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Experimental studies have found unusual transport properties in Ce3Bi4Pd3 which are potentially
a consequence of the interplay between band-structure topology and electronic correlations. Based on
these measurements, the existence of Weyl points in strongly renormalized, flat quasiparticle bands
has been postulated. However, so far, there has been neither a direct spectroscopic observation of
these, nor a calculation from first principles that would confirm their existence close to the Fermi
energy. Here, we present density functional theory (DFT) and dynamical mean field theory (DMFT)
calculations and study the low-energy excitations and their topological properties. We find that the
Kondo effect promotes two out of the six angular momentum J = 5/2 states, with the other four
pushed to higher energies. Further, we find Weyl nodes close to the Fermi energy as previously
suggested for explaining the observed giant spontaneous Hall effect in Ce3Bi4Pd3, as well as nodal
lines.

I. INTRODUCTION

Weyl-Kondo semimetals interface topology and
strong correlation physics and exhibit low-energy exci-
tations and transport properties different from weakly
interacting materials.1–6 The Coulomb interaction be-
tween localized f -electrons and their hybridization with
conduction bands results in flat bands and quasiparti-
cles with very high effective masses and, accordingly,
low renormalized velocities. These bands can cross each
other at isolated points close to the Fermi energy giv-
ing rise to a linear dispersion relation of the quasipar-
ticles which then behave like Weyl fermions7,8. Such
Weyl points are monopoles of Berry curvature9, poten-
tially providing significant contributions to the trans-
verse electrical conductivity in Hall experiments, even
without an external magnetic field.10

One Weyl-Kondo semimetal candidate is the non-
centrosymmetric compound Ce3Bi4Pd3

1 whose crystal
structure11 is shown in Fig. 1. The absence of inversion
symmetry makes the existence of Weyl points possible
and the nominally single, localized Ce-4 f valence elec-
tron gives rise to the Kondo effect at low temperatures1.
When the system is cooled to the Kondo coherent
regime, measurements of the specific heat show a cubic
dependence on temperature. While usually this is a con-
sequence of phonons, in the case of Ce3Bi4Pd3, the com-
parison to the reference material La3Bi4Pt3 indicates that
the electronic contribution to the specific heat dominates
the phononic one1. Hence, these observations have been
attributed to the existence of Weyl fermions with quasi-
particle velocities reduced by three orders of magnitude
compared to weakly interacting metals1.

Further evidence for this interpretation came from
electrical conductivity measurements that showed a gi-
ant, spontaneous Hall effect.5 Tilted Weyl points close
to the Fermi edge could induce significant amounts of
Berry curvature on the Fermi surface, which could ex-

plain the observed transverse electric current in the ab-
sence of magnetic fields5,6.

However, so far, there has been neither a direct spec-
troscopic observation of these Weyl nodes in highly
renormalized bands, nor a calculation from first prin-
ciples that would confirm their existence in the vicin-
ity of the Fermi energy. Here, we study Ce3Bi4Pd3 by
the combination12,13 of density functional theory (DFT)
and dynamical mean-field theory (DMFT) that captures,
both, the topological properties of the material, as well
as the electronic correlations and Kondo physics. For
the localized 4 f -electrons of Ce, the local DMFT correla-
tions can be expected to provide an accurate description,
as long as we are not in the vicinity of an ordering insta-
bility with strong non-local correlations.

Our results are strikingly different from a previous
DFT+DMFT study14 that did not discriminate between
the self-energies of the different J = 5/2 states (J: to-
tal angular momentum). As we will see below such a
differentiation is essential to describe the Kondo effect
in Ce3Bi4Pd3 correctly. Further, in Ref. 14 topology has
only been studied in the (effective one-particle) DFT not
in the (interacting) DFT+DMFT electronic structure.

The outline of the paper is as follows: In section II
we describe the DFT electronic structure and discuss the
symmetry properties of the local orbitals that will give
rise to a Kondo resonance. In section III we study the in-
teracting band structure within DMFT. We derive an ef-
fective low-energy Hamiltonian in section IV, which al-
lows us to analyze its topology. We discover Weyl points
from the renormalized quasiparticle bands in section V
and nodal lines in section VI. A summary and discus-
sion of our results can be found in section VII.

