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Abstract

A neural architecture with randomly initialized
weights, in the infinite width limit, is equivalent to
a Gaussian Random Field whose covariance func-
tion is the so-called Neural Network Gaussian Pro-
cess kernel (NNGP). We prove that a reproducing
kernel Hilbert space (RKHS) defined by the NNGP
contains only functions that can be approximated
by the architecture. To achieve a certain approx-
imation error the required number of neurons in
each layer is defined by the RKHS norm of the
target function. Moreover, the approximation can
be constructed from a supervised dataset by a ran-
dom multi-layer representation of an input vector,
together with training of the last layer’s weights.
For a 2-layer NN and a domain equal to an n− 1-
dimensional sphere in Rn, we compare the number
of neurons required by Barron’s theorem and by
the multi-layer features construction. We show that
if eigenvalues of the integral operator of the NNGP
decay slower than k−n− 2

3 where k is an order of
an eigenvalue, then our theorem guarantees a more
succinct neural network approximation than Bar-
ron’s theorem. We also make some computational
experiments to verify our theoretical findings. Our
experiments show that realistic neural networks
easily learn target functions even when both theo-
rems do not give any guarantees.

1 INTRODUCTION

Kernel methods in machine learning (ML) is a classical
research topic that has found applications in classifica-
tion/regression Steinwart and Christmann [2008], dimension
reduction Fukumizu et al. [2009], generative modeling Li
et al. [2015], probability density estimation, non-parametric
statistics, spline interpolation Wahba [1990], and many other

areas. Being a fundamental mathematical object, kernels are
not only applicable in practice but also suitable for theoret-
ical analysis. Recently the field became quite active again
due to the discovered fact that neural networks (NN), under
the so-called infinite width limit, behave pretty much like
the kernel regression. To any architecture of a neural net-
work one can correspond a specific kernel, called the neural
tangent kernel (NTK) Jacot et al. [2018], whose structure
is defined by the geometry of a reproducing kernel Hilbert
space (RKHS). A major question in this field is to identify
aspects of gradient-based learning with this architecture that
can be explained by the NTK.

The NTK is not the first kernel that appeared in the theory
of neural networks. Another interesting case is the Neural
Network Gaussian Process kernel (NNGP), which was sug-
gested earlier by Neal [1996]. Unlike the NTK, the NNGP
does not explain the behavior of NNs trained by gradient
descent, but it helps to understand the structure of an NN
whose weights are initialized randomly. It turns out that
when a distribution of weights is normal (with zero mean
and proper scaling of the variance), in the infinite width
limit, an NN behaves like a Gaussian Random Field whose
covariance function is the NNGP. Moreover, as was shown
by Daniely et al. [2016], random networks induce represen-
tations that approximate the RKHS defined by the NNGP.

The mentioned results motivate us to formulate the fol-
lowing question: is a ball in the RKHS of the NNGP
a natural set of functions approximated well by a given
architecture of NNs? To answer the question, we con-
sider a feed-forward NN architecture with a non-linearity
σ : R → R, an architecture with L hidden layers of
neurons and a one-dimensional output, i.e. the mapping
x → w⊤σ(W (L)σ(· · ·σ(W (1)x) · · · ) parameterized by
matrices W (h) ∈ Rnh×nh−1 , w ∈ RnL (we will call them
L+ 1-NN). In the infinite width limit, such an architecture
is fully defined by n and σ itself.

Based on our understanding of the RKHS of the NNGP
K, denoted by HK , as a space that is “native” to the NN
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architecture, we expect that a statement similar to Barron’s
theorem should hold, in which the complexity of a function
is measured by ∥f∥HK

, instead of the Barron norm, denoted
by Cf,Ω. Indeed, we prove a general statement (Theorem 4)
whose specification for L = 1 looks very analogous to
Barron’s theorem, with a role of ∥f∥HK

being analogous to
the role of Cf,Ω.

Theorem 4 guarantees that the unit ball in HK , denoted
by BHK

, indeed contains only functions that are very well
approximable by our architecture. For L = 1 we only re-
quire that the activation function σ is bounded. For many
practical activation functions, this condition is satisfied.
For the ReLU it is not satisfied, but it is satisfied for
σ1(x) = ReLU(x)−ReLU(x− 1) and therefore, the num-
ber of neurons required to approximate a function f by
a ReLU 2-NN is proportional to ∥f∥2HK

where K is the
NNGP for σ1. The multi-layer case (L ≥ 2) requires bound-
edness of all derivatives up to the fourth degree, which is
satisfied for such activation functions as a sigmoid, a hyper-
bolic tangent, erf, a cosine, and a Gaussian.

To put our findings into a broader context of approximation
theory, we question whether an approximation guarantee of
Theorem 4 for L = 1 gives any advantage over the classical
Barron’s theorem. This poses a general problem: how are the
Barron space for Ω and the RKHS HK related? Specifically,
can we say that some functions for which Theorem 4 guar-
antees the existence of a succinct representation in our ar-
chitecture, require too many neurons according to Barron’s
theorem? In other words, which activation functions have an
unbounded (or bounded) set BHK

w.r.t. the norm Cf,Ω. We
address this problem in the paper and characterize activation
functions for whichBHK

is an unbounded/bounded set w.r.t.
the Barron norm for Ω = Sn−1.

Related work. Besides the mentioned works, the topic of
the approximation power of NNs attracted a lot of attention.
The approximation power of 2-NNs was a topic of classical
works Cybenko [1989], Hornik [1991], Leshno et al. [1993],
with a key result being Barron’s theorem Barron [1993]. A
certain generalization of Barron’s theorem to multi-layer
networks is presented in Lee et al. [2017]. An approach to
NN training based on random nonlinear features was intro-
duced in Rahimi and Recht [2008] and further developed
in Daniely et al. [2017], Bach [2017b]. Improvements in an
approximation ability of NNs from increasing depth were
demonstrated in Telgarsky [2015], Eldan and Shamir [2016].
Similarities between behaviors of randomly initialized multi-
layer NNs in the infinite width limit and Gaussian Processes
are discussed in Williams [1996], Lee et al. [2018].

2 PRELIMINARIES AND NOTATIONS

Bold-faced lowercase letters (x) denote (random) vectors,
and regular lowercase letters (x) denote scalars. ∥ · ∥ de-

notes the Euclidean norm: ∥x∥ :=
√
x⊤x. For any dis-

tribution P , sampling x from P is denoted by x ∼ P .
Given a Borel set Ω and a Borel measure µ on Ω, by
L2(Ω, µ) we denote the completion of H0, where H0 is
a space of real-valued functions on Ω with the inner product
⟨u, v⟩H0

=
∫
Ω
u(x)v(x)dµ(x). The corresponding inner

product is denoted by ⟨·, ·⟩L2(Ω,µ) and the induced norm
is then ∥u∥L2(Ω,µ) =

√
⟨u, u⟩L2(Ω,µ). If dµ = p(x)dx,

then L2(Ω, µ) is denoted by L2(Ω, p). Analogously, the
Banach space Lp(Ω, µ) is defined. Given a Mercer kernel
K : Ω×Ω, HK denotes a reproducing kernel Hilbert space
defined by K. Then, BHK

denotes a unit ball centered at
0 in the RKHS HK . The Fourier transform of a function
a : Rn → C is denoted by â.

Given f : R → R and g : R → R+, we write f ≪ g if
there exist universal constants α, β ∈ R+ such that for all
x > β we have |f(x)| ≤ αg(x). When f, g : R → R+, we
write f ≍ g if f ≪ g and g ≪ f . If in an equation we are
not interested in a factor depending on the dimension n we
write f ∝n g, and that means f = cng for some constant
cn. Analogously, f ≪n g means f ≪ cng.

Proofs of all given statements can be found in the Appendix.

3 FULLY CONNECTED FEED-FORWARD
NEURAL NETWORK AND
ASSOCIATED KERNELS

Let x ∈ Rn0 be the input and n1, · · · , nL be dimensions
of hidden layers. We denote θ = [W (1), · · · ,W (L)] where
W (h) ∈ Rnh×nh−1 . Let us denote α(0)(x, θ) = x and

α̃(h)(x, θ) =W (h)α(h−1)(x, θ),

α(h)(x, θ) = σ(α̃(h)(x, θ)), h = 1, · · · , L.

Then, α̃(h) = [α̃
(h)
i ]nh

i=1 are called preactivations and
α(h) = [α

(h)
i ]nh

i=1 are called activations. If we sample
entries of W (h) = [W

(h)
ij ] independently according to

W
(1)
ij ∼ N (0, 1) and W (h)

ij ∼ N (0, 1
nh−1

), h = 2, · · · , L,

then sending n1, · · · , nL−1 → +∞ makes {α̃(h+1)
i (x, θ)}

the Gaussian Random Field (for any i ∈ [nh+1]) with the
covariance function

E[α̃(h+1)
i (x, θ)α̃

(h+1)
i (x′, θ)] → Σ(h)(x,x′),

where the kernels Σ(h), h = 1, · · · , L, called Neural Net-
work Gaussian Process (NNGP) kernels, are defined accord-
ing to

Σ(0)(x,x′) = x⊤x′,

Σ(h+1)(x,x′) = E(u,v)∼Λ(h)(x,x′)[σ(u)σ(v)],
(1)

where Λ(h)(x,x′) =

[
Σ(h)(x,x) Σ(h)(x,x′)
Σ(h)(x,x′) Σ(h)(x′,x′)

]
.

2



Figure 1: An architecture for n0 = 3, n1 = n2 = 3, n3 =
1, T = 3.

In the regime of finite n1, · · · , nL−1, we introduce kernels
Σ̃(h), h = 1, · · · , L that approximate kernels of the infinite-
width limit, i.e.

Σ̃(h)(x,x′) = EW1,··· ,Wh
[α

(h)
i (x, θ)α

(h)
i (x′, θ)]. (2)

Since all entries of α(h)(x, θ) have the same distribution,
the latter expression is the same for any i ∈ [nh]. It is also
natural to approximate Σ̃(h) by its empirical version, i.e. by

Σ(h)
emp(x,x

′) =
1

nh

nh∑
i=1

α
(h)
i (x, θ)α

(h)
i (x′, θ). (3)

By construction, we have EW1,··· ,Wh
[Σ

(h)
emp(x,x′)] =

Σ̃(h)(x,x′) and limnh→+∞ · · · limn1→∞ Σ̃(h)(x,x′) =
Σ(h)(x,x). By analogy, we define Λ̃(h)(x,x′) =[
Σ̃(h)(x,x) Σ̃(h)(x,x′)

Σ̃(h)(x,x′) Σ̃(h)(x′,x′)

]
and Λ

(h)
emp(x,x′) =[

Σ
(h)
emp(x,x) Σ

(h)
emp(x,x′)

Σ
(h)
emp(x,x′) Σ

(h)
emp(x′,x′)

]
.

