in mode 6 have no dependence on the
WGM coupling conditions, and the terms with photons
in mode 5 have A(ω)/(t∗(ω))2 dependence. This is where
the double phase shift due to the two-photon N00N state
comes in, because now due to the factor (t∗(ω))2 the
phase difference between photons in modes 5 and 6 is
twice the usual phase shift from coupling to a WGM res-
onator.
The next stage is to act on this state with the output

beamsplitter to interfere modes 5 and 6 which have a
phase difference equal to double the WGM phase shift.
The final output state is:

|ψout⟩ =
i
√
2

4

(
A(ω)

(t∗(ω))2
− 1

)
|2, 0⟩7,8 ⊗ |0⟩env +

i
√
2

4

(
1− A(ω)

(t∗(ω))2

)
|0, 2⟩7,8 ⊗ |0⟩env

+
1

2

(
A(ω)

(t∗(ω))2
+ 1

)
|1, 1⟩7,8 ⊗ |0⟩env −

iA(ω)√
2(t∗(ω))2

|1, 0⟩7,8 ⊗ F̂ †(ω)|0⟩env

− A(ω)√
2(t∗(ω))2

|0, 1⟩7,8 ⊗ F̂ †(ω)|0⟩env +
iA(ω)

2(t∗(ω))2
|0, 0⟩7,8 ⊗ F̂ †2(ω)|0⟩env. (11)

FIG. 2. Coincidence rate transmission spectra for indis-
tinguishable photon pair input state to the WGM-coupled
MZI. Coincidence probabilities are at the two MZI output
modes. Spectra are shown for fixed round-trip transmission
α = 0.9997 and varying coupling coefficient r. Critical cou-
pling (r = α) is indicated by a dashed line.

Figure 2 shows the coincidence rate for α = 0.9997 and
varying coupling parameter r. This value of α gives a Q
factor and linewidth γ typical of WGM sensing experi-
ments (γ ∼ 100 fm). Over a range of coupling conditions
we can see that a double dip in the coincidence spec-
trum emerges as the coupling approaches critical cou-
pling. This is in contrast to the typical Lorentzian dip in
the classical WGM transmission spectrum.

As for the linear phase shift MZI, there are points

in the interference signal with a higher gradient and
hence higher sensitivity to changes in the detuning, than
in the classical WGM signal. In the next section we
model WGM wavelength shift measurements with en-
hanced signal-to-noise ratio using these spectral features.

IV. MODELLING SIGNAL-TO-NOISE RATIO
ENHANCEMENT FOR WGM MEASUREMENTS

In WGM sensing, changes in the resonance position
and linewidth are tracked over time. We will now com-
pare the noise in measurements of the WGM resonance
shift between three measurement cases using coherent
states and indistinguishable photon pairs.

A. Computational Model for Classical and
Quantum WGM Sensing

We model three measurement cases:
1. ‘Classical WGM’ The transmission spectrum for
a single mode coherent state (quasi-classical state) cou-
pled to a WGM resonator, i.e. the ‘conventional’ WGM
sensing experiment:

I1(ω) = |t(ω)|2. (12)

2. ‘Classical WGM-MZI’ The transmission spectrum
for a WGM resonator coupled to one arm of a MZI, with
a coherent state in one input mode, and monitoring the
transmission difference of the MZI outputs (I7 − I8 in
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FIG. 3. Schematic of WGM measurement with noise for the
entangled photon MZI case showing a resonance frequency
shift transduced into an intensity change at the maximum
gradient point in the spectrum. Detuning δ is in units of
WGM linewidth γ. The top plot compares transmission spec-
tra for the three cases introduced in the main text. The pho-
ton number per time bin was chosen to be N = 380 and a
resonance frequency shift equal to 0.1γ. The resonator is in
the overcoupled regime: r = 0.9990, α = 0.9997.

Equation 4):

I2(ω) =
1

4

(
|1 + t(ω)|2 − |1− t(ω)|2

)
. (13)

3. ‘Entangled WGM-MZI’ The transmission spec-
trum for a WGM resonator coupled to one arm of a
MZI, with indistinguishable photon pairs in the two in-
put modes, and measuring coincidence detections in the
two output modes:

PCoinc(ω) =
1

4

∣∣∣∣ A(ω)

(t∗(ω))2
+ 1

∣∣∣∣2 . (14)

The change we would like to detect for sensing experi-
ments is a shift in the WGM resonance frequency δω0.
We consider a transmission intensity measurement at a
single point where the transmission spectrum has max-
imum gradient, i.e. at fixed detuning from resonance.
From the transmission measurement we read out both
changes in linewidth γ and resonance position ω0 as a
combined frequency change Ω = δω0 + 0.5(δγ).