II. TIGHT-BINDING MODEL FROM FIRST
PRINCIPLES

To study how electronic correlations of the localized
Ce-4 f orbitals influence the topological properties, we
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FIG. 1: Crystal structure in the conventional unit cell of
Ce3Bi4Pd3. One of the equivalent Ce atom is
highlighted for reference in Sec. II.

need an accurate and material-realistic model that cap-
tures the hybridization between these. As a starting
point, we perform a self-consistent density functional
theory (DFT) calculation using the full potential local
orbital (FPLO) code15. We employ a dense (6 × 6 ×
6) k-mesh and the Perdew-Wang exchange-correlation
potential16 to determine the electronic band structure.
After the calculation is converged, we take the resulting
ground state density as starting point for another self-
consistent computation, where we increase the k-mesh
to (12 × 12 × 12). This computation converges immedi-
ately, thereby confirming that the initial k-mesh is suffi-
cient. All calculations are fully relativistic, which espe-
cially includes spin-orbit coupling (SOC).

In Fig. 2a we show the corresponding band struc-
ture. We obtain an insulating system in DFT, because
hybridization between Ce-4 f orbitals and conduction
bands compresses the latter and opens a gap. By look-
ing at the density of states (DOS) in the right panel of
Fig. 2a, we can see that the Ce-4 f orbitals in Ce3Bi4Pd3
have a contribution close to the Fermi energy. If elec-
tronic correlations are later included, these will give rise
to a narrow Kondo-peak at the Fermi energy. However,
in order to describe this Kondo physics, we need to treat
the electronic correlations more accurately than it is pos-
sible within DFT.

To capture the low-energy degrees of freedom of the
system, we perform a Wannierization of the bands. As
there are many entangled bands around the Fermi en-
ergy, we here project them onto the 4 f orbitals of the six
Ce atoms, the 4d orbitals of the six Pd atoms and the 6p
orbitals of the eight Bi atoms in the unit cell. This yields
altogether 192 Wannier-orbitals out of which 6 × 14 cor-
respond to the Ce-4 f . For the latter, correlations need
to be treated beyond a static mean-field approximation.

This large number of correlated orbitals makes compu-
tations very demanding. However, we can simplify the
problem, by observing that SOC nicely separates 4 f5/2
and 4 f7/2 orbitals in energy as can be seen in the DOS
from Fig. 2a. The 4 f7/2 orbitals are farther above the
Fermi energy, such that only the 4 f5/2 orbitals will be oc-
cupied at low temperatures. This energy separation al-
lows us to only treat the correlations of the 4 f5/2 orbitals
on the level of dynamical mean-field theory (DMFT) and
the Coulomb repulsion between 4 f7/2 and 4 f5/2 orbitals
on a static mean-field level.

By analyzing the symmetry properties of the 4 f5/2 or-
bitals, we can identify which of them can interact with
each other and which cannot. For this, we compute the
stabilizer group of the Ce atoms, i.e. the sub-group of
space-group I4̄d (220) which leaves the position of a Ce
atom invariant. In the present case the stabilizer is gen-
erated by a single fourfold screw roto-inversion axis,
that is a fourfold rotation, followed by inversion and
translation by a fractional lattice vector. In other words,
the stabilizer is isomorphic to S4.

Hence, the Ce-4 f orbitals form a representation of this
group. However, as SOC is not negligible, the group
of relevance here is the double cover of S4 for which
the 4 f5/2 orbitals form a representation which we can
decompose into irreducible representations (irreps) us-
ing the calculus of characters. Since S4 is abelian, all ir-
reps are one dimensional. Additionally, due to time re-
versal symmetry, for every irrep contained in the space
spanned by the 4 f5/2 orbitals its dual representation
must be contained as well such that these are degener-
ate in the local crystal field. Thus the latter will split the
4 f5/2 manifold into three twofold degenerate states. A
direct calculation reveals that the decomposition reads

Γ7 ⊕ Γ⋆
7 ⊕ Γ⊕2

6 ⊕ (Γ⋆
6)

⊕2 (1)

Here we used the notation for irreps from Cracknell17,
a star denotes the dual representation, ⊕ the direct sum
of vector spaces and the exponent ⊕2 indicates that an
irrep occurs twice in the decomposition.

