
Noname manuscript No.
(will be inserted by the editor)

How do annotations affect Java code readability?

Eduardo Guerra · Everaldo Gomes ·
Jeferson Ferreira · Igor Wiese · Phyllipe
Lima · Marco Gerosa · Paulo Meirelles.

Received: date / Accepted: date

Abstract .

Context: Code annotations have gained widespread popularity in program-
ming languages, offering developers the ability to attach metadata to code
elements to define custom behaviors. Many modern frameworks and APIs use
annotations to keep integration less verbose and located nearer to the cor-
responding code element. Despite these advantages, practitioners’ anecdotal
evidence suggests that annotations might negatively affect code readability.
Objective: To better understand this effect, this paper systematically in-
vestigates the relationship between code annotations and code readability.
Method: In a survey with software developers (n=332), we present 15 pairs
of Java code snippets with and without code annotations. These pairs were de-
signed considering five categories of annotation used in real-world Java frame-
works and APIs. Survey participants selected the code snippet they considered
more readable for each pair and answered an open question about how annota-
tions affect the code’s readability. Results: Preferences were scattered for all
categories of annotation usage, revealing no consensus among participants. The
answers were spread even when segregated by participants’ programming or
annotation-related experience. Nevertheless, some participants showed a con-
sistent preference in favor or against annotations across all categories, which
may indicate a personal preference. Our qualitative analysis of the open-ended
questions revealed that participants often praise annotation impacts on design,
maintainability, and productivity but expressed contrasting views on under-
standability and code clarity. Conclusions: Software developers and API de-

E. Guerra. Free University of Bozen-Bolzano, Italy. E-mail: eduardo.guerra@unibz.it
E. Gomes. University of São Paulo, Brazil. E-mail: everaldogjr@usp.br
J. Ferreira. SONDA, Brazil. E-mail: jeferson.ferreira@sonda.com
I. Wiese. Federal Technological University of Paraná, Brazil. E-mail: igor@utfpr.edu.br
P. Lima. Federal University of Itajubá, Brazil. E-mail: phyllipe@unifei.edu.br
M. Gerosa. Northern Arizona University, USA. E-mail: marco.gerosa@nau.edu
P. Meirelles. University of São Paulo, Brazil. E-mail: paulormm@ime.usp.br

ar
X

iv
:2

40
4.

17
41

7v
1

 [
cs

.S
E

]
 2

6
A

pr
 2

02
4

2 Eduardo Guerra et al.

signers can consider our results when deciding whether to use annotations,
equipped with the insight that developers express contrasting views of the
annotations’ impact on code readability.

Keywords Code Annotations · Program Comprehension · Code Readability ·
Software Engineering

1 Introduction

Code annotation is a programming language feature that allows adding custom
metadata directly in the source code. The Java language introduced annota-
tions in 2004 (Buttler, 2008) and, since then, several popular APIs and frame-
works have used this approach, resulting in a significant number of projects
with annotations (Lima et al., 2018; Yu et al., 2019). Annotation enables
declarative statements in source code that otherwise would be defined pro-
grammatically or by configuration files (Fernandes et al., 2010). While anno-
tations potentially benefit maintenance by allowing metadata to be defined
proximate to the relevant code element, they also add new information and
identifiers to the source code, which can contribute to developers’ cognitive
overload (Wulff-Jensen et al., 2019) and harm readability.

Code readability is essential to program comprehension and maintainability
(Lucas et al., 2019; Rugaber, 2000; Buse and Weimer, 2010). Readability is
especially important for newcomers to a project since they still do not have the
contextual knowledge that helps to understand the source code (Steinmacher
et al., 2015). Previous studies present evidence that the presence of certain
programming features might have a positive or negative impact on readability
(Tashtoush et al., 2013; Santos and Gerosa, 2018). Consequently, knowing how
particular features such as code annotations impact readability might guide
API designers in choosing which features to adopt.

Recent studies revealed that some projects abuse annotations (Lima et al.,
2018) and that a high number of identifiers in the code harms readability (Buse
and Weimer, 2010; Tashtoush et al., 2013). On the positive side, an analysis
of the code evolution (Yu et al., 2019) pointed out that annotated Java code
tends to be less error-prone. Given the relationship between readability and
code maintenance, it is reasonable to consider whether annotations might have
that effect due to their impact on code readability. This idea has been discussed
by developers in blog posts (Stackoverflow, 2009; Bugayenko, 2016; Warski,
2017), with many claiming that annotations can potentially harm source code
readability.

Nevertheless, no previous scientific work has investigated the effects of
code annotations on readability. Without such a study, it is unclear whether
these statements posted in the gray literature represent a general perception or
are just individual opinions supported by several potentially biased comments
posted by other developers. The lack of evidence in the scientific literature
about the impact of annotations on readability, and more specifically, how this

How do annotations affect Java code readability? 3

feature affects particular audiences and usage scenarios, might lead designers
to make decisions based on personal perceptions.

Our study aims to fill this gap by investigating the impact of annotations
on code readability from the perspective of various software developers. We
designed a survey considering five different annotation usage categories, de-
fined from documented patterns (Guerra et al., 2010b; Guerra, 2016; Yang
et al., 2008). To ensure the relevancy of these categories, we evaluated their
occurrence in existing frameworks and APIs by mining software repositories
and manually classifying the annotations. We found a high number of occur-
rences for each category and used them to design a survey that presents pairs
of code snippets with the same behavior to the participant: one that uses
code annotations and the other that uses object-oriented techniques. We also
asked open questions in which participants could express their thoughts about
the annotation’s impact on readability and provide additional input to the
research.

Our survey received 332 valid answers from developers with different pro-
files, considering programming experience, Java expertise, and annotation fa-
miliarity. Surprisingly, the answers to all questions followed a normal distri-
bution without a clear positive or negative trend. Our analysis did not reveal
a correlation between the responses, participant profiles, or annotation usage
categories. However, we found that around half of the participants have a con-
sistent preference in favor or against annotations, which might explain some
posts in the gray literature discouraging the usage of annotations and a large
number of projects adopting this feature. Our respondents provided a num-
ber of recommendations, including avoiding overusing annotation, keeping the
annotation usage simple, and choosing good names.

The main contribution of this paper is investigating how annotations af-
fect readability, considering different developer profiles and annotation usages.
Several new standard APIs and frameworks adopt an annotation-based API in-
stead of an object-oriented one, which is an important design choice. Designers
and users of APIs can use our results to support their design decisions when
choosing between an annotation-based or a classic object-oriented API and
spending extra effort on improving readability given that there are conflicting
preferences. As a secondary contribution, this work evaluated the frequency of
a set of annotation usage categories in a sample of APIs used by open-source
projects.

2 Code Annotations

Code annotations are a type of metadata in the source code. The term meta-
data is used in various contexts in computer science, meaning data about the
data itself. In the object-oriented context, metadata includes the information
that describes a given class. Some tools or frameworks can consume metadata
and execute routines based on class structure. For instance, metadata can be
used for source code generation (Damyanov and Holmes, 2004), compile-time

4 Eduardo Guerra et al.

verification (Ernst, 2008; Quinonez et al., 2008), class transformation1, and
framework adaptation (Guerra et al., 2010c).

Metadata can be defined through the usage of object-oriented techniques.
For example, the presence of an interface can define a class property—this
practice is called marking interface (Bloch, 2016). Class metadata can also
be returned as fixed information from static methods or variables with name
conventions. Alternatively, an object containing the metadata might be cre-
ated programmatically by setting the appropriate information (Guerra et al.,
2013a). Finally, as another option, metadata can be passed using fixed literals
as arguments to methods.

External resources, such as configuration files or databases, can be used
to define custom metadata (Fernandes et al., 2010). The drawback of this
approach is the distance between the metadata and the referred code element.
This approach also adds some verbosity, since a complete path to the element
must be provided for the framework to correctly consume the metadata. Some
frameworks, like Ruby on Rails and CakePHP, use an alternative to define
behavior through code conventions (Chen, 2006). Although this choice can
be productive in some contexts, code conventions have limited expressiveness.
Moreover, since the metadata is hidden behind the conventions, an unwary
developer might alter it, producing unwanted effects.

Some programming languages provide features that allow custom metadata
to be defined and included directly on programming elements through code
annotations. This feature is supported in languages such as Java, through
annotations, and in C#, through attributes. Since code annotations are located
nearer to the programming element, their use can be less verbose than an
external definition, since the context is already well established.

2.1 Code Annotations in Java

Annotations were introduced as a language feature in Java 1.5. Some stan-
dard APIs like EJB 3.0 (Enterprise Java Beans), JPA (Java Persistence API),
and CDI (Context and Dependency Injection) extensively use metadata in the
form of annotations. This native annotation support encouraged Java frame-
works and API developers to adopt the metadata-based approach in their
solutions, confirming the tendency to keep the metadata files inside the source
code instead of using separate files (Córdoba-Sánchez and de Lara, 2016).

An annotation-based API, or metadata-based framework, defines and ex-
poses a set of annotations to application developers to configure programming
elements and execute the desired behavior. This set of annotations defining a
given domain’s metadata structure for an API is called annotation schema
(Lima et al., 2018). For instance, the annotation schema for object-relational
mapping of the JPA API includes annotations like @Table, @Column, @Id, and
@OneToMany.

1 http://projectlombok.org

http://projectlombok.org

How do annotations affect Java code readability? 5

The code annotations from the same schema are usually located in the same
Java package. In the example of the JPA API, all the object-relational mapping
annotations are located on the javax.persistence package. Therefore, Lima
et al. (2018) suggests the heuristic of using the package to identify and name
the annotation schema. Accordingly, we can say that @Table and @Column be-
long to the annotation schema javax.persistence. Moreover, the same API
or framework might define multiple packages with annotations representing
metadata with different purposes. In this case, each package represents a dif-
ferent annotation schema. For instance, the javax.persistence.metamodel

is an example of another annotation schema that belongs to the JPA API. In
this paper, we adopt the same heuristic proposed by Lima et al. (2018) and
use the annotation package to identify its annotation schema.

2.2 The Impact of Code Annotations on Program Comprehension

Program Comprehension is essential to software maintenance and is directly
linked to adequate software evolution (Storey et al., 2000). Comprehending
the source code and the structure of a system is required before applying any
proper modification or enhancement (Schröter et al., 2017). Developers can
use different artifacts to help to comprehend a program, including the source
code (Storey et al., 2000), which should offer high readability. Therefore, code
readability is an essential component of program comprehension (Lucas et al.,
2019; Rugaber, 2000).