4 MAIN RESULTS

A starting point of our approach to approximate functions
by multi-layer NNs is the following remarkable property of
the finite version of the NNGP kernel, Σ̃(L).

Theorem 1. Let µ be a probabilistic measure on Ω ⊆ Rn,
σ be bounded, and n1, · · · , nL, T ∈ N, nL = 1. Then, for
any f ∈ HΣ̃(L) there exist matrices W (i,h) ∈ Rnh×nh−1 ,
where h = 1, · · · , L, i = 1, · · · , T , and weights wi ∈
R, i = 1, · · · , T such that

∥f(x)− f̃(x)∥L2(Ω,µ) ≤
∥σ∥∞∥f∥H

Σ̃(L)√
T

.

where f̃(x) =
∑T

i=1 wiσ(W
(i,L)σ(· · ·σ(W (i,1)x) · · · ).

A proof of the latter statement is based on the representa-
tion (2) of the kernel Σ̃(L) as an inner product between func-
tions α(L)(x, ·) and α(L)(x′, ·) in the corresponding space
and is in line with some earlier results obtained for other
classes of functions (see Proposition 4.1 from Rahimi and
Recht [2008] or Corollary 4 from Daniely et al. [2017]). The
approximating function f̃ can be viewed as a feed-forward
neural network with L+ 1 layers whose neurons of the first
L layers are divided into T parts of equal size that are con-
nected by a final L+1-st layer (an example of that architec-
ture is shown in Figure 1). From arguments of the proof it is
clear that f̃ has the following structure: all matrices W (i,h),
h = 1, · · · , L, i = 1, · · · , T are sampled independently ac-
cording to W (i,1)

kl ∼ N (0, 1), W (i,h)
kl ∼ N (0, 1

nh−1
), h =

2, · · · , L; afterward, we set wi =
1
T g(W

(i,1), · · · ,W (i,L))
where g is some function. That is, the last layer’s weights
are defined by the previous layer’s random initialization. In
practice, the weight vector w = [wi]

T
i=1 can be computed

from a supervised dataset {(xs, f(xs))}Ns=1, {xi} ∼iid

µ by a standard linear regression formula w =
(X⊤X)−1X⊤[f(xs)]

N
s=1 where X ∈ RN×nL is a design

matrix whose sth row is a representation of xs by T activa-
tions {σ(W (i,L)σ(· · ·σ(W (i,1)xs) · · · )}Ti=1. It is natural to
call this approach to construct the approximating function f̃
a multi-layer random feature model (ML-RFM).

Σ̃(L), unlike the NNGP kernel Σ(L), is hard to analyze both
analytically and numerically. So, our first goal was to study
the cost of substituting the empirical kernel Σ̃(L)

emp or the
NNGP kernel Σ(L) for Σ̃(L). The empirical kernel Σ̃(L)

emp is
a random variable whose mean is Σ̃(L), and a variance of it
is a natural measure of the distance between them. As the
following theorem demonstrates, each layer contributes to
this variance a term inverse proportional to the layer’s size.

Theorem 2. For bounded σ, σ′, σ′′ and h = 1, · · · , L, we
have

Var[Σ(h)
emp(x,x

′)] ≤ 2∥σ∥4∞
h∑

i=1

Ch−i

ni
,

where C = 4max(∥σ′′∥∞∥σ∥∞, ∥σ′∥2∞)2.

A proof of the latter theorem is based on the following
observation. From the law of total variance it is clear
that Var[Σ(h)

emp(x,x′)] consists of two parts: the first part
is an expectation of Var[Σ

(h)
emp(x,x′) | W1, · · · ,Wh−1],

and the second part is the variance of E[Σ(h)
emp(x,x′) |

W1, · · · ,Wh−1]. From the definition (3) it can be seen
that the first part behaves like O( 1

nh
) as Σ(h)

emp(x,x′) is an
average of nh independent terms (given W1, · · · ,Wh−1).
We show that the second term is bounded by a combi-
nation of variances of Σ

(h−1)
emp (x,x′), Σ(h−1)

emp (x,x), and
Σ

(h−1)
emp (x′,x′). This allows us to bound the needed variance

by variances of empirical kernels of lower layers. Applying
this argument iteratively leads us to the bound of Theorem 2.
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Being interesting in itself, the previous theorem is instrumen-
tal in proving the following estimate of the difference be-
tween the finite version of the NNGP, Σ̃(L), and the NNGP.

Theorem 3. Let σ be such that σ, σ′, σ′′, σ′′′, σ′′′′ are
bounded and continuous. Then, there exists a universal con-
stant R such that

|Σ̃(L)(x,x′)− Σ(L)(x,x′)| ≤
R∥σ∥4∞ max(∥σ′′′′∥∞∥σ∥∞, ∥σ′′′∥∞∥σ′∥∞, ∥σ′′∥2∞)

L−1∑
j=1

max(2∥σ′′∥∞∥σ∥∞, 2∥σ′∥2∞, 52 )
2L−2j(L− j)

nj
.

If the RHS of the inequality from Theorem 3 is small, then
it is natural to expect that two spaces, HΣ̃(L) and HΣ(L) , ap-
proximate each other. This allows to translate the desirable
property of HΣ̃(L) from Theorem 1 to the space HΣ(L) .

Further, we assume that Ω ⊆ Rn is compact. A Borel
measure µ on Ω is called nondegenerate if for any open set
S ⊆ Rn such that S ∩Ω ̸= ∅, we have µ(S ∩Ω) ̸= 0.

Theorem 4. Let µ be a probabilistic nondegenerate Borel
measure on compact Ω ⊆ Rn and σ be such that
σ, σ′, σ′′, σ′′′, σ′′′′ are bounded and continuous. We also
assume that n1, · · · , nL, T ∈ N, nL = 1. Then, for any
f ∈ HΣ(L) there exist matrices W (i,h) ∈ Rnh×nh−1 , where
h = 1, · · · , L, i = 1, · · · , T , and weights wi ∈ R, i =
1, · · · , T such that

∥f(x)− f̃(x)∥L2(Ω,µ) ≤ ∥f∥H
Σ(L)

(∥σ∥∞√
T

+

cC1

( L−1∑
j=1

C2L−2j
2 (L− j)

nj

)1/2)
.

where f̃(x) =
∑T

i=1 wiσ(W
(i,L)σ(· · ·σ(W (i,1)x) · · · ), c

is a universal constant and

C1 = ∥σ∥2∞
√
max(∥σ′′′′∥∞∥σ∥∞, ∥σ′′′∥∞∥σ′∥∞, ∥σ′′∥2∞),

C2 = max(2∥σ′′∥∞∥σ∥∞, 2∥σ′∥2∞,
5

2
).

Remark 1. If L = 1, then the second term in the RHS of
the latter inequality is absent. It can be seen from the proof
of Theorem 4 that this case requires only that σ is bounded.
Theorem says that for any f ∈ HΣ(1) and T ∈ N there exist
a1, · · · ,aT ∈ Rn, b1, · · · , bT ∈ R such that

∥f −
T∑

i=1

biσ(a
⊤
i x)∥L2(Ω,µ) ≤

∥σ∥∞∥f∥H
Σ(1)√

T
. (4)

Remark 2. If we assume that all derivatives of σ up to
fourth degree andL are bounded by some universal constant,
then we have

∥f(x)− f̃(x)∥L2(Ω,µ) ≪
∥f∥H

Σ(L)√
min(T, n1, · · · , nL−1)

.

Thus, to achieve ∥f(x) − f̃(x)∥L2(Ω,µ) = O(ε) we need

min(T, n1, · · · , nL−1) = O
(∥f∥2

H
Σ(L)

ε2

)
.

4.1 A RELATIONSHIP WITH THE BARRON
SPACE

Let us consider the case of L = 1. There is a direct analogy
between the inequality (4) and Barron’s theorem. To demon-
strate that, let us introduce the Barron norm using a recent
exposition from Lee et al. [2017].

Definition 1. For a bounded set Ω ⊆ Rn let us define
∥ω∥Ω = supx∈Ω |ω⊤x|. Let FΩ be a set of functions g :
Rn → R with existing Fourier transform ĝ such that

∀x ∈ Ω, g(x)− g(0) =

∫
Rn

(eiω
⊤x − 1)ĝ(ω)dω.

Then, for a function f : Ω → R we define its Ω-norm as

Cf,Ω = inf
g∈FΩ:g|Ω=f

∫
Rn

∥ω∥Ω|ĝ(ω)|dω. (5)

With a slight abuse of terminology we call the set of functions
with a finite Ω-norm the Barron space of Ω.

Since the infimum in (5) is taken over all possible extensions
of f , even an approximate computation of it is a non-trivial
problem. Barron’s theorem claims that any function f from
the Barron space of Ω can be approximated by a two-layer
neural network f̃(x) =

∑T
i=1 biσ(a

⊤
i x+ ci) in such a way

that ∥f − f̃∥L2(Ω,µ) ≪
Cf,Ω√

T
. The norm Cf,Ω in Barron’s

theorem plays the role of the function’s complexity and is
analogous to ∥f∥H

Σ(1)
in (4).

This subsection is dedicated to describing a relationship
between these two norms, Cf,Ω and ∥f∥H

Σ(1)
, for a spe-

cial domain Ω = Sn−1. The case Ω = Sn−1 plays a spe-
cial role in the analysis of NNGPs Bach [2017a], Geif-
man et al. [2020], Chen and Xu [2021] due to the fact that
Σ(L)(x,y) = k(x⊤y) for some function k, i.e. the NNGP
Σ(L) is the so-called zonal kernel. We analyze this issue to
find the conditions under which an approximation error guar-
anteed by the random features model (RFM) is better than
an approximation error guaranteed by Barron’s theorem.
Since our results hold for any zonal kernel (not necessarily
the NNGP kernel), we will formulate them for a general
zonal kernel K.

A well-known fact from the theory of RKHSs states that
HK is isomorphic to L = O

1/2
K [L2(Ω, ν)] equipped with

the inner product ⟨O1/2
K [f ],O

1/2
K [g]⟩L = ⟨f, g⟩L2(Ω,ν)

where OK : L2(Ω, ν) → L2(Ω, ν) is defined by
OK [f ](x) =

∫
Ω
K(x,y)f(y)dν(y) and ν is assumed to

be non-degenerate on Ω Cucker and Zhou [2007].

