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Abstract

In this paper, we are concerned with identifying among the family of posets associated with Kohnert
polynomials, those whose order complex has a certain combinatorial property. In particular, for numerous
families of Kohnert polynomials, including key polynomials, we determine when the associated Kohnert
posets are (EL-)shellable. Interestingly, under certain diagram restrictions, (EL-)shellability of a Kohnert
poset is equivalent to multiplcity freeness of the associated Kohnert polynomial.

1 Introduction

In his thesis ([12], 1990), Kohnert showed that Demazure characters (a.k.a. key polynomials) encode certain
collections of diagrams consisting of cells distributed in the first quadrant. Moreover, it was conjectured,
and subsequently proven [3, 14, 15], that a similar result applied to Schubert polynomials. Motivated
by this, Assaf and Searles ([2], 2022) applied the corresponding polynomial construction paradigm more
generally and defined the notion of a “Kohnert polynomial”. Such polynomials encode certain collections
of diagrams consisting of cells distributed in the first quadrant that are related to a “seed” diagram by a
sequence of moves, called “Kohnert moves”, that change the position of at most one cell (see also [4]). In
([4], 2022), the author notes that one can define a natural poset structure on the collection of diagrams
encoded by the terms of a Kohnert polynomial. Moreover, the author of [4] illustrates that such “Kohnert
posets” arising from Kohnert polynomials are not generally well-behaved, noting that, in general, they are
not lattices, ranked, nor do they have a unique minimal element. In recent work by L. Colmenarjo, et al.
([10], 2023), the authors initiate an investigation into the “not-so-well-behaved” structure of such posets,
focusing on identifying when they are ranked and/or bounded. Here, we consider when Kohnert posets are
(EL-)shellable and the consequences regarding the associated polynomial.

Starting with modest restrictions, we first consider the Kohnert posets associated with diagrams for which
either (1) there is at most one cell per column or (2) the first two rows are empty. Under these restrictions,
we are able to find a complete characterization of when the associated Kohnert poset is (EL-)shellable. In
fact, for both cases, the indexing diagram (modulo cells in the first row) must be what we call a “hook
diagram” (see Theorem 20). Moreover, for diagrams of the form (1) or (2), we find that (EL-)shellability of
the associated Kohnert poset is equivalent to the corresponding Kohnert polynomial being multiplicity free
(see Theorem 32). With these results, it remains to consider the case of diagrams that contain at least one
cell within the first two rows and at least one column with more than one cell.

Based on computational evidence, the case of Kohnert posets associated with diagrams containing at
least one cell within the first two rows and at least one column with more than one cell seems much more
complicated than that previously considered. Consequently, in this direction we focus on a special case of
historical significance: key diagrams. The Kohnert polynomials of key diagrams are Demazure characters;
this result forms the motivation for [12]. In the case of key diagrams, we are able to characterize when the
associated Kohnert posets are graded and EL-shellable (see Theorem 41). Our characterization is in terms
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of an associated weak composition avoiding three different patterns. Similar to the families of diagrams
discussed above, we find that there is a relationship between (EL-)shellability of the Kohnert poset and
the Kohnert polynomial being multiplicity-free, though, in this case, the relationship is not as strong. In
particular, we find that for key diagrams, if the Kohnert poset is graded and EL-shellable, then the associated
Kohnert polynomial is multiplicity-free (see Theorem 49). On the other hand, we are also able to find an
example of a key diagram for which the Kohnert poset is not shellable, but the Kohnert polynomial is
multiplicity-free.

The remainder of the paper is organized as follows. In Section 2 we cover the requisite background from
the theory of posets and formally define Kohnert posets and polynomials. Following this, in Section 3 we
establish some structural results relevant to identifying when Kohnert posets are shellable. Then in Sections 4
and 5, we apply the aforementioned structural results to give complete characterizations of those diagrams
belonging to three different families which generate (EL-)shellable Kohnert posets. Section 4 focuses on
those diagrams with at most one cell per column as well as those for which the first two rows are empty. In
the more complicated case of diagrams containing cells within their first two rows and at least one column
with more than one cell, we consider the special case of key diagrams. For such diagrams, in Section 5 we
find a complete characterization of those which generate (EL-)shellable Kohnert posets in the case that the
poset is graded. In addition to the characterizations of (EL-)shellability, Sections 4 and 5 also contain results
concerning the polynomial consequences of (EL-)shellability for the associated families of diagrams. Finally,
in Section 6, we discuss directions for future research.

2 Preliminaries

In this section, we give the requisite preliminaries from the theory of posets and define our posets of interest.

2.1 Posets

Recall that a poset (P ,�) consists of a set P along with a binary relation � between the elements of P which
is reflexive, anti-symmetric, and transitive. When no confusion will arise, we simply denote a poset (P ,�)
by P . Two posets P and Q are isomorphic, denoted P ∼= Q, if there exists an order-preserving bijection
P → Q. Ongoing, we assume that all posets are finite.

Let P be a poset and take x, y ∈ P . If x � y and x 6= y, then we call x � y a strict relation and
write x ≺ y. Ongoing, we let ≤ and < denote the relation and strict relation, respectively, corresponding
to the natural ordering on Z. For x, y ∈ P satisfying x � y, we set [x, y] = {z ∈ P | x � z � y} and treat
[x, y] as a poset with the ordering inherited from P ; that is, for z1, z2 ∈ [x, y], z1 ≺[x,y] z2 if and only if
z1 ≺P z2. If x ≺ y and there exists no z ∈ P satisfying x ≺ z ≺ y, then x ≺ y is a covering relation,
denoted x ≺· y. Covering relations are used to define a visual representation of P called the Hasse diagram
– a graph whose vertices correspond to elements of P and whose edges correspond to covering relations (see
Figure 1). We say that x ∈ P is a minimal element (resp., maximal element) if there exists no z ∈ P such
that z ≺ x (resp., z ≻ x). If P has a unique minimal and maximal element, then we say that P is bounded.
The poset P is called ranked if there exists a rank function, i.e., a function ρ : P → Z≥0 such that

1. if x ≺ y, then ρ(x) < ρ(y), and

2. if x ≺ y is a covering relation, then ρ(y) = ρ(x) + 1.

Example 1. Let P1 = {1, 2, 3, 4} be the poset with 1 ≺ 2 ≺ 3, 4, and let P2 = {1, 2, 3, 4, 5} be the poset with

1 ≺ 2 ≺ 4 ≺ 5 and 1 ≺ 3 ≺ 5. The Hasse diagrams of P1 and P2 are illustrated in Figure 1. Notice that P1

is ranked but not bounded, while P2 is bounded but not ranked.
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Figure 1: Hasse diagrams of (a) P1 and (b) P2

A totally ordered subset of a poset P is called a chain. We call a chain C of P maximal if it is contained
in no larger chains of P , and we call C saturated if there does not exist u ∈ P\C and s, t ∈ C such that
s ≺ u ≺ t and C ∪ {u} is a chain. Using the chains of a poset P , one can define a simplicial complex ∆(P)
associated with P . Recall that a (abstract) simplicial complex ∆ on a vertex set V , is a finite collection
of subsets of V , called faces, such that τ ⊆ σ ∈ ∆ implies τ ∈ ∆. To define the simplicial complex ∆(P),
we set V = P and ∆(P) = {chains of P}.

Example 2. The simplicial complexes associated with the posets P1 and P2 of Example 1 are illustarted in

Figure 2 (a) and (b), respectively. Note that the vertices of the simplices are labelled by the corresponding

elements of the posets.
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Figure 2: ∆(P)

Given a simplicial complex ∆, the dimension of a face σ ∈ ∆ is defined as dimσ = |σ|− 1 and the dimension
of ∆ is defined by dim∆ = maxσ∈∆ dimσ. If σ ∈ ∆ satisfies dim σ = k, then we refer to σ as a k-face;
similarly, if dim∆ = k, we call ∆ a k-complex. Any face σ ∈ ∆ generates a simplicial complex σ̄ consisting
of σ and all of its subsets; simplicial complexes of this form are called simplices. A face σ ∈ ∆ is called
a facet if it is contained in no other face of ∆. We say that ∆ is pure if all facets of ∆ have the same
dimension.

Definition 3. A simplicial complex ∆ is called shellable if its facets can be arranged into a total order

F1, . . . , Ft in such a way that the subcomplex
(⋃k−1

i=1 F̄i

)
∩ F̄k is pure and (dimFk − 1)-dimensional for

2 ≤ k ≤ t. Such an ordering of facets is called a shelling.

We call a poset P shellable (resp., pure) if ∆(P) is shellable (resp., pure). If a poset is finite, bounded,
and pure, then we say that it is graded. As a consequence of the following result, one nice way to identify
when a poset P is not shellable, i.e., when ∆(P) is not shellable, is by finding a non-shellable interval.
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Theorem 4 (Björner and Wachs [9]). Every interval of a shellable poset is shellable.

Extending the work of [5, 6, 7], the authors of [8, 9] introduce a way of identifying if a bounded poset
is shellable without referencing ∆(P). Given a poset P , let E(P) = {(x, y) ∈ P × P | x ≺· y}, i.e., E(P) is
the set of edges in the Hasse diagram of P . An edge labeling of P is a map λ : E(P) → Λ, where Λ is
some poset. Given a saturated chain C = {x0 ≺· x1 ≺· · · · ≺· xn} of P with an edge labelling λ, we define the
vector

v(C, λ) = (λ(x0, x1), λ(x1, x2), · · · , λ(xn−1, xn)) ∈ Z
n

and call C rising if λ(x0, x1) ≤ λ(x1, x2) ≤ · · · ≤ λ(xn−1, xn).

Definition 5. A bounded poset is EL-shellable if it admits an edge labeling λ : E(P) → Λ such that for

every interval [x, y] of P

1) there is a unique rising unrefinable chain C[x,y] = {x = x0 ≺· x1 ≺· · · · ≺· xn = y} and

2) if C̃ is any other unrefinable chain between x and y, then v(C[x,y]) is lexicographically less than v
(
C̃
)
.

Theorem 6 (Björner and Wachs [8]). Let P be bounded. If P is a EL-shellable poset, then P is shellable.

Considering the definition, the following EL version of Theorem 4 is immediate.

Theorem 7. Let P be bounded. Every interval of an EL-shellable poset is EL-shellable.

Having covered the necessary preliminaries of posets, we now move to defining our posets of interest.

2.2 Kohnert posets

As mentioned in the introduction, the underlying sets of Kohnert posets are certain collections of diagrams.
Formally, a diagram is an array of finitely many cells in N × N. An example diagram is illustrated in
Figure 3 below.

×
× ×

×

Figure 3: Diagram

We may also think of a diagram as the set of row/column coordinates of the cells defining it, where rows are
labeled from bottom to top and columns from left to right. For example, if D is the diagram of Figure 3,
then D = {(1, 3), (2, 1), (2, 2), (3, 2)}. Consequently, if a diagram D contains a cell in position (r, c), then we
write (r, c) ∈ D; otherwise, (r, c) /∈ D.

Remark 8. Ongoing, when illustrating diagrams with a particular form, it will prove helpful to decorate

regions to indicate a particular structure. Other than describing the properties of regions in words (usually
in parentheses), regions shaded gray represent empty regions containing no cells, and regions shaded with

diagonal lines will represent regions that are arbitrary, i.e., the placement of cells can be arbitrary.
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Now, to any diagram D we can apply what are called “Kohnert moves” defined as follows. For r > 0,
applying a Kohnert move at row r of D results in the rightmost cell in row r of D moving to the first
empty position below in the same column (if such a position exists), jumping over other cells as needed. If
applying a Kohnert move at row r > 0 of D causes the cell in position (r, c) ∈ D to move down to position
(r′, c), forming the diagram D′, then we write

D′ = D
y
(r,c)

(r′,c)
.

We let KD(D) denote the set of all diagrams that can be obtained from D by applying a sequence of Kohnert
moves. For example, in Figure 4 we illustrate the diagrams of KD(D) for the diagram D of Figure 3.

×
××
×

××
×
×

×××

×

××
××

×××
×

Figure 4: KD(D).

The sets KD(D) form the underlying sets of Kohnert posets.
Given a diagram D, the authors of [4] define an ordering on the elements of KD(D) as follows (see also

[1]). For D1, D2 ∈ KD(D), we say D2 ≺ D1 if D2 can be obtained from D1 by applying some sequence of
Kohnert moves. For a diagram D, we denote the corresponding poset on KD(D) by P(D) and refer to it as
the Kohnert poset associated to D.