Readability can be defined as “a human judgment of how easy a text is
to understand” (Buse and Weimer, 2010) and is directly related to its main-
tainability (Buse and Weimer, 2010). Development teams pursue this quality
attribute since the typical software product life-cycle cost distribution is 70%
maintenance and 30% development (Boehm and Basili, 2001). The impact
of readability on maintenance is high since reading source code is the most
time-consuming process of all maintenance activities (Raymond, 1991; Ru-
gaber, 2000). On the one hand, metadata (such as the one offered by code
annotation) can enhance the readability of the source code by adding relevant
information for its comprehension. On the other hand, adding metadata with
new identifiers increases developers’ cognitive load (Wulff-Jensen et al., 2019)
and might have a negative impact.

Readability is considered a subjective code property (Posnett et al., 2011).
Scalabrino et al. (2017) showed that objective metrics that assess code read-
ability do not correlate with its understandability, and Pantiuchina et al.
(2018) showed that such metrics do not capture code quality differences as
perceived by developers. Therefore, many studies, like ours, investigate code
readability through surveys in which participants compare the readability of
pairs of code snippets. For example, Santos and Gerosa (2018) conducted a
survey that assessed the impact of Java coding practices and conventions on
readability by showing pairs of code snippets to software developers. Their
results helped to identify practices and conventions with positive and nega-

6 Eduardo Guerra et al.

tive impacts on readability, but they did not investigate code annotations.
Lucas et al. (2019) evaluated the effects of lambda expressions on Java code
comprehension. Their study employed an online survey in which participants
evaluated pairs of code snippets. The survey indicated that introducing lambda
expressions on legacy code improves its readability. Therefore, the literature
supplies plenty of evidence that certain programming features might positively
or negatively impact code readability (Tashtoush et al., 2013).

2.3 Impacts of code annotation on other quality attributes

Although no previous work directly investigates the impacts of code annotation
on code readability, there are studies that investigated tangential aspects, such
as maintainability (Buse and Weimer, 2010) and the number of identifiers
present in the code (Tashtoush et al., 2013).

Guerra and Fernandes (2013) assessed the impact of frameworks based on
annotations compared to object-oriented frameworks. Similar to the present
work, Guerra and Fernandes considered categories of annotation usage to de-
sign scenarios. Their study did not find evidence that annotations lead to
reduced coupling and that the indirection of metadata definition leads to dif-
ficulty in debugging.

Lima et al. (2018) proposed a suite of software metrics to characterize
code annotations’ complexity, coupling, and size. Based on data from 25 open-
source Java projects, they observed that 78% of classes contain at least one
annotation, highlighting the relevance of studying the impact of their presence.
Identifying metric outliers, such as a class with 729 code annotations and one
annotation that took 58 lines of code, reveals abuses in using this language
feature.

Yu et al. (2019) performed a large-scale empirical study on code anno-
tations usage, evolution, and impact. The authors collected data from 1,094
open-source Java projects and conducted a historical analysis to assess code
annotations. The study revealed many changes in annotations during project
evolution, implicating that some developers tend to use annotations subjec-
tively and arbitrarily, introducing code problems. The study also revealed that
developers intending to improve code readability add annotations to the exist-
ing program elements. By relating annotation usage to code error-proneness,
the study concluded that they could potentially enhance software quality by
relating annotation usage to code error-proneness.

Concerning annotation repetition, Teixeira et al. (2018) investigated the
source code of a web application, searching for annotations repeated through-
out the source code. The findings revealed that some annotations were re-
peated around 100 times in code elements with shared characteristics in the
target system. The study suggested that more general definitions, such as
application-specific code conventions, could significantly reduce the number of
configurations.

How do annotations affect Java code readability? 7

A recent experiment about framework development compared an annotation-
based API to an object orientation-based one for metadata reading (Guerra
et al., 2020). The results showed a more consistent behavior in the evolution
of coupling and complexity metrics with the annotation-based approach, but
no significant differences in productivity.

The work of Lima et al. (2023) proposed a software visualization approach
to observe how code annotations are distributed in a given system and improve
code comprehension of annotation-based systems. The authors conducted an
empirical evaluation with students and professional developers using a Java
web application as the target system. From their findings, the authors observed
a strong relationship between the presence of code annotation and the respon-
sibility of the package/class using that annotation. This finding suggests that
code annotations may also guide the architectural design of software systems.

2.4 Code Annotations Usage Scenarios

Code annotations can be used for multiple purposes. To cover a variety of
scenarios in the survey, we searched the literature for patterns related to code
annotations. We identified five annotation usage categories. The following sub-
sections describe the process we followed and the usage categories.

2.4.1 Category Identification Process

We surveyed pattern collections and pattern languages related to code annota-
tions to identify the categories. The following set of patterns were considered:

– A Pattern Language for Metadata-based Frameworks (Guerra et al., 2010c):
These patterns address solutions used in metadata-based frameworks.

– Architectural patterns for metadata-based frameworks usage (Guerra et al.,
2010b): These patterns are related to the metadata usage in existing frame-
works.

– Idioms for Code Annotations in the Java Language (Guerra et al., 2010a):
These language-specific patterns document common practices in the anno-
tation definition in the Java language.

– Design patterns for annotation-based APIs(Guerra, 2016): These patterns
describe recurrent solutions in the usage of code annotations for the cre-
ation of APIs.

As the inclusion criteria, we considered patterns that use code annotations
as part of the solution to the proposed problem. In other words, when the solu-
tion suggests the usage of annotations to more general problems. We excluded
patterns in which the usage of annotations is already part of their context and
provided solutions to deal with annotations independent of the scenario. For
instance, we excluded patterns that offer solutions to the internal structure of
frameworks that process annotations and represent more complex metadata

8 Eduardo Guerra et al.

in the form of annotations. The inclusion and exclusion involved a discussion
followed by a consensus among three authors of this paper.

Our analyses disregarded the patterns from (Guerra et al., 2010c) and
(Guerra et al., 2010a) since none describes usage scenarios for code annota-
tions. The pattern language from metadata-based frameworks focuses on the
internal structure of frameworks that consume annotations and can be applied
to any framework independent of its domain. The idioms for annotations in
Java focus on strategies to represent metadata using annotations, i.e., on the
structure of the annotations. For example, some patterns document solutions
using annotations to represent lists of composite objects and more complex
expressions.

In analyzing the architectural patterns for metadata-based framework us-
age (Guerra et al., 2010b), the patterns matched our inclusion criteria, and
three of the four documented patterns were included. The pattern Metadata-

based Graphical Component was excluded because it is a specialization of
one of the other patterns. In the pattern collection for annotation-based APIs
(Guerra, 2016), three patterns are referred to using annotations in the sce-
narios documented in the architectural patterns. These patterns focus on the
same scenario but from a different perspective. Additionally, two other pat-
terns, Class Stamp and Metadata Parametrization, present solutions that
were classified together as a fourth usage scenario.

As a preliminary evaluation, the four identified usage scenarios were used
to classify the annotations of two widely used annotation APIs: JPA for object-
relational mapping and Spring framework annotations for web development.
For these two frameworks, all the annotations that did not fit in one of the
initial four categories were used to implement the pattern Dependency Injec-

tion (Yang et al., 2008). In this pattern, a class called Injector is responsible
for creating and injecting the dependency. In an implementation based on
code annotations, the Injector uses them to locate the fields that should re-
ceive the injection as parameters to create the dependencies. Based on that, a
fifth category was added.

The identified categories are described in the next section. To further eval-
uate the completeness and relevance of the categories, we performed an addi-
tional study, presented in Section 3, to evaluate how frequently annotations
from each category are present in existing APIs and if we can find annotations
that do not fit in any category.

2.4.2 Identified Categories

The following are the categories identified based on the process described in
the previous section, used to guide the development of the survey.

Callback Method is a category based on the patterns Configured Method

Handler (Guerra et al., 2010b) and Callback Configuration (Guerra, 2016).
Annotations in this category configure a method invoked in response to a sit-
uation or event. Annotations can contain additional information defining con-
straints about when it should be called. An example of this category is the

How do annotations affect Java code readability? 9

annotation @PrePersist from the JPA API, which configures methods that
should be called before an entity is persisted in the database.

Information Mapping is a category based on the patterns Entity Map-

ping (Guerra et al., 2010b) and Method Parameter Mapping (Guerra, 2016).
Annotations in this category map two different representations of a system
entity. Typical usages include mapping domain classes to databases or exter-
nal file formats or methods to external services. Examples of this category
include the annotations @XmlElement and @XmlAttribute from JAXB API,
which map fields and properties from a class, respectively, to elements and
attributes in an XML representation.

Dependency Injection is a category based on the more general pattern
Dependency Injection (Yang et al., 2008), which has an annotation-based
implementation in several APIs and frameworks. This category includes anno-
tations configuring how instances should be injected into an instantiated class.
For example, the annotation @Autowired is used in the Spring Framework to
configure fields that should receive a dependency injection.

Proxy Configuration is a category based on the patterns Crosscut-

ting Metadata Configuration (Guerra et al., 2010b) and Proxy Process-

ing Configuration (Guerra, 2016). Annotations in this category define con-
straints on processing that happens before or after a method invocation. These
annotations are used by dynamic proxies, aspects (Guerra et al., 2008), or in-
terceptor components (Guerra et al., 2013b) to parameterize their processing
for a specific class or method. For example, @TransactionAttribute from the
EJB API configures transaction propagation. Another example in the same
API is @RolesAllowed, used to configure access control constraints.

Rule Definition is a category based on the patterns Class Stamp and
Metadata Parametrization (Guerra, 2016). This category is related to an-
notations used to configure parameters for processing related to the target
class. This category can be considered a more broad category since it includes
any annotation that provides information for a component or a framework to
execute a logic related to the annotated class. In the Bean Validation API,
for example, annotations that define constraints for object validation, such as
@Size and @NotNull, are part of this category.

3 Evaluation of the Annotation Usage Scenarios

As described in Section 2.4, code annotations can be used for multiple pur-
poses (Guerra et al., 2010b; Guerra, 2016; Yang et al., 2008). In this study, we
aimed to conduct a comprehensive investigation that encompassed multiple
real-world usage scenarios. Therefore, before designing the survey, we investi-
gated whether the scenarios defined in Section 2.4 cover adequately real-world
usages, without including overly restrictive or irrelevant scenarios. We ana-
lyzed a sample of real-world annotation schemas to assess whether the defined
categories were prevalent and comprehensive enough to be included in the
study.

10 Eduardo Guerra et al.

With this goal in mind, we verified the frequency with which annotations
from each category are present in annotation schemas from existing APIs and
frameworks. We also looked for annotations that do not fit into any category.
We do not investigate the frequency with which the annotations from each cat-
egory are used in classes, but we calculate the frequency at which APIs include
at least one annotation of a given category in the context of our sample. Con-
sidering different approaches for taxonomy evaluation (Usman et al., 2017),
this evaluation study can be classified as utility demonstration, in which its
utility is demonstrated by actually classifying subject matter examples (Šmite
et al., 2014; Wheaton and Fleishman, 1968).