A measure ν can be defined as the surface volume measure
on Sn−1 and eigenvectors of OK are real-valued spherical
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harmonics. Let Yk,j : Sn−1 → R, j = 1, · · · , N(n, k) be
an orthonormal basis in a space of spherical harmonics of
order k = 0, 1, · · · (w.r.t. the inner product in L2(Sn−1, ν)).
Then for any x,y ∈ Sn−1 we have

K(x,y) =

∞∑
k=0

λk

N(n,k)∑
j=1

Yk,j(x)Yk,j(y),

where OK [Yk,j ] = λkYk,j , i.e. λk is an eigenvalue of OK .
For more information on spherical harmonics, we refer
to Frye and Efthimiou [2012].

Thus, the RKHS HK can be characterized as the set

{
∞∑
k=0

σk

N(n,k)∑
j=1

xkjYk,j |
∞∑
k=0

N(n,k)∑
j=1

x2kj <∞}.

where σk =
√
λk.

Our first result claims that if eigenvalues {λk} decay slowly
enough, then BHK

is an unbounded set w.r.t. the norm
Cf,Sn−1 .

Theorem 5. Let K be a zonal Mercer kernel and {λk} be

its eigenvalues. If lim sup
k→+∞

λkk
n+2

3√
log k

= +∞, then BHK
is an

unbounded set in the Barron space of Sn−1.

This result can be directly applied to almost all popular
activation functions. E.g., for the function σ(x) = xα+ where
x+ = x+|x|

2 , eigenvalues of the NNGP for a neural network
with a single hidden layer were calculated in Bach [2017a].
It was shown that λk ≍ cnk

−n if k > 0 is even. This
case captures the step function (α = 0) and the ReLU
activation function (α = 1). The previous theorem implies
that

Cf,Sn−1

∥f∥HK
can be made arbitrarily large. If an activation

function is bounded additionally, e.g. as the step function,
then according to Remark 1, some functions have a succinct
representation as a 2-Layer NNs (that can be found using
RFM), with a much better approximation error than the one
guaranteed by Barron’s theorem.

A corresponding inclusion result is given below.

Theorem 6. Let K be a zonal Mercer kernel and {λk} be
its eigenvalues. If

∑∞
k=0 λkk

n+ 2
3 < +∞, then BHK

is a
bounded set in the Barron space of Sn−1.

Thus, if eigenvalues decay substantially faster than 1

kn+2
3

,
e.g. exponentially fast, one can derive that Cf,Sn−1 ≤
c∥f∥HK

for some constant c > 0. This is the case when the
representation guaranteed by Theorem 4 is not shorter than
the representation of Barron’s theorem. Examples of activa-
tion functions for which eigenvalues decay very fast include
a) the Gaussian function, b) the cosine function, and c) the
sine function. Indeed, the following theorems hold (their
proofs can be found in the Appendix H and the Appendix I).

Theorem 7. Let σ(x) = e−
x2

2 , Ω = Sn−1 and K is the
NNGP kernel given by (1). Then, λ2k+1 = 0 and λ2k ≪n

2−2kk−
n
2 .

Theorem 8. Let Ω = Sn−1 and K be defined by (1). For
the case σ(x) = cos(ax), we have λ2k+1 = 0 and λ2k ≪n

a4k
√
k22kΓ(2k+n−1

2 )
. Analogously, for the case σ(x) = sin(ax),

we have λ2k = 0 and λ2k+1 ≪n a4k+2
√
k22kΓ(2k+n+1

2 )
.

To summarize, we demonstrate that there is a sharp differ-
ence between two types of activation functions, those for
which eigenvalues of OK decay slower than k−n− 2

3 (mod-
ulo a logarithmic factor) and those for which eigenvalues
decay much faster than k−n− 2

3 . For the first type of acti-
vation functions, we can guarantee that 2-NNs trained by
RFM can approximate functions that are not captured by
Barron’s theorem.

Remark 3. In the proof of Theorem 5 we construct a func-
tion Yk (its structure is described in Lemma 9) that be-
longs to the space of harmonics of order k and has a unit
L2(Sn−1)-norm as well as a moderate L∞(Sn−1)-norm.
Our analysis shows that norms of that function in the Bar-
ron space of Sn−1 and in HΣ(1) (for all popular activation
functions σ) rapidly grow with an increase of k and blow up
for moderate k. In the experimental part of the paper (Sec-
tion 5) we study the learnability of this function using 2-NNs
by RFM and a gradient-based algorithm. Our results show
that Yk is not a hard target for a gradient-based algorithm
even for moderate k’s. We discuss that this example shows
that the approximation power of 2-NNs, as well as their
learnability by the gradient descent, are definitely beyond
the guarantees of Barron’s theorem, the RFM, and the NTK
theory.

5 EXPERIMENTS

Decay rate of eigenvalues for popular activation func-
tions. As pointed out in Section 4.1, activation functions can
be conventionally classified into two classes: those for which
Theorem 4 guarantees the existence of functions which has
(a) a large norm in the Barron space and (b) approximable
by 2-NN, and those for which such guarantees can not be
made. For the domain Ω = Sn−1, the difference between
them depends on the behavior of eigenvalues of degree k of
the integral operator OK . Let µi be an eigenvalue of rank
i in a set of eigenvalues of OK listed in decreasing order
(counting multiplicities).

An empirical method that distinguishes between these two
classes of activation functions is based on drawing a scat-
ter plot and making a linear regression between log(i) and
log(µ̂i), where µ̂i is an eigenvalue of rank i of the empirical
kernel matrix [Kemp(xi,xj)]

N
i,j=1 where Kemp(x,y) =

5



Figure 2: log(µ̂i) versus log(i) scatter plots for different activation functions with linear regression lines. For relu and erf,
eigenvalues of analytically computed NNGP kernels are given for comparison.

1
M

∑M
i=1 σ(ω

⊤
i x)σ(ω

⊤
i y) and {ωi}M1 are sampled accord-

ing to N (0, In), {xi}N1 are sampled uniformly on a sphere
Sn−1. A justification of this method is based on the fact that
µ̂i ≈ µi if i is substantially smaller than N Braun [2006]
and M is chosen large enough to estimate the NNGP kernel
accurately. In our experiments we set M = N = 20000.
Since the multiplicity of an eigenvalue of order k isN(n, k),
a list of µi’s should contain segments of equal eigenvalues.
We observe this pattern in empirical µ̂i’s at the beginning
of their list. This allowed us (without any substantiation) to
use the following rule of thumb to identify the number of
eigenvalues to be included in a training set for linear regres-
sion: as eigenvalues which we associate with some order k
align into a group with an angle of inclination smaller than
π
4 , we assume them to be close to theoretical values.

For popular activation functions and n = 3, our results are
given in Figure 2. For comparison, we also give 2 plots (for
ReLU and erf) for which eigenvalues were computed from
an empirical kernel matrix but the kernel function itself was
given by an analytical formula. As expected, scatter plots
for ReLU and σ1(x) = ReLU(x) − ReLU(x − 1) are al-
most identical. Since eigenvalues satisfy λk ≍n k−n for
ReLU Geifman et al. [2020], it is natural to conjecture that
the same decay rate holds for σ1 too. Exponential decay
rates for the Gaussian and the cosine activation functions
are proved in Appendix H and Appendix I, and scatter plots
fully verify those estimates. For the sigmoid and the hy-
perbolic tangent functions, eigenvalues seem also to decay
exponentially, though our interpretation of scatter plots is
indecisive due to the lack of any other evidence on the form
of the NNGP in that case.

To summarize, we include ReLU and σ1 in the first class and

the Gaussian, the cosine, and the sine (and likely, sigmoid
and tanh) in the second class. Note that the multiplicity of
an eigenvalue of order k, i.e. of λk, is N(n, k) ≍n kn−2.
Therefore, if λk ≍n k−n− 2

3 , then an eigenvalue of rank

i asymptotically behaves like µi ≍n i−
n+2

3
n−1 . Activation

functions of the first class should have an absolute value
of the slope of the regression function smaller than n+ 2

3

n−1 ,
or 11

6 ≈ 1.83 for n = 3. Definitely, a plot for ReLU
should have the slope − n

n−1 = −1.5, due to the fact that
λk ≍n k−n. This is in tension with the first two scatter
plots of Figure 2 where the slope is larger, i.e. 2.7-2.9. We
attribute this to the insufficiency in the number of accurately
computed eigenvalues, i.e. probably the slope decreases
slightly for larger ranks.

Learnability of Yk by random features model (RFM).
In the proof of Theorem 5 a lower bound on CYk,Sn−1 was
given for a certain function Yk. The function itself was
described in the proof of Lemma 9. It can be simply defined
by Yk =

∑N(n,k)
j=1 xjYk,j where x ∈ RN(n,k) is a random

vector distributed according to the uniform distribution on
Sn−1.

We experimented with the learnability of Yk by random fea-
tures model (RFM), i.e. a 2-NN with a single layer of hidden
neurons in which only the output layer’s weights are trained
(in fact, they are also not trained, but analytically computed
using a linear regression formula). Also, we experimented
with an optimized RFM (RFM+opt), which is a method in
which we first compute weights by RFM and afterward train
weights (of both the first and the second layer) by Adam. Ac-
cording to the inequality (4), the square of the HΣ(1)-norm
is proportional to the number of neurons that is enough to

6



Figure 3: Achieved MSE when learning Yk by random features model as a function of the number of hidden neurons (n = 4).
Pictures for other n can be found in the Appendix.

approximate the target function (also, from the construction

of Theorem 4 it is clear that
∥Yk∥2

H
Σ(1)

ε2 is an upper bound on
the number of neurons needed for RFM to ε-approximate
the target function). Since eigenvalues of ReLU (σ1, Tanh,
sigmoid) NNGP kernel Σ(1) decay slower than in the case of
the cosine/gaussian activation, Yk has a smaller RKHS norm
(∥Yk∥H

Σ(1)
= 1

λk
), and it is natural to expect that Yk will

be better approximated by the first type of networks than by
cosine/gaussian networks. As Figure 3 shows, this is indeed
the case for RFM (figures for RFM+opt can be found in the
Appendix and they show that the role of the initialization
step fade away as we train all weights). This means that our
separation of activation functions into two classes can be
understood in the following way. For the first class of activa-
tions (λk ≫ k−n− 2

3 log1/2 k), RFM often allows to simply
construct an approximation that is better than the one that
is guaranteed by Barron’s theorem. For the second class of
activations, this cannot be done by RFM. Note that, unlike
HΣ(1)-norm, Barron’s norm does not depend on σ. Unlike
RFM, Barron’s approximation is quite non-constructive. For
the second type of activation function, it is an interesting
open problem how to simply and “without any optimization”
approximate a function better than Barron’s approximation.