In the sections that follow, we study P(D) for various collections of diagrams D with our main concern
being finding restrictions under which P(D) is shellable. One important family of diagrams considered below
is the family of “key” diagrams.

A diagram D whose cells are left-justified is called a key diagram. Note that key diagrams are uniquely
identified by the weak compositions corresponding to the sequences enumerating the number of cells in each
row. Consequently, we denote a key diagram by D(a), where a is the aforementioned weak composition. For
example, the diagram in Figure 5 is the key diagram D(1, 0, 3, 1, 2).

×

×××
×
××

Figure 5: Key diagram

Now, since in certain cases we will see that shellability of Kohnert posets has polynomial consequences,
we briefly recall the definition of “Kohnert polynomial”. Given a diagram D, setting

wt(D) =
∏

i≥0

x#cells in row i of D
i ,

we define the Kohnert polynomial associated to D as KD =
∑

T∈KD(D)

wt(T ).
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3 Structural Results

In this section, we identify two necessary conditions for a diagram to generate a shellable Kohnert poset.
Both conditions are in terms of avoiding certain subdiagrams that generate non-shellable intervals in the
associated poset. Specifically, given a diagram that does not avoid one of the aforementioned subdiagrams,
we are able to identify an interval that is isomorphic to a poset of the form described in Lemma 9 below.

Lemma 9. Let n1, n2 > 1. If P = {p1i }
n1

i=1 ∪ {p2i }
n2

i=1 ∪ {0̂, 1̂} with

• 0̂ ≺ p11, p
2
1,

• p1i ≺ p1i+1 for 1 ≤ i < n1,

• p2i ≺ p2i+1 for 1 ≤ i < n2, and

• p1n1
, p2n2

≺ 1̂,

then P is not shellable.

Proof. Note that ∆(P) contains exactly two facets

F1 = {0̂, p11, . . . , p
1
n1
, 1̂}

and
F2 = {0̂, p21, . . . , p

2
n2
, 1̂}.

Since
dimF1 − 1 = n1 6= dim F̄1 ∩ F̄2 = 1 6= n2 = dimF2 − 1,

by definition ∆(P) is not shellable.

Example 10. Consider the poset P = {1, 2, 3, 4, 5, 6} with 1 ≺ 2 ≺ 4 ≺ 6 and 1 ≺ 3 ≺ 5 ≺ 6. The Hasse

diagram and simplicial complex of P are illustrated in Figure 6 (a) and (b), respectively. It follows from

Lemma 9 (with n1 = n2 = 2) that P is not shellable.

1

2 3

4 5

6

(a)

1

6

5

3

4

2

(b)

Figure 6: (a) Hasse diagram of P and (b) ∆(P)

Now, to aid in identifying the non-shellable intervals in the Kohnert posets of Propositions 14 and 15
below, we require the following lemma.
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Lemma 11. Let D be a diagram and D1, D2 ∈ P(D) satisfy D2 ≺ D1. If there exist 0 < c1 < c2 < · · · < cn
and 0 < ri1 < ri2 for 1 ≤ i ≤ n such that

S = D1\
n⋃

i=1

{(r̃, ci) | r
i
1 ≤ r̃ ≤ ri2} = D2\

n⋃

i=1

{(r̃, ci) | r
i
1 ≤ r̃ ≤ ri2},

then

D̃\
n⋃

i=1

{(r̃, ci) | r
i
1 ≤ r̃ ≤ ri2} = S

for all D̃ ∈ [D2, D1].

Proof. Let R =
⋃n

i=1{(r̃, ci) | r
i
1 ≤ r̃ ≤ ri2}. Assume for a contradiction that there exists D∗ ∈ [D2, D1] such

that D∗\R 6= S. Then there are two cases.

Case 1: There exists c∗, r∗ > 0 such that (r∗, c∗) ∈ D∗\R and (r∗, c∗) /∈ S. Since D∗ � D1, D1\R = S, and
nontrivial Kohnert moves result in cells moving to lower rows, it must be the case that

|{(r̃, c∗) ∈ D1 | r̃ > r∗}| > |{(r̃, c∗) ∈ D∗ | r̃ > r∗}|.

Moreover, since D2 ≺ D1, D1\R = D2\R, and (r∗, c∗) /∈ R, it follows that

|{(r̃, c∗) ∈ D2 | r̃ > r∗}| = |{(r̃, c∗) ∈ D1 | r̃ > r∗}| > |{(r̃, c∗) ∈ D∗ | r̃ > r∗}|,

i.e., there are more cells strictly above row r∗ in column c∗ of D2 than in D∗. As the number of cells in a
given column above a given row can only decrease upon applying Kohnert moves, it follows that D2 6� D∗,
a contradiction.

Case 2: There exists c∗, r∗ > 0 such that (r∗, c∗) /∈ D∗\R and (r∗, c∗) ∈ S. Since D∗ � D1, D1\R = S, and
nontrivial Kohnert moves result in cells moving to lower rows, it must be the case that

|{(r̃, c∗) ∈ D1 | r̃ < r∗}| < |{(r̃, c∗) ∈ D∗ | r̃ < r∗}|.

As in Case 1, we may conclude further that

|{(r̃, c∗) ∈ D2 | r̃ < r∗}| = |{(r̃, c∗) ∈ D1 | r̃ < r∗}| < |{(r̃, c∗) ∈ D∗ | r̃ < r∗}|,

i.e., there are less cells strictly below row r∗ in column c∗ of D2 than in D∗. As the number of cells in a
given column below a given row can only increase upon applying Kohnert moves, it follows that D2 6� D∗,
a contradiction.

Remark 12. Lemma 11 is a slight strengthening of Lemma 3.3 in [10].

Corollary 13. Let D be a diagram. Suppose that for D1, D2 ∈ P(D) there exists 1 ≤ j < r and c > 0 such

that D2 ≺ D1 and D2 = D1

y
(r,c)

(r−j,c)
. Then D2 ≺· D1 if and only if for each r̃ satisfying r − j < r̃ < r there

exists c̃ > c such that (r̃, c̃) ∈ D1.

Proof. First, assume that D2 ≺· D1. Then D2 must be formed from D1 by applying a single Kohnert move at
row r so that (r̃, c) ∈ D1 for r− j+1 ≤ r̃ ≤ r. Now, if there exists r̂ satisfying r− j < r̂ < r and (r̂, c̃) /∈ D1

for all c̃ > c, then applying a single Kohnert move at row r̂ of D1 results in D1.5 = D1

y
(r̂,c)

(r−j,c)
∈ P(D).

Moreover, applying a Kohnert move at row r of D1.5 results in D1.5

y
(r,c)

(r̂,c)
= D2, i.e., D2 ≺ D1.5 ≺ D1,

contradicting our assumption that D2 ≺· D1. Thus, for each r̃ satisfying r − j < r̃ < r, there exists c̃ > c
such that (r̃, c̃) ∈ D1.
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Now, assume that, for each r̃ satisfying r − j < r̃ < r, there exists c̃ > c such that (r̃, c̃) ∈ D1. Take
D1.5 ∈ [D2, D1] such that D1.5 ≺· D1. Assume that D1.5 can be formed from D1 by applying a Kohnert move
at row r̂. Note that D1 and D2 differ only in positions (r, c) and (r−j, c). Thus, if R = {(r̃, c) | r−j ≤ r̃ ≤ r},
then D1\R = D2\R = D1.5\R by Lemma 11. Since, for each r̃ satisfying r − j < r̃ < r, there exists c̃ > c
such that (r̃, c̃) ∈ D1, it follows that r̂ = r or r − j; but applying a Kohnert move at row r of D1 results
in D2, while applying a Kohnert move at row r − j either does nothing or affects a cell in a column c̃ < c,
contradicting D1\R = D1.5\R. Therefore, we may conclude that D1.5 = D2, i.e., D2 ≺· D1. The result
follows.

With Lemma 11 in hand, we can now prove Propositions 14 and 15 which provide necessary conditions
for a diagram to generate a shellable Kohnert poset.

Proposition 14. Let D be a diagram. Suppose that there exists D∗ ∈ P(D) and r, c1, c2 ∈ N such that

(i) c1 < c2,

(ii) (r + 1, c1), (r + 2, c2) ∈ D∗,

(iii) (r + 2, c̃), (r, c2) /∈ D∗ for c̃ > c2, and

(iv) (r + 1, c̃), (r, c1) /∈ D∗ for c̃ > c1.

Then P(D) is not shellable. (See Figure 7 for an illustration of D∗.)

×
×

r

r + 1

r + 2

c1 c2

Figure 7: Subdiagrams described in Proposition 14

Proof. Considering Theorem 4, it suffices to show that P(D) contains an interval which is not shellable. Let

D̂ = (D∗ \ {(r + 1, c1), (r + 2, c2)}) ∪ {(r, c1), (r, c2)}.

Note that D̂ ∈ P(D) since D̂ can be formed from D∗ by applying a Kohnert move at row r+2 of D∗ followed

by two Kohnert moves at row r + 1. We claim that the interval [D̂,D∗] is not shellable. To establish the

claim, we first determine the elements of [D̂,D∗].

Note that D∗ and D̂ differ only in positions {(r + 1, c1), (r + 2, c2), (r, c1), (r, c2)}; that is, letting R =

{(r̃, c1) | r ≤ r̃ ≤ r + 1} ∪ {(r̃, c2) | r ≤ r̃ ≤ r + 2}, we have that D∗\R = D̂\R = S. Thus, applying
Lemma 11, it follows that

D̃\R = S

for all D̃ ∈ [D̂,D∗]. Note that this implies that all diagrams D̃ ∈ [D̂,D∗] must be formed from D∗ by
applying sequences of Kohnert moves at rows r + 1 or r + 2. In particular, it is straightforward to verify,
keeping Lemma 11 in mind, that the only diagrams contained in [D̂,D∗] are

D∗, D1
1 = D∗

y
(r+2,c2)

(r+1,c2)
, D1

2 = D1
1

y
(r+1,c2)

(r,c2)
, D2

1 = D∗
y
(r+1,c1)

(r,c1)
,

8



D2
2 = D2

1

y
(r+2,c2)

(r+1,c2)
, and D̂.

Now, to determine how the diagrams of
[
D̂,D∗

]
are related, note that we can form D̂ from D∗ by either

applying in succession

1) a Kohnert move at row r + 2 followed by two Kohnert moves at row r + 1, or

2) a Kohnert move at row r + 1, a Kohnert move at row r + 2, then a Kohnert move at row r + 1.

The first sequence of Kohnert moves described above corresponds to the chain

D̂ ≺· D1
2 ≺· D1

1 ≺· D∗

while the second sequence corresponds to

D̂ ≺· D2
2 ≺· D2

1 ≺· D∗.

The fact that all relations in the two chains are covering relations follows from Corollary 13. We claim that
no other relations exist between the elements of [D̂,D∗]. To see this, first note that since D2

1 , D
1
1 ≺· D∗ and

D2
1 6= D1

1, it follows that D
1
1 and D2

1 are unrelated in [D̂,D∗]. Similarly, since D̂ ≺· D1
2, D

2
2 and D1

2 6= D2
2, it

follows that D1
2 and D2

2 are unrelated in [D̂,D∗]. It remains to consider relations between the elements D1
1

and D2
2 , and the elements D2

1 and D1
2. Starting with D1

1 and D2
2, note that since D1

1 ≻ D̂ ≺· D2
2, if D

1
1 and

D2
2 are related, then D2

2 ≺ D1
1. Now, since D1

1\{(r + 1, c1), (r, c1)} = D2
2\{(r + 1, c1), (r, c1)}, if D2

2 ≺ D1
1,

then applying Lemma 11 it follows that there exists a sequence of Kohnert moves at rows r and r+1 which
takes D1

1 to D2
2 . Evidently, such a sequence of Kohnert moves does not exist. Consequently, D1

1 and D2
2 are

unrelated in [D̂,D∗]. Moving to D2
1 and D1

2, since D
2
1 ≻ D̂ ≺· D1

2, if D
2
1 and D1

2 are related, then D1
2 ≺ D2

1;
but

D2
1\{(r + 2, c2), (r + 1, c2), (r, c2)} = D̂\{(r + 2, c2), (r + 1, c2), (r, c2)} 6= D1

2\{(r + 2, c2), (r + 1, c2), (r, c2)},

so that applying Lemma 11 we have D1
2 /∈ [D̂,D2

1 ]. Thus, since D̂ ≺ D1
2, it follows that D

1
2 6≺ D2

1, i.e., D
2
1

and D1
2 are unrelated in [D̂,D∗], establishing the claim.