To get a better intuition of what these irreps are, we
exemplarily pick the Ce atom highlighted in Fig. 1 in
red. For this atom, the S4 axis is parallel to the x-axis.
Then we can choose the spin-quantization axis to be the
x-axis as well and observe that the jx = 1/2 spans the Γ7
irrep and jx = −1/2 spans its dual. Furthermore, both
jx = 3/2 and jx = −5/2 transform as Γ6. Therefore,
these orbitals can interact and will hybridize due to the
local crystal field. The same holds for jx = −3/2 and
jx = 5/2 which both transform as the dual irrep Γ⋆

6 .
Due to hybridization these states will form a bonding

and an anti-bonding orbital, whose onsite energies can
be obtained from our Wannier-Hamiltonian. The bond-
ing orbital is lower in energy than the jx = 1/2 orbital
which in turn is lower in energy than the anti-bonding
orbital.

To speed up the following DMFT calculation we take
advantage of the above observations. If we transform
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(a) (b)

FIG. 2: (a) Electronic band structure calculated within DFT. In the primitive basis the coordinates of the high
symmetry points are: H = (1/2,−1/2, 1/2), P = (1/4, 1/4, 1/4), Γ = (0, 0, 0), N = (0, 0, 1/2). The Ce-4 f orbitals
hybridize with the conduction bands, which leads to a band gap. The right panel shows the total density of states
(red) as well as the partial densities for the Ce-4 f5/2 (blue) and Ce-4 f7/2 (green) orbitals. (b) Average occupation of
the Ce-4 f5/2 orbitals as function of temperature within DMFT.

the Wannier-orbitals into the basis of bonding, anti-
bonding and jx = ±1/2 orbital, then locally the Ce-4 f
part of the Hamiltonian is diagonal. During the DMFT
cycle the jx = 1/2 orbital will not obtain off-diagonal
terms, since it belongs to an irrep which occurs only
once in the decomposition of the 4 f5/2 manifold. For
the bonding and the anti-bonding orbital off-diagonal
elements might be generated, since these orbitals can
hybridize further, but they are small and hence we will
neglect them in the DMFT calculation. This gives a con-
siderable performance boost, which allows us to go to
low temperatures.

III. CALCULATIONS WITH DMFT

With the Wannier Hamiltonian from the previous sec-
tion we have a model at hand which is derived from
first principles and can be used as starting point for a
DMFT calculation. Here, we use the quantum Monte
Carlo (QMC) continuous time hybridization expansion
(CT-Hyb) as impurity solver using the W2DYNAMICS

implementation18. The electronic interaction is modeled
by a density-density interaction with Coulomb repul-
sion parameter U = 6 eV, similar to values used previ-
ously for various Ce3A4M3 compounds14,19–21. Double
counting is taken into account as described by Anisimov
et al.22 Since Ce is in a dominantely 4 f 1 configuration,
we neglect Hund’s exchange for the sake of reaching
lower temperatures in DMFT. This is justified as long
as we are not looking into the multiplet splitting of the
upper Hubbard bands. Using Pulay mixing23 (DIIS),
DMFT converges after 60 iterations.

First, we study the average occupation numbers of the

Ce-4 f5/2 orbitals as a function of temperature. For a con-
verged DMFT calculation they can be directly obtained
from the average occupations of the impurity. They are
shown in Fig. 2b. While at room temperature all six
orbitals have comparable occupations, the Kondo effect
changes this. Specifically, the lower the temperature be-
comes, the more depleted are the jx = ±1/2 and anti-
bonding orbitals. The two bonding orbitals however,
tend towards being occupied by one electron in total.
Hence, at low temperatures solely these 4 f orbitals with
the lowest local crystal field potential are occupied. This
state has a local magnetic moment, and forms a Kondo
resonance through hybridization with the conduction
electrons.