Learnability of Yk by gradient-based methods: a tension
with the NTK theory. For the domain Ω = Sn−1 not only
the NNGP kernel is zonal, but also the NTK is. Therefore,
theorems 5 and 6 can be applied to the NTK. Let us denote
the NTK of a 2-layer NN by K. According to Remark 4,
both the norm of Yk in the Barron space and the norm of
Yk in HK grow very rapidly with k. In other words, neither
Barron’s theorem nor Theorem 4 guarantees the existence
of a short 2-NN that approximates Yk. Moreover, according

to the NTK theory, this function must be a hard target for
the gradient descent training of 2-NNs, in the infinite width
limit. Let us show that.

Recall that 2-NNs trained by the gradient descent, in the
infinite width limit, with a weight vector properly initial-
ized to w0 and with a regularization term λ∥w − w0∥2,
are equivalent to the Kernel Ridge Regression, i.e. to the
optimization task minf∈HK

MSE(f) + λ∥f∥2HK
Hu et al.

[2020]. Therefore, a large norm of Yk in HK means that λ
must be a small parameter for such a 2-NN to succeed, or
alternatively, the optimal weight vector should be located
far from the initialization w0.

Those considerations make us expect that this function is
hard to approximate by a 2-NN, and is especially hard to
learn if an activation function has the NTK eigenvalues de-
creasing exponentially fast (like the Gaussian or the cosine
functions). However, our experiments show that Yk can be
successfully trained by gradient-based methods. Moreover,
the performance of different activation functions contra-
dicts the NTK theory. Certainly, this outcome is due to the
finiteness of real neural networks.

A synthetic supervised dataset with Yk as a target func-
tion was generated. A loss function to minimize was set
to the mean squared error (MSE), and an optimization al-
gorithm was set to the Adam optimizer with the learning
rate 0.01 Kingma and Ba [2015]. We experimented with the
number of neurons of a hidden layer equal to 256 and 1024.
On Figure 4 one can see the behavior of the loss function
(averaged over 5 independent repeated experiments) during
the training process for 2-NNs with activation functions (a)
σ(x) = e−

x2

2 , (b) σ(x) = cos(x), (c) σ(x) = ReLU(x).

7



Figure 4: MSE dynamics during learning Yk by a 2-NN with the number of hidden neurons 256 and 1024 (rows) and an
activation function (columns): (a) σ(x) = e−

x2

2 , (b) σ(x) = cos(x), (c) σ(x) = ReLU(x).

As we see, the Gaussian function outperforms the cosine
function, and the cosine function outperforms the ReLU for
all orders k. The achieved MSE for the Gaussian function is
non-trivial (i.e. smaller than the baseline 1.0 corresponding
to a trained zero function) for all k = 1, · · · , 21, while the
cosine function fails for k ≥ 14 and the ReLU fails for k ≥
10. Plots are given for n = 3, though we report very similar
results for spherical harmonics in higher dimensions (using
a code with precomputed spherical harmonics Dutordoir
et al. [2020]). Possibly, looking into the case of n = 2
allows us to explain the described picture. In that case, S1 is
isomorphic to [0, 2π] with its endpoints identified, L2(S1)
corresponds to periodic functions on [0, 2π], and Yk can be
given as Yk(x) = cos(kx+ϕ). Therefore, it is not surprising
that Yk can be trained by a 2-NN with the cosine activation
function or the Gaussian function (the latter is capable of
approximating cosine’s waves).

To summarize, we conclude that even if a function’s norms
blow up in HK , this does not necessarily imply its hardness
as a target for the gradient descent training of 2-NNs. These
figures demonstrate that the approximation theorems that
we analyzed are responsible only for certain aspects of the
approximation power of NNs. Moreover, the Neural Tangent
Kernel theory definitely does not explain the learnability of
functions by 2-NNs with a finite width of hidden layers.

Other experiments can be found in the Appendix. Our code
is available on github to facilitate the reproducibility of the
results.

6 CONCLUSIONS

The paper is dedicated to an approximation theory of multi-
layer feedforward neural networks based on the NNGP ker-

nel. We show that if a function has a moderate norm in the
RKHS defined by the NNGP kernel, then it can be success-
fully approximated by a corresponding NN.

Besides this, we compare two functional norms, the Barron
norm and the RKHS norm of zonal kernels. We classified
all activation functions into two groups, those for which the
norm in the Barron space is not dominated by the RKHS
norm, and those for which the opposite is true. We gave
examples of activation functions for both classes. We ob-
served that random spherical harmonics of order k have
large norms in both spaces, yet are very well learnable by
gradient-based methods with realistic neural networks. It is
a topic of future research to study theoretically why such
functions are accurately approximable and easily learnable
by practical NNs.
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A PROOF OF THEOREM 1

Proof. By construction,

Σ̃(L)(x,x′) = EW (1),··· ,W (L) [α(L)(x, θ)α(L)(x′, θ)]. (6)

where W (1)
ij ∼ N (0, 1) and W (h)

ij ∼ N (0, 1
nh−1

), h = 2, · · · , L.

Let L2(θ) denote the Hilbert space of real-valued functions on
∏L−1

h=1 Rnh×nh−1 ×RnL with the inner product ⟨f, g⟩L2(θ) =

EW (1),··· ,W (L) [f(W (1), · · · ,W (L))g(W (1), · · · ,W (L))]. The latter object is simply a weighted L2-space.

Let H0 be a span of {Σ̃(L)(x, ·)}x∈Ω equipped with the inner product ⟨
∑k

i=1 aiΣ̃
(L)(xi, ·),

∑l
i=1 biΣ̃

(L)(yi, ·)⟩H0 =∑k
i=1

∑l
j=1 aibjΣ̃

(L)(xi,yj). Now let us assume that f ∈ HΣ̃(L) . Recall that HΣ̃(L) is a completion H0, therefore, we
have

∀x ∈ Ω, f(x) = lim
i→+∞

fi(x),

where fi =
∑mi

j=1 aijΣ̃
(L)(xij , ·) and lim

i→+∞
sup
p∈N

∥fi+p − fi∥H0 = 0. Using (6) we conclude that the Cauchy sequence

fi =
∑mi

j=1 aijΣ̃
(L)(xij , ·) satisfies

⟨fi, fi′⟩H
Σ̃(L)

=

mi∑
j=1

mi′∑
j′=1

aijai′j′Eθ[α
(L)(xij , θ)α

(L)(xi′j′ , θ)] = ⟨
mi∑
j=1

aijα
(L)(xij , ·),

mi′∑
j′=1

ai′j′α
(L)(xi′j′ , ·)⟩L2(θ).

Thus, ⟨fi, fi′⟩HK
= ⟨gi, gi′⟩L2(θ) where

gi =

mi∑
j=1

aijα
(L)(xij , ·).

From ∥fi − fi′∥H
Σ̃(L)

= ∥gi − gi′∥L2(θ) we conclude that {gi} is also a Cauchy sequence, but in L2(θ). Let us denote its
limit in L2(θ) by g. Note that ∥g∥L2(θ) = ∥f∥H

Σ̃(L)
.

Since σ is bounded we conclude that α(L)(x, ·) ∈ L2(θ) for any x ∈ Ω. Thus, we conclude

⟨g, α(L)(x, ·)⟩L2(θ) = lim
k→+∞

⟨gk, α(L)(x, ·)⟩L2(θ) = lim
i→+∞

mi∑
j=1

aijΣ̃
(L)(xij ,x) = f(x).

Thus, we obtained a key integral representation for f :

f(x) = EW (1),··· ,W (L) [g(W (1), · · · ,W (L))α(L)(x,W (1), · · · ,W (L))].
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Let us introduce T independent copies of θ: θ1, · · · , θT . We define

f̃(x, {θi}Ti=1) =
1

T

T∑
i=1

g(θi)α
(L)(x, θi).

By construction, f(x) = Eθi [f̃(x, {θi}Ti=1)]. Further, we bound the variance of the distance between f and f̃ by

Eθi

[
∥f − f̃(·, {θi}Ti=1)∥2L2(Ω,µ)

]
=

Eθi

(
⟨f, f⟩L2(Ω,µ) − 2⟨f, f̃(·, {θi}Ti=1)⟩L2(Ω,µ) + ∥f̃(·, {θi}Ti=1)∥2L2(Ω,µ)

)
=

EX∼µEθi

[
|f̃(X, {θi}Ti=1)|2

]
− ⟨f, f⟩L2(Ω,µ) = EX∼µ

[
Varθi [f̃(X, {θi}Ti=1) | X]

]
.

One can unfold Varθi [f̃(X, {θi}Ti=1) | X] in the following way:

Varθi [
1

T

T∑
i=1

g(θi)α
(L)(X, θi) | X] =

Varθi [g(θi)α
(L)(X, θi) | X]

T
.

Using boundedness of σ and Eθi

[
|g(θi)|2

]
= ∥f∥2H

Σ̃(L)
we conclude that

Varθ[g(θi)α
(L)(X, θi)] ≤ E[|g(θi)α(L)(X, θi)|2] ≤ ∥σ∥2∞∥f∥2H

Σ̃(L)
,

and

Eθi

[
∥f − f̃(·, {θi}nL+1

i=1 )∥2L2(Ω,µ)

]
= EX∼µ

[
Varθi [f̃(X, {θi}

nL+1

i=1 ) | X]
]
≤

∥σ∥2∞∥f∥2H
Σ̃(L)

T
.

Since the latter expected value is smaller than
∥σ∥2

∞∥f∥2
H

Σ̃(L)

T , then there exist {θi} such that ∥f − f̃(·, {θi}Ti=1)∥2L2(Ω,µ) ≤
∥σ∥2

∞∥f∥2
H

Σ̃(L)

T , from which the statement of the theorem follows directly.

B PROOF OF THEOREM 2: CONCENTRATION OF Σ
(h)
emp(x,x′) AROUND ITS MEAN

Let us define M+ ⊆ R2×2 as a set of positive definite 2× 2-matrices. For a given function ψ : R → R, let us introduce the
mapping ψ : M+ → R by ψ(Σ) = E(u,v)∼N (0,Σ)[ψ(u)ψ(v)]. For completeness, properties of ψ that we will need (with
their proofs) are given in Section E.

Let us denote

γ(h) = sup
x,x′

Var[Σ(h)
emp(x,x)] + Var[Σ(h)

emp(x
′,x′)] + 2Var[Σ(h)

emp(x,x
′)]. (7)

Lemma 1. For h = 0, · · · , L− 1, we have

Var[Σ(h+1)
emp (x,x′)] ≤ E[σ2(Λ

(h)
emp(x,x′))]

nh+1
+Var[σ(Λ(h)

emp(x,x
′))].

Proof. Σ
(h+1)
emp (x,x′) can be represented as

Σ(h+1)
emp (x,x′) =

1

nh+1

nh+1∑
i=1

σ(

nh∑
j=1

W
(h+1)
ij α

(h)
j (x, θ))σ(

nh∑
j=1

W
(h+1)
ij α

(h)
j (x′, θ)).