Now, let S be the poset of Example 10, and define the map f : [D̂,D∗] → S by f(D̂) = 1, f(D1
2) = 2,

f(D1
1) = 3, f(D2

2) = 4, f(D2
1) = 5, and f(D∗) = 6. Considering our work above, it follows that f forms an

order-preserving bijection. Therefore, [D̂,D∗] is not shellable. The result follows.

Proposition 15. Let D be a diagram. Suppose that there exists D∗ ∈ P(D) such that for some r, r∗, c, c∗ ∈ N

satisfying c < c∗ − 1 and r < r∗ − 1 we have

(i) (r∗, c∗) ∈ D∗ and (r∗, c̃) /∈ D∗ for all c̃ > c∗;

(ii) |{(r∗, c̃) ∈ D∗ | c < c̃ < c∗}| > 0;

(iii) for r < r̃ ≤ r∗, (r̃, c) ∈ D∗;

(iv) (r, c), (r∗ − 1, c̃) /∈ D∗ for c̃ > c; and

(v) for each r̃ satisfying r < r̃ < r∗ − 1 there exists c̃ > c such that (r̃, c̃) ∈ D∗.

Then P(D) is not shellable. (See Figure 8 for an illustration of D∗.)
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(At least one cell per row)

Figure 8: Subdiagrams described in Proposition 15

Proof. As in the proof of Proposition 14, we show that there exists a diagram D̂ ∈ P(D) such that [D̂,D∗]
is isomorphic to a poset of the form described in Lemma 9 so that, by Theorem 4, P(D) is not shellable. To

define D̂, let

C = {c̃ | c ≤ c̃ ≤ c∗ and (r∗, c̃) ∈ Dmax} = {c = c0 < c1 < · · · < cm−1 = c∗} ,

where, by assumption, m ≥ 3. Then D̂ is the diagram obtained from D∗ by applying m Kohnert moves at
row r∗; that is, D̂ is the diagram obtained from D∗ by moving the rightmost m− 1 cells in row r∗ down to
row r∗ − 1, and moving the mth cell from right to left in row r∗ down to row r.

First, to determine the elements of [D̂,D∗], consider the following two chains from D̂ to D∗, both defined

by the sequences of Kohnert moves applied to form D̂ from D∗.

1) Form the chain C1 by applying m Kohnert moves at row r∗, i.e.,

C1 : D∗ ≻ D1
1 ≻ D1

2 ≻ · · · ≻ D1
m−1 ≻ D̂,

where D1
1 := D∗

y
(r∗,cm−1)

(r∗−1,cm−1)
, D1

i+1 := D1
i

y
(r∗,cm−i−1)

(r∗−1,cm−i−1)
for 1 ≤ i ≤ m− 2, and D̂ = D1

m−1

y
(r∗,c0)

(r,c0)
.

2) Form the chain C2 by applying one Kohnert move at row r∗ − 1 followed by m Kohnert moves at row
r∗, i.e.,

C2 : D∗ ≻ D2
1 ≻ D2

2 ≻ · · · ≻ D2
m ≻ D̂,

where D2
1 := D∗

y
(r∗−1,c0)

(r,c0)
, D2

i+1 := D2
i

y
(r∗,cm−i)

(r∗−1,cm−i)
for 1 ≤ i ≤ m− 1, and D̂ = D2

m

y
(r∗,c0)

(r∗−1,c0)
.

We claim that the elements contained in C1 and C2 constitute the elements of [D̂,D∗]. To see this, set

R = {(r̃, c) | r ≤ r̃ ≤ r∗} ∪
⋃m−1

i=1 {(r∗, ci), (r∗ − 1, ci)} and note that, applying Lemma 11, we have

D∗\R = D̂\R = D̃\R for all D̃ ∈ [D̂,D∗]. Thus, every D̃ ∈ [D̂,D∗] must satisfy property (v) of D∗.

Consequently, applying a nontrivial Kohnert move to D̃ ∈ [D̂,D∗] at any row other than r∗ − 1 or r∗ must

affect the position of a cell outside of R; but, since D∗\R = D̂\R = D̃\R, this implies that D̃ ∈ [D̂,D∗]
must be formed from D∗ by a sequence of Kohnert moves at rows r∗ − 1 and r∗. Under these restrictions,
it is straightforward to verify the claim.

Now, we determine the relations defining the poset [D̂,D∗]. Applying Corollary 13, it follows that

D̂ ≺· D1
m−1 ≺· · · · ≺· D1

1 ≺· D∗

10



and
D̂ ≺· D2

m ≺· · · · ≺· D2
1 ≺· D∗.

It remains to consider relations between D1
i and D2

j for 1 ≤ i ≤ m− 1 and 1 ≤ j ≤ m. We show that there
are no such relations. Let

R1
i = {(r∗, ck), (r

∗ − 1, ck) | m− i ≤ k ≤ m− 1}

for 1 ≤ i ≤ m− 1. Since
(r, c) /∈ D∗\R1

i = D1
i \R

1
i 6= D2

j\R
1
i ∋ (r, c)

for 1 ≤ i ≤ m − 1 and 1 ≤ j ≤ m, it follows from Lemma 11 that D2
j /∈ [D1

i , D
∗] for 1 ≤ i ≤ m − 1 and

1 ≤ j ≤ m; that is, D1
i 6≺ D2

j for 1 ≤ i ≤ m− 1 and 1 ≤ j ≤ m. Consequently, if D2
j and D1

i are related for

some choice of 1 ≤ i ≤ m− 1 and 1 ≤ j ≤ m, then D2
j ≺ D1

i . For a contradiction, assume that D2
j ≺ D1

i for

some choice of 1 ≤ i ≤ m− 1 and 1 ≤ j ≤ m. Then D2
m ≺ D1

i . Letting

R2
i = {(r∗, ck), (r

∗ − 1, ck) | 1 ≤ k < m− i} ∪ {(r̃, c) | r ≤ r̃ ≤ r∗ − 1}

for 1 ≤ i ≤ m− 1, we have that
D2

m\R2
i = D1

i \R
2
i

for 1 ≤ i ≤ m−1. Thus, since D1
i satisfies property (v) of D∗ as noted above, it follows from Lemma 11 that

all diagrams in [D2
m, D

1
i ] – in particular, D2

m – must be formed from D1
i by applying sequences of Kohnert

moves at rows r∗ or r; but applying a Kohnert move at row r∗ results in Dmin which is not contained in
[D2

m, D
1
i ], while applying a Kohnert move at row r either does nothing or affects a cell in some column c̃ < c,

resulting in a diagram not contained in [D2
m, D

1
i ], by Lemma 11. Therefore, D2

m 6≺ D1
i and we conclude that

there are no relations between D1
i and D2

j for 1 ≤ i ≤ m− 1 and 1 ≤ j ≤ m.

Finally, above we showed that the poset [D̂,D∗] is completely defined by the relations

D∗ ≻ D1
1 ≻ D1

2 ≻ · · · ≻ D1
m−1 ≻ D̂

and
D∗ ≻ D2

1 ≻ D2
2 ≻ · · · ≻ D2

m ≻ D̂.

Let Pm be a poset of the form described in Lemma 9 with n1 = m − 1 and n2 = m, i.e., Pm = {p1i }
m−1
i=1 ∪

{p2i }
m
i=1 ∪ {0̂, 1̂} with

• 0̂ ≺ p11, p
2
1,

• p1i ≺ p1i+1 for 1 ≤ i < m− 1,

• p2i ≺ p2i+1 for 1 ≤ i < m, and

• p1m−1, p
2
m ≺ 1̂.

Define the map f : [D̂,D∗] → Pm by f(D̂) = 0̂, f(D1
i ) = p1m−i for 1 ≤ i ≤ m − 1, f(D2

j ) = p2m−j+1 for

1 ≤ j ≤ m, and f(D∗) = 1̂. Considering our work above, it follows that f is an order-preserving bijection.

Therefore, [D̂,D∗] is not shellable. The result follows.

Ongoing, we will not require the full strength of Proposition 15, but instead, we make use of the following
special case.

Corollary 16. Let D be a diagram. Suppose that there exists D∗ ∈ P(D) such that for some r, c1, c2 ∈ N

satisfying c1 < c2 we have

(i) (r + 1, c1), (r + 2, c1), (r + 2, c2) ∈ D∗,
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(ii) |{(r + 2, c̃) ∈ D∗ | c1 < c < c2}| > 0

(iii) (r + 2, c̃) /∈ D∗ for c̃ > c2,

(iv) (r + 1, c̃) /∈ D∗ for c̃ > c1, and

(v) (r, c1) /∈ D∗.

Then P(D) is not shellable. (See Figure 9 for an illustration of D∗.)

×
× ×

c1 c2

×

r

r + 1

r + 2

Figure 9: Subdiagrams described in Corollary 16

Proof. This result corresponds to taking r∗ = r + 2 in Proposition 15.

Remark 17. The families of subdiagrams considered in Proposition 15 and Corollary 16 form a subset of

those considered in Theorem 3.5 and Corollary 3.6, respectively, of [10].

In the sections that follow, we utilize the above results to characterize when diagrams belonging to
restricted families are associated with (EL-)shellable Kohnert posets.

4 Hook diagrams

In this section, we give a complete classification of diagrams D for which P(D) is (EL-)shellable and either

1) each nonempty column of D contains exactly one cell or

2) the first two rows of D are empty.

In both cases, the classification is given in terms of certain diagrams that we call “hook diagrams”.
For r1 ≤ r2 ∈ Z>0 and C = {c1, · · · , cm} ⊂ Z>0, if cm = maxC, then

H(r1, r2;C) = {(r2, ci) | 1 ≤ i ≤ m} ∪ {(j, cm) | r1 ≤ j ≤ r2}.

A hook diagram D is a diagram for which there exists r1, r2 ∈ Z>0 and C ⊂ Z>0 such that D ∈
KD(H(r1, r2;C)).

Example 18. In Figure 10 (a) we illustrate H(4, 6; {1, 2, 4, 7}) and in Figure 10 (b) a hook diagram D ∈
KD(H(4, 6; {1, 2, 4, 7})).
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Figure 10: (a) H(4, 6; {1, 2, 4, 7}) and (b) a hook diagram D ∈ KD(H(4, 6; {1, 2, 4, 7}))

The following lemma provides a characterization of hook diagrams in terms of the distribution of their
cells.

Proposition 19. Let D be a diagram. Then D is a hook diagram if and only if there exists c∗ > 0 such that

(i) column c∗ of D is nonempty and for all c̃ > c∗, column c̃ of D is empty;

(ii) if D contains more than one cell in column c, then c = c∗;

(iii) if r is maximal such that (r, c∗) ∈ D and c̃ < c, then (r̃, c̃) ∈ D implies that r̃ ≥ r; and

(iv) if (r̃1, c̃1), (r̃2, c̃2) ∈ D with c̃1 < c̃2 < c∗, then r̃1 ≥ r̃2.

Proof. Assume that D is a hook diagram. Then there exists r1 ≤ r2 ∈ Z>0 and C = {c1, · · · , cm} ⊂ Z>0

such that D ∈ KD(H(r1, r2;C)). Evidently, if c∗ = maxC, then properties (i) and (ii) hold in D. It
remains to show that properties (iii) and (iv) also hold in D. We show that D satisfies (iii), as (iv) follows
via a similar argument. For a contradiction, assume that D does not satisfy property (iii). Ongoing, for
D̃ ∈ KD(H(r1, r2;C)), we let r∗(D̃) = max{r | (r, c∗) ∈ D̃}. Since D does not satisfy property (iii),
there exists (r, c) ∈ D such that c < c∗ and r < r∗(D). Consequently, since (r2, c) ∈ H(r1, r2;C) and
r∗(H(r1, r2;C)) = r2, it follows that there must exist D1, D2 ∈ KD(H(r1, r2;C)) such that (r̃1, c) ∈ D1

with r̃1 ≥ r∗(D1), (r̃2, c) ∈ D2 with r̃2 < r∗(D2), and D2 can be formed from D1 by applying a single
Kohnert move; that is, in forming D from H(r1, r2;C), there must be a point at which a diagram that does
not satisfy property (iii) in column c, namely D2, is formed from one that does, namely D1. Now, because
r̃1 ≥ r∗(D1) ≥ r∗(D2) > r̃2 and D2 is obtained from D1 by applying a single Kohnert move, it follows that

D2 = D1

y
(r̃1,c)

(r̃2,c)
. Further, it must be the case that r̃2 = r̃1−1 since all diagrams in KD(H(r1, r2;C)) contain

a single cell in column c. However, this implies that r̃1 = r∗(D1) = r∗(D2); that is, (r̃1, c) is not the rightmost

cell in row r̃1 of D1, contradicting that D2 = D1

y
(r̃1,c)

(r̃2,c)
. Thus, D must satisfy property (iii). For property

(iv), one can use almost the exact same argument as that given above, replacing (r̃1, c), (r
∗(D1), c

∗) ∈ D1 and
(r̃2, c), (r

∗(D2), c
∗) ∈ D2 with (r̃1, c̃1), (r̃

′
1, c̃2) ∈ D1 and (r̃2, c̃1), (r̃

′
2, c̃2) ∈ D2, respectively, where c̃1 < c̃2,

r̃1 ≥ r̃′1, and r̃2 < r̃′2.
Now, for the backward direction, assume that D contains m > 1 nonempty columns and that column c∗

of D contains more than one cell; the cases where m = 1 and/or nonempty columns of D contain exactly
one cell follow via similar – but simpler – arguments. Let r11 ≤ · · · ≤ r1n1

be the nonempty rows of columns
c̃ < c∗ of D and r21 < · · · < r2n2

be the nonempty rows of D in column c∗. Note that r11 ≥ r2n2
by condition

(iii). If C denotes the set of nonempty columns of D, then we claim that D ∈ KD(H(r1n1
− n2 + 1, r1n1

;C)).
To see this, note that we can form D from H(r1n1

− n2 + 1, r1n1
;C) as follows.