In order to resolve this Kondo resonance, we need to
analytically continue the imaginary time QMC data ob-
tained within DMFT. This is performed using the max-
imum entropy method as implemented in ΩMaxEnt24.
We analytically continue both the local Green’s function
as well as the self-energy. The imaginary part of the local
DMFT Green’s function gives us the partial density of
states for the Ce-4 f bonding orbital as shown in the right
panel of Fig. 3a. There, we can see a Kondo resonance
at the Fermi energy ϵF = 0 eV. As expected already from
the occupations, it has almost solely contributions from
the bonding orbital.

The k-resolved spectral function in the left panel of
Fig. 3a is obtained as the imaginary part of the interact-
ing lattice Green’s function with the analytically contin-
ued DMFT self-energy. Since the DMFT self-consistency
loop started from the non-interacting band structure in
Fig. 2a, which includes hybridization between Ce-4 f
and conduction bands, we can observe, how interac-
tions influence the excitation spectrum: At low tem-
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(a) (b)

FIG. 3: (a) Momentum-resolved spectral function from DMFT at T = 29K (false color; intensity on logarithmic scale
for better visibility). The black curve is the DFT band structure where the Ce-4 f orbitals are treated in the open-core
approximation. The rightmost panel of (a) shows the partial density of states of the bonding Ce-4 f5/2 orbital with
an emerging Kondo resonance. (b) Zoom-in along N-Γ-P. Close to the Fermi energy the quasiparticle Hamiltonian
from Eq. (4) (red curve) agrees much better with DMFT than the open core DFT bands (black).

peratures a Kondo resonance emerges in the immediate
vicinity of the Fermi level.

Seemingly similar dispersions can be observed if we
perform a DFT calculation where the Ce-4 f orbitals are
treated in the open-core approximation. The bands from
this calculation are shown by the black lines in Fig. 3a,
and are in good agreement with previous results.14

Both calculations yield similar features if we are suf-
ficiently away from the Fermi energy. However, in
DMFT, flat renormalized quasiparticle bands emerge in
the spectral function close to the Fermi energy due to
the Kondo effect and show up as essentially horizon-
tal lines in Fig. 3a. The zoom in Fig. 3b shows them
more clearly and reveals that they are dispersive on an
meV scale. At T = 29K they are not fully coherent
throughout the whole Brillouin zone, as can be seen by a
pronounced smearing. However, at temperatures suffi-
ciently smaller than the Kondo temperature this smear-
ing (the imaginary part of the self energy) is expected to
go away. The flat quasiparticle bands will become sharp
and, potentially, important for transport. Hence, in the
next section we study their topological properties.

If we zoom in on the Fermi edge in Fig. 3b we can see
that the open core DFT calculation does not capture the
renormalized flat bands at all, which shows that they
are a consequence of electronic correlations. Energeti-
cally the maximum of the Kondo peak is approximately
ω0 = 2.4 meV below the Fermi energy, but with ϵF still
within the width of the Kondo resonance, as can be seen
from the right panel of Fig 3b. Upon reducing temper-
ature and thus the smearing, the Kondo peak will be-
come sharper; and we expect an upshift of the Kondo
resonance since it necessarily forms around ϵF.

In the spectral function and also in the effec-

tive low energy Hamiltonian discussed in the next
section, we do not observe a Kondo insulating
gap throughout the full Brillouin zone suggesting
semi-metallic behavior down to lowest temperatures.
We note that the related (isoelectronic) compounds
Ce3Bi4Pt3 and Ce3Sb4Pt3 are, instead, prototypical
Kondo insulators25–27. Owing to their larger Ce-4 f to
conduction states hybridization,28,29 the hybridization
gap, while renormalized, remains finite when including
correlation effects.