Given W1, · · · ,Wh, σ(
∑nh

j=1W
(h+1)
ij α

(h)
j (x, θ)) are independent for different i = 1, · · · , nh+1. Therefore,

Var[Σ(h+1)
emp (x,x′) |W1, · · · ,Wh] =

1

n2h+1

nh+1∑
i=1

Var[σ(

nh∑
j=1

W
(h+1)
ij α

(h)
j (x, θ))σ(

nh∑
j=1

W
(h+1)
ij α

(h)
j (x′, θ)) |W1, · · · ,Wh] =

1

nh+1
(σ2(Λ(h)

emp(x,x
′))− σ(Λ(h)

emp(x,x
′))2) ≤ σ2(Λ

(h)
emp(x,x′))

nh+1
.

12



By the law of total variance, we have

Var[Σ(h+1)
emp (x,x′)] = EW (1),··· ,W (h) [Var[Σ(h+1)

emp (x,x′) |W (1), · · · ,W (h)]]+

VarW (1),··· ,W (h) [E[Σ(h+1)
emp (x,x′) |W (1), · · · ,W (h)]].

From the former, we conclude that the first term is bounded by
E[σ2(Λ(h)

emp(x,x
′))]

nh+1
. The expression inside the second term, by

construction, is

E[Σ(h+1)
emp (x,x′) |W (1), · · · ,W (h)] = σ(Λ(h)

emp(x,x
′)).

After we plug in σ(Λ(h)
emp(x,x′)) into the second term we obtain the needed inequality.

By construction, |σ2(Σ)| ≤ ∥σ∥4∞, therefore, the first term in the latter lemma is bounded by ∥σ∥4
∞

nh+1
. From Lemma 8 we

obtain that σ(Σ) is Lipschitz w.r.t. to the Frobenius norm if σ, σ′ and σ′′ are all bounded. The following lemma specifies
our bound for such activation functions σ.

Lemma 2. If σ2 is bounded by c1 and σ is c2-Lipschitz w.r.t. the Frobenius norm, then

Var[Σ(h+1)
emp (x,x′)] ≤ c1

nh+1
+ c22γ

(h).

Proof. Let us denote by Λ
(h)
emp−c(x,x

′) an independent copy of Λ(h)
emp(x,x′). Then, from c2-Lipschitzness of σ we obtain

Var[σ(Λ(h)
emp(x,x

′))] =
1

2
E[
(
σ(Λ(h)

emp(x,x
′))− σ(Λ

(h)
emp−c(x,x

′))
)2
] ≤

c22
2
E[∥Λ(h)

emp(x,x
′)− Λ

(h)
emp−c(x,x

′)∥2F ] = c22Var[Σ
(h)
emp(x,x)] + c22Var[Σ

(h)
emp(x

′,x′)] + 2c22Var[Σ
(h)
emp(x,x

′)].

After we plug in the latter bound into the R.H.S. of the previous lemma, we obtain the needed statement.

Proof of Theorem 2.. The previous lemma, together with Lemma 8, indicates that γ(h+1) satisfies

γ(h+1) ≤ 4c1
nh+1

+ 4c22γ
(h).

where c1 = ∥σ∥4∞ and c2 = max(∥σ′′∥∞∥σ∥∞, ∥σ′∥2∞).

Since γ(0) = 0, by applying the latter h times we obtain

γ(h) ≤ 4c1(
1

nh
+

4c22
nh−1

+ · · ·+ (4c22)
h−1

n1
). (8)

Finally,

2Var[Σ(h)
emp(x,x

′)] ≤ γ(h) ≤ 4c1(
1

nh
+

4c22
nh−1

+ · · ·+ (4c22)
h−1

n1
),

and the proof is completed.

C PROOF OF THEOREM 3: AN APPROXIMATION OF Σ̃(h)(x,x′) BY Σ(h)(x,x′)

Note that Σ(h+1)(x,x′) = σ(Λ(h)(x,x′)). Relationship between their finite versions, i.e. Σ̃(h+1)(x,x′) and Σ̃(h)(x,x′) is
trickier.

Lemma 3. If σ is twice continuously differentiable and | ∂2σ(Σ)
∂Σa,b∂Σc,d

| ≤ C, we have

|Σ̃(h+1)(x,x′)− σ(Λ̃(h)(x,x′))| ≤ 4Cγ(h).

13



Proof. We have

Σ̃(h+1)(x,x′) = E[σ(
nh∑
j=1

W
(h+1)
ij α

(h)
j (x, θ))σ(

nh∑
j=1

W
(h+1)
ij α

(h)
j (x′, θ))] =

EW (1),··· ,W (h)

[
EW (h+1) [σ(

nh∑
j=1

W
(h+1)
ij α

(h)
j (x, θ))σ(

nh∑
j=1

W
(h+1)
ij α

(h)
j (x′, θ)) |W (1), · · · ,W (h)]

]
=

EW (1),··· ,W (h) [σ(Λ(h)
emp(x,x

′))].

Since σ is twice continuously differentiable, we have

σ(Λ(h)
emp(x,x

′)) = σ(Λ̃(h)(x,x′)) + ⟨ ∂σ
∂Σ

(Λ̃(h)(x,x′)),Λ(h)
emp(x,x

′)− Λ̃(h)(x,x′)⟩+∑
{a,b}∈{x,x′}

∑
{c,d}∈{x,x′}

C(a,b),(c,d)(Σ
(h)
emp(a, b)− Σ̃(h)(a, b))(Σ(h)

emp(c, d)− Σ̃(h)(c, d)),

where C(a,b),(c,d) =
∫ 1

0

∂2σ(tΣ(h)
emp+(1−t)Σ̃(h))

∂Σa,b∂Σc,d
(1− t)dt. Since |∂

2σ(tΣ(h)
emp+(1−t)Σ̃(h))

∂Σa,b∂Σc,d
| ≤ C we have |C(a,b),(c,d)| ≤ C. Also,

a spectral norm of any symmetric matrix [aij ] ∈ R4×4 does not exceed 4max aij . Thus, we conclude that

−4C∥Λ(h)
emp(x,x

′)− Λ̃(h)(x,x′)∥2F ≤

σ(Λ(h)
emp(x,x

′))− σ(Λ̃(h)(x,x′))− ⟨ ∂σ
∂Σ

(Λ̃(h)(x,x′)),Λ(h)
emp(x,x

′)− Λ̃(h)(x,x′)⟩ ≤

4C∥Λ(h)
emp(x,x

′)− Λ̃(h)(x,x′)∥2F .

After we apply the expectation to all sides of the inequality we obtain

|E[σ(Λ(h)
emp(x,x

′))]− σ(Λ̃(h)(x,x′))| ≤ 4CE[∥Λ(h)
emp(x,x

′)− Λ̃(h)(x,x′)∥2F ] = 4Cγ(h).

Therefore,

|Σ̃(h+1)(x,x′)− σ(Λ̃(h)(x,x′))| ≤ 4Cγ(h).

Let us denote supx,x′ 2|Σ̃(h)(x,x′)− Σ(h)(x,x′)|+ |Σ̃(h)(x,x)− Σ(h)(x,x)|+ |Σ̃(h)(x′,x′)− Σ(h)(x′,x′)| by γ̃(h).

Lemma 4. If σ is twice continuously differentiable with |∂σ(Σ)
∂Σa,b

| ≤ c and | ∂2σ(Σ)
∂Σa,b∂Σc,d

| ≤ C, then

γ̃(h) ≤ 16C

h−1∑
i=1

(10c)i−1γ(h−i).

Proof. From Lemma 3 and Σ(h+1)(x,x′) = σ(Λ(h)(x,x′)) we obtain

|Σ̃(h+1)(x,x′)− Σ(h+1)(x,x′)| ≤ 4Cγ(h) + |σ(Λ̃(h)(x,x′))− σ(Λ(h)(x,x′))| ≤
4Cγ(h) + c(2|Σ̃(h)(x,x′)− Σ(h)(x,x′)|+ |Σ̃(h)(x,x)− Σ(h)(x,x)|+ |Σ̃(h)(x′,x′)− Σ(h)(x′,x′)|) =

4Cγ(h) + cγ̃(h).

For a ∈ {x,x′} we have

|Σ̃(h+1)(a, a)− Σ(h+1)(a, a)| ≤ 4Cγ(h) + 4c|Σ̃(h)(a, a)− Σ(h)(a, a)| ≤ 4Cγ(h) + 4cγ̃(h).

Therefore,

γ̃(h+1) ≤ 16Cγ(h) + 10cγ̃(h),
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and finally,

γ̃(h) ≤ 16C(γ(h−1) + 10cγ(h−2) + (10c)2γ(h−3) + · · ·+ (10c)h−2γ(1)).

Proof of Theorem 3.. Let us set C = 1
4 max(∥σ′′′′∥∞∥σ∥∞, ∥σ′′′∥∞∥σ′∥∞, ∥σ′′∥2∞) and c =

1
2 max(∥σ∥∞∥σ′′∥∞, ∥σ′∥2∞, 54 ). From Lemma 8 we obtain that |∂σ(Σ)

∂Σa,b
| ≤ c and | ∂2σ(Σ)

∂Σa,b∂Σc,d
| ≤ C. Thus, the

previous lemma gives us

2|Σ̃(h)(x,x′)− Σ(h)(x,x′)| ≤ γ̃(h) ≤ 16C

h−1∑
i=1

(10c)i−1γ(h−i).

From equation (8) we conclude

|Σ̃(h)(x,x′)− Σ(h)(x,x′)| ≤ 8C

h−1∑
i=1

(10c)i−1C1

h−i∑
j=1

Ch−i−j
2

nj
≪

∥σ∥4∞ max(∥σ′′′′∥∞∥σ∥∞, ∥σ′′′∥∞∥σ′∥∞, ∥σ′′∥2∞)

h−1∑
j=1

rj
nj
.

where C1 = 4∥σ∥4∞, C2 = 4max(∥σ′′∥∞∥σ∥∞, ∥σ′∥2∞, 54 )
2 = 16c2 and rj =

∑h−j
i=1 (10c)

iCh−j−i
2 . We have∑h−j

i=1 (10c)
iCh−j−i

2 = (16c2)h−j
∑h−j

i=1 (1.6c)
−i ≤ (16c2)h−j(h− j). Thus,

|Σ̃(h)(x,x′)− Σ(h)(x,x′)| ≪

∥σ∥4∞ max(∥σ′′′′∥∞∥σ∥∞, ∥σ′′′∥∞∥σ′∥∞, ∥σ′′∥2∞)

h−1∑
j=1

max(2∥σ′′∥∞∥σ∥∞, 2∥σ′∥2∞, 52 )
2h−2j(h− j)

nj
.