1. For 1 ≤ i ≤ n2 in increasing order, if r1n1
− n2 + i 6= r2i , then apply in succession one Kohnert move at

rows r1n1
− n2 + i down to r2i + 1 in decreasing order; otherwise, apply no Kohnert moves.
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2. For 1 ≤ i ≤ n1 in increasing order, if r1n1
6= r1i , then apply in succession one Kohnert move at rows r1n1

down to r1i + 1 in decreasing order; otherwise apply no Kohnert moves.

Thus, D ∈ KD(H(r1n1
− n2 + 1, r1n1

;C)) and the result follows.

Theorem 20 below is the main result of this section, and its proof – along with some noteworthy conse-
quences regarding the corresponding Kohnert polynomials – constitutes the remainder of this section.

Theorem 20.

(a) Let D be a diagram for which all nonempty columns contain exactly one cell. Then P(D) is (EL-)
shellable if and only if D\{(1, c̃) | c̃ > 0} is a hook diagram.

(b) Let D be a diagram for which the first two rows are empty. Then P(D) is (EL-)shellable if and only

if D is a hook diagram.

Before proceeding with the proof of Theorem 20, we include the following lemma which relates the
Kohnert posets of the two diagrams occurring in Theorem 20 (a).

Lemma 21. If D is a diagram for which all nonempty columns contain exactly one cell, then P(D) ∼=
P(D\{(1, c̃) | c̃ > 0}).

Proof. Immediate from the definitions of Kohnert move and Kohnert poset.

4.1 Sufficiency

In this section, we establish the backward directions of Theorem 20 (a) and (b). Considering Lemma 21, it
suffices to show that if D is a hook diagram, then P(D) is EL-shellable.

To show that hook diagrams generate EL-shellable Kohnert posets, we first establish that such posets
are bounded.

Lemma 22. If D is a hook diagram, then P(D) is bounded.

Proof. It suffices to establish the result forD = H(r1, r2;C) with r1 ≤ r2 ∈ Z>0 and C = {c1, · · · , cm} ⊂ Z>0.
We claim that Dmin = H(1, r2 − r1 + 1;C) is the unique minimal element of P(D). To see this, take
D̃ ∈ P(H(r1, r2;C)). If |C| = 1 or r1 = r2, then the result follows by Corollary 6.2 of [10]. So, assume that
|C| = m > 1, r2 > r1, and c1 < · · · < cm. Considering Proposition 19, there exists r̃m−1 ≥ · · · ≥ r̃1 and
r∗1 < · · · < r∗r2−r1+1 such that

D̃ = {(r̃m−i, ci) | 1 ≤ i ≤ m− 1} ∪ {(r∗i , cm) | 1 ≤ i ≤ r2 − r1 + 1}.

Note that one can form Dmin from D̃ by applying successively

1) for 1 ≤ i ≤ r2 − r1 + 1 in increasing order, one Kohnert move at rows r∗i through i + 1 in decreasing
order, followed by

2) for 1 ≤ i ≤ m− 1 in increasing order, one Kohnert move at rows r̃i through r2 − r1 + 2 in decreasing
order.

Consequently, Dmin � D̃. As D̃ was arbitrary, the claim and, hence, the result follows.

Example 23. In Figure 11 below we illustrate the unique minimal element Dmin of the Kohnert posets

associated with the two hook diagrams of Example 18.
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Figure 11: Minimal element associated with a hook diagram

In order to establish that Kohnert posets associated with hook diagrams are EL-shellable, we describe
an edge labeling that satisfies Definition 5. First, however, we require the following lemma.

Lemma 24. Let D be a hook diagram. If D′ = D
y
(r,c)

(r−k,c)
and D′ ≺· D, then k = 1.

Proof. Assume otherwise. Without loss of generality, let D′ = D
y
(r,c)

(r−k,c)
with k = 2. Note that, since

D′ ≺· D, it must be the case that D′ can only be formed from D by applying exactly one Kohnert move.
Consequently, it follows that (r − 1, c) ∈ D. Now, since (r, c), (r − 1, c) ∈ D, we may conclude that c is the
unique column in D with more than one cell. So, by condition (i) of Proposition 19, for all c̃ > c, column c̃
of D is empty. Thus, D′ can be formed from D by applying a single Kohnert move at row r− 1 followed by
a single Kohnert move at row r; that is

D′ ≺ D
y
(r−1,c)

(r−2,c)
≺· D,

a contradiction. The result follows.

To define our edge labelings for Kohnert posets arising from hook diagrams, we utilize the following
labeling of the cells in the associated diagrams. Let D be a hook diagram where C = {c1, . . . , cm} is the
set of nonempty columns in D with c1 < · · · < cm, and let R = {ri | (ri, cm) ∈ D for 1 ≤ i ≤ n} with
r1 > · · · > rn. Decorate the cell located in column cj of D with the label j for 1 ≤ j < m, then decorate
the cell in column cm and row ri of D with the label m − i + 1 for 1 ≤ i ≤ n. To extend this labeling to
remaining diagrams of P(D), if D1, D2 ∈ P(D) are such that

D2 = D1

y
(r,c)

(r−1,c)
≺· D1 (1)

and the label of (r, c) ∈ D1 is L, then decorate the cell (r − 1, c) ∈ D2 with the label L and maintain the
labels of the cells in D1 ∩D2. Now, we define our edge labeling λ : E(P(D)) → Z>0 by λ(D2, D1) = L if (1)
holds and the label of (r, c) ∈ D1 is L. See Example 25.

Example 25. In Figure 12 below we illustrate our cell decoration and edge labeling on an interval [D2, D1] ⊂
P(D), where D is a hook diagram.
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Figure 12: Edge-labeled interval of P(D)

Lemma 26. Let D be a hook diagram and I = [D2, D1] be an interval in P(D) equipped with the edge

labeling described above. If C1, C2 are maximal chains in I, then the multiset of edge labels corresponding to

C1 is equal to that of C2.

Proof. Let C1, C2 be two maximal chains in I. If (r, c) ∈ D1 has label L and is moved, via a sequence of
Kohnert moves, to position (r−k, c) ∈ D2 for some k ∈ Z>0, then it follows from Lemma 24 that among the
edges of C1 and C2 in the Hasse diagram of P(D), exactly k are labeled L. Since (r, c) ∈ D1 was arbitrary,
the result follows.

Remark 27. As a consequence of Lemma 24, given an interval I = [D2, D1] ⊆ P(D), each maximal chain

in I has its own unique ordered list of edge labels. To see this, note that each edge label in a given chain

in I is defined by a particular cell being moved down one row. Thus, if two chains have the same ordered

list of edge labels, then they correspond to the same sequence of Kohnert moves, i.e., they are equal chains.

Combining this observation with Lemma 26, we conclude that if C1 6= C2 are two maximal chains in I, then
the ordered list of edge labels corresponding to C1 is a nontrivial permutation of the ordered list of edge labels

corresponding to C2.

Theorem 28. If D is a hook diagram, then P(D) is EL-shellable.

Proof. Let P = P(D) and assume that D contains n > k cells. By Lemma 22, P is bounded. Thus, it

remains to show that P admits an edge labeling that satisfies Definition 5. Decorate the cells of all D̃ ∈ P
and label the Hasse diagram of P as described above. Take D1, D2 ∈ P satisfying D2 ≺ D1. Assume that
for 1 ≤ i ≤ k, if the cell in location (r, c) of D1 is decorated with label Li, then the cell (r − µi, c) ∈ D2,
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µi > 0, is decorated with label Li; that is, D2 is formed from D1 by moving each cell in D1 with label Li

down µi rows. By Lemmas 24 and 26, it follows that each chain in the interval I = [D2, D1] has the multiset
of edge labels {Lµ1

1 , . . . , Lµk

k }, where, without loss of generality, we may assume Li < Lj whenever i < j.
We describe the sequence of Kohnert moves that corresponds to the unique rising unrefinable chain C∗ in

I. In short, C∗ is the chain obtained by moving each cell individually from its location in D1 to its position
in D2 in decreasing order of the cells’ labels. Explicitly, define C∗ to be the chain of diagrams obtained via
the following:

Step 1: If the cell labeled Lk is located in row r̃k of D1, then apply, in succession, a single Kohnert move
to D1 at rows r̃k through r̃k − µk + 1 in decreasing order. Call the resulting diagram Dk.

Step i: If the cell labeled Lk−i+1 is located in row r̃k−i+1 of D1, then apply, in succession, a single Kohnert
move to Dk−i+2 at rows r̃k−i+1 through r̃k−i+1−µi+1 in decreasing order. Call the resulting diagram
Dk−i+1.

Considering the method of labeling the cells of D1 along with Proposition 19, it follows that applying
the sequence of Kohnert moves outlined above has the desired effect. Note that the ordered list of labels
corresponding to C∗ is (Lµ1

1 , . . . , Lµk

k ). It follows from Remark 27 that this list is lexicographically minimal
with respect to all chains in I and that C∗ is the unique rising chain in I.

4.2 Necessity

In this section, we finish the proof of Theorem 20. We consider each part separately, starting with Theorem 20
(a).

Proof of Theorem 20 (a). The backward direction was established in Section 4.1.

Let D̂ = D\{(1, c̃) | c̃ > 0} = {(r1, c1), . . . , (rn, cn)} with c1 < . . . < cn. Note that ri > 1 for 1 ≤ i ≤ n.

Assume that D̂ is not a hook diagram. Then, applying Proposition 19, there exists 1 ≤ i < j ≤ n such that
ri < rj . Let

n(k) =

{
|{c̃ | c̃ > ci, (ri, c̃) ∈ D̂}|, k = i

|{c̃ | c̃ > cj , (rk, c̃) ∈ D̂}|, i < k ≤ j,

for k satisfying i ≤ k ≤ j, and form D∗ ∈ P(D̂) from D̂ as follows.

1) For k satisfying i ≤ k ≤ j in increasing order, successively apply n(k) Kohnert moves at rows rk
through 2 in decreasing order.

2) If ri < rj − 1, then apply, in succession, one Kohnert move at rows rj through ri + 2 in decreasing
order; otherwise, do nothing.

By our assumptions on D, it follows that

• (ri, ci), (ri + 1, cj) ∈ D∗,

• (ri + 1, c̃), (ri − 1, cj) /∈ D∗ for c̃ > cj , and

• (ri, c̃), (ri − 1, ci) /∈ D∗ for c̃ > ci.

Thus, applying Proposition 14 with r = ri − 1, c1 = ci, and c2 = cj , P(D̂) is not shellable. The result now
follows from Lemma 21.

For the proof of Theorem 20 (b), Lemmas 29 through 31 below identify necessary conditions for diagrams
whose first two rows are empty to be associated with shellable Kohnert posets. Utilizing the aforementioned
lemmas along with Proposition 19, we will be able to show that the only diagrams that remain are hook
diagrams, finishing the proof of Theorem 20 (b).
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Lemma 29. Let D be a diagram for which all cells of D are contained in rows 2 < r1 < r2 < . . . < rn and

P(D) is shellable. If c∗ is the rightmost nonempty column of D and r∗ is maximal such that (r∗, c∗) ∈ D,

then (r̃, c̃) ∈ D for c̃ < c∗ implies that r̃ ≥ r∗.