We extracted a sample of annotation schemas used in real-world frame-
works and APIs and then manually analyzed the annotations from each schema.
Our goal was to evaluate at least one hundred real-world annotations. The
annotation extraction procedure followed objective and well-defined criteria
focusing on increasing the reproducibility of this study. In the following, we
detail the annotations extraction and classification processes.

Annotation extraction. To find annotation schemas, we first selected a few
popular Java projects hosted on GitHub to extract the annotations used in
their frameworks and APIs. We considered projects with more than 10,000
stars, with Java as the declared language, and containing files with the .java
extension. We ranked the projects by the number of stars and individually
evaluated them according to the following inclusion criteria: (a) has a license;
(b) the README and the commit messages are primarily written in English;
(c) is a software project (not a didactic material, for instance); (d) has at least
one release; (e) the tool used to extract data from the annotations, ASniffer
(Lima et al., 2020), can process its source code without errors. The first 30
projects that passed the criteria were selected for the study.

Then, we used the open-source tool Annotation Sniffer (ASniffer) (Lima
et al., 2020) to extract the annotation schemas and obtain code annotation
characteristics from the source code. We considered the annotation package
to identify an annotation schema (see Section 2.1). Schemas from standard
Java APIs (beginning with Java.*, javax.*, and javafx.*) were separated
from schemas defined by third-party frameworks to allow segmented analyses.
Additionally, we excluded schemas that (a) use a standard API package name
but are not official, (b) with only compile-time processing annotations (out of
scope), and (c) schemas for which the JavaDoc documentation could not be
found on the web.

After running the ASniffer on the selected 30 projects, we got a raw list
of annotation schemas. To separate and organize them, we ran an additional
script named schema-organizer2. After running this script, we found 26 an-
notation schemas from standard Java APIs and 326 from third-party libraries
and frameworks. Applying the exclusion criteria on the standard Java APIs,
we excluded five schemas and stayed with 21 schemas. The standard Java APIs
have a well-known design process that counts with the participation of sev-

2 https://github.com/metaisbeta/schema-organizer

https://github.com/metaisbeta/schema-organizer

How do annotations affect Java code readability? 11

Table 1 Excluded annotation schemas.

Annotation Schema API Type Reason
java.lang Standard Compile-time
java.lang.annotation Standard Compile-time
javax.cache.annotation Standard Not official API
javax.annotation.concurrent Standard Not official API
javax.annotation.meta Standard Not official API
com.google.common.annotations Third-party Compile-time
org.jkiss.code Third-party Javadoc not found
org.openjdk.jmh.annotations Third-party Compile-time
edu.umd.cs.findbugs.annotations Third-party Compile-time
com.google.errorprone.annotations Third-party Compile-time
org.checkerframework.checker.nullness.qual Third-party Compile-time
org.jkiss.dbeaver.model.meta Third-party Javadoc not found
org.checkerframework.checker.nullness.compatqual Third-party Compile-time
io.netty.util.internal Third-party Javadoc not found
org.kohsuke.accmod Third-party Javadoc not found
org.kohsuke.stapler Third-party Javadoc not found

eral specialists and experienced developers and have high visibility. Because of
that, we consider that these APIs usually follow good design practices, which
makes them suitable subjects for this study.

To balance the sample with annotation schemas from third-party libraries,
we added the 21 most frequent ones that did not match any exclusion criteria,
finishing the same amount of schemas from both types. Since we do not aim
to evaluate precisely the frequency of each category in this population, we
decided to represent Java standard APIs and third-party libraries with the
same amount of annotation schemas, instead of following their percentage
in the sample. Table 1 lists all the excluded annotation schemas with the
respective reason. Therefore, we had a final list of 42 annotation schemas. The
21 schemas from Java APIs contained 95 annotations, and the 21 schemas from
third-party libraries and frameworks had 48, resulting in 143 total annotations
for analysis.

Annotation classification. Two researchers manually analyzed the anno-
tation schemas and classified them using the five aforementioned categories as
a seed. During this procedure, the researchers were attentive to annotations
that did not fit into any category. The researchers attributed a category to a
schema when at least one annotation fit in the category. The JavaDoc of the
annotation schema package was used to identify all the annotations present
in the schema. To classify each annotation, the researchers also considered its
description and source code examples found on the website Tabnine 3. The re-
searchers worked independently on all schemas and met to discuss and reach a
consensus on the discrepancies. The classifications did not match for 19 anno-
tations, representing a disagreement rate of 13% with a Cohen’s kappa score
of 0.81, which can be considered an excellent agreement (McHugh, 2012).

3 https://www.tabnine.com/code

https://www.tabnine.com/code

12 Eduardo Guerra et al.

Table 2 Number of schemas with at least one annotation pertaining to the category. The
analysis was segmented into standard Java APIs and third-party frameworks. The total does
not sum 100% since a schema can contain annotations from more than one category.

Category Java APIs Frameworks Total
Callback Method 4 (19%) 4 (19%) 8 (19%)
Information Mapping 10 (48%) 6 (29%) 16 (38%)
Dependency Injection 6 (29%) 5 (24%) 11 (26%)
Proxy Configuration 7 (33%) 3 (14%) 10 (24%)
Rule Definition 17 (81%) 19 (90%) 36 (86%)
Other 0 (0%) 0 (0%) 0 (0%)

This type of manual classification and labeling is frequently used in the
field of software engineering, e.g., (Gunawardena et al., 2023; Piantadosi et al.,
2020). To mitigate common threats present when this approach is used, such
as confirmation and researcher bias, our study adopted guidelines well ac-
cepted by the software engineering research community. For transparency, we
declare that one of the researchers who worked on the classification is the
author of some patterns considered for defining the categories. The other re-
searcher who participated in the classification had no previous contact with
the categories or patterns before this study. However, this researcher had a
consolidated experience in Java programming and software development in
general. This researcher received an initial explanation about the categories,
and both researchers used as support material the categories’ descriptions and
the documented patterns in the literature that were used for categories def-
inition. To minimize the effect of researcher bias, the researchers conducted
the classification independently, and the differences in this initial classifica-
tion were considered for calculating the agreement. After some discussion, a
consensus was obtained for all annotations, and the primary sources of dis-
agreements were documented. The researcher who worked on the annotation
extraction did not participate in the classification, helping to mitigate bias.

3.1 Results of the categories evaluation

Table 2 presents the number of schemas containing at least one annotation of
the given category. Each line represents a category, and the entries represent
the respective quantity of schemas with at least one annotation that fits the
category. The percentage is calculated based on the total number of schemas
of each type, which is 21 for standard APIs, 21 for third-party frameworks,
and 42 in total. As can be noticed, all annotations were classified into five
categories and none was marked as “Other.”

Based on this analysis, we conclude that the proposed categories are com-
prehensive enough to classify commonly used annotations, i.e., all the anno-
tations included in our sample could be classified into one of the categories.
We also conclude that all the categories have a significant enough number of
occurrences to be included in our study—the minimum number of occurrences

How do annotations affect Java code readability? 13

was 19% for the Callback Method category. We expected to discard categories
with less than 5% of occurrences, which did not occur.

We highlight that this study did not aim to determine the exact frequency
of each category in annotation schemas or to compare the frequency of an-
notations from each category in standard Java APIs and frameworks. The
percentages reported in Table 2 apply to the analyzed sample and should not
be generalized.

The category Rule Definition had many more occurrences than the others.
We observed that it is common to have this kind of annotation to config-
ure general parameters, even when the primary goal of the whole annotation
schema fits in one of the other categories. Future studies might investigate the
occurrences of annotations classified in this category and try to identify more
specific usages and define subdivisions of it.

There were some cases in which the classification of the annotation usage
was ambiguous. For example, Information Mapping and Callback Method cat-
egories have some intersection when the mapping occurs between methods and
services from other APIs. The uncertainty is that the method is called due to
an event (Callback Method) but mapped from a request received from another
API. In other instances, Information Mapping seems to overlap Dependency
Injection. This is especially true when what is being mapped is also injected
into the target class. The researchers discussed and defined the classification
in those cases by considering the overall context. While classifying each anno-
tation in a single category was suitable for this study’s goals, future studies
can explore this overlap and interaction between the categories.

4 Survey design

Code annotations define behavior and logic differently, using a declarative
approach for metadata definition. This metadata can replace some code previ-
ously defined imperatively or inside object-oriented definitions. This paradigm
change might affect code readability in a way that the current metrics used for
code readability cannot capture. Before delving into the metrics influencing
code readability, it is essential to acknowledge that specific conventional met-
rics fall short in capturing characteristics introduced by code annotations. For
example, traditional complexity and coupling metrics inadequately represent
the complexity and coupling introduced by annotations (Guerra et al., 2009).
The readability metrics (Buse and Weimer, 2010; Posnett et al., 2011; Tash-
toush et al., 2013) mostly rely on features related to vocabulary, identifiers,
code size, and control flow. None of these features captures the declarative
aspect of the annotation approach that might affect code readability since it
is possible to have codes with the same behavior, which uses and does not use
annotations, with similar size, similar number of identifiers, same control flow
and that share the same vocabulary.

The primary goal of our study is to assess the impact of annotations on
code readability. Aligned with the vision that readability is better measured

14 Eduardo Guerra et al.

subjectively (Posnett et al., 2011; Scalabrino et al., 2017; Pantiuchina et al.,
2018) and considering that the current readability metrics do not capture some
characteristics of annotations, we surveyed software developers to collect their
perspectives and preferences.

The survey design was inspired by previous work (Santos and Gerosa, 2018;
Lucas et al., 2019), which offered pairs of code snippets to participants. Each
pair contained an annotated code and an object-oriented alternative that pro-
duces the same behavior. The survey participants selected the snippet that
they considered more readable. Since our intended audience includes devel-
opers with and without code annotation experience, we posit that comparing
code snippets is the most suitable way to design this survey since participants
would know an alternative implementation for the same behavior. A developer
without more advanced knowledge would have difficulty seeing an alternative
to the code annotations, which would interfere with the readability assess-
ment. Moreover, we determined that this approach reduces potential threats
(e.g., maturation, memory), allowing the participants to see both alternatives
simultaneously and choose one.

As presented in Section 2.4, code annotations are used in multiple scenarios.
Our study investigated whether the usage scenarios influence the annotations’
impact on code readability. We included all relevant annotation usage scenar-
ios, as defined in Section 2.4. These categories focus on annotations consumed
at runtime by frameworks and APIs. Code annotations can be consumed di-
rectly from the class source code, from the generated bytecode after compile
time or at load time, or at runtime using reflection. This work focuses on the
last case, when annotations are consumed at runtime as a metadata source for
frameworks and APIs. The choice to focus on runtime annotations is justified
by the reference used for comparison, since annotations consumed by compile-
time that perform verifications (Dietl et al., 2011) might not have an apparent
equivalent solution using only object-oriented alternatives. Moreover, the fo-
cus is on the regular usage of annotations and not on scenarios that abuse this
programming feature, as sometimes occurs in practice (Lima et al., 2018).