IV. EFFECTIVE LOW ENERGY HAMILTONIAN

In order to search for Weyl-points in the quasiparti-
cle bands, we need an effective single particle Hamilto-
nian that captures the low energy physics of the system.
From the DMFT calculation and the analytically contin-
ued self-energy Σ(ω) we can determine the momentum
dependent Green’s function

G(ω, k) = (ω − Hk − Σ(ω)− ∆DC + µ)−1 (2)

Here Hk denotes the Bloch-Hamiltonian of the non-
interacting Wannier-model derived from DFT. The self-
energy Σ and the double counting correction ∆DC are
diagonal matrices which are non-zero only for the bond-
ing, antibonding and jx = ±1/2 Ce-4 f5/2 orbitals. µ is
the chemical potential from DMFT.

We expand the Green’s function around the maxi-
mum of the Kondo resonance ω0

G(ω, k)≈ Z

ω−Z
1
2

(
Hk+Σ(ω0)−ω0

∂Σ(ω0)
∂ω +∆DC−µ

)
Z

1
2

(3)
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where we introduced the quasiparticle renormalization

Z =
(

1 − ∂Σ(ω0)
∂ω

)−1
which can be obtained via numeric

differentiation. At the peak maximum ω0 we find that
the imaginary part of the self-energy is minimal and
thus Z is real valued.

Eq. (3) resembles the Green’s function of an effective,
renormalized quasiparticle Hamiltonian

Hqp(k) = Z
1
2

(
Hk + Σ(ω0)− ω0

∂Σ(ω0)

∂ω
+ ∆DC − µ

)
Z

1
2

(4)
Taking the square root of Z ensures that Eq. (4) describes
a hermitian operator. We compare its band structure to
the DMFT spectral function in Fig. 3b (red lines), where
we can see that both agree quite well in a region of a
few meV around the Fermi energy. The quasiparticle
Hamiltonian captures the low energy excitations due to
electronic correlations which the open core DFT calcu-
lation (black lines) cannot describe. Therefore, Hqp is a
good starting point to study whether Ce3Bi4Pd3 exhibits
Weyl-points in the vicinity of the Fermi energy, which
we pursue in the next section.

The reason why the quasiparticle Hamiltonian de-
scribes the low energy excitations better than open core
DFT lies in the quasiparticle renormalization Z which
in the present case is small thereby strongly renormaliz-
ing the width of the Ce-4 f bands leading to almost flat
bands. This is also an important difference compared
to the topological Hamiltonian30 Htopo(k) = G−1(ω =
0, k) which is the inverse of the Green’s function eval-
uated at zero frequency. It differs from Hqp by the en-

ergy shift ω0∂ωΣ(ω0) and the scaling Z
1
2 . The quasipar-

ticle renormalization is essential to obtain the flat quasi-
particle bands close to the Fermi energy which are not
present in the topological Hamiltonian.

V. WEYL POINTS IN QUASIPARTICLE BANDS

Now we search for Weyl-points in Hqp. Since the
Wannierization led to a tight-binding Hamiltonian with
192 spin-orbitals as described in the previous sections,
this search is computationally demanding. Therefore,
we employ our recently described algorithm31 which
traces the Berry curvature vector-field to its sinks and
sources via solving an ordinary differential equation.

We find nine symmetrically in-equivalent band cross-
ings in the vicinity of ϵF, each of which sits at general
momenta away from high symmetry lines. We con-
firm that these are Weyl-points by calculating the cor-
responding Chern numbers numerically. Due to time
reversal and the 24 point group symmetries, each Weyl
node is 48-fold degenerate, i.e. it belongs to a set of 48
nodes related by symmetry. As half of the point group
symmetries have negative determinants, each of these
sets can be split into two halves of nodes having oppo-
site Chern numbers. Hence, the Nielsen–Ninomiya the-