Proof. Assume otherwise. Then there exists a maximal c < c∗ such that, for some i and j satisfying
1 ≤ i < j ≤ n, we have (ri, c), (rj , c

∗) ∈ D. Assume that j is chosen to be minimal with the aforementioned
properties, i.e., (rj , c

∗) is the lowest cell in column c∗ for which there exists a cell in column c lying in a
strictly lower row. Note that, by the maximality of c, there are no cells below row rj in columns strictly
between c and c∗. Further, by the minimality of j, there are no cells in column c∗ strictly between rows ri
and rj . Now, form D̂ ∈ P(D) as follows.

1) Letting k = |{c̃ | c̃ = c or c∗, (ri − 1, c̃) ∈ D}|, apply k Kohnert moves at row ri − 1.

2) Next, if (ri, c
∗) ∈ D, then apply a single Kohnert move at row ri followed by a single Kohnert move at

row ri − 1; otherwise, do nothing.

3) Finally, if ri < rj − 1, then apply, in succession, one Kohnert move at rows rj through ri + 2 in
decreasing order; otherwise, do nothing.

Note that since r1 > 2, any Kohnert moves applied in steps 1 and 2 are nontrivial. By our assumptions on
D, it follows that

• (ri, c), (ri + 1, c∗) ∈ D̂,

• (ri + 1, c̃), (ri − 1, c∗) /∈ D̂ for c̃ > c∗, and

• (ri, c̃), (ri − 1, c) /∈ D̂ for c̃ > c.

Therefore, applying Proposition 14 with r = ri− 1, c1 = c, and c2 = c∗, it follows that P(D) is not shellable,
a contradiction. The result follows.

Lemma 30. Let D be a diagram for which all cells of D are contained in rows 2 < r1 < r2 < . . . < rn,
there exists a column in which D contains more than one cell, and P(D) is shellable. If c∗ is the rightmost

column of D containing more than one cell, then all columns c̃ > c∗ of D are empty.

Proof. Assume otherwise. Let c > c∗ be minimal such that column c of D is nonempty. Since c∗ is the
rightmost column of D containing more than one cell, all nonempty columns c̃ > c∗ of D must contain
exactly one cell. Let D1 denote the diagram formed by bottom-justifying the cells in columns c̃ > c of D.
Evidently, D1 ∈ P(D). Assume that (ri, c), (rj , c

∗) ∈ D1 where rj is minimal, i.e., (rj , c
∗) is the lowest cell

in column c∗ of D1. Note that since column c∗ contains more than one cell and rj is the row occupied by
the lowest such cell, it follows that j < n. There are two cases.

Case 1: i > j. In this case, form the diagramD2 from D1 as follows. If rj < ri−1, then apply, in succession,
one Kohnert move at rows ri through rj +2 in decreasing order; otherwise, do nothing. By our assumptions
on D,

• (rj , c
∗), (rj + 1, c) ∈ D2,

• (rj + 1, c̃), (rj − 1, c) /∈ D2 for c̃ > c, and

• (rj , c̃), (rj − 1, c∗) /∈ D2 for c̃ > c∗.

Thus, applying Proposition 14 with r = rj − 1, c1 = c∗, and c2 = c, it follows that P(D) is not shellable, a
contradiction.

Case 2: i ≤ j. Assume that rk is minimal such that (rk, c
∗) ∈ D1 and rk > rj , i.e., rk is the second lowest

nonempty row in column c∗ of D. Form the diagram D2 from D1 as follows.
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1) If i < j, then apply, in succession, one Kohnert move at rows rj through ri + 1 in decreasing order;
otherwise, do nothing.

2) Apply, in succession, one Kohnert move at rows rk through ri + 1 in decreasing order.

By our assumptions on D, it follows that

• (ri − 1, c∗), (ri, c) ∈ D2,

• (ri, c̃), (ri − 2, c) /∈ D2 for c̃ > c, and

• (ri − 1, c̃), (ri − 2, c∗) /∈ D2 for c̃ > c∗.

Applying Proposition 14 with r = ri − 2, c1 = c∗, and c2 = c, it follows that P(D) is not shellable, a
contradiction.

The result follows.

Lemma 31. Let D be a diagram for which all cells of D are contained in rows 2 < r1 < r2 < . . . < rn and

P(D) is shellable. If there exists a column in which D contains more than one cell, then it is unique.

Proof. Assume otherwise. Then there exists at least two columns of D each of which contains more than
one cell. Let c∗1 < c∗2 be the rightmost two such columns of D and assume that ri is maximal such that
(ri, c

∗
2) ∈ D. Then

(i) for all c̃ satisfying c∗1 < c̃ < c∗2, column c̃ of D contains at most one cell;

(ii) applying Lemma 30, all columns c̃ > c∗2 of D are empty; and

(iii) applying Lemma 29, (r̃, c̃) ∈ D for c̃ < c∗2 implies that r̃ ≥ ri.

Now, assume that rj and rk are minimal such that rj < rk and (rj , c
∗
1), (rk, c

∗
1) ∈ D, i.e., (rj , c

∗
1), (rk, c

∗
1) are

the two lowest cells in column c∗1 of D. Note that, considering (iii) above, ri ≤ rj < rk. Define

n(t) = |{c̃ | (rt, c̃) ∈ D, c∗1 ≤ c̃ < c∗2}|

for i < t ≤ k. Form D̂ ∈ P(D) as follows.

1) For i < t ≤ k in increasing order, apply, in succession, n(t) Kohnert moves at rows rt through ri + 1
in decreasing order.

2) If (ri − 1, c∗2) ∈ D, then apply a single Kohnert move at row ri − 1; otherwise, do nothing.

3) If (ri − 2, c∗2) ∈ D, then apply a single Kohnert move at row ri − 2; otherwise, do nothing.

By our assumptions on D, it follows that

• (ri − 1, c∗1), (ri, c
∗
2) ∈ D̂,

• (ri, c̃), (ri − 2, c∗2) /∈ D̂ for c̃ > c∗2, and

• (ri − 1, c̃), (ri − 2, c∗1) /∈ D̂ for c̃ > c∗1.

Therefore, applying Proposition 14 with r = ri−2, c1 = c∗1, and c2 = c∗2, it follows that P(D) is not shellable,
a contradiction. The result follows.

Combining the results above, we can now finish the proof of Theorem 20.
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Proof of Theorem 20 (b). The backward direction was established in Section 4.1.
Let D be a diagram for which all cells are contained in rows 2 < r1 < r2 < . . . < rn. Note that if D

has no columns with more than one cell, then the result follows by (a). Consequently, we assume that there
exists a column in which D contains more than one cell.

Assume that P(D) is shellable. Applying Lemma 31, there exists a unique column c∗ in which D contains
more than one cell. By Lemma 30, all columns c̃ > c∗ of D are empty. Moreover, by Lemma 29, if ri is
maximal such that (ri, c

∗) ∈ D and c̃ < c∗, then (r̃, c̃) ∈ D implies r̃ ≥ ri. Consequently, D satisfies all
the properties listed in Proposition 19 except possibly property (iv). For a contradiction, assume that D
does not satisfy property (iv) of Proposition 19; that is, assume that there exists ĉ1 < ĉ2 < c∗ such that
(ri, ĉ1), (rj , ĉ2) ∈ D with ri < rj . By Lemma 29, if r∗ is maximal such that (r∗, c∗) ∈ D then rj > ri ≥ r∗,
and it follows that all cells in rows r satisfying ri < r ≤ rj must be unique in their respective columns. If
ri > r∗, then it also follows that each cell in row ri is unique in its respective column; however, if ri = r∗,
then each cell in row ri, excluding the cell (r∗, c∗), is unique in its respective column. Define

n(k) =

{
|{c̃ | (rk, c̃), c̃ > ĉ1}|, i ≤ k < j

|{c̃ | (rk, c̃), c̃ > ĉ2}|, k = j

for k satisfying i ≤ k ≤ j. Form D̂ ∈ P(D) from D as follows.

1) For k satisfying i ≤ k ≤ j in increasing order, apply, in succession, n(k) Kohnert moves at rows rk
through ri in decreasing order; note that since r1 > 2, any such Kohnert moves are nontrivial.

2) If ri < rj − 1, then apply, in succession, one Kohnert move at rows rj through ri + 2 in decreasing
order; otherwise, do nothing.

By our assumptions on D, it follows that

• (ri, ĉ1), (ri + 1, ĉ2) ∈ D̂,

• (ri + 1, c̃), (ri − 1, ĉ2) /∈ D̂ for c̃ > ĉ2, and

• (ri, c̃), (ri − 1, ĉ1) /∈ D̂ for c̃ > ĉ1.

Thus, applying Proposition 14 with r = ri − 1, c1 = ĉ1, and c2 = ĉ2, it follows that P(D) is not shellable,
a contradiction. Consequently, D satisfies all of the properties listed in Proposition 19; that is, D is a hook
diagram.

Interestingly, among the families of diagrams considered in Theorem 20, the corresponding Kohnert
posets are (EL-)shellable precisely when the associated Kohnert polynomials are multiplicity free.

Theorem 32. Let D be a diagram for which either there is at most one cell per column or the first two rows

are empty. Then P(D) is (EL-)shellable if and only if KD is multiplicity-free.

Proof. For the backward direction, assume that D is not (EL-)shellable, i.e., D is not a hook diagram. Note
that in establishing each of the backward directions of Theorem 20, we found that if D did not satisfy at
least one of the defining properties (i)–(iv) of hook diagrams given in Proposition 19, then there existed
D∗ ∈ P(D) which contained a subdiagram of the form described in Proposition 14. Given such a diagram
D∗, let r, c1, c2 ∈ N be such that

(i) 1 ≤ r and c1 < c2,

(ii) (r + 1, c1), (r + 2, c2) ∈ D∗,

(iii) (r + 2, c̃), (r, c2) /∈ D∗ for c̃ > c2, and

(iv) (r + 1, c̃), (r, c1) /∈ D∗ for c̃ > c1.
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Let D1 denote the diagram formed by applying a Kohnert move at row r + 2 of D∗ followed by row r + 1
and D2 denote the diagram formed by applying a Kohnert move at row r + 1 of D∗ followed by row r + 2.
Then we have that

D1 = (D∗\{(r + 2, c2)}) ∪ {(r, c2)} 6= (D∗\{(r + 1, c1), (r + 2, c2)}) ∪ {(r, c1), (r + 1, c2)} = D2

and wt(D1) = wt(D2). Thus, KD is not multiplicity free.
Now, for the forward direction, we break the proof into two cases. Assume that n > 0 is maximal such

that row n of D is nonempty.

Case 1: D contains at most one cell per column. Let

C1 = {c | (1, c) ∈ D} = {c11, . . . , c
1
m1

}

and
C2 = {c | (r, c) ∈ D and c /∈ C1} = {c21 < . . . < c2m2

}.

Note that for D̃ ∈ P(D), wt(D̃) =
∏n

i=1 x
ai

i where a1 ≥ m1 and
∑n

i=1 ai − m1 = m2. Now, it is

straightforward to show that if P(D) is (EL-)shellable and (ri, c
2
i ) ∈ D̃ ∈ P(D) for 1 ≤ i ≤ m2, then

r1 ≥ r2 ≥ · · · ≥ rm2
. Thus, if

∏n

i=1 x
ai

i is a monomial in KD, then it corresponds uniquely to the diagram

D̃ = {(1, c) | c ∈ C1} ∪ {(1, c2m2−i+1) | 1 ≤ i ≤ a1 −m1 + 1} ∪
n⋃

j=2

{
(j, c2m2−i+1) |

j−1∑

k=1

ak < i ≤

j∑

k=1

ak

}
.

Consequently, KD is multiplicity free.

Case 2: The first two rows ofD are empty. Assume that D ∈ H(r1, r2;C) with C = {c1 < . . . < cm}. Since
we have already considered the situation where D contains at most one cell per column in Case 1, we may
assume that L = r2−r1 > 0. Take D̃ ∈ P(D) and assume that r is maximal such that (r, cm) ∈ D̃. Then con-

sidering Proposition 19 (i)–(iii), there exists 1 ≤ i1 < · · · < iL < n such that wt(D̃) =
∏L

j=1 xij
∏n

k=iL+1 x
ak

k ,

where
∑n

k=iL+1 ak = |C|. Now, considering Proposition 19 (iv), if
∏L

j=1 xij
∏n

k=iL+1 x
ak

k is a monomial of
KD, then it corresponds uniquely to the diagram

D̃ = {(ij, cm) | 1 ≤ j ≤ L} ∪ {(iL + 1, cm−i+1) | 0 < i ≤ aiL+1}

∪
n−iL⋃

j=2

{
(iL + j, cm−i+1) |

iL+j−1∑

k=iL+1

ak < i ≤

iL+j∑

k=iL+1

ak

}
.