To collect a more qualitative perspective, we also asked the participants
open questions wherein they could justify their choices and share their opinion
about the impact of code annotations on code readability.

4.1 Research Questions

We targeted the following research questions:

RQ1: How does using code annotations affect the perception of code
readability? The goal of this RQ is to investigate whether there is a general
preference regarding readability when choosing between a solution based on
annotations and an object-oriented alternative. To answer this research ques-
tion, we evaluated the survey answers, verifying the distribution of responses
for each question.

How do annotations affect Java code readability? 15

RQ2: Do the usage categories influence developers’ perception of
the effects of code annotations in readability? The goal of this RQ is
to verify whether the annotation usage categories influence the choice of the
participants. To answer this question, we investigated whether participants
consistently preferred annotations regardless of the usage category.

RQ3: Do developers from different demographics perceive the effects
of code annotation on readability differently? The goal of this RQ is
to investigate whether the developers’ experience affects their perception of
annotation’s impact on readability. To answer this question, we searched for
an association between the answers, the participant’s experience (e.g., coding
in general, Java, and annotations), and the annotation usage category. We also
verified whether participants with a consistent preference for annotations, or
their alternatives, had some characteristics in common.

RQ4: What factors can influence annotated code readability? The
goal of this RQ is to identify factors that can influence the readability of code
with annotations. To answer this question, we performed a qualitative analysis
of the answers to the open question wherein the participants spontaneously
expressed their opinions about the effects of annotation on code readability.

4.2 Survey Structure

The survey starts by asking for the participants’ consent, followed by questions
about demographic information (9 questions), in which we ask about gen-
der, age, education level, occupancy, programming experience, and knowledge
about code annotations. Afterward, the participants answered 15 questions
that presented pairs of equivalent code snippets, one without annotations and
the other using annotations. Each participant received a random order of the
set of 15 questions to avoid biases related to the sequence of readability ques-
tions. All the participants received all 15 questions. A final section presents
an open question in which the participants could express factors influencing
the annotated code’s readability and another one where they could provide
final comments for us. In total, participants answered 25 questions. The final
instrument is available in the replication package.

4.3 Code Snippets for Readability Comparison

To focus the comparison of snippets in the usage of annotations, we designed
the snippets to have similar characteristics, especially those known to influence
code readability (Buse and Weimer, 2010; Posnett et al., 2011; Tashtoush
et al., 2013). So, we considered the following guidelines when designing the
code snippets:

Small code snippets with similar size: The two code snippets presented
to the participant ranged from 4 to 18 lines of code, including blank lines
for better code organization. The difference between the number of lines of

16 Eduardo Guerra et al.

code from both snippets ranged from 0 to 3. The code snippets omitted parts
irrelevant to the comparison, which were substituted by comments containing
placeholders, such as method body or software logic, letting participants
focus on the differences in the code structure. The comment’s placeholders
were present on both code snippets (examples in Fig. 2 and Fig. 3).

Highlighting and formatting: Since code highlighting (Beelders and du Plessis,
2016) and formatting (Hansen et al., 2013) can influence the perception of
readability, we used the same approach in all code snippets.

Similar wording: The exact words were used in both code snippets to com-
pose the code based on annotations and without them, facilitating the map-
ping of elements between code snippets and reducing the influence of the API
vocabulary (Lawrie et al., 2006) in the answers.

Category distribution: To cover different scenarios, we considered the five
usage categories for code annotations presented in Section 2.4 and created
three questions for each type. This number of questions aims to provide dif-
ferent scenarios inside each category and diversify domains and applications.
As presented in Section 2.4, we identified the usage categories based on docu-
mented patterns and evaluated their presence in frameworks and APIs (Section
3), reducing the threat of including categories that do not have a significant
occurrence in practice or failing to include a relevant category not documented
in the literature.

Designed to represent real scenarios: We designed the code snippets
based on domains with real-world metadata-based frameworks.

The code annotations do not add or change the behavior of a class but
add metadata processed externally by a class or component that reads the
annotation. Because of that, in all snippets from our survey, the behavior
depends on an external library. Since that process is transparent to the users
of the annotation API, it would not make sense to include the code that reads
and processes the annotation in this comparative analysis. Therefore, since
the actual behavior of the code could not be determined just by what is in the
snippet, we stated to the participants that both snippets being compared had
the same behavior.

To ensure behavior equivalence, when designing the questions, we made
sure that: (a) the same information defined through the annotations was avail-
able using another approach for the external component in the other snippet;
(b) the external logic that processes the annotations was called in the same
sequence as the equivalent object-oriented alternative. For this second con-
dition, the respective pattern structure was used as the basis to define the
object-oriented equivalent solutions. The alternatives depend on the category
since metadata is used for a different purpose for each of them. In the following,
we discuss examples for each category. We refer the reader to the replication
package for the complete list of code snippets.

The annotations used for Rule Definition in classes can have as alterna-
tives an instance method that returns a fixed value, static fields with default

How do annotations affect Java code readability? 17

names, and marker interfaces4 (like Serializable). Fig. 1 presents a question
used in the survey that exemplifies using a maker interface and a static field
as an alternative to annotations.

Fig. 1 Code snippets of the Rule Definition category, with and without annotations

For theCallback Method category, which configures a method invoked in
response to a situation, the alternative adopted in an object-oriented approach
might use a conditional statement inside the method verifying the conditions
for handling it. Fig. 2 presents the code snippets from a question used in the
survey in which the metadata in the annotation defines a more fine-grained
condition for calling the method. In this case, the same information is used in
the conditional statement.

Fig. 2 Code snippets of a question of the Callback Method category, with and without
annotations

Since Proxy Configuration uses metadata to drive the behavior of dy-
namic proxies, aspects, or interceptor components, a simple object-oriented
alternative is to add a method call with the same parameters at the method’s
beginning or end. Fig. 3 presents a survey question in which an annotation de-
fines an access control constraint to execute the method. ForDependency In-

4 https://en.wikipedia.org/wiki/Marker_interface_pattern

https://en.wikipedia.org/wiki/Marker_interface_pattern

18 Eduardo Guerra et al.

jection, since the metadata is used to define what instance should be injected,
alternatives might use factories to retrieve the dependency. Fig. 4 presents both
snippets for a scenario in which the object to be injected represents a database
connection.

Fig. 3 Code snippets of a question of the Proxy Configuration category, with and without
annotations

Fig. 4 Code snippets of the Dependency Injection category, with and without annotations

As the last category, alternatives for Information Mapping usually set
the information directly in the component that processes the mapping informa-
tion. In this case, method calls define the mapping instead of the annotations.
Fig. 5 presents the code snippets from a question used in the survey, in which
the annotations are used to define the mapping from a class to an XML format.

Metadata definition in external files is also an alternative, which is fre-
quently used for Dependency Injection and Information Mapping. How-
ever, since the scope was to compare with object-oriented alternatives, we
excluded using external sources as alternatives for the survey questions.

To ensure that both snippets could lead to the same behavior, we used
the same information defined in the annotations in other parts of the code,
considering where and how this metadata is used for each category. All the
questions were discussed internally among the seven researchers, and an agree-
ment about the equivalence of the code snippets was reached before proceeding

How do annotations affect Java code readability? 19

Fig. 5 Code snippets of the Information Mapping category, with and without annotations

to the pilot study. The pilot study participants were asked to provide feedback
about the equivalence of the code snippets, and no issue was raised.

All the images from the code snippets presented in this section (Figs. 1 -
5) are the same ones used in the survey. The reader can notice the presence
of the same code highlighting and line numbering in both options.

4.4 Answers for the Readability Questions

For each question, the participants chose one of the following options:

– CODE A is definitely more readable.
– CODE A is slightly more readable.
– Similar readability, but I prefer CODE A.
– Similar readability, but I prefer CODE B.
– CODE B is slightly more readable.
– CODE B is definitely more readable.

We choose not to include a neutral answer, forcing the participants to
choose a side, even if stating that the readability is similar. This approach
aims to emulate practice, where a developer must decide how to design a piece
of code, even without a clear preference. In the analysis, we considered both
answers in the middle (Similar Readability but preferred with/without anno-
tation) when referring to neutral answers. For each participant, we randomized

20 Eduardo Guerra et al.

the order of the questions and whether the annotated code would be shown
on the left (Code A) or the right (Code B).

Since the answers represent an ordinal scale, to consider the intensity of
the readability impact and to calculate an average score, numeric values were
associated with them (Briand et al., 1996) as follows: -5; -3; -1; +1; +3; +5. We
distributed the values by the same interval, using negative values for answers
that considered the code without annotations more readable. This score can
be summed and divided by the number of answers to get the average score
for a given question or participant and gives an approximation of the overall
preference in the question.

4.5 Survey Analysis

To address RQ1 (overall preferences), we analyzed the distribution of answers
for every question. For RQ2 (influence of scenarios), we used the average
score for each participant. To answer RQ3 (influence of demographics), we
compared the score distribution among the questions using Kruskall-Wallis-
tests and post-hoc Dunn tests with Benjamini-Hochberg for p-value correction
(Benjamini and Hochberg, 1995). We also used the Chi-square test to verify an
association between participant demographics (e.g., age, gender, programming
experience, annotation experience, coding experience, and occupation) and
annotation preferences (five categories created based on average participants’
scores). We calculated the average scores for every question and participant.
We divided the participants into five categories based on their average score:
hate(< −3), dislike (−1 > and ≥ −3), neutral (≤ 1 and ≥ −1), like (≤ 3 and
> 1), and love (> 3).

To address RQ4 (factors), we analyzed the answers to the open question
about how annotations affect the code’s readability. From the answers, we
identified (1) attributes on readability; (2) comments on the specific cases
related to the usage categories as presented in Section 2.4, and annotation
strategies recommended by respondents. We started with 57 attributes on
readability, 92 specific cases, and 67 strategies.

We categorized the responses using a card sorting approach (Spencer,
2009). While grouping the attributes, specific cases, and strategies, we started
by reading each one and grouping those representing the same code. We then
categorized them into higher-level clusters based on similarities between the
meanings of the codes. For instance, when coding the attributes on readability,
participants mentioned “abstraction,” “encapsulation,” “modularity,” “cohe-
sion,” “organization,” etc. These mentions were grouped into Design. When
participants mentioned a “learning curve” to use annotations, “fast’,’ “com-
fortable,” “intuitiveness,” “making the code more understandable,” and “ease
to read,” we used the grouping category Info Processing.