For each of the three cases introduced above, we add
randomly generated noise to the intensity and resonance
position of the model signal, as shown in Figure 3. In
each simulation, spectra were generated for Nsteps = 103

time steps. For each time step, two types of noise were

added to the transmission spectrum: a Gaussian dis-
tributed change in the resonance frequency ω0 (to model
noise sources affecting the WGM resonator such as ther-
morefractive noise, changes in the coupling conditions,
or fluctuations in the laser wavelength), and Poisson dis-
tributed noise in the measured transmission intensity
(photon shot noise due to counting small numbers of pho-
tons per time bin). The dimensionless photon number
per time bin N is normalised for equal ⟨N⟩ at the WGM
resonator, see Supplementary Information (SI).

B. Modelling Results

Figure 4(a) shows the 3σ uncertainty ∆Ω for classical
WGM, classical WGM-MZI, and entangled WGM-MZI
as a function of detected photon number per time bin (N
is the number of coincidences per time bin for the pho-
ton pair case). The coupling conditions are set to slightly
overcoupled: α = 0.9997 and r = 0.9996. The combined
frequency change Ω is given in wavelength units for com-
parison to experimental results with WGM sensing. The
1σ level of noise added to the resonance wavelength was
1 fm which was chosen to be near typical experimental
values [7, 14].
There are two main regimes: for photon number N >

105, the resonance frequency noise dominates and the
noise is constant as the optical power increases, 3 fm ex-
pected from the 1σ = 1 fm noise which was added. This
is the regime in which typical WGM sensing experiments
will operate. For N < 104, shot noise begins to dominate
and the uncertainty in the wavelength shift increases as√
N as the number of photons per time bin N decreases.

In this regime, we see that the entangled WGM-MZI has
reduced noise in the wavelength shift compared to the
two classical cases.
Figures 4(b,c) show maps of the relative noise com-

paring the entangled WGM-MZI case with (a) classical
WGM and (b) classical WGM-MZI. The plotted noise
ratio values are the enhancement factor of the SNR, com-
pared to the classical SNR. Here N = 380; at the upper
end of the shot-noise limited regime in Figure 4(a). For
(b) and (c) the SNR enhancement is consistently higher
in the overcoupling region and has a peak at the critical
coupling condition.
We also consider the effect of the input light linewidth,

which so far has been assumed to be monochromatic.
To model this effect, the transmission spectra for each
case were convolved with a Gaussian function. Figure 5
shows the entangled WGM-MZI noise level relative to the
classical WGM case, including the linewidth of the input
light. This is a slice through Figure 4(c) shown by the
horizontal line.
The ratio between the input linewidth and the WGM

linewidth (the linewidth of the classical WGM spectrum)
was varied between 0.1 and 1.0. For an experimentally
achievable ratio 0.1 [15], the SNR enhancement is up to
a factor of 4. For an input linewidth equal to the WGM



5

FIG. 4. (a) Noise (3σ) in the WGM wavelength shift against photon number per time bin N at fixed r = 0.9996 (overcoupling).
(b) SNR enhancement factor for entangled WGM-MZI relative to classical WGM case as a function of WGM parameters r and
α. (c) SNR enhancement for entangled WGM-MZI relative to the classical WGM-MZI case. Fixed photon number per time
bin N = 380.

FIG. 5. SNR enhancement factor for WGM wavelength shift
relative to classical WGM-MZI case, plotted against coupling
parameter r at fixed photon number per time bin N = 380.
Lines show the entangled WGM-MZI SNR enhancement when
the input photon pair spectral width is 0.1, 0.2, 0.3, 0.5, and
1.0 times the WGM linewidth.

linewidth, there is no sensitivity enhancement.

The large peak in the SNR enhancement around criti-
cal coupling is not only strongly dependent on the input
state spectral width but also corresponds to the central
peak of the coincidence spectrum becoming vanishingly
narrow at r = α. Therefore the dynamic range for sens-
ing resonance wavelength shifts is very low near critical
coupling, see SI. The most robust SNR advantage is ob-
tained in the overcoupled regime, where there is an en-
hancement of at least a factor of 4 (for linewidth ratio
0.1).