Consequently, KD is multiplicity free.

Remark 33. In the following section, we find, in particular, that the equivalence between (EL-)shellability
of a Kohnert poset and the associated Kohnert polynomial being multiplicity free does not hold in general.

More specifically, for key diagrams we find that if a Kohnert poset is graded and EL-shellable, then the asso-

ciated Kohnert polynomial is multiplicity free; however, there are examples of key diagrams whose Kohnert

polynomials are multiplicity free and whose Kohnert posets are not shellable.

It remains to consider diagrams that contain at least one cell within the first two rows and for which at
least one column contains more than one cell. While we do not obtain a complete classification in this case,
in the following section we consider the special case of key diagrams.

21



5 Key diagrams

In this section, we consider Kohnert posets associated with key diagrams. Recall from Section 2 that key
diagrams are defined by weak compositions: given a weak composition a = (a1, . . . , an), the associated key
diagram is defined by

D(a) =

n⋃

i=1

{(i, j) | 1 ≤ j ≤ ai}.

Ongoing, we let |a| =
∑n

i=1 ai.
The main result of this section is a characterization of the key diagrams that generate pure, shellable

Kohnert posets in terms of their associated compositions. To state the main result, we require the notion of
“pure composition” introduced in [10].

Definition 34. A weak composition a = (a1, . . . , an) is called a pure composition if there exists no

1 ≤ j1 < j2 < j3 ≤ n such that

• aj1 < aj2 < aj3 ,

• aj1 < aj3 < aj2 , or

• aj1 + 1 < aj2 = aj3 .

In [10], the following properties of pure compositions and Kohnert posets associated with key diagrams
are established. To set the notation, given a weak composition a = (a1, . . . , an), ongoing we set max(a) =
max{ai | 1 ≤ i ≤ n} and min(a) = min{ai | 1 ≤ i ≤ n}, i.e., max(a) (resp., min(a)) is the maximal (resp.,
minimal) entry of a.

Lemma 35 (Lemma 6.8, [10]). If a = (a1, . . . , an) is a pure composition, then there exists i1 = 1 < . . . <
im < n = im+1 − 1 such that αj = (aij , . . . , aij+1−1) for 1 ≤ j ≤ m satisfies min(αj−1) ≥ max(αj) for

1 < j ≤ m. Moreover, each αj = (aij , . . . , aij+1−1) is of one of the following forms:

(i) aij ≥ . . . ≥ aij+1−1; that is, αj is a weakly decreasing sequence.

(ii) There exists p ∈ Z≥0 such that aij = p and {aij , . . . , aij+1−1} = {p, p+1}; that is, all entries of αj are

p or p+ 1 for some p ∈ Z≥0, the first entry is p, and some other entry must be equal to p+ 1.

(iii) aij ≥ . . . ≥ aij+1−2 < aij+1−1 − 1; that is, the entries of αj are in decreasing order, except the last one

which is at least two larger than the penultimate one.

(iv) There exist p ∈ Z≥0 and i∗j ∈ Z>0 with ij + 1 < i∗j < ij+1 − 1 such that aij = p, {aij , . . . , ai∗j−1} =

{p, p+ 1}, p > ai∗
j
≥ . . . ≥ aij+1−2, and aij+1−1 = p+ 1.

Theorem 36 (Theorem 6.1, [10]). For all weak compositions a, the Kohnert poset P(D(a)) is bounded.

Theorem 37 (Theorem 6.5, [10]). Let a be a weak composition. Then P(D(a)) is pure if and only if a is

pure.

Remark 38. To be precise, Theorem 6.5 of [10] actually establishes that for a weak composition a, the

Kohnert poset P(D(a)) is ranked if and only if a is pure. However, it is straight-forward to verify that a

bounded poset is pure if and only if it is ranked.

Ongoing, given a pure composition a, we will refer to a decomposition (α1, . . . , αm) of a as shown to
exist in Lemma 35 as a pure decomposition of a. Moreover, we refer to the weak compositions of the
forms described in (i) − (iv) of Lemma 35, i.e., those weak compositions that form the building blocks of
pure compositions, as basic pure compositions.
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Example 39. Consider the pure composition

a = (15, 15, 15, 14, 14, 15, 14, 15, 13, 11, 10, 7, 15, 7, 6, 5, 4, 6, 3, 3, 4, 3, 4, 3, 2, 1, 0, 1).

One choice of pure decomposition of a is given by

α1 = (15, 15, 15, 14, 14, 15, 14, 15, 13, 11, 10, 7, 15), α2 = (7, 6, 5, 4, 6), α3 = (3, 3, 4, 3, 4),

α4 = (3, 2, 1), and α5 = (0, 1).

Note that α1 is of type (iv), α2 is of type (iii), α3 and α5 are of type (ii), and α4 is of type (i).

Remark 40. In [10], given a pure composition a, a procedure for finding a choice of pure decomposition of

a is provided within the proof of Lemma 6.8.

We claim that Theorem 37 can be extended to give a characterization of pure, (EL-)shellable Kohnert
posets associated with key diagrams. In particular, in the remainder of this section we establish the following.

Theorem 41. Let a be a weak composition. Then P(D(a)) is pure and (EL-)shellable if and only if a is

pure.

5.1 Necessity

In this section we find necessary conditions for a key diagram to be associated with a shellable Kohnert
poset in terms of the corresponding composition avoiding certain patterns. In particular, we establish the
following.

Proposition 42. Let a = (a1, . . . , an) be a weak composition. Suppose that either

(a) there exist 1 ≤ i1 < i2 < i3 ≤ n for which one of the following holds

(i) ai1 < ai2 < ai3

(ii) ai1 ≤ ai3 − 3 ≤ ai2 − 3;

or

(b) there exist 1 ≤ j1 < j2 < j3 < j4 ≤ n for which one of the following holds

(i) aj1 ≤ aj2 < aj3 − 1 ≤ aj4 − 1

(ii) aj1 ≤ aj2 < aj4 < aj3

(iii) aj2 < aj1 < aj4 < aj3

(iv) aj2 < aj1 < aj3 ≤ aj4 .

Then P(D(a)) is not shellable.

Remark 43. Note that Proposition 42 establishes more than is needed to prove Theorem 41; in particular,

the proof of Theorem 41 does not require part (b-iv) of Proposition 42. We include (b-iv) as, altogether, we
conjecture that a weak composition a avoiding the patterns of Proposition 42 is equivalent to the Kohnert

poset P(D(a)) being (EL-)shellable, with no restrictions involving purity (see Conjecture 51).

To prove Proposition 42, we first show that the result holds if we assume that the patterns described
therein are followed by consecutively occurring terms in the composition.

Lemma 44. Let a = (a1, . . . , an) be a weak composition. Suppose that either

(a) there exists 1 ≤ i < n− 2 for which one of the following holds

(i) ai < ai+1 < ai+2
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(ii) ai ≤ ai+2 − 3 ≤ ai+1 − 3;

or

(b) there exists 1 ≤ j < n− 3 for which one of the following holds

(i) aj ≤ aj+1 < aj+2 − 1 ≤ aj+3 − 1

(ii) aj ≤ aj+1 < aj+3 < aj+2

(iii) aj+1 < aj < aj+3 < aj+2

(iv) aj+1 < aj < aj+2 ≤ aj+3.

Then P(D(a)) is not shellable.

i+ 2

i+ 1

i

×
× ×

(key diagram)

(key diagram)

(a-i)
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×
×

×
×

×
×

(key diagram)

(key diagram)

(a-ii)
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j + 1
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× ×
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(b-i)
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j + 2

j + 1

j

×
×

×

(key diagram)
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(b-ii)

j + 3

j + 2

j + 1

j
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×

×
×

×
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×

(b-iii)

j + 3

j + 2

j + 1

j

(key diagram)

(key diagram)

×

×
×

×
×

(b-iv)

Figure 13: Forms of key diagrams for weak compositions described in Lemma 44

Proof. (a-i) By assumption, we have that

• (i+ 1, ai+1), (i+ 2, ai+2) ∈ D(a) with ai+1 < ai+2,

• (i, ai+2), (i+ 2, c̃) /∈ D(a) for c̃ > ai+2, and

• (i, ai+1), (i+ 1, c̃) /∈ D(a) for c̃ > ai+1.

Thus, applying Proposition 14 with r = i, c1 = ai+1, and c2 = ai+2, the result follows.
(a-ii) Let D denote the diagram obtained from D(a) by applying ai+1 − ai+2 + 2 Kohnert moves at row

i+ 1 (see Figure 14)
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i + 2

i + 1

i

×
×

×

×

×

×

(key diagram)

(key diagram)

(a-ii)

Figure 14: Diagram related to key diagram in case (a-ii)

Note that

• (i+ 1, ai+2 − 2), (i+ 2, ai+2 − 2), (i+ 2, ai+2) ∈ D,

• |{(i+ 2, c̃) ∈ D | ai+2 − 2 < c̃ < ai+2}| = 1 > 0,

• (i+ 2, c̃) /∈ D for c̃ > ai+2,

• (i+ 1, c̃) /∈ D for c̃ > ai+2 − 2, and

• (i, ai+2 − 2) /∈ D.

Thus, applying Corollary 16 with r = i, c1 = ai+2 − 2, and c2 = ai+2, the result follows.
(b-i),(b-iv) If aj+2 < aj+3, then the result follows as in (a-i) taking i = j+1. So, assume that aj+2 = aj+3.

Let D denote the diagram obtained from D(a) by applying a single Kohnert move at row j + 2 followed by
a single Kohnert move at row j + 1 (see Figure 15).

j + 3

j + 2

j + 1

j ×

×
× ×

(key diagram)

(key diagram)

(b-i)

j + 3

j + 2

j + 1

j

(key diagram)

(key diagram)

×

×
× ×

×

(b-iv)

Figure 15: Diagrams related to key diagram in cases (b-i) (left) and (b-iv) (right)

By assumption,

• (j + 3, aj+3), (j + 2, aj+3 − 1) ∈ D,

• (j + 1, aj+3), (j + 3, c̃) /∈ D for c̃ > aj+3, and

• (j + 1, aj+3 − 1), (j + 2, c̃) /∈ D for c̃ > aj+3 − 1.
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Thus, applying Proposition 14 with r = j + 1, c1 = aj+3 − 1, and c2 = aj+3, the result follows.
(b-ii),(b-iii) Let D denote the diagram obtained from D(a) by applying a single Kohnert move at row

j + 3 (see Figure 16).

j + 3

j + 2

j + 1

j

×
× ×

(key diagram)

(key diagram)

(b-ii)

j + 3

j + 2

j + 1

j

(key diagram)

(key diagram)

×

×
×

×
×

×

(b-iii)

Figure 16: Diagrams related to key diagram in cases (b-ii) (left) and (b-iii) (right)

By assumption,

• (j + 1, aj+3), (j + 2, aj+2) ∈ D with aj+3 < aj+2,

• (j, aj+2), (j + 2, c̃) /∈ D for c̃ > aj+2, and

• (j, aj+3), (j + 1, c̃) /∈ D for c̃ > aj+3.

Thus, applying Proposition 14 with r = j, c1 = aj+3, and c2 = aj+2, the result follows.

Now, to prove Proposition 42, we make use of the following result from [10]. For notation, given a weak
composition a = (a1, . . . , an), we denote by asi,j the weak composition obtained from a by exchanging the
entries ai and aj; that is, asi,j = (a1, . . . , ai−1, aj , ai+1, . . . , aj−1, ai, aj+1, . . . , an).

Lemma 45 (Lemma 6.15, [10]). Let a = (a1, . . . , an) be a weak composition. If there exist i < j such that

ai < aj, then D(asi,j) ∈ P(D(a)).

Proof of Proposition 42. We include only the proofs for cases (a-i) and (b-i) as the remaining cases following
via very similar arguments. In both cases, we show that there exists a key diagram T ∈ P(D(a)) such that
T has one of the patterns described in Lemma 44. Consequently, applying Lemma 44, it will follow that
P(D(a)) contains an interval that is not shellable – namely, the interval between T and the unique minimal
element of P(D(a)). Considering Theorem 4, we may thus conclude that P(D(a)) is not shellable.