The whole process of coding and grouping was conducted using continu-
ous comparison (Strauss and Corbin, 1998) and discussion until reaching a
consensus. Two researchers jointly analyzed each answer and applied codes.

How do annotations affect Java code readability? 21

Finally, a third researcher inspected the classification. Our findings aim to
complement results from the literature (Guerra and Fernandes, 2013; Guerra
et al., 2020), gaining an understanding of the rationale for preferring or not
preferring annotations.

4.6 Pilot Studies

Before the widespread distribution of our questionnaire, we conducted two pi-
lot rounds to identify eventual problems and how well participants understood
the code snippets. First, two authors of this paper who did not participate in
the survey design answered the questionnaire and suggested improvements to
the instructions to the participants. In the second round, 28 people from 6
countries and 2 continents answered the questionnaire: experienced develop-
ers (10), Ph.D. in Software Engineering (4), graduate students in Software
Engineering (12), and undergraduate students (2) in Computer Science. Their
answers and feedback helped us improve the presentation and clarify some
questions. For instance, a participant suggested changing sessionVariable

and @SessionVariable to sessionScope and @SessionScope, respectively,
in a specific code snippet. Moreover, we asked them to report the time to
complete the questionnaire. Based on the average time from the pilots, we
informed participants of an estimated completion time in the survey instruc-
tions.

4.7 Recruitment

Our target population was not restricted to developers experienced in anno-
tations or a specific programming language since we wanted to investigate
perceptions of different profiles of developers.

First, we advertised the survey on social media sites (including Twitter,
Facebook, and LinkedIn) (19% of the survey responses). Our posts were re-
shared multiple times by other participants. Second, we advertised the survey
to mailing lists from six different universities (37% of the responses), as well
as mailing lists from Java developer communities (27%) and mailing lists from
researchers in computer science (8%). Finally, we advertised it in development
and research groups in messaging apps (9%). We avoided emailing a partic-
ipant directly and scraping email addresses from software repositories since
this practice is perceived as “worse than spam” (Baltes and Diehl, 2016).

We obtained 499 answers. The survey was available between March 24 and
July 11, 2021. From the total of 499 responses, we removed 98 in which the
participants did not answer more than one question (6% of the survey) and
another 69 responses wherein they filled the survey in a few seconds. Thus, in
our analysis, we considered 332 valid answers.

From these valid answers, we had a balanced number of professional de-
velopers (151) compared to students and researchers (166). Most respondents

22 Eduardo Guerra et al.

are between 18 and 44 years old (298). Our respondents self-described them-
selves with advanced/expert knowledge in Java (143) and some familiarity
with annotation (287). The gender identification of respondents is as follows:
294 identified as men, 34 as women, 7 as non-binary/gender diverse, and 3
preferred not to answer.

4.8 Replication Package

A comprehensive replication package including our anonymized dataset,
scripts, coding process, and the questionnaire is available in the Zenodo5 open
data archive.

5 Results

5.1 RQ1: How does the usage of code annotations affect the perception of
code readability?

To answer this question, we analyzed the total percentage of responses for every
question, as presented in Figure 6. We can observe that in most questions the
total percentage of participants that answered neutral (similar readability but
prefer one case or the other) are between 20% and 30%, and for questions Q6
and Q11, this percentage was 42%. By comparing the non-neutral questions,
we can observe that the total number of participants who answered positively
about annotations is very similar to those who had a negative perception. The
most significant difference was in question Q8, where 56% of the answers were
positive to annotations and 44% negative. Most responses show differences of
1% to 2% in the total number of answers that prefer annotations versus prefer
without annotations.

Figure 7 displays the average score per question vs. the number of partici-
pants that had a score between intervals, e.g., we had two participants with a
score between −5 and −4.47. We can see that the result is similar to a normal
distribution (Shapiro-Wilk normality test, p-value = 0.4171). By analyzing
Figure 7, we could conclude that a significant group of participants revealed a
consistent personal preference in their answers.

Considering the “Neutral” participants, we identified the ones with two
particular kinds of behavior, considering the average value of the absolute
score for the answers. A high number represents a participant who generally
strongly prefers one of the sides, even being considered neutral on average. In
this group labeled “Neutral with a strong opinion,” we have 54 participants
with an average absolute score between 3.5 and 5. In the other group labeled
“True neutral”, we included the ones with the average value of the absolute
score between 0 and 1, which are the ones that assessed the presence of anno-
tations indifferent in terms of readability for most of the questions. Only 33

5 https://doi.org/10.5281/zenodo.5396378

https://doi.org/10.5281/zenodo.5396378

How do annotations affect Java code readability? 23

participants (10% of the sample) were classified in this group. This shows that
even with many participants being “Neutral” on average, most chose one of
the sides for most of the questions.

Fig. 6 Likert-scale percentage of responses for survey questions

We could not reach a consensus about some survey participants’ preferences
since the statistical tests did not find any differences in the distribution of
the answers (Kruskall-Wallis, p-value = 0.5092). In other words, participant
preferences were not consistent regarding the usage of code annotations.

5.2 RQ2: Do the usage categories influence developers’ perception of the
effects of code annotations on readability?

To answer this question, we calculated the average score of each participant,
grouping the three questions asked for each category. We also classified each
person into five preferences categories according to their average score: Love
(annotation) with average score > to +3, Like between > 1 and <= 3, Neu-
tral between >= 1 and <= -1,Dislike > -1 and <= -3 andHate (annotation)
> to -3.

Table 3 presents the number of participants grouped by preferences for
each one of the annotation categories asked in the survey. To examine the
relationship between participants’ preferences and the Annotation Category,
we used a Chi-square independence test after verifying its assumptions (the
sample consisted of independent observations, and the count in each cell was
larger than 5). A p-value less than 0.05 (p-value = 2.2e-16) indicates statistical

24 Eduardo Guerra et al.

Fig. 7 Number of participants per average score range

significance, which means that preferences are associated with the annotation
category.

We can notice less neutral preferences for four categories: Dependency In-
jection, Information Mapping, Callback Method, and Rule Definition. In these
four categories, even having a balanced distribution between positive and nega-
tive, the higher number of answers are in the extremes. Moreover, participants
showed neutrality when using annotation in the Proxy Configuration scenario.
The distribution is different in this case, and many answers are neutral.

For the Proxy Configuration scenario, the annotation parameterizes a be-
havior that can happen before and/or after the target method execution. In
the proposed questions, the object-oriented alternative invoked a method with
the desired behavior at the target method’s beginning and/or end. The partic-
ipants compared one snippet that defined the parameters declaratively above
the target method with an annotation, with a method invocation passing the
same parameters inside the target method body. Since we used the same
nomenclature, the difference between the snippets might seem to be just a
similar line of code defined in different places. That can be a possible reason
for this neutrality.

We also grouped the questions by category: Proxy Configuration (Q1, Q2,
Q3); Dependency Injection (Q4, Q5, Q6); Information Mapping (Q7, Q8, Q9);
Callback Method (Q10, Q11, Q12); and Rule Definition (Q13, Q14 e Q15).
The answers distributed from each group and each question individually were
compared to the general behavior. We could not find a statistical difference
between any category or individual question that can indicate that they have

How do annotations affect Java code readability? 25

a positive or negative impact on code readability (Kruskal-Wallis-test, p-value
= 0.5092). This fact can also be observed visually in the chart from Figure 6.

Table 3 Participants preferences by Annotation Category

Proxy Configuration Dep. Injection Information Mapping Callback Method Rule Definition
Love 22 96 106 92 110
Like 67 33 35 35 28
Neutral 137 63 58 61 36
Dislike 75 32 23 44 25
Hate 26 103 105 95 128

Table 4 Participants demographics grouped by average score

Java Experience Hate Dislike Neutral Like Love
Advanced 5 28 44 22 3
Expert 1 12 19 6 3
Intermediate 3 26 62 29 1
Novice 1 12 41 20 0
Annotation Experience Hate Dislike Neutral Like Love
Extremely familiar 4 17 36 15 4
Not familiar 1 15 19 10 0
Slightly familiar 3 26 45 26 1
Somewhat familiar 2 20 66 26 2
Coding Experience Hate Dislike Neutral Like Love
1 to 2 years 1 4 9 9 0
2 to 3 years 0 12 26 11 0
3 to 5 years 0 16 29 11 0
5 to 10 years 1 19 36 15 2
10 to 20 years 4 16 41 24 4
More than 20 years 4 11 25 7 1
Gender Hate Dislike Neutral Like Love
Man 9 66 140 72 7
Woman 0 10 20 4 0
Non-binary 1 1 5 0 0
Prefer not to say 0 1 1 1 0
Occupation Hate Dislike Neutral Like Love
Developer 6 33 78 29 5
Student 1 35 56 28 0
Researcher 2 8 19 16 1
Age Hate Dislike Neutral Like Love
18 to 24 1 30 48 29 1
25 to 34 5 23 59 18 1
35 to 44 3 19 40 23 4
45 to 54 1 3 12 6 1
55 to 64 0 2 6 0 0
Over 64 0 1 1 0 0

26 Eduardo Guerra et al.

5.3 RQ3: Do developers from different demographics perceive the effects of
code annotation on readability differently?

To answer this question, we considered the data presented in Table 4. We
grouped the participants from each average score category by Java experi-
ence, annotations experience, coding experience, gender, occupation, and age.
By performing the chi-square test, all the p-values returned are larger than
the significant level (p-value > 0.05). Thus, there is insufficient evidence to
conclude that any demographic is associated with annotation preferences.

5.4 RQ4: What factors can influence annotated code readability?

Participants suggested several factors that make annotations positively or neg-
atively impact code readability, as summarized in Table 5 and Table 5. The
most common explanations were related to effects in code characteristics and
quality attributes (94+/20-)6. The most common reference was objectiveness
(40+/2-), as illustrated by P57: “Helpful when it removes unnecessarily ver-
bose”. Also related to objectiveness, less duplication (10+) was frequently
mentioned: “usage of annotations can often make the code more readable by
reducing the number of repetitive constructions and avoiding duplication code”
(P139).

Clean code or clarity (23+/10-) was the most controversial topic, with
23 participants mentioning a positive impact while 10 mentioned negative
impacts. As P169 stated: “[annotations] makes it less clear what is going on”.
Participants generally explained that the lack of clarity was related to making
business logic hidden, what they called “magic.” For instance, P236 mentioned:
“I am not so used to using annotations, so they often leave me with the feeling
that some ‘magic’ is going on”. Other explanations for the lack of clarity were
connected to the overuse of annotations and the choice of poor names. Still
related to clarity, participants also mentioned positive and negative effects on
explicitness (13+/8-). As illustrated by P236, “being explicit about what is
going on makes the code more readable for the inexperienced. For someone
who has experience with a system and is familiar with the typically used
annotations, they may be helpful.” However, RQ3’s results contradict this
statement.