Setting h = L gives the desired statement.

D PROOF OF THEOREM 4

Lemma 5. Let µ be a probabilistic measure on Ω ⊆ Rn. Let K1,K2 : Ω × Ω → R be two Mercer kernels such that
|K1(x,y) − K2(x,y)| < ε. Then square roots of operators OK1 ,OK2 : L2(Ω, µ) → L2(Ω, µ) where OKi [ϕ](x) =∫
Ω
Ki(x,y)ϕ(y)dµ(y) satisfy

∥O1/2
K1

−O
1/2
K2

∥L2(Ω,µ)→L2(Ω,µ) ≤ cε1/2,

where c is some universal constant.

Proof. We have

∥OK1
−OK2

∥L2(Ω,µ)→L2(Ω,µ) = sup
∥ϕ∥L2

≤1

|
∫
Ω

(K1(x,y)−K2(x,y))ϕ(x)ϕ(y)dµ(x)dµ(y)| ≤

ε sup
∥ϕ∥L2

≤1

∥ϕ∥2L1(Ω,µ) ≤ ε sup
∥ϕ∥L2

≤1

∥ϕ∥2L2(Ω,µ) = ε.

Thus, ∥OK1
− OK2

∥L2(Ω,µ)→L2(Ω,µ) ≤ ε. The space of Hölder functions of order α ∈ (0, 1) is denoted by Λα(R). For
f : R → R from that space, we denote its α-Hölder norm by ∥f∥Λα(R) = supx ̸=y

|f(x)−f(y)|
|x−y|α . According to a result

of Aleksandrov and Peller [2016], for any Hilbert space H and bounded self-adjoint operators A,B on H, we have
∥f(A) − f(B)∥H→H ≤ c(1 − α)−1∥A − B∥αH→H, where c is a universal constant. For f(x) =

√
max(x, 0) we have

∥f∥Λ1/2(R) = 1 and, therefore, we have

∥O1/2
K1

−O
1/2
K2

∥L2(Ω,µ)→L2(Ω,µ) ≤ c∥OK1
−OK2

∥1/2L2(Ω,µ)→L2(Ω,µ) ≤ cε1/2.
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Lemma 6. Let µ be a probabilistic nondegenerate Borel measure on compact Ω ⊆ Rn. Let K1,K2 : Ω × Ω → R be
two Mercer kernels such that |K1(x,y) − K2(x,y)| < ε. Then, for any f1 ∈ HK1 there exists f2 ∈ HK2 such that
∥f1∥HK1

= ∥f2∥HK2
and ∥f1 − f2∥L2(Ω,µ) ≤ cε1/2∥f1∥HK1

.

Proof. According to Corollary 4.13 from Cucker and Zhou [2007], the RKHS for the kernel K : Ω × Ω → R can be
characterized as

HK = O
1/2
K [L2(Ω, µ)],

and any function f ∈ HK can be written as f = O
1/2
K [g], g ∈ L2(Ω, µ) with ∥f∥HK

= ∥g∥L2(Ω,µ). Thus, we have

BHKi
= {O1/2

Ki
[ϕ] | ϕ ∈ L2(Ω, µ), ∥ϕ∥L2

= 1}.

Therefore, for f1 ∈ HK1
there exist ϕ ∈ L2(Ω, µ), ∥ϕ∥L2(Ω,µ) = ∥f1∥HK1

such that f1 = O
1/2
K1

[ϕ]. Let us now define

f2 = O
1/2
K2

[ϕ]. By construction, f2 ∈ HK2
and ∥f1∥HK1

= ∥f2∥HK2
. Also, using Lemma 5, we have

∥f1 − f2∥L2(Ω,µ) = ∥(O1/2
K1

−O
1/2
K2

)[ϕ]∥L2(Ω,µ) ≤ cε1/2∥ϕ∥L2(Ω,µ) = cε1/2∥f1∥HK1
.

Proof of Theorem 4. First, Theorem 3 gives us

|Σ̃(L)(x,x′)− Σ(L)(x,x′)| ≤ ε,

where

ε = R∥σ∥4∞ max(∥σ′′′′∥∞∥σ∥∞, ∥σ′′′∥∞∥σ′∥∞, ∥σ′′∥2∞)

L−1∑
j=1

max(2∥σ′′∥∞∥σ∥∞, 2∥σ′∥2∞, 52 )
2L−2j(L− j)

nj
.

From Lemma 6 we conclude that there exists f1 ∈ HΣ̃(L) such that ∥f1∥H
Σ̃(L)

= ∥f∥H
Σ(L)

and ∥f − f1∥L2(Ω,µ) ≤
c∥f∥H

Σ(L)

√
ε.

Further, using Theorem 1, we construct f̃(x) =
∑T

i=1 wiσ(W
(i,L)σ(· · ·σ(W (i,1)x) · · · ) such that ∥f̃ − f1∥L2(Ω,µ) ≤

∥σ∥∞∥f1∥H
Σ̃(L)√

T
=

∥σ∥∞∥f∥H
Σ(L)√

T
. Finally, from the triangle inequality we conclude

∥f̃ − f∥L2(Ω,µ) ≤ ∥f̃ − f1∥L2(Ω,µ) + ∥f1 − f∥L2(Ω,µ) ≤
∥σ∥∞∥f∥H

Σ(L)√
T

+ c∥f∥H
Σ(L)

√
ε.

E PROPERTIES OF σ

The following lemma is a direct generalization of Lemma 12 from Daniely et al. [2016]. We give its proof for completeness.

Lemma 7. Suppose that ϕ ∈ C2(R2) and ϕ(z) decays faster than e−γ∥z∥2

for any γ > 0 (as ∥z∥ → +∞). Let
Φ : M+ → R be defined by Φ(Σ) = E(X,Y )∼N (0,Σ)[ϕ(X,Y )]. Then, Φ ∈ C1(M+) and

∂Φ(Σ)

∂Σ
=

1

2
E(X,Y )∼N (0,Σ)[

∂2ϕ

∂2z
].

Proof. By definition, we have

Φ(Σ) =
1

2π
√

det(Σ)

∫
R2

ϕ(z)e−
z⊤Σ−1z

2 dz.
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Let us denote Σ =

[
Σ11 Σ12

Σ21 Σ22

]
. It is well-known that for symmetric matrices we have ∂(det(Σ))

∂Σ = ∂(Σ11Σ22−Σ12Σ21)
∂Σ =[

Σ22 −Σ21

−Σ12 Σ11

]
= det(Σ)Σ−1. Let z = [u, v]⊤ and adj(Σ) be the adjoint matrix of Σ. Also, symmetricity of Σ gives us

∂(z⊤Σ−1z)
∂Σ = −Σ−1zz⊤Σ−1, due to

∂(z⊤Σ−1z)

∂Σ
=

∂

∂Σ
(
z⊤adj(Σ)z

det(Σ)
) =

− 1

det(Σ)2

[
Σ22 −Σ21

−Σ12 Σ11

]
(Σ22u

2 +Σ11v
2 − Σ12uv − Σ21uv) + det(Σ)−1

[
v2 −uv
−uv u2

]
=

det(Σ)−2

[
−Σ2

22u
2 − Σ12Σ21v

2 +Σ22Σ12uv +Σ22Σ21uv Σ21Σ22u
2 +Σ21Σ11v

2 − (Σ11Σ22 +Σ2
21)uv

Σ12Σ22u
2 +Σ12Σ11v

2 − (Σ11Σ22 +Σ2
12)uv −Σ12Σ21u

2 − Σ2
11v

2 +Σ11Σ12uv +Σ11Σ21uv

]
=

−det(Σ)−2

[
(Σ22u− Σ21v)

2 (Σ22u− Σ21v)(Σ11v − Σ21u)
(Σ22u− Σ21v)(Σ11v − Σ21u) (Σ11v − Σ21u)

2

]
= −Σ−1zz⊤Σ−1.

Therefore,

∂Φ

∂Σ
=

1

2π

∫
R2

ϕ(z)(−1

2
det(Σ)−

3
2 det(Σ)Σ−1 +

1

2
det(Σ)−

1
2Σ−1zz⊤Σ−1)e−

z⊤Σ−1z
2 dz =

− 1

2π
√

det(Σ)

∫
R2

ϕ(z)
1

2
(Σ−1 − Σ−1zz⊤Σ−1)e−

z⊤Σ−1z
2 dz.

Since

∂

∂z
(e−

z⊤Σ−1z
2 ) = −(Σ−1z)⊤e−

z⊤Σ−1z
2 ,

∂2

∂z2
(e−

z⊤Σ−1z
2 ) = (Σ−1zz⊤Σ−1 − Σ−1)e−

z⊤Σ−1z
2 ,

we conclude

∂Φ

∂Σ
=

1

2

1

2π
√
det(Σ)

∫
R2

ϕ(z)
∂2

∂z2
(e−

z⊤Σ−1z
2 )dz =

1

2
E(X,Y )∼N (0,Σ)[

∂2ϕ

∂2z
].

From the previous lemma the following result is straightforward.

Lemma 8. For any Σ ∈ M+, we have

|∂σ(Σ)
∂Σa,b

| ≤ 1

2
max(∥σ∥∞∥σ′′∥∞, ∥σ′∥2∞),

and

| ∂2σ(Σ)

∂Σa,b∂Σc,d
| ≤ 1

4
max(∥σ′′′′∥∞∥σ∥∞, ∥σ′′′∥∞∥σ′∥∞, ∥σ′′∥2∞).

Proof. From the previous lemma we have |∂σ(Σ)
∂Σ1,1

| = 1
2 |E(u,v)∼N (0,Σ)[σ

′′(u)σ(v)]| ≤ 1
2∥σ

′′∥∞∥σ∥∞. Analogously,

|∂σ(Σ)
∂Σ2,2

| ≤ 1
2∥σ

′′∥∞∥σ∥∞. For cross terms we have |∂σ(Σ)
∂Σ1,2

| = 1
2 |E(u,v)∼N (0,Σ)[σ

′(u)σ′(v)]| ≤ 1
2∥σ

′∥2∞.