(a-i) Let i1 be maximal, i2 be arbitrary given our choice of i1, and i3 minimal given our choice of i2. If
i1 < i2 − 1, then ai2−1 ≥ ai2 > ai1 by maximality of i1. Thus, applying Lemma 45, D(asi1,i2−1) ∈ P(D(a)).
Now, if i3 > i2 + 1, then ai2+1 ≤ ai2 < ai3 by minimality of i3. Consequently, applying Lemma 45, we find
that

D(asi1,i2−1si2+1,i3) ∈ P(D(asi1,i2−1)) ⊆ P(D(a)),

i.e., D(asi1,i2−1si2+1,i3) ∈ P(D(a)). As the values ai1 , ai2 , ai3 occur as terms i2−1, i2, and i2+1, respectively,
in asi1,i2−1si2+1,i3 , the result follows.

(b-i) Let j1 be maximal, j2 be arbitrary given our choice of j1, j3 be minimal given our choice of j2, and j4
be arbitrary given our choice of j3. Note that if j1 < j2 − 1, then aj2−1 > aj2 ≥ aj1 by maximality of j1;
and if j2 < j3 − 1, then for j2 < i < j3 we have ai 6= aj3 by minimality of j3. Let j∗3 be minimal such that
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j2 < j∗3 ≤ j3 and aj∗
3
≤ aj3 . By our choice of j∗3 , for j2 < j < j∗3 we have aj > aj3 > aj2 ; in particular, if

j∗3 − 1 6= j2, then aj∗
3
−1 > aj2 . Thus, if we set b = asj2,j∗3−1sj∗

3
,j3 and apply Lemma 45 twice, it follows that

D(b) ∈ P(D(a)). Now, by construction, we have that bi = ai > aj1 for j1 < i < j2, bj2 = aj∗
3
−1 ≥ aj2 ≥ aj1 ,

and bi > aj3 > aj1 for j2 < i < j∗3 − 1. Consequently, if we set c = bsj1,j∗3−2, then an application of
Lemma 45 shows that D(c) ∈ P(D(a)). Finally, if cj∗

3
+1 ≥ aj4 , then set d = c; otherwise, set d = csj∗

3
+1,j4

and note that since j∗3 + 1 < j4 and cj4 = aj4 , Lemma 45 implies that D(d) ∈ P(D(a)). By construction,

aj1 = dj∗
3
−2 ≤ aj2 = dj∗

3
−1 < aj3 − 1 = dj∗

3
− 1 ≤ aj4 − 1 ≤ dj∗

3
+1 − 1;

that is, dj∗
3
−2, dj∗

3
−1, dj∗

3
, and dj∗

3
+1 occur as consecutive terms in d and form the pattern described in (b-i).

The result follows.

5.2 Sufficiency

In this section, we finish the proof of Theorem 41 by establishing that the key diagrams of pure compositions
generate (EL-)shellable Kohnert posets. To do so, given a pure composition a, we show that the Kohnert
poset P(D(a)) decomposes into a direct product of graded, (EL-)shellable posets. In particular, we start
by showing that, for a pure composition a with pure decomposition (α1, . . . , αm), the poset P(D(a)) is
isomorphic to the direct product P(D(α1)) × · · · × P(D(αm)) (see Proposition 46). Then we show that the
Kohnert posets P(D(αi)) for 1 ≤ i ≤ m are isomorphic to intervals within Kohnert posets of hook diagrams
(see Proposition 47) and, consequently, are graded and (EL-)shellable. Since the direct product of graded
and (EL-)shellable is graded and (EL-)shellable by Theorem 48 below, it will follow that P(D(a)) is graded
and (EL-)shellable.

Proposition 46. Let a be a pure composition and assume that a = (α1, . . . , αm) is a pure decomposition of

a. Then P(D(a)) ∼= P(D(α1))× . . .× P(D(αm)).

Proof. Assume that αj = (aj1, . . . , a
j
mj

) for 1 ≤ j ≤ m. Let m0 = 0 and define ψ on diagrams D ∈ P(D(a))
by ψ(D) = (D1, . . . , Dm), where

Dj =

{
(r, c)

∣∣∣∣∣ 1 +
j−1∑

i=0

mi ≤ r∗ = r +

j−1∑

i=0

mi ≤

j∑

i=0

mi and (r∗, c) ∈ D

}

for 1 ≤ j ≤ m; that is, Dj is the diagram formed by shifting the cells occupying rows 1 +
∑j−1

i=0 mi ≤ r ≤∑j

i=0mi of D(a) so that they occupy rows 1 ≤ r ≤ mj . As an example, in Figure 17 we illustrate ψ(D(a))
where

a = (6, 5, 4, 5, 4, 3, 5, 3, 1, 3, 1, 0, 1) = (α1, α2, α3, α4)

with α1 = (6, 5), α2 = (4, 5, 4, 3, 5), α3 = (3, 1, 3), and α4 = (1, 0, 1).
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Figure 17: ψ(D(a))

We claim that ψ defines an isomorphism between the posets P(D(a)) and P(D(α1))× . . .× P(D(αm)).
First, we show that

P(D(α1))× . . .× P(D(αm)) ⊆ im ψ.

By definition, ψ(D(a)) = (D(α1), . . . ,D(αm)) ∈ im ψ. Consequently, it suffices to show that if

(D1, . . . , Dj , . . . , Dm) ∈ im ψ

and D∗
j can be formed from Dj by applying a single Kohnert move for 1 ≤ j ≤ m, then

(D1, . . . , D
∗
j , . . . , Dm) ∈ im ψ.

Let D ∈ P(D(a)) satisfy ψ(D) = (D1, . . . , Dj , . . . , Dm). Assume that D∗
j can be formed from Dj by applying

a single Kohnert move at row r with D∗
j = Dj

y
(r,c)

(r′,c)
. Then (r, c) is rightmost in row r of Dj , (r̃, c) ∈ Dj for

all r′ < r̃ < r, and (r′, c) /∈ Dj . Thus, by the definition of ψ, it follows that

1. (r′ +
∑j−1

i=0 mi, c) /∈ D,

2. (r̃ +
∑j−1

i=0 mi, c) ∈ Dj for all r′ +
∑j−1

i=0 mi < r̃ +
∑j−1

i=0 mi < r +
∑j−1

i=0 mi, and

3. (r +
∑j−1

i=0 mi, c) ∈ D is rightmost in row r +
∑j−1

i=0 mi of D.

Consequently, applying a Kohnert move at row r +
∑j−1

i=0 mi of D results in the diagram

D∗ = D
y
(r+

∑j−1

i=0
mi,c)

(r′+
∑j−1

i=0
mi,c)

.

Evidently, ψ(D∗) = (D1, . . . , D
∗
j , . . . , Dm). Therefore, P(D(α1))× . . .× P(D(αm)) ⊆ im ψ.

Now, to show that the above inclusion is in fact an equality, considering the definition of ψ, it suffices
to show that (∗) for 1 ≤ j ≤ m, cells in rows 1 +

∑j−1
i=0 mi ≤ r ≤

∑j

i=0mi in D(a) cannot be moved via

Kohnert moves to rows r̃ <
∑j−1

i=0 mi in D(a); that is, no sequence of Kohnert moves can move cells in
rows corresponding to αj in D(a), for 1 ≤ j ≤ m, into rows corresponding to αi in D(a) for 1 ≤ i < j.
Since min(αj−1) ≥ max(αj) for 1 < j ≤ m, it follows that min(αi) ≥ max(αj) for 1 ≤ i < j ≤ m. Thus,

{(r, c) | 1 ≤ c ≤ max(αj) and 1 ≤ r ≤
∑j−1

i=0 mi} ⊂ D(a). Consequently, it follows that for all D ∈ P(D(a)),

there are no empty positions in columns 1 through max(αj) below row 1 +
∑j−1

i=0 mi. Therefore, since the
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cells in rows 1+
∑j−1

i=0 mi ≤ r ≤
∑j

i=0mi of D(a) only occupy columns 1 ≤ c ≤ max(αj), property (∗) holds.
Hence,

P(D(α1))× . . .× P(D(αm)) = im ψ.

As ψ is clearly one-to-one, it follows that ψ : P(D(a)) → P(D(α1))× . . .× P(D(αm)) is a bijection.
It remains to show that ψ and ψ−1 are order preserving. Since the proofs are similar, we consider only

the proof for ψ. For ψ, take D1, D2 ∈ P(D(a)) such that D2 ≺ D1. Then there exists a sequence of rows
R = {ri}

n
i=1 such that if T0 = D1 and, for 1 ≤ i ≤ n, Ti is formed from Ti−1 by applying a single Kohnert

move at row ri, then Ti−1 6= Ti for 1 ≤ i ≤ n and Tn = D1. Let Rj denote the (possibly empty) subsequence

of R consisting of all ri ∈ R such that 1+
∑j−1

i=0 mi ≤ ri ≤
∑j

i=1mi. For 1 ≤ j ≤ m, if Rj is nonempty, then

assume Rj = {rji }
nj

i=1. Let ψ(Di) = (Di
1, . . . , D

i
m) for i = 1, 2. By construction, if T0,j = Dj

1 for 1 ≤ j ≤ m

and Ti,j is the diagram formed from Ti−1,j by applying a Kohnert move at row rji −
∑j−1

k=0mk for 1 ≤ i ≤ nj ,
then Tnj ,j = D2

j . Thus, D
2
j � D1

j for all 1 ≤ j ≤ m, and D2
k ≺ D1

k for at least one 1 ≤ k ≤ m; that is,

ψ(D2) = (D2
1, . . . , D

2
m) ≺ (D1

1 , . . . , D
1
m) = ψ(D1)

in P(D(α1))× . . .× P(D(αm)) and ψ is order preserving.

Proposition 47. If a = (a1, . . . , an) is a basic pure composition, then P(D(a)) is EL-shellable.

Proof. Recall that if a = (a1, . . . , an) is a basic pure composition, then a is of one of the following forms:

(i) a1 ≥ . . . ≥ an,

(ii) there exists p ∈ N such that a1 = p and {a1, . . . , an} = {p, p+ 1},

(iii) a1 ≥ . . . ≥ an−1 < an − 1, or

(iv) there exists 2 < i∗ ∈ N and p ∈ N such that a1 = p, {a1, . . . , ai∗−1} = {p, p+1}, p > ai∗ ≥ . . . ≥ an−1,
and an = p+ 1.

Note that if a is of type (i) then, there are no empty positions below cells. Consequently, P(D(a)) is a poset
consisting of a single element which is trivially EL-shellable. To establish the result for the remaining cases,
we show that the associated Kohnert poset P(D(a)) is isomorphic to an interval in the Kohnert poset of a
hook diagram.

Let R denote the collection of cells (r, c) ∈ D(a) for 1 ≤ r < n such that (r̃, c) ∈ D(a) for 1 ≤ r̃ ≤ r.
When a is of type (ii) or (iv) with max(a) = p+ 1 we have

R = {(r, c) | ar = p+ 1, 1 ≤ r < n, 1 ≤ c ≤ p} ∪ {(r, c) | ar ≤ p, 1 ≤ c ≤ ar}, (2)

while when a is of type (iii) we have that

R = D(a1, . . . , an−1). (3)

In Figure 18 below we illustrate R for the key diagrams of the basic pure compositions (2, 3, 3, 2, 3),
(4, 3, 2, 2, 4), and (3, 4, 3, 4, 3, 2, 1, 4) of types (ii), (iii), and (iv), respectively, where the cells of R are
marked with an “R”.
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Figure 18: Cells of R

Note that in all cases, considering (2) and (3), the cells of R are both left and bottom justified. Consequently,
R ⊂ D for all D ∈ P(D(a)). Now, for any D ∈ P(D(a)), let

Hk(D) = D\R.

For D = D(a), we have the following options for the form of Hk(D) depending on the type of a:

(ii) Hk(D) consists of the an cells in row n of D and the cells below in column an,

(iii) Hk(D) consists of the an cells in row n of D, or

(iv) Hk(D) consists of the an cells in row n of D and the cells below in column an.

Note that, in each case, Hk(D(a)) is a hook diagram. We claim that Hk defines a poset isomorphism between
P(D(a)) and an interval of P(H), where H = Hk(D(a)).