FIG. 4: At T = 29K the quasiparticle renormalized
Hamiltonian Hqp from Eq. (4) has a Weyl point a few
meV below the Fermi energy (red lines). These band
crossings can also be found in the momentum resolved
spectral function with the DMFT self-energy
(logarithmic color-scale). Since the tangents of both
crossing bands (yellow dashed lines) have positive
slope, we can infer that this is a type-II Weyl point. The
path in momentum space is chosen as kW + λk1 where
kW is the momentum of the second Weyl point from
Table I, k1 is the first primitive basis vector, and
λ ∈ [−0.05, 0.05].

orem which enforces a total of zero Chern numbers32,33

is fulfilled.
Four sets of Weyl points are a few meV below, five a

few meV above the Fermi edge. From the eigenstates
of Hqp we can infer, that the former four sets belong to
bands whose character is around 90 to 99% of the bond-
ing 4 f5/2 orbital. The latter five sets above ϵF have pre-
dominantly jx = ±1/2 character. We list them in table
I and exemplarily show the second Weyl-point in Fig. 4.
By comparing the band structure of the effective quasi-
particle Hamiltonian Hqp (black lines) to the momen-
tum resolved spectral function from DMFT (color-scale),
we can see that this band-crossing is present in both of
them.

With energies differing only on a sub-meV scale com-
pared to the DMFT spectral function, Hqp is a suffi-
ciently good approximation to detect Weyl-points in
momentum space. The reason for small energetic off-
sets is that Hqp is obtained from an expansion of the
DMFT Green’s function around the maximum of the
Kondo peak. If we go away from this peak, we must
expect some deviations in energy. However, as long as
these deviations do not become large enough to drasti-
cally move the Weyl points or create or annihilate them
in pairs, Hqp can be used to search for topological band
crossings and compare them to the DMFT spectral func-
tion. At least this is the case for the four Weyl nodes be-
low the Fermi edge; those five above are too far away in
energy from the maximum of the expansion for a mean-
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location (2π/a) energy (meV) type
(0.584, 0.082, -0.225) -1.26 II

(-0.568, -0.394, -0.691) -1.75 II
(0.559, 0, -0.289) -2.14 I
(-0.354, 0, -0.496) -2.42 II

(-0.371, -0.728, -0.495) 7.27 II
(-0.348, 0.398, 0.181) 21.08 II

(0.262, 0, -0.493) 26.18 II
(-0.251, -0.559, -0.006) 26.35 II

(0.574, 0, 0.228) 26.41 II

TABLE I: Weyl points of the quasiparticle Hamiltonian.
Their locations are listed in Cartesian coordinates
rounded to three digits. We present only those Weyl
points that belong to bands closest to the Fermi energy,
but others exist, too. Due to symmetry, each point is
48-fold degenerate. The dispersion around the second
Weyl point (marked in red) is shown in Fig. 4.

ingful comparison of the results from Hqp to the DMFT
spectral function. Furthermore, as discussed earlier,
they have predominantly jx = ±1/2 character. Hence,
to study these it would be better to obtain Hqp from an
expansion around the peak energies of these orbitals.

The plot reveals the type-II nature of the Weyl node,
which can be inferred from the slopes of the crossing
bands having the same sign8,34. This discovery of a
type-II Weyl point supports the interpretation of the
spontaneous Hall effect seen in experiment. Further-
more, its type-II nature impacts the temperature de-
pendence of specific heat capacity cV . While a type-
I Weyl node has a point like Fermi surface and there-
fore leads to a cubic temperature dependence of cV ,1,6

a type-II node is embedded in a finite Fermi surface34

such that the specific heat has terms linear and cubic in
temperature. This reasoning can be confirmed by calcu-
lating cV from the quasi particle Hamiltonian with the
chemical potential fixed to the energy of the first Weyl
point in table I and fitting cV = aT + bT3 to these data.
From the cubic term we can calculate the quasi parti-
cle velocity1,6 via v⋆ = 3

√
7π2kB/(30b) yielding approx-

imately 245 m/s. Similar to the experimental results1

this is three orders of magnitude smaller than for usual,
weakly interacting metals because of the flatness of the
quasi particle bands. Hence, our calculations support
the experimental findings qualitatively. Quantitatively
however, our result is by a factor of 3.6 smaller than
experiment, likely due to the fact that here we used
the quasi particle Hamiltonian to determine cV . For
a quantitative result the specific heat should be calcu-
lated within DMFT for temperatures between two and
ten Kelvin1.