For second derivatives using the previous lemma twice gives us ∂2σ(Σ)
∂Σa,b∂Σc,d

= 1
4E(u,v)∼N (0,Σ)[

∂4

∂za∂zb∂zc∂zd
(σ(u)σ(v))]

where z1 = u, z2 = v. Therefore, | ∂2σ(Σ)
∂Σa,b∂Σc,d

| ≤ 1
4 max(∥σ′′′′∥∞∥σ∥∞, ∥σ′′′∥∞∥σ′∥∞, ∥σ′′∥2∞).
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F PROOF OF THEOREM 5

Proof. From the Funk-Hecke formula we obtain that for x,y ∈ Rn,

e−i∥x∥∥y∥x̂T ŷ =

∞∑
k=0

µk(∥x∥∥y∥)
N(n,k)∑
j=1

Yk,j(x̂)Yk,j(ŷ),

where x̂ = x
∥x∥ ,

µk(r) =
Γ(n2 )√
πΓ(n−1

2 )

∫ 1

−1

e−irtPk(t)(1− t2)
n−3
2 dt,

and Pk(x) =
(−1)kΓ(n−1

2 )

2kΓ(k+n−1
2 )

(1− t2)−
n−3
2

dk

dtk
[(1− t2)k+

n−3
2 ] is the kth Gegenbauer polynomial of the parameter α = n−2

2

(Rodrigues’ formula is derived in Frye and Efthimiou [2012]). Using integration by parts we obtain

µk(r) ∝n (−1)k

2kΓ(k + n−1
2 )

(−ir)k
∫ 1

−1

e−irt(1− t2)k+
n−3
2 dt ∝n

(−1)k

2kΓ(k + n−1
2 )

(−ir)k
Γ(k + n−1

2 )Jk+n−2
2

(r)

(r/2)k+
n−2
2

∝n
ikJk+n−2

2
(r)

r
n−2
2

,

where Jk is the Bessel function of order k. In the latter, we used the Formula 8.411.10 from Gradshteyn and Ryzhik [2015].

Thus, we obtain the plain wave expansion in Rn:

e−ixTy ∝n
∞∑
k=0

ik

∥x∥n−2
2 ∥y∥n−2

2

Jk+n−2
2

(∥x∥∥y∥)
N(n,k)∑
j=1

Yk,j(x̂)Yk,j(ŷ).

Note that our version of the plain wave expansion formula slightly differs from the one in which spherical harmonics are
complex-valued (e.g. see page 48 of Avery and Avery [2018]).

Further, our goal will be to construct a function f : Sn−1 → R that has a large norm Cf,Sn−1 , yet a moderate norm in HK .
We will use the following key lemma.

Lemma 9. There exists z ∈ RN(n,k) such that
∑N(n,k)

j=1 z2j = 1 and

∥
N(n,k)∑
j=1

zjYk,j∥L∞(Sn−1) ≪n
√
logN(n, k).

As can be seen from the proof below, the vector z can be simply generated according to the uniform distribution on Sn−1.

Proof. Let us define a new norm ∥ · ∥(∞) on RN(n,k) by

∥ξ∥(∞) = ∥
N(n,k)∑
j=1

ξjYk,j∥L∞(Sn−1).

The Levy mean of the norm ∥ · ∥(∞) is defined by

M(∥ · ∥(∞)) =
( ∫

Sn−1

∥ξ∥2(∞)dν(ξ)
)1/2

.

From Theorem 1 of Kushpel and Tozoni [2012] we have

M(∥ · ∥(∞)) ≤ C log1/2N(n, k).

where C is some universal constant, or
∫
Sn−1 ∥ξ∥2(∞)dν(ξ) ≪ logN(n, k). Therefore, there exists z ∈ RN(n,k) such that

∥z∥2(∞) ≪ ω−1
n−1 logN(n, k) and this completes the proof.
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Let σk =
√
λk. Let us denote Yk =

∑N(n,k)
j=1 zjYk,j where z satisfies the condition from the previous lemma. Since

∥σkYk∥HK
= 1 we will be interested in the norm of σkYk in the Barron space.

Let g : Rn → R be such that g|Sn−1 = σkYk,
∫
Rn ∥ω∥|ĝ(ω)|dω < +∞ and

g(x) = g(0) +

∫
Rn

(eiω
⊤x − 1)ĝ(ω)dω.

Then, Fubini’s theorem combined with the plane wave expansion gives us

σk =

∫
Sn−1

g(x)Yk(x)dν(x) =

∫
Rn

ĝ(ω)

∫
Sn−1

eiω
⊤xYk(x)dν(x)dω ∝n

∫
Rn

ĝ(ω)
(−i)k

∥ω∥n−2
2

Jk+n−2
2

(∥ω∥)Yk(ω̂)dω.

By construction, we have |Yk(ω̂)| ≪n
√
logN(n, k). After using the Hölder’s inequality, we plug in the latter inequality

into the former and obtain

σk ≤n
√

logN(n, k)

∫
Rn

∥ω∥|ĝ(ω)|dω sup
ω∈Rn

|Jk+n−2
2

(∥ω∥)|
∥ω∥n

2
.

Let us fix 0 < γ < 1. For the Bessel function Jν , ν = k + n−2
2 we have the Meissel’s formula (see page 227 in Watson

[1980], also see an equivalent Formula 8.452 from Gradshteyn and Ryzhik [2015]),

Jν(νz) ≍
(νz)νeν

√
1−z2

eνΓ(ν + 1)(1− z2)
1
4 (1 +

√
1− z2)ν

,

which holds for any z ∈ [0, γ] and a large ν. Therefore,

max
r∈[0,νγ]

r−
n
2 Jν(r) = max

z∈[0,γ]
(νz)−

n
2 Jν(νz) ≪ max

z∈[0,γ]

(νz)ν−
n
2 eν

√
1−z2

eνΓ(ν + 1)(1− z2)
1
4 (1 +

√
1− z2)ν

.

A derivative of (ν− n
2 ) log z+ν

√
1− z2−ν log(1+

√
1− z2)− 1

4 log(1−z
2) is z(ν−

n
2

z2 − ν
1+

√
1−z2

+ 1
2−2z2 ). The function

ν−n
2

t + 1
2−2t attains its minimum in [0, 1] when (

ν−n
2

t + 1
2−2t )

′ = −ν−n
2

t2 + 1
2(1−t)2 = 0, i.e. when t = ((2ν−n)−1/2+1)−1.

For large ν we have ν−n
2

((2ν−n)−1/2+1)−1 = ν − n
2 + 1√

2

√
ν − n

2 ≥ ν. Thus, if ν is sufficiently large we always have

ν − n
2

t
+

1

2− 2t
≥ ν ≥ ν

1 +
√
1− t

∀t ∈ [0, 1].

Therefore, the RHS of Meissel’s formula is a growing function of z and the maximum is attained at z = γ. In other words,
we reduced the maximization of r−

n
2 Jν(r) over [0,+∞) to the maximization over [νγ,+∞). Using a uniform bound

from Krasikov [2006], i.e. Jν(r) ≪ ν−
1
3 , we conclude that maxr∈[νγ,+∞] r

−n
2 Jν(r) ≪n ν−

n
2 − 1

3 .

Thus, we have

σk ≤n
√
logN(n, k)ν−

n
2 − 1

3

∫
Rn

∥ω∥|ĝ(ω)|dω.

The latter directly gives a lower bound σkk
n
2

+ 1
3√

logN(n,k)
on the norm of σkYk ∈ HK in the Barron’s space of Sn−1 and completes

the proof.

Remark 4. The lower bound on CσkYk,Sn−1 that was given in the latter proof can be turned into a lower bound on CYk,Sn−1 ,

that is CYk,Sn−1 ≥n k
n
2

+ 1
3√

logN(n,k)
. Since ∥σkYk∥HK

= 1 we also have ∥Yk∥HK
= σ−1

k . Thus, for most of popular activation

functions, both CYk,Sn−1 and ∥Yk∥HK
grow quite rapidly with k. This property makes Yk a target function for testing

boundaries of our approximation theory, Barron’s theorem, and the NTK theory.
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G PROOF SKETCH OF THEOREM 6

Any function f ∈ BHK
can be represented as

f =

∞∑
k=0

σkxkZk

where
∑∞

k=0 x
2
k ≤ 1 and Zk : Sn−1 → R is a spherical harmonics of order k such that ∥Zk∥L2(Sn−1) = 1. Our goal is

to construct g : Rn → R such that g|Sn−1 = f and the integral
∫
Rn ∥ω∥|ĝ(ω)|dω is as small as possible. First we will

define gk such that gk|Sn−1 = σkZk and then set g =
∑∞

k=0 xkgk. The key inequality that bounds the latter integral is the
following one:

∫
Rn

∥ω∥|ĝ(ω)|dω ≤
∞∑
k=0

|xk|
∫
Rn

∥ω∥|ĝk(ω)|dω ≤
( ∞∑
k=0

(

∫
Rn

∥ω∥|ĝk(ω)|dω)2
)1/2

.

Thus, we only need the series
∑∞

k=0(
∫
Rn ∥ω∥|ĝk(ω)|dω)2 to be converging and this will guarantee that BHK

is bounded
in the Barron space.

First, let us define Gk in such a way that

Ĝk(ω) = σktk(∥ω∥)δ(∥ω∥ − (k +
n− 2

2
))Zk(ω̂),

where tk is to be specified later in order to satisfy Gk|Sn−1 = σkZk and δ is the Dirac delta function. Note that Ĝk is a
tempered distribution, not an ordinary function. Thus, Gk equals

Gk(x) =

∫
Rn

Ĝk(ω)eiω
⊤xdω =

∫
Rn

Ĝk(ω)

∞∑
k′=0

(−i)k
′

∥x∥n−2
2 ∥ω∥n−2

2

Jk′+n−2
2

(∥x∥∥ω∥)
N(n,k′)∑
j=1

Yk′,j(x̂)Yk′,j(ω̂)dω =

(−i)kσkZk(x̂)

∥x∥n−2
2

∫ ∞

0

tk(r)δ(r − (k +
n− 2

2
))Jk+n−2

2
(∥x∥r)r n

2 dr.

If x ∈ Sn−1, then Gk(x) = (−i)kσkZk(x)tk(k +
n−2
2 )Jk+n−2

2
(k + n−2

2 )(k + n−2
2 )

n
2 . Thus, in order to have Gk(x) =

σkZk(x) we need to set tk to any smooth function such that tk(k + n−2
2 ) = ik

J
k+n−2

2
(k+n−2

2 )(k+n−2
2 )

n
2

. Since Jk+n−2
2

(k +

n−2
2 ) ≍ (k + n−2

2 )−1/3, we conclude that

|t(k + n− 2

2
)| ≪n k−

n
2 + 1

3 .

Therefore, ∫
Rn

∥ω∥|Ĝk(ω)|dω = σk

∫ ∞

0

tk(r)r
nδ(r − (k +

n− 2

2
))dr

∫
Sn−1

|Zk(ω̂)|dν(ω̂) ≪n

σktk(k +
n− 2

2
)(k +

n− 2

2
)n ≪n σkk

n
2 + 1

3 .