Impact on design quality attributes (41+/6-) was also frequently mentioned
by the participants, mostly positively. In particular, participants mentioned
effects on simplicity (17+/1-), modularity (7+), cohesion (5+), organization
(3+), abstraction (2+/1-), elegance (3+), encapsulation (1+), flexibility (1+),
and testability (-4). The last was the only one in which participants mentioned
only negative effects, as illustrated by P392: “makes code harder to test ... and
given that in my experience testability is king, that’s a lot of reasons right there
to avoid annotations.”

6 This notation denotes the number of mentions in which the impact was classified as
positive or negative.

How do annotations affect Java code readability? 27

Participants also mentioned that annotations affect readability by making
information (33+/25-) more understandable (21+/21-), faster to read (9+),
and easier to learn (2+). One can notice the controversy around understand-
ability, with 21 mentions of positive impacts and 21 negative ones. On the
negative side, 11 participants discouraged representing logic in annotations,
which correlates with the previous findings related to “magic” and explicit-
ness. Other attributes mentioned less frequently were maintainability (7+/2-)
and productivity (4+). The complete coding book and subcategory counting
are available in our replication package, mentioned in Section 4.7.

Table 5 Impact attributes on readability when annotations are used and specific cases
reported when using/avoiding annotation

Attributes Positive(+) Negative(-)
Code 94 20
Design 41 06
Info processing 33 25
Logic 01 11
Maintainability 07 02
Productivity 04 00
Annotation Usage Categories Positive(+) Negative(-)
Proxy configuration 17 10
Rule Definition 23 03
Information Mapping 04 00
Callback Method 02 03
Dependency Injection 02 03

Participants also explicitly mentioned scenarios that could be mapped to
the annotation usage categories described in Table 5. Using annotations for
defining rules (12+), which receive specific mentions of validation rules, and for
information mapping (4+) received only positive recommendations. We could
not observe the same results in the other research questions when analyzing
each annotation category in isolation. Some of them had mixed recommenda-
tions. More specifically, cross-cutting concerns related to the Proxy Configu-
ration category received significant mentions both recommending to use and
avoid annotations (17+/10-). Callback Method (2+/3-), configuration (1+/3-),
and dependency injection (2+/3-) also received mixed recommendations.

Finally, the qualitative analysis also revealed recommendations for using
annotations, represented in Table 6. The most mentioned strategy suggests
avoiding cases where the behavior driven by the annotation seems obscure
or magical to the user (15). In the words of participant P118: “Annotations
are like any abstraction: done well, it improves the readability; when it hides
too much or relocates information to the wrong place, it is confusion and
decreases readability.” Participant P125 summarized this idea as “it helps
when the annotation’s behavior is obvious from the way it’s used; it hinders
when behavior is magic.”

Participants frequently mention other strategies, such as keeping anno-
tation usage simple (9) and choosing intuitive names (7). P179 illustrates

28 Eduardo Guerra et al.

Table 6 Annotation usage strategies recommended by respondents

Strategies # of mentions
Avoid “magic” 15 / 25.9%
Avoid overuse 09 / 15.5%
Keep it simple 09 / 15.5%
Choose good names 07 / 12.1%
Avoid custom annotation 04 / 6.9%
Do not use in simple cases 03 / 5.2%
Keep it close to the code being annotated 03 / 5.2%
Use few parameters 03 / 5.2%
Do not mix annotation types 02 / 3.4%
Be explicit 02 / 3.4%
Use for average developers 01 / 1.7%

this idea: “If the functionality is well encapsulated, and the name is intuitive
enough, annotations can improve a lot the readability and make the code much
more maintainable, even to someone without experience in that piece of code.”
However, eight additional participants highlight that annotations can be help-
ful, but overuse should be avoided. As mentioned by participant P179: “if used
everywhere, creating some sort of annotation hell, you think you understand
the purpose of that code, but has no clue on how to use it.”

Finally, one may argue that some identified categories do not directly re-
late to readability. However, we also recognize that readability is subjective,
and the participants could consider other maintainability aspects. This qual-
itative analysis adds to the current literature (e.g., (Guerra and Fernandes,
2013; Guerra et al., 2020)) by bringing additional information from sponta-
neous manifestations of the participants about the readability and design of
annotated code.

6 Discussion

Based on the survey results, we could not find an association between the usage
of annotations and a consistent positive or negative impact on code readability.
Searching for correlations between the answers and participant demographics
(e.g., programming experience, gender), we also could not find a particular
profile with a different tendency. We evaluated the questions grouped by the
annotation usage category, including individually, and did not find a statisti-
cally different distribution.

A practical implication (i) of these results for API designers is
that annotations will not necessarily harm the readability, as fre-
quently stated in the gray literature (Stackoverflow, 2009; Bugayenko, 2016;
Warski, 2017). This scenario is also the case if the API has a specific target
audience, such as beginners or experts, or has a particular annotation usage,
such as Information Mapping or Proxy configuration.

Our study also found that many participants consistently prefer code anno-
tations (or not). The participants with positive and negative tendencies were

How do annotations affect Java code readability? 29

balanced. The difference in the number of participants with a strong prefer-
ence, classified as “Love” and “Hate,” was not significant. Still, participants
classified as “Like” and “Dislike” comprise around half of the sample, rep-
resenting a moderated tendency from one side. That finding highlights the
importance of the study results as a practical implication (ii) to help
API designers avoid generalizing their personal views regarding the
impact of annotations in code readability to make a decision.

The two code snippets of each question in the study use the same terms
and have a similar size, representing a regular usage of annotations. However,
in real projects, annotations can be used in different conditions, and problems
in readability might arise not simply from this programming language feature
but from how it is used. So, even if our results provide evidence that code
annotations do not negatively impact code readability, some practices can
improve and reduce the readability of annotated code.

The qualitative study found statements that claimed annotations’ positive
and negative impact on the code and information processing. For instance,
P117 stated that “some annotations are very clear in their function and im-
prove readability by making code more concise. Others are difficult to under-
stand and serve only to confuse me.” P139 claimed that “annotations could
often make the code more readable by reducing repetitive constructions and
avoiding duplication code. However, over-usage of annotations might become
an issue.” Similarly, P137 said that “sometimes annotations allow writing less
code and keeping related code together it requires more time to get used
to them because the code is not explicit, but they are faster to read after you
know them. But mixing annotations from too many different contexts in the
same code seems bad to me.” That confirms the results from the survey that
there are participants with preferences on both sides. Importantly, (iii), the
participants recommend avoiding abuses in the usage of annotations.

The abuse of code annotations can be detected using a metric suite that
measures characteristics in their usage (Lima et al., 2018). These abuses can be
prevented from the point of view of the API designer and API user. The API
designer might use practices that allow a more general definition of metadata,
such as General Configuration and Annotation Mapping (Guerra et al., 2010a),
or provide alternatives based on code conventions. The API users can use the
alternatives provided by the API to reduce the number of annotations, such as
the practices previously mentioned, and avoid concentrating annotations from
several frameworks in the same class.

The impact on design had a high number of mentions (usually on the pos-
itive side), which confirms results from previous works that claim a reduction
in coupling and the support for a more consistent evolution (Guerra et al.,
2020). For instance, P244 stated, “I generally found it to improve readability,
most commonly through (a) better modularization and (b) bringing informa-
tion closer to where it is needed.” A high number of participants claimed a
positive impact on code quality (Yu et al., 2019). For example, P95 claimed,
“Annotations improve code’s readability by making clearer and more explicit
logic representations.” This evidence brings us to another practical recommen-

30 Eduardo Guerra et al.

dation (iv) that annotation-based API can provide a more consistent
code evolution with better coupling and complexity metrics.

Proxy Configuration and Rule Definition are the categories most mentioned
in our qualitative analysis. Proxy Configuration appeared in the qualitative
analysis as the usage of annotations for crosscutting concerns, receiving men-
tions that encourage and discourage using annotations. For instance, P382
stated, “I think annotations contribute to better readability when consider-
ing Dependency Injection or when we plan to decorate a class/method with
a feature that can be regarded as crosscutting and not specific to the busi-
ness rule.” The Rule Definition category appeared only encouraging its usage,
which contradicted the general behavior in the questions of this category in the
survey. P233 said, “It positively affects simple aspects such as HTTP requests
or validation For example, on transaction issues, it is sometimes necessary
to perform other activities within a transaction. Using annotations on these
parameters helps the readability and clarifies what activities are being carried
within this transaction.”

Moreover, Information Mapping is one of the most familiar categories to
developers and practitioners, given well-established frameworks such as JPA
(to perform ORM) and JAXB (to serialize/deserialize XML). As stated by
participant P46: “In general, annotations can improve the code’s readability,
especially in mapping situations.” Furthermore, P148 said: “Overall, annota-
tions usage improves code readability when abstracting recurrent tasks like
mapping values, validating data or fetching session variables, mostly by sub-
stituting statements unrelated to the business logic.” Some participants, like
P143, believe that annotations should be primarily used to map data: “In my
opinion, annotations need to either hide ugly implementation, repetitive de-
tails or be related to field technicalities, for instance, use in mapping. However,
you do not want to have to think about what they do or go back and forth.”

7 Limitations

Sampling bias (survey). We combined multiple strategies to reach a diverse
sample. As described in Section 4.7, we achieved a diverse population, espe-
cially regarding participant experience. Most participants were from America,
despite reaching participants from many countries. We also have a low number
of women and non-binary respondents, which are under-represented in soft-
ware development (Wang and Redmiles, 2019; Prana et al., 2021; Trinkenreich
et al., 2022). Our results are only valid for our respondents, and we encourage
this work to be replicated in different scenarios.

Target population. In this study, we focused on the perspective of outsiders—
participants who were looking at the code for the first time. Even though this
perspective is relevant because projects often receive new developers, espe-
cially some open source projects (Steinmacher et al., 2015), the results may
change when considering the perspective of frequent contributors to the code.
Future work can investigate the impact of annotations in this context.

How do annotations affect Java code readability? 31

Response biases. The code snippets were designed based on annotation
usage categories whose presence we verified in well-known Java projects, as
described in Section 2.4. Nevertheless, we acknowledge that we may not have
included all possible usage scenarios and representative samples in the survey
instrument. Nevertheless, to mitigate response ordering bias, we randomized
the order of the questions and the order of the code snippets. We also used
small code snippets with the same vocabulary, similarly highlighting and for-
matting the code. We also understand that comparing two snippets may reduce
potential threats. This strategy was employed in other studies such as Santos
and Gerosa (2018) and Lucas et al. (2019). By analyzing the comments pro-
vided by participants, we also found cases suggesting that developers carefully
inspected both snippets, trying to spot differences between them. For instance,
P153 mentioned “I actually enjoyed taking it as it was interesting to see the
differences between implementations with and without annotations.”