V. DISCUSSION:
RELEVANCE TO WGM SENSING

A SNR enhancement in measurements of the WGM
resonance shift promises to improve the performance of
WGM sensors which are applied to precise measure-
ments in, e.g., temperature [16–18], pressure [19, 20], and
biosensing [3, 4] including single molecule detection when
combined with optoplasmonic enhancements [5, 6, 21].
Here we showed an advantage to using indistinguishable
photon pairs in the shot noise limited sensing regime,
with an achievable factor of 4 enhancement in the SNR,
taking into account the photon spectral width.
In summary, conditions for the optimum enhance-

ment are: i. the measurement is in the shot noise-
limited regime, ii. the WGM resonator is overcoupled,
and iii. the input photon pair state is spectrally narrow:
∼0.1 times the WGM linewidth. See SI for further dis-
cussion of how this experiment can be realised.
To achieve practical enhancements to WGM sensing in

areas such as single molecule detection, we would need to
work at an optical power comparable to current classical
measurements (∼ µW-mW). Could squeezed states also
offer a SNR enhancement in WGM measurements with
higher optical power? Recent theoretical studies by
Belsley et al. call this into question [22]. It will be
important to consider whether squeezing provides any
advantage subject to the experimental constraints for
particular WGM sensing methods, and for experiments
using two optical modes as we studied here.
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Appendix A: Relating the WGM Model to Typical
Experimental Parameters

In sensing experiments, it is more typical to charac-
terise a WGM resonator and coupling conditions using
its linewidth in wavelength units ∆λ and its Q factor.
The dimensionless parameters α, r can be related to these
quantities through the following expressions.

∆λ = −λ
2
oln(|αr|)
4π2R

(A1)

Q =
λo
∆λ

= − 4π2R

λoln(|αr|)
. (A2)

The WGM resonator radius is R and the resonance
wavelength λo.

Appendix B: Experimental Considerations

To realise this experiment, we require a source of in-
distinguishable photon pairs showing high HOM inter-
ference visibility (e.g. from SPDC in a nonlinear crystal
such as PPKTP [23, 24]).

The setup might be built with an all-fibre MZI, using
a tapered optical fibre to couple photons to e.g. a mi-
crosphere, or alternatively by fabricating the MZI with
integrated photonics and using a microring resonator. In
either case, the wavelength of the photon pairs must be
tuneable in order to match the wavelength of WGM, with
fine tuning to enable scanning across the WGM spec-
trum. To observe the SNR enhancement, the photon
pairs must be spectrally narrow: ideally at least ∼0.1
of the WGM linewidth (typically ∼100 MHz for WGM
microsphere sensors).

To meet all of these requirements, photon pairs gener-
ated by cavity-assisted SPDC seem the most promising,
which is a technique already being used for coupling en-
tangled photons to atomic transitions [15, 25] (typically
for quantum memories [26]). Refs. [15, 25] report pho-
ton pair bandwidths of 7 MHz and 2 MHz, respectively,
therefore a bandwidth of < 0.1 of the WGM linewidth is
realistic.

Appendix C: Comparing Photon Number Resources
for each Measurement Case

1. Normalising Photon Rates

For a fair comparison between measurement cases, the
average photon number resources ⟨N⟩ reaching the WGM
resonator should be equal in all three cases. Table SI

Measurement Case Input Rate WGM Rate Detection Rate
Classical WGM R R = P R

Classical WGM-MZI 2R R = P 2R
Entangled WGM-MZI P ∗ P P ∗

TABLE I. Photon rates in three measurement cases.
WGM rate refers to the photon rate in the waveguide coupled
to the WGM resonator. Detection rates are the maximum
detection rates which would be measured far from resonance.
Entries marked * are coincidence rates.

summarises the photon rates at the input, the photon
rate in the mode coupled to the WGM, and the detected
photon rate.

We consider first an input photon pair coincidence rate
P for the entangled WGM-MZI case. The mean single
photon rate before the WGM is also P , then the maxi-
mum (off-resonance) detected coincidence rate is P .

For the classical WGM-MZI case, we set the photon
rate in the mode before the WGM to be R = P . To give
this rate, the photon rate at one input of the MZI must
be 2R. The maximum detected photon rate at both out-
puts is then 2R. This maximum rate corresponds to the
rate measured by a transmission difference measurement
across the two outputs when off resonance.

Finally, for the classical WGM case there is only one
waveguide so the input, WGM, and maximum detected
rates are all set to be R.

Therefore, the maximum detected photon rate in the
classical WGM case and the maximum coincidence rate
in the entangled case are equal: R = P . The maximum
detected rate for the classical WGM-MZI transmission
difference measurement is 2R. A photon number per time
bin N was used to calculate the shot noise level in the
classical WGM and entangled WGM-MZI cases, and 2N
in the classical WGM-MZI case.