Now it remains to define gk in such a way that ĝk is an ordinary function, unlike Ĝk. This can be done by simply substituting

the delta function with the Gaussian Nε(x) = (2πϵ2)−
1
2 e−

x2

2ϵ2 , i.e. by setting

ĝk(ω) = σktk(∥ω∥)Nεk(∥ω∥ − (k +
n− 2

2
))Zk(ω̂),

for the sequence εk = 2−2k . After that, both gk and ĝk are ordinary functions and this completes the proof.
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H THE CASE OF THE GAUSSIAN ACTIVATION FUNCTION

Let us now consider the case σ(x) = e−
x2

2 . For this case, the NNGP can be computed directly. By definition, we have

K(x,x′) =

∫
R2

σ(u)σ(v)G(u, v|Σx,x′)dudv,

where G(s|Σx,x′) = 1
2πdet(Σx,x′ )1/2

exp(−
s⊤Σ−1

x,x′s

2 ). Therefore,

1

2π

∫
R2

e−
∥s∥2

2
1

det(Σx,x′)1/2
exp(−

s⊤Σ−1
x,x′s

2
)ds =

1

det(I2 +Σx,x′)1/2
.

Since det(I2 +Σx,x′) = 1 + x⊤x+ x′⊤x′ + ∥x∥2 · ∥x′∥2 − (x⊤x′)2, we conclude

K(x,x′) =
1

(1 + x⊤x+ x′⊤x′ + ∥x∥2 · ∥x′∥2 − (x⊤x′)2)1/2
. (9)

Let us analyze further the case Ω = Sn−1.

Proof of Theorem 7. For that case we have

K(x,x′) =
1

(4− (x⊤x′)2)1/2
= f(x⊤x′),

where f(t) = 1√
4−t2

.

From the Funk-Hecke formula we obtain

λk =
Γ(n2 )√
πΓ(n−1

2 )

∫ 1

−1

f(t)Pk(t)(1− t2)
n−3
2 dt

where Pk is the kth Gegenbauer polynomial of the parameter α = n−2
2 . Since P2k+1 is an odd function, we conclude that

λ2k+1 = 0. Let us now concentrate on the calculation of λ2k.

For t ∈ [−1, 1] we have

f(t) =
1

(4− t2)1/2
=

1

2

∞∑
i=0

(−1)i
(
−1/2

i

)
(
t

2
)2i =

1

2

∞∑
i=0

(
2i
i

)
24i

t2i ⇒

∫ 1

−1

f(t)P2k(t)(1− t2)
n−3
2 dt =

∞∑
i=0

(
2i
i

)
24i

aki ,

where aki =
∫ 1

0
t2iP2k(t)(1 − t2)

n−3
2 dt. Note that aki = 0 for k > i due to the fact that P2k is orthogonal to x2i. Using

Rodrigues’ formula we conclude

aki =
Γ(n−1

2 )

22kΓ(2k + n−1
2 )

∫ 1

0

t2i
d

dt2k
[(1− t2)2k+

n−3
2 ]dt.

The expression
∫ 1

0
t2i d

dt2k
[(1− t2)2k+

n−3
2 ]dt is nonzero for i ≥ k and integration by parts gives us∫ 1

0

t2i
d

dt2k
[(1− t2)2k+

n−3
2 ]dt =

(2i)!

(2i− 2k)!

∫ 1

0

t2i−2k(1− t2)2k+
n−3
2 dt =

(2i)!

(2i− 2k)!

∫ 1

0

u2k+
n−3
2 (1− u)i−k du

2
√
1− u

=
(2i)!

2(2i− 2k)!

Γ(2k + n−1
2 )Γ(i− k + 1

2 )

Γ(k + i+ n
2 )

.

Thus,

aki =
Γ(n−1

2 )

22k+1

(2i)!Γ(i− k + 1
2 )

(2i− 2k)!Γ(k + i+ n
2 )
,
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and, therefore, ∫ 1

−1

f(t)P2k(t)(1− t2)
n−3
2 dt =

Γ(n−1
2 )

22k+1

∞∑
i=k

(
2i
i

)
24i

(2i)!Γ(i− k + 1
2 )

(2i− 2k)!Γ(k + i+ n
2 )
.

Using Stirling’s formula, the first term in the latter sum can be bounded by (2kk )
24k

(2k)!Γ( 1
2 )

Γ(2k+n
2 ) ≪ 2−2k

k1/2 (2k)
−n

2 +1 ≪n k−
n
2 . For

terms starting from the second, we can apply Stirling’s formula for (2i− 2k)! also:(
2i
i

)
(2i)!

24i
Γ(i− k + 1

2 )

(2i− 2k)!Γ(k + i+ n
2 )

≍

(2i)4i+1e−4i

24ii2i+1e−2i

1

(2i− 2k)2i−2k+ 1
2 e−(2i−2k)

(i− k − 1
2 )

i−ke−(i−k)

(k + i+ n
2 − 1)k+i+n−1

2 e−(k+i+n
2 )

≪

2−(2i−2k)e
n
2

i2i

(i− k)i−k+ 1
2 (k + i+ n

2 − 1)k+i+n−1
2

.

Since (x+ 1
2 ) log x is convex for x > 1

2 , we conclude that

2(i+
n

4
) log(i+

n− 2

4
) ≤ (i− k +

1

2
) log(i− k) + (k + i+

n− 1

2
) log(k + i+

n

2
− 1).

Therefore, we can proceed by bounding the previous expression with

2−(2i−2k)e
n
2

i2i

(i+ n−2
4 )2(i+

n
4 )

≪ 2−(2i−2k)i−
n
2 .

Thus, we obtained 2−(2k+1)
∑∞

i=k
(2ii )
24i

(2i)!Γ(i−k+ 1
2 )

(2i−2k)!Γ(k+i+n
2 ) ≪

n
∑∞

i=k 2
−2ii−

n
2 and this leads to the final conclusion

λ2k ≪n

∫ ∞

k

2−2xx−
n
2 dx≪ 2−2kk−

n
2 .

I THE CASE OF THE COSINE AND THE SINE ACTIVATION FUNCTIONS

Since we could not find the derivation of the NNGP of a 2-NN for the cosine (or sine) activation function, we give it here for
completeness. The NNGP for σ(x) = cos(ax) equals

Kcos(x,x
′) = Eω∼N (0,In)[cos(aω

Tx) cos(aωTx′)] =

Eω∼N (0,In)

[1
4
(eiaω

T (x−x′) + e−iaωT (x−x′) + eiaω
T (x+x′) + e−iaωT (x+x′))

]
=

1

2
e−

a2∥x−x′∥2
2 +

1

2
e−

a2∥x+x′∥2
2 = e−

a2∥x∥2
2 e−

a2∥x′∥2
2 cosh(a2x⊤x′),

and for the sine case equals

Ksin(x,x
′) = Eω∼N (0,In)[sin(aω

Tx) sin(aωTx′)] =

Eω∼N (0,In)

[1
4
(eiaω

T (x−x′) + e−iaωT (x−x′) − eiaω
T (x+x′) − e−iaωT (x+x′))

]
=

1

2
e−

a2∥x−x′∥2
2 − 1

2
e−

a2∥x+x′∥2
2 = e−

a2∥x∥2
2 e−

a2∥x′∥2
2 sinh(a2x⊤x′).

Proof of Theorem 8. For x,x′ ∈ Sn−1 we have Kcos(x,x
′) = e−a2

cosh(a2x⊤x′) and Ksin(x,x
′) = e−a2

sinh(a2x⊤x′).
Let λk be the eigenvalue of order k of OKcos

. The Funk-Hecke formula gives us λk ∝n
∫ 1

−1
cosh(a2t)Pk(t)(1− t2)

n−3
2 dt.
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Figure 5: Achieved MSE when learning Yk by random features model as a function of the number of hidden neurons
(n = 3, 6).

The latter expression is zero for an odd k. For an even k, using Rodrigues’ formula, we have

λ2k ∝n e−a2 Γ(n−1
2 )

22kΓ(2k + n−1
2 )

∫ 1

−1

cosh(a2t)
d

dt2k
[(1− t2)2k+

n−3
2 ]dt ∝n

a4ke−a2

22kΓ(2k + n−1
2 )

∫ 1

−1

cosh(a2t)(1− t2)2k+
n−3
2 dt ≤ a4ke−a2

cosh(a2)

22kΓ(2k + n−1
2 )

∫ 1

0

(1− u)−
1
2u2k+

n−3
2 du =

a4k cosh(a2)e−a2

Beta( 12 , 2k +
n−1
2 )

22kΓ(2k + n−1
2 )

≪n a4k√
k22kΓ(2k + n−1

2 )
.

Analogously, let λ′k be the eigenvalue of degree k of OKsin
. Then we have λ′k = 0 for an even k and λ′2k+1 ≪n

a4k+2
√
k22kΓ(2k+n+1

2 )
.

J OTHER EXPERIMENTS

In Figure 5, results of RFM for dimensions n = 3, 6 are given. They only verify the conclusion made in the main part of the
paper: the speed of decay of the NNGP kernel’s eigenvalues define which activation functions succeed in training Yk by
RFM.

We made experiments with training of a 2-NN after weights were initialized by RFM. The number of hidden neurons was
set to 1000, and the optimization was made by Adam with learning rate 0.01. In Figure 6, plots of the MSE dynamics for
different activation functions are given. We see the same pattern that was observed by an ordinary training (i.e. without an
RFM initialization) — the best performance was demonstrated by the cosine and the Gaussian activation functions. Recall
that ReLU outperformed both the cosine and the Gaussian activation function for RFM (see Figure 3). In Section 5 we
explained a better performance of ReLU by a less rapid decay of eigenvalues of the corresponding NNGP kernel. This
additionally indicates that the structure of the NNGP kernel only reflects properties of the initialization step, and a proper
training of weights “forgets” that specifics.

In figure 7, plots the MSE dynamics during training of Yk by Adam with a standard initialization are given, for n = 3, 6.
Again, the cosine and the gaussian activations outperform ReLU.

Our computing infrastructure for these experiments is as follows: CPU Intel Core i9-10900X CPU @ 3.70GHz, GPU 2×
Nvidia RTX 3090, RAM 128 Gb, Operating System Ubuntu 22.04.1 LTS, torch 1.13.1, cuda 11.7, pandas 1.5.3.
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Figure 6: MSE dynamics during learning Yk with a 2-NN (1000 hidden neurons) after an initialization of weights by RFM
for n = 3, 6 (rows) and using different activation functions (columns).

Figure 7: MSE dynamics during learning Yk with a 2-NN (with a standard initialization) for n = 3, 6 (rows) and using
activation functions (columns): (a) σ(x) = e−

x2

2 , (b) σ(x) = cos(x), (c) σ(x) = ReLU(x).
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