Self-selection bias. Our survey used English as a primary language, which
may have influenced the willingness of non-English speakers to participate.
Future studies might translate our survey and investigate regional differences.

Confirmation bias. Confirmation bias is the tendency to interpret, favor,
and recall information in a way that supports one’s prior beliefs. This bias
may have influenced our respondent’s answers. To mitigate this bias while
recruiting participants and writing the instrument, we characterized the study
as a code legibility research, avoiding direct mentions to code annotation.

Sampling bias (Annotation Categories). In the annotation usage cate-
gory evaluation, we included all the annotation schemas from Java standard
APIs found and the same number of third-party libraries. However, from the
326 schemas found, only 21 were accepted. While this sample provided enough
evidence to evaluate the categories for the survey study, the third-party li-
braries were misrepresented. Further studies that target evaluating the fre-
quency of annotations in each category should consider a different sampling
strategy.

Annotation Categories Evaluation. We used different researchers to ad-
dress potential issues such as confirmation and researcher bias associated with
the annotation category evaluation. One of the researchers that performed
the classification was previously involved in identifying the patterns used as
the basis for the categories. After receiving an initial explanation of the cate-
gories, a second researcher relied on the categories’ descriptions and the pat-
terns used for their definition. To minimize the impact of researcher bias, both
researchers independently conducted the classification, and any discrepancies
in the initial classification were used to calculate agreement. Subsequently, a
consensus was reached through discussion, incorporating the primary sources
of disagreement. Furthermore, the author responsible for selecting the projects
and annotation schemas did not partake in the classification process.

Qualitative analysis. We employed qualitative procedures to classify the
open-question answers provided by our respondents. These procedures are sub-
ject to interpretation bias. Multiple researchers used a constant comparison

32 Eduardo Guerra et al.

to mitigate this threat and negotiated an agreement to conduct the analy-
sis. All the researchers involved have experience in qualitative methods and
annotation usage in practice.

External validity (Annotation Categories). A possible threat to survey
validity is the misrepresentation of different usages of code annotations. If the
survey includes questions representing just a subgroup of scenarios in which
annotations can be used, the results can be considered valid only for that scope.
In the survey design, we considered annotation usage categories extracted from
documented patterns from the literature, including three questions for each
category. To ensure that these categories represent annotations present in real
frameworks and APIs, we performed the evaluation study reported in Section
3.1, finding a significant occurrence for the five categories considered.

Construct validity (Pair of Snippets). A possible threat to survey valid-
ity is if the pair of code snippets cannot generate an equivalent behavior. We
created the pair of snippets based on the structure of each annotation category,
making sure that (a) the same information defined through the annotations
is available using another approach for the external component in the other
snippet, (b) the external logic that processes the annotations is called in the
same sequence as the equivalent object-oriented alternative. The authors ex-
tensively discussed all questions internally and agreed on the equivalence of
the code snippets before conducting the pilot study. To check our intuition
that the pair of snippets were equivalent and could provide the same under-
standing, we also conducted a pilot study as described in Section 4.2. During
the pilot study and the survey, we invited the participants to provide feedback
regarding any concerns about the code snippets, but no issues were raised.

8 Conclusion

This paper reported a study investigating the impact of Java annotations on
code readability. We did not identify a positive or negative impact, even when
segmenting the analysis for usage scenarios or demographic characteristics.
The personal preference in favor or against annotations in around half of the
participants reinforces the idea that practitioners may not consider their per-
ceptions as true for other developers when making a decision.

To conduct the survey and elaborate our readability questions, we consid-
ered five annotations usage categories based on existing patterns. We evaluated
the categories in a study that classified annotations from real-world schemas
and found that all annotations could be classified into one of the categories and
that all the categories had a significant occurrence in the annotation schemas.
We consider the insights obtained from this study as a secondary result of this
work.

While several factors should be evaluated when deciding to use or avoid
annotation in the design of an API, our results revealed that readability is a
quality attribute for which there is no consensus, and additional care should

How do annotations affect Java code readability? 33

be taken. It is worth highlighting that participants also provided recommenda-
tions on scenarios in which to use annotation (e.g., validation, mapping, and
rule definition) and not to use it (e.g., business logic). There were also men-
tions that developers should avoid overuse of annotation, keep the annotation
usage simple, and provide good names. In short, from these results, we could
extract four practical implications that annotation-based API developers can
use to improve annotation readability.

Future studies can investigate readability and other practices in the design
of annotated APIs. For instance, the presence of classes with a high number of
annotations, with large annotations (Lima et al., 2018), and their repetition
on similar elements (Teixeira et al., 2018), can be responsible for the unfa-
vorable positioning of some participants about annotations. Considering that
annotations alone are not responsible for reducing readability, future work can
explore how practices related to annotations usage can affect this property.

Data Availability

All the data related to this research, including an anonymized dataset, scripts,
and the questionnaire, is available in the Zenodo (https://doi.org/10.5281/
zenodo.5396378) open data archive.

Conflict of Interest

The authors declared that they have no conflict of interest.

Acknowledgments

We thank all the respondents who spent their time answering our survey.
We expect the results to benefit the developers and API designers and in-
spire new research on this topic. This work is partially supported by FAPESP
(grant #2019/12743-4), CNPq/MCTI/FNDCT (grant #408812/2021-4), MC-
TIC/CGI/FAPESP (grant #2021/06662-1), and NSF (grants 2236198, 2247929,
and 2303042).

References

Baltes S, Diehl S (2016) Worse than spam: Issues in sampling software devel-
opers. In: 10th International Symposium on Empirical Software Engineering
and Measurement, ACM, New York, NY, USA, ESEM ’16, DOI 10.1145/
2961111.2962628, URL https://doi.org/10.1145/2961111.2962628

Beelders TR, du Plessis JPL (2016) Syntax highlighting as an influencing fac-
tor when reading and comprehending source code. Journal of Eye Movement
Research 9(1)

https://doi.org/10.5281/zenodo.5396378
https://doi.org/10.5281/zenodo.5396378
https://doi.org/10.1145/2961111.2962628

34 Eduardo Guerra et al.

Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a prac-
tical and powerful approach to multiple testing. Journal of the Royal statis-
tical society: series B (Methodological) 57(1):289–300

Bloch J (2016) Effective java. Pearson Education
Boehm B, Basili VR (2001) Software defect reduction top 10 list. Computer
34(1):135–137, DOI 10.1109/2.962984, URL https://doi.org/10.1109/2.

962984

Briand L, El Emam K, Morasca S (1996) On the application of measurement
theory in software engineering. Empirical Software Engineering 1(1):61–88

Bugayenko Y (2016) Java Annotations Are a Big Mistake. Personal blog:
https://www.yegor256.com/2016/04/12/java-annotations-are-evil.

html

Buse RP, Weimer WR (2010) Learning a metric for code readability. IEEE
Transactions on Software Engineering 36(4):546–558, DOI 10.1109/TSE.
2009.70

Buttler DJ (2008) Java metadata facility. Encyclopedia of Database Systems,
November 1, 2009, pp 1580 URL https://www.osti.gov/biblio/973644

Chen N (2006) Convention over configuration. http://

softwareengineering.vazexqi.com/files/pattern.html, URL
http://softwareengineering.vazexqi.com/files/pattern.html

Córdoba-Sánchez I, de Lara J (2016) Ann: A domain-specific language for
the effective design and validation of java annotations. Computer Lan-
guages, Systems & Structures 45:164 – 190, DOI https://doi.org/10.1016/j.
cl.2016.02.002, URL http://www.sciencedirect.com/science/article/

pii/S1477842416300318

Damyanov I, Holmes N (2004) Metadata driven code generation using .net
framework. In: Proceedings of the 5th international conference on Computer
systems and technologies, ACM, pp 1–6

Dietl W, Dietzel S, Ernst MD, Muşlu K, Schiller TW (2011) Building and using
pluggable type-checkers. In: Proceedings of the 33rd International Confer-
ence on Software Engineering, pp 681–690

Ernst MD (2008) Type Annotations specification. JSR 308: http://types.
cs.washington.edu/jsr308/

Fernandes C, Ribeiro D, Guerra E, Nakao E (2010) Xml, annotations and
database: a comparative study of metadata definition strategies for frame-
works. May 19–20, Vila do Conde p 115

Guerra E (2016) Design patterns for annotation-based apis. In: Proceedings of
the 11th Latin-American Conference on Pattern Languages of Programming,
SugarLoafPLoP, vol 16, p 9

Guerra E, Fernandes C (2013) A qualitative and quantitative analysis on
metadata-based frameworks usage. In: International Conference on Com-
putational Science and Its Applications, Springer, pp 375–390

Guerra E, Silva J, Silveira F, Fernandes C (2008) Using metadata in aspect-
oriented frameworks. Contemporary Modularization Techniques (ACoM 08)
p 13

https://doi.org/10.1109/2.962984
https://doi.org/10.1109/2.962984
https://www.yegor256.com/2016/04/12/java-annotations-are-evil.html
https://www.yegor256.com/2016/04/12/java-annotations-are-evil.html
https://www.osti.gov/biblio/973644
http://softwareengineering.vazexqi.com/files/pattern.html
http://softwareengineering.vazexqi.com/files/pattern.html
http://softwareengineering.vazexqi.com/files/pattern.html
http://www.sciencedirect.com/science/article/pii/S1477842416300318
http://www.sciencedirect.com/science/article/pii/S1477842416300318
http://types.cs.washington.edu/jsr308/
http://types.cs.washington.edu/jsr308/

How do annotations affect Java code readability? 35

Guerra E, Cardoso M, Silva J, Fernandes C (2010a) Idioms for code anno-
tations in the java language. In: Proceedings of the 8th Latin American
Conference on Pattern Languages of Programs, Association for Comput-
ing Machinery, New York, NY, USA, SugarLoafPLoP ’10, DOI 10.1145/
2581507.2581514, URL https://doi.org/10.1145/2581507.2581514

Guerra E, Fernandes C, Silveira FF (2010b) Architectural patterns for
metadata-based frameworks usage. In: Proceedings of the 17th Conference
on Pattern Languages of Programs, pp 1–25

Guerra E, Alves F, Kulesza U, Fernandes C (2013a) A reference architecture
for organizing the internal structure of metadata-based frameworks. Journal
of Systems and Software 86(5):1239–1256

Guerra E, Buarque E, Fernandes C, Silveira F (2013b) A flexible model for
crosscutting metadata-based frameworks. In: International Conference on
Computational Science and Its Applications, Springer, pp 391–407