First we show that Hk is an order-preserving map from P(D(a)) to P(H). Let

P1 = {Hk(D) | D ∈ P(D(a))},

where we define a partial ordering on P1 by D′ ≺ D if D′ can be formed from D by applying some sequence
of Kohnert moves. Since Hk(D(a)) = H ∈ P1 and D ≺ D(a) for all D ∈ P(D(a)), if we can show that
Hk : P(D(a)) → P1 is order preserving, then it will follow that P1 ⊆ P(H); that is, it will follow that Hk is
an order-preserving map from P(D(a)) to P(H). Take D1, D2 ∈ P(D(a)) such that D2 ≺· D1. Suppose that

D2 is formed fromD1 by applying a single Kohnert move at row r andD2 = D1

y
(r,c)

(r′,c)
. We show that Hk(D2)

can be formed from Hk(D1) by applying a single Kohnert move at row r and Hk(D2) = Hk(D1)
y
(r,c)

(r′,c)
, i.e.,

Hk(D2) ≺ Hk(D1). Since D2 = D1

y
(r,c)

(r′,c)
, it follows that (r, c) ∈ D1 is rightmost in row r, (r̂, c) ∈ D1 for

all r′ < r̂ < r, and (r′, c) /∈ D1. Thus, since the cells of R ⊂ D1 are both bottom and left justified, we may
conclude that

• (r, c), (r′, c) /∈ R,

• (r, c) ∈ D1\R = Hk(D1) is rightmost in row r of Hk(D1), and

• (r′, c) /∈ D1\R = Hk(D1).

Consequently, if applying a Kohnert at row r of Hk(D1) does not result in Hk(D1)
y
(r,c)

(r′,c)
, then there must

exist r̂ such that r′ < r̂ < r, (r̂, c) /∈ Hk(D1), and (r̂, c) ∈ D1; however, this implies (r̂, c) ∈ R, which is
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impossible since (r′, c) /∈ R and the cells of R are bottom justified. Hence, applying a Kohnert move at row
r of Hk(D1) results in

Hk(D1)
y
(r,c)

(r′,c)
= (D1\R)

y
(r,c)

(r′,c)
=

(
D1

y
(r,c)

(r′,c)

)
\R = D2\R = Hk(D2),

where the second equality follows since (r′, c) /∈ R. Now, since Hk(D2) can be formed from Hk(D1) by
applying a Kohnert move at row r, it follows that Hk(D2) ≺ Hk(D1). Therefore, if D1, D2 ∈ P(D(a))
satisfy D2 ≺· D1, then Hk(D2) ≺ Hk(D1); that is, the map Hk : P(D(a)) → P1 is order preserving. As
noted above, it follows that Hk is an order-preserving map from P(D(a)) to P(H).

Since Hk is clearly one-to-one, in order to establish the claim, it only remains to show that Hk maps
P(D(a)) onto an interval of P(H) and that the inverse of Hk is order preserving. Let a′ be the weak
composition formed by sorting the entries of a into weakly decreasing order, and note that, by Corollary 6.2
of [10], a′ is the unique minimal element of P(D(a)). If H ′ = Hk(D(a′)), then we have that Hk : P(D(a)) →
[H ′, H ] since Hk is order preserving. To show that Hk maps P(D(a)) onto [H ′, H ], we investigate the map
φ, which we define to send D ∈ [H ′, H ] to D ∪R.

Similar to the case of Hk, let
P2 = {φ(D) | D ∈ [H ′, H ]}

and define a partial ordering on P2 by D′ ≺ D if D′ can be formed from D by applying some sequence
of Kohnert moves. We shall show that φ : [H ′, H ] → P2 is order preserving. Since φ(H) = D(a) and
φ(H ′) = D(a′), it will then follow that

D(a′) = φ(H ′) � φ(Ĥ) � φ(H) = D(a)

for all Ĥ ∈ [H ′, H ], i.e., it will follow that P2 ⊆ P(D(a)) and φ is an order-preserving map from [H ′, H ] to
P(D(a)). Let S = [max(a)]2\R. Since the cells of R are both bottom and left justified, it follows that there
exists 0 < ri1 ≤ ri2 for 1 ≤ i ≤ max(a) such that

S =

max(a)⋃

i=1

{(r̃, i) | ri1 ≤ r̃ ≤ ri2}.

Moreover, since H = Hk(D(a)) = D(a)\R and H ′ = Hk(D(a′)) = D(a′)\R, we have that H\S = ∅ = H ′\S.

Consequently, applying Lemma 11, it follows that Ĥ\S = ∅ for all Ĥ ∈ [H ′, H ]. In particular,

Ĥ ∩R = ∅ for all Ĥ ∈ [H ′, H ].

Now, take H1, H2 ∈ [H ′, H ] such that H2 ≺· H1. Suppose that H2 can be formed from H1 by applying

a single Kohnert move at row r and H2 = H1

y
(r,c)

(r′,c)
. We show that φ(H2) can be formed from φ(H1) by

applying a single Kohnert move at row r and φ(H2) = φ(H1)
y
(r,c)

(r′,c)
. Since H2 = H1

y
(r,c)

(r′,c)
, it follows that

(r, c) ∈ H1 is rightmost in row r, (r̂, c) ∈ H1 for all r′ < r̂ < r, and (r′, c) /∈ H1. Thus, since the cells of R
are left justified and H1 ∩R = ∅, it follows that (r, c) /∈ R and (r, c) ∈ H1 ∪R = φ(H1) is rightmost in row r
of φ(H1). Moreover, since H2 ∩R = ∅, it follows that (r′, c) /∈ R and, as a result, (r′, c) /∈ H1 ∪R = φ(H1).

Consequently, if applying a single Kohnert move at row r of φ(H1) does not result in φ(H1)
y
(r,c)

(r′,c)
, then there

must exist r′ < r̂ < r such that (r̂, c) /∈ φ(H1); but this is impossible since H1 ⊂ H1 ∪ R = φ(H1). Hence,
applying a single Kohnert move at row r of φ(H1) results in

φ(H1)
y
(r,c)

(r′,c)
= (H1 ∪R)

y
(r,c)

(r′,c)
=

(
H1

y
(r,c)

(r′,c)

)
∪R = H2 ∪R = φ(H2).
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Since φ(H2) can be formed from φ(H1) by applying a Kohnert move at row r, it follows that φ(H2) ≺ φ(H1).
Therefore, if H1, H2 ∈ P(H) satisfy H2 ≺· H1, then φ(H2) ≺ φ(H1); that is, φ : [H ′, H ] → P2 is order
preserving. As noted above, it follows that φ is an order-preserving map from [H ′, H ] to P(D(a)).

Now, our work above shows that Hk : P(D(a)) → [H ′, H ] and φ : [H ′, H ] → P(D(a)) are both order

preserving. Since R ⊂ D for allD ∈ P(D(a)) and Ĥ∩R = ∅ for all Ĥ ∈ [H ′, H ], it follows that φ(Hk(D)) = D

for all D ∈ P(D(a)) and Hk(φ(Ĥ)) = Ĥ for all Ĥ ∈ [H ′, H ]. Thus, φ = Hk−1 so that Hk defines an
isomorphism between P(D(a)) and [H ′, H ]. Combining Theorem 7 and Theorem 28, the result follows.

Now, to prove Theorem 41 using the results above, we require the following result of [5].

Theorem 48 (Björner [5]). The product of graded posets is EL-shellable if and only if each of the posets is

EL-shellable.

We are now in a position to complete the proof of Theorem 41.

Proof of Theorem 41. Considering Theorem 37 and Proposition 42, it remains to show that if a is pure, then
P(D(a)) is EL-shellable. Let (α1, . . . , αm) be a pure decomposition of a. Combining Theorems 36 and 37
along with Proposition 47, it follows that P(D(αj)) is graded and EL-shellable for 1 ≤ j ≤ m. Thus, since
P(D(a)) ∼= P(D(α1))× . . .× P(D(αm)) by Proposition 46, the result follows from Theorem 48.

In the theorem below, we consider the polynomial consequences of a key diagram having a pure and
EL-shellable Kohnert poset.

Theorem 49. Let a be a weak composition. If P(D(a)) is pure and EL-shellable, then KD(a) is multiplicity

free.

Proof. It is shown in [11] that, given a weak composition a = (a1, a2, . . . , an), the polynomial KD(a) is
multiplicity free if and only if there exists no three indices 1 ≤ i1 < i2 < i3 ≤ n such that ai1 < aj2 < aj3
and no four indices 1 ≤ j1 < j2 < j3 < j4 ≤ n such that

1. aj1 = aj2 < aj3 − 1 < aj4 − 1,

2. aj1 = aj2 < aj4 < aj3 ,

3. aj2 < aj1 < aj4 < aj3 , and

4. aj2 < aj1 < aj3 = aj4 .

It is straightforward to verify that pure compositions avoid all five of the patterns above, so the result follows
from Theorem 41.

As previously noted, unlike in the case of the diagrams considered in Section 4, a key diagram having
a multiplicity-free Kohnert polynomial is not equivalent to the (EL-)shellability of the diagram’s Kohnert
poset. To see this, note that for a = (0, 3, 3) we have

KD(a) = x31x
3
2 + x31x

2
2x3 + x21x

3
2x3 + x31x2x

2
3 + x21x

2
2x

2
3 + x1x

3
2x

2
3 + x31x

3
3 + x21x2x

3
3 + x1x

2
2x

3
3 + x32x

3
3,

which is mulitplicity free. However, considering the Hasse diagram of P(D(a)) illustrated in Figure 19, we see
that P(D(a)) contains an interval isomorphic to the poset P of Example 10. Thus, P(D(a)) is not shellable.
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Figure 19: Hasse diagram of P(D(0, 3, 3))

6 Epilogue

In this article, our focus was a characterization of (EL-)shellable Kohnert posets. While we were able to
establish some general results in Propositions 14 and 15, we were not able to obtain a complete character-
ization. Instead, we determined characterizations for some particular families of diagrams, including those
with at most one cell per column and those whose first two rows are empty. Restricting attention to pure,
(EL-)shellable Kohnert posets, we were able to determine characterizations for those diagrams associated
with key polynomials. With respect to a general characterization, we make the following conjectures.

Conjecture 50. There exists a finite number of families of subdiagrams F such that given any diagram D,

P(D) is shellable if and only if there exists no D̃ ∈ P(D) such that D̃ contains a subdiagram from F .

Conjecture 51. Let a = (a1, . . . , an) be a weak composition. Then P(D(a)) is shellable if and only if there

exist no 1 ≤ i1 < i2 < i3 ≤ n for which

• ai1 < ai2 < ai3 or

• ai1 ≤ ai3 − 3 ≤ ai2 − 3,

and there exist no 1 ≤ j1 < j2 < j3 < j4 ≤ n for which

• aj1 ≤ aj2 < aj3 − 1 ≤ aj4 − 1,

• aj1 ≤ aj2 < aj4 < aj3 ,

• aj2 < aj1 < aj4 < aj3 , or

• aj2 < aj1 < aj3 ≤ aj4 .

Note the similarity of Conjecture 50 with Conjecture 8.1 of [10].
Along with the characterizations for shellability, we also found that, for the families of diagrams considered

here, (EL-)shellability of the Kohnert poset had some interesting polynomial consequences. More specifically,
for diagrams with either one cell per nonempty column or the first two rows empty, (EL-)shellability of the
Kohnert poset was equivalent to the associated Kohnert polynomial being multiplicity free. On the other
hand, for key diagrams, we found that the Kohnert poset being pure and (EL-)shellable only implied that
the Kohnert polynomial was multiplicity free. Recall that the weak composition a = (0, 3, 3) generated a key
polynomial KD(a) which was mutliplicity free, but P(D(a)) was not shellable. The authors wonder if there is
a stronger polynomial property equivalent to (EL-)shellability in the case of key diagrams.

In addition to the conjectures listed above, many interesting questions remain concerning Kohnert posets.
For example, it is of interest to the authors whether results similar to those contained in this article can
be obtained for Kohnert posets arising from Rothe diagrams. Given a permutation w = [w1, . . . , wn], the
associated Rothe diagram is defined as D(w) = {(i, wj) | i < j and wi > wj} ⊂ N × N, and it was shown
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in [3, 14, 15] that the Kohnert polynomial KD(w) is the Schubert polynomial corresponding to w. Thus,
a result analogous to Theorem 49 for Kohnert posets of Rothe diagrams would not only shed light on the
relationship between the behaviors of Kohnert posets and Schubert polynomials, but it would also suggest
a more general phenomenon. In fact, based on experimental evidence, it appears that EL-shellability of
Kohnert posets associated with so-called “southwest” diagrams – a family of diagrams that contains key and
Rothe diagrams as subfamilies (see [2]) – implies that each corresponding Kohnert polynomial is multiplicity
free. In a slightly different direction, the authors are aware that E. Philips is working on identifying those
Kohnert posets that are lattices [13].
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