To test the stability of our findings we apply the pro-
cedure described above to the quasiparticle Hamilto-
nian (4) obtained from the self energy of the converged

location (2π/a) energy (meV) type
(-0.77, -0.862, -0.656) -18.1 II
(-0.418, -0.566, -0.348) -43.0 II
(0.527, -0.142, 0.274) -118 II

(0.546, 0, -0.231) -132 II
(0.07, -0.438, -0.324) -157 II

(-0.395, 0, 0.425) -161 II
(0.182, 0, 0.464) -180.7 II

(-0.145, -0.426, 0.253) -181.4 II
(-0.587, -0.769, -0.802) -196 II

(0.109, 0, 0.39) -208 I
(0.494, 0.0, -0.248) 247 II
(0.705, 0, -0.129) -310 II

(0.114, 0.571, -0.223) 318 I
(-0.779, -0.782, -0.992) -420 II

TABLE II: Weyl points from DFT where Ce-4 f orbitals
are treated in the open-core approximation. Their
locations are listed in Cartesian coordinates rounded to
three digits.

DMFT calculation and from the self energy averaged
over the last five DMFT iterations. It turns out that
although the height of the Kondo resonance fluctuates
slightly, the momenta of the Weyl points are almost un-
affected. This reflects the fact that Weyl points are topo-
logical properties of the band structure and hence small
perturbations of the system do not remove them unless
the perturbation is large enough to annihilate them in
pairs, which is not the case here.

On the other hand, the topological character of the
Weyl nodes raises the question whether these nodes
are already present at the DFT level, but adiabatically
moved to different positions in energy and momentum.
In the case of the DFT calculation including the Ce-
4 f orbitals, there is a band gap (which closes within
DMFT). Hence, the DFT Hamiltonian and the quasipar-
ticle Hamiltonian Hqp are not adiabatically connected.
Consequently, we cannot expect that they share topo-
logical features and indeed we did not find Weyl-points
close to the Fermi edge in the DFT Hamiltonian. Thus,
the low-energy Weyl points are correlation-induced.

Due to the apparent similarity of the DFT bandstruc-
ture where Ce-4 f orbitals are treated in the open-core
approximation and the DMFT spectral function in Fig.
3a, we revisit the former and perform a search for Weyl-
points with the same algorithm31 as above. We detect
multiple Weyl points as listed in table II, which also in-
cludes Weyl points that had not been found in an earlier
study5.

Some of these also appear in the DMFT spectral func-
tion at almost the same momentum and energy. Others
may change their position or be pairwise annihilated.
However, none of them are as close to the Fermi edge
as the Weyl nodes from the renormalized quasiparticle
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bands.
Beyond this disparity, there is an important physi-

cal distinction between the two settings. The open-core
DFT calculation, used previously to advocate a topo-
logical state in Ce3Bi4Pd3

14, mimics effectively local-
ized f-states, corresponding to the high-temperature local-
moment regime. The signatures of the topological state,
however, are observed at very low-temperatures, where
an additional Kondo resonance emerges due to many-
body effects. This yields the flat renormalized quasipar-
ticle bands close to the Fermi edge which are not present
in DFT and are essential for the existence of the dis-
cussed Weyl nodes. The apparent similarity of the con-
duction band dispersions thus does not justify a mean-
ingful analysis of topology on the basis of DFT.

VI. NODAL LINES IN QUASIPARTICLE BANDS

Besides Weyl nodes other types of topological band
crossings are possible. One example is the nodal line
where bands are degenerate on a curve in momentum
space. A previous study14 found nodal lines in their
Bloch Hamiltonian from a DFT calculation with Ce-4 f
orbitals treated in the open-core approximation as well
as in the topological Hamiltonian30 extracted from their
DMFT calculation. Here, we study whether the renor-
malized bands from the quasiparticle Hamiltonian also
have nodal lines within a few meV around the Fermi
energy.