Guerra E, Lima P, Choma J, Nardes M, Silva T, Lanza M, Meirelles P (2020)
A metadata handling api for framework development: A comparative study.
In: Proceedings of the 34th Brazilian Symposium on Software Engineering,
Association for Computing Machinery, New York, NY, USA, SBES ’20, p
499–508, DOI 10.1145/3422392.3422428, URL https://doi.org/10.1145/

3422392.3422428

Guerra EM, Silveira FF, Fernandes CT (2009) Questioning traditional metrics
for applications which uses metadata-based frameworks. In: Proceedings of
the 3rd workshop on assessment of contemporary modularization techniques
(acom’09), october, vol 26, pp 35–39

Guerra EM, de Souza JT, Fernandes CT (2010c) A pattern language for
metadata-based frameworks. In: Proceedings of the 16th Conference on Pat-
tern Languages of Programs, ACM, New York, NY, USA, PLoP ’09, pp 3:1–
3:29, DOI 10.1145/1943226.1943230, URL http://doi.acm.org/10.1145/

1943226.1943230

Gunawardena S, Tempero E, Blincoe K (2023) Concerns identified in
code review: A fine-grained, faceted classification. Information and Soft-
ware Technology 153:107054, DOI https://doi.org/10.1016/j.infsof.2022.
107054, URL https://www.sciencedirect.com/science/article/pii/

S0950584922001653

Hansen ME, Goldstone RL, Lumsdaine A (2013) What makes code hard to un-
derstand? CoRR abs/1304.5257, URL http://arxiv.org/abs/1304.5257,
1304.5257

Lawrie D, Morrell C, Feild H, Binkley D (2006) What’s in a name? a study
of identifiers. In: 14th IEEE International Conference on Program Compre-
hension (ICPC’06), IEEE, pp 3–12

Lima P, Guerra E, Meirelles P, Kanashiro L, Silva H, Silveira F (2018) A met-
rics suite for code annotation assessment. Journal of Systems and Software
137:163 – 183, DOI https://doi.org/10.1016/j.jss.2017.11.024, URL http:

//www.sciencedirect.com/science/article/pii/S016412121730273X

Lima P, Guerra E, Meirelles P (2020) Annotation sniffer: A tool to extract
code annotations metrics. Journal of Open Source Software 5(47):1960, DOI

https://doi.org/10.1145/2581507.2581514
https://doi.org/10.1145/3422392.3422428
https://doi.org/10.1145/3422392.3422428
http://doi.acm.org/10.1145/1943226.1943230
http://doi.acm.org/10.1145/1943226.1943230
https://www.sciencedirect.com/science/article/pii/S0950584922001653
https://www.sciencedirect.com/science/article/pii/S0950584922001653
http://arxiv.org/abs/1304.5257
1304.5257
http://www.sciencedirect.com/science/article/pii/S016412121730273X
http://www.sciencedirect.com/science/article/pii/S016412121730273X

36 Eduardo Guerra et al.

10.21105/joss.01960, URL https://doi.org/10.21105/joss.01960

Lima P, Melegati J, Gomes E, Pereira NS, Guerra E, Meirelles P (2023)
Cadv: A software visualization approach for code annotations distribu-
tion. Information and Software Technology p 107089, DOI https://doi.
org/10.1016/j.infsof.2022.107089, URL https://www.sciencedirect.com/

science/article/pii/S0950584922001987

Lucas W, Bonifácio R, Canedo ED, Marćılio D, Lima F (2019) Does the intro-
duction of lambda expressions improve the comprehension of java programs?
In: Proceedings of the XXXIII Brazilian Symposium on Software Engineer-
ing, pp 187–196

McHugh ML (2012) Interrater reliability: the kappa statistic. Biochemia med-
ica 22(3):276–282

Pantiuchina J, Lanza M, Bavota G (2018) Improving code: The (mis) percep-
tion of quality metrics. In: 2018 IEEE International Conference on Software
Maintenance and Evolution (ICSME), IEEE, pp 80–91

Piantadosi V, Fierro F, Scalabrino S, Serebrenik A, Oliveto R (2020) How
does code readability change during software evolution? Empirical Software
Engineering 25:5374–5412

Posnett D, Hindle A, Devanbu P (2011) A simpler model of software read-
ability. In: Proceedings of the 8th Working Conference on Mining Software
Repositories, Association for Computing Machinery, New York, NY, USA,
MSR ’11, p 73–82, DOI 10.1145/1985441.1985454, URL https://doi.org/

10.1145/1985441.1985454

Prana GAA, Ford D, Rastogi A, Lo D, Purandare R, Nagappan N (2021) In-
cluding everyone, everywhere: Understanding opportunities and challenges
of geographic gender-inclusion in oss. IEEE Transactions on Software Engi-
neering

Quinonez J, Tschantz M, Ernst M (2008) Inference of reference immutability.
ECOOP 2008–Object-Oriented Programming pp 616–641, URL http://

www.springerlink.com/index/6M5U5M330T81763T.pdf

Raymond DR (1991) Reading source code. In: Proceedings of the 1991 Con-
ference of the Centre for Advanced Studies on Collaborative Research, IBM
Press, CASCON ’91, p 3–16

Rugaber S (2000) The use of domain knowledge in program understand-
ing. Ann Softw Eng 9:143–192, URL http://dblp.uni-trier.de/db/

journals/ansoft/ansoft9.html#Rugaber00

Santos RM, Gerosa MA (2018) Impacts of coding practices on readability. In:
Proceedings of the 26th Conference on Program Comprehension, pp 277–285

Scalabrino S, Bavota G, Vendome C, Linares-Vásquez M, Poshyvanyk D,
Oliveto R (2017) Automatically assessing code understandability: How far
are we? In: 2017 32nd IEEE/ACM International Conference on Automated
Software Engineering (ASE), IEEE, pp 417–427

Schröter I, Krüger J, Siegmund J, Leich T (2017) Comprehending studies on
program comprehension. In: 2017 IEEE/ACM 25th International Confer-
ence on Program Comprehension (ICPC), pp 308–311, DOI 10.1109/ICPC.
2017.9

https://doi.org/10.21105/joss.01960
https://www.sciencedirect.com/science/article/pii/S0950584922001987
https://www.sciencedirect.com/science/article/pii/S0950584922001987
https://doi.org/10.1145/1985441.1985454
https://doi.org/10.1145/1985441.1985454
http://www.springerlink.com/index/6M5U5M330T81763T.pdf
http://www.springerlink.com/index/6M5U5M330T81763T.pdf
http://dblp.uni-trier.de/db/journals/ansoft/ansoft9.html#Rugaber00
http://dblp.uni-trier.de/db/journals/ansoft/ansoft9.html#Rugaber00

How do annotations affect Java code readability? 37

Šmite D, Wohlin C, Galviņa Z, Prikladnicki R (2014) An empirically based ter-
minology and taxonomy for global software engineering. Empirical Software
Engineering 19:105–153

Spencer D (2009) Card sorting: Designing usable categories. Rosenfeld Media
Stackoverflow (2009) Arguments Against Annota-
tions. https://stackoverflow.com/questions/1675610/

arguments-against-annotations, URL https://stackoverflow.

com/questions/1675610/arguments-against-annotations

Steinmacher I, Conte T, Gerosa MA, Redmiles D (2015) Social barriers
faced by newcomers placing their first contribution in open source soft-
ware projects. In: Proceedings of the 18th ACM conference on Computer
supported cooperative work & social computing, pp 1379–1392

Storey MA, Wong K, Müller H (2000) How do program understanding tools af-
fect how programmers understand programs? Science of Computer Program-
ming 36(2):183–207, DOI https://doi.org/10.1016/S0167-6423(99)00036-2

Strauss AL, Corbin JM (1998) Basics of qualitative research : techniques and
procedures for developing grounded theory. Sage Pub, Thousand Oaks

Tashtoush Y, Odat Z, Yatim M, Alsmadi I (2013) Impact of programming
features on code readability. International Journal of Software Engineering
and Its Applications 7(6):441–458

Teixeira R, Guerra E, Lima P, Meirelles P, Kon F (2018) Does it make sense to
have application-specific code conventions as a complementary approach to
code annotations? In: Proceedings of the 3rd ACM SIGPLAN International
Workshop on Meta-Programming Techniques and Reflection, pp 15–22

Trinkenreich B, Wiese I, Sarma A, Gerosa M, Steinmacher I (2022) Women’s
participation in open source software: A survey of the literature. ACM
Transactions on Software Engineering and Methodology (TOSEM) 31(4):1–
37

Usman M, Britto R, Börstler J, Mendes E (2017) Taxonomies in software engi-
neering: A systematic mapping study and a revised taxonomy development
method. Information and Software Technology 85:43–59

Wang Y, Redmiles D (2019) Implicit gender biases in professional software de-
velopment: An empirical study. In: 2019 IEEE/ACM 41st International Con-
ference on Software Engineering: Software Engineering in Society (ICSE-
SEIS), pp 1–10, DOI 10.1109/ICSE-SEIS.2019.00009

Warski A (2017) The case against annotations. Soft-
wareMill Tech Blog: https://blog.softwaremill.com/

the-case-against-annotations-4b2fb170ed67, URL https://blog.

softwaremill.com/the-case-against-annotations-4b2fb170ed67

Wheaton GR, Fleishman EA (1968) Development of a taxonomy of human
performance: A review of classificatory systems relating to tasks and per-
formance. Clearinghouse

Wulff-Jensen A, Ruder K, Triantafyllou E, Bruni LE (2019) Gaze strategies
can reveal the impact of source code features on the cognitive load of novice
programmers. In: Ayaz H, Mazur L (eds) Advances in Neuroergonomics and
Cognitive Engineering, Springer International Publishing, Cham, pp 91–100

https://stackoverflow.com/questions/1675610/arguments-against-annotations
https://stackoverflow.com/questions/1675610/arguments-against-annotations
https://stackoverflow.com/questions/1675610/arguments-against-annotations
https://stackoverflow.com/questions/1675610/arguments-against-annotations
https://blog.softwaremill.com/the-case-against-annotations-4b2fb170ed67
https://blog.softwaremill.com/the-case-against-annotations-4b2fb170ed67
https://blog.softwaremill.com/the-case-against-annotations-4b2fb170ed67
https://blog.softwaremill.com/the-case-against-annotations-4b2fb170ed67

38 Eduardo Guerra et al.

Yang HY, Tempero E, Melton H (2008) An empirical study into use of depen-
dency injection in java. In: 19th Australian Conference on Software Engi-
neering (aswec 2008), IEEE, pp 239–247

Yu Z, Bai C, Seinturier L, Monperrus M (2019) Characterizing the usage,
evolution and impact of java annotations in practice. IEEE Transactions on
Software Engineering

	Introduction
	Code Annotations
	Evaluation of the Annotation Usage Scenarios
	Survey design
	Results
	Discussion
	Limitations
	Conclusion