2. Measurement on Classical WGM-MZI

We cannot make exactly the same measurement on the
classical WGM-MZI setup as with the entangled WGM-
MZI setup since the entangled case uses a coincidence
measurement on the photon pairs. The two outputs of
the classical WGM-MZI have transmission signals corre-
sponding to a dip and peak, respectively. We considered
both transmission measurements on a single output (with
the transmission dip) and on both outputs by taking the
difference (I7 − I8 from Equation 4 in the main text).

Figure 6 compares the results for the noise in resonance
shift ∆Ω. The difference measurement slightly reduces
the noise in the shot noise limited regime for the classical
WGM-MZI case compared with a single mode measure-
ment. Therefore, we use this difference measurement for
all comparisons in the main text.

https://doi.org/10.1364/OPTICAQ.501048
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FIG. 6. Comparing single output and difference measure-
ments for classical WGM-MZI case. Noise (3σ) in the WGM
wavelength shift against photon number per time bin N at
fixed r = 0.9996 (overcoupling). Orange (green) lines show
the noise level for the classical WGM-MZI transmission dif-
ference (single output) measurement, demonstrating the dif-
ference measurement has slightly lower noise in the shot noise
limited regime and reaches the same limit in the high N
regime.

Appendix D: Additional Plots from Computational
Model

Figure 7 shows the resonance position noise ∆Ω as a
function of the coupling parameter r at fixed α = 0.9997
and for N = 380 photons per time bin. Figure 7(a)
shows the absolute 3σ noise in wavelength units compar-
ing classical WGM, classical WGM-MZI, and entangled
WGM-MZI; (b) shows the noise ratio relative to the clas-
sical WGM-MZI case, i.e. the SNR enhancement factor.

Figure 8 shows the region (dark grey area) that is ex-
cluded when we require that the dynamic range of the
entangled WGM-MZI measurement is greater than the
3σ value of the noise in the resonance position. The dy-
namic range is defined as the distance along the detuning
axis of the spectrum from the maximum gradient point
where we perform the measurement to the nearest sta-
tionary point in the spectrum. That is, if the resonance
position moves more than the dynamic range, the sign of
the transmission spectrum gradient changes and we can
no longer reliably read-off the resonance position from the
transmission intensity. The light grey areas in Figure 8
show regions where the noise for the entangled WGM-
MZI case is 20%, 40%, 60%, and 80% of the dynamic
range.

From Figure 8 we see that the most robust SNR en-
hancement is obtained in the overcoupling regime. The
dynamic range condition also rules out the large SNR en-

hancements predicted near critical coupling, as did con-
sidering the spectral width of the input photons in the

FIG. 7. Noise in WGM wavelength shift for all three mea-
surement cases. (a) Noise (3σ) in the WGM wavelength shift
against r at fixed photon number per time bin N = 380 and
α = 0.9997. (b) SNR enhancement factor for WGM wave-
length shift relative to classical WGM-MZI case.

main text. The limits on r will be determined by experi-
mental constraints. The optimum SNR enhancement is a
trade-off between having noise much lower than the dy-
namic range for a more overcoupled resonator, and higher
SNR enhancement closer to critical coupling.
Figure 9 compares the limits on SNR enhancement due

to dynamic range to the limits due to the input photon
spectral width (plotted in Figure 5 in the main text). The
factor of 4 SNR enhancement at linewidth ratio 0.1 is
still achieved with values of r for which the 3σ noise level
is 40-60% of the dynamic range for the entangled WGM-
MZI measurement. If we allow the photon spectral width
to be arbitrarily narrow we see that in principle a factor
of 10 enhancement in the SNR is possible when the 3σ
noise level is 60-80% of the dynamic range.
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FIG. 8. Range of robust SNR enhancement allowed by dy-
namic range. SNR enhancement factor for WGM wavelength
shift relative to classical WGM-MZI case plotted for the en-
tangled WGM-MZI case (orange line) at fixed photon number
per time bin N = 380 and α = 0.9997. The grey areas are
excluded when we require that the 3σ value of the entangled
WGM-MZI noise is less than a percentage of the dynamic
range for the measurement.

FIG. 9. Comparison between limits due to dynamic range
and input photon spectral width. Dynamic range is plot-
ted as in Figure 8 along with the input linewidth comparison
from Figure 5 in the main text. Linewidth ratio is the ra-
tio between the input photon spectral width and the classical
WGM linewidth.
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