In crystals that exhibit a glide mirror plane, as is the
case in Ce3Bi4Pd3, each band has a well defined mirror
eigenvalue within the corresponding plane in reciprocal
space. Bands with different eigenvalues do not interact
with each other, and hence they may cross on a line in
this plane instead of at an isolated point35.

Ce3Bi4Pd3 has six glide mirror planes in which we can
search for nodal lines. As we are considering a spinfull
system, the glide mirror eigenvalues of the bands at mo-
mentum k are λ = ±ieik·τ where τ is the translation
vector of the glide mirror symmetry operation.36 These
eigenvalues are smooth functions of momentum unless
two bands cross. Thus by searching such discontinu-
ities, we can identify nodal lines. To put it differently,
λe−ik·τ is constant on patches of the mirror plane that
are bounded by nodal lines.

Since all glide mirror planes are conjugate to each
other, i.e. symmetrically equivalent, we exemplarily
show these patches of constant mirror eigenvalue in the
plane perpendicular to (1,−1, 0) centered at k = 0 in
Fig. 5a for a quasiparticle band close to the Fermi en-
ergy. We obtain multiple nodal lines as can be seen by
the many patches. The nodal lines near the center cross
the Fermi energy and thus may contribute to the spe-
cific heat and spontaneous Hall effect. The ellipsoidal
ones at the top and bottom are about 20 meV above; the

remaining four ellipsoidal nodal lines are about 2 meV
below.

To demonstrate the effect of the nodal lines on the
Berry curvature, we plot the norm (or magnitude) of the
latter for the same mirror plane in Fig. 5b. By compar-
ison with Fig. 5a we see that not all nodal lines cause
a large contribution to the curvature and most of it is
concentrated in the central Brillouin zone region. Con-
versely, there are also Berry curvature contributions of
similar magnitude which do not follow the nodal lines.
They show up as bright spots in the plot, but do not be-
long to singularities in the mirror plane.37

VII. CONCLUSION

We studied the Kondo semimetal Ce3Bi4Pd3 within
DFT and DMFT and observed that a Kondo resonance
emerges involving only two out of the six Ce-4 f5/2 or-
bitals (the bonding combination of jx = ±3/2 and
∓5/2). Below the Kondo resonance, these are the only
occupied 4 f orbitals, whereas at elevated temperatures
all six Ce-4 f5/2 orbitals are filled more equally. This the-
oretical prediction can be tested in future resonant in-
elastic x-ray (RIXS) and x-ray absorption experiments.

The dispersion of the two bonding Ce-4 f5/2 orbitals
in DMFT is qualitatively different from DFT and from
DFT with the 4 f ’s in the open core. It shows Weyl nodes
close to the Fermi surface. This strengthens the inter-
pretation of Ce3Bi4Pd3 being a Weyl-Kondo semimetal
from transport measurements1,5.

Furthermore, multiple nodal lines in mirror planes
provide Berry curvature near the Fermi energy that
could, similarly to the Weyl points, contribute to the
giant spontaneous Hall effect5. Weyl points and nodal
lines are within only 3 meV of the Fermi energy at the
lowest temperature reached in our calculation. There,
the Kondo peak is not yet fully developed. Hence, it
appears likely that the Weyl points hit the Fermi en-
ergy when the Kondo peak further sharpens and shifts
upon lowering temperature, or when marginally doping
Ce3Bi4Pd3.
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FIG. 5: (a) Eigenvalues of glide mirror symmetry in the plane spanned by kz and kx + ky for a renormalized
quasiparticle band: red and blue denote ±i respectively. The boundaries of areas of different mirror eigenvalues are
nodal lines. (b) Magnitude (norm) of Berry curvature in the same plane. By comparison with (a) we see that Berry
curvature is large near some of the nodal lines, but also at other points.
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