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Abstract

In this paper, we develop a general framework for multicontinuum homogenization in per-
forated domains. The simulations of problems in perforated domains are expensive and, in
many applications, coarse-grid macroscopic models are developed. Many previous approaches
include homogenization, multiscale finite element methods, and so on. In our paper, we design
multicontinuum homogenization based on our recently proposed framework. In this setting,
we distinguish different spatial regions in perforations based on their sizes. For example, very
thin perforations are considered as one continua, while larger perforations are considered as
another continua. By differentiating perforations in this way, we are able to predict flows in
each of them more accurately. We present a framework by formulating cell problems for each
continuum using appropriate constraints for the solution averages and their gradients. These
cell problem solutions are used in a multiscale expansion and in deriving novel macroscopic
systems for multicontinuum homogenization. Our proposed approaches are designed for prob-
lems without scale separation. We present numerical results for two continuum problems and
demonstrate the accuracy of the proposed methods.

1 Introduction

Problems in perforated domains appear in many applications. These include subsurface applica-
tions, materials science, membranes, filters, and so on. Simulations at the pore scale are very
expensive and require gridding entailing a very large number of degrees of freedom. In many ap-
plications, researchers would like to perform simulations on a coarse grid and obtain models that
do not include perforations. These coarse grid models have been a topic of interest for many years.
In this paper, we propose some novel algorithms for simulations in perforated domains.

Some of the first approaches for modeling on a coarse grid include homogenization methods,
e.g., Darcy’s law. In these approaches, one assigns an effective property to each representative
volume based on local simulations. These effective properties are then used to form coarse-grid
equations. Homogenization techniques are specifically designed for problems in perforated domains
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[19, 11, 12, 13, 22]. In these techniques, the solution is expanded using a two-scale ansatz, and
the terms in the expansion are computed via substitution. In many applications, the homogenized
equation is derived on a coarse grid and does not contain oscillations, while the homogenized
coefficients are computed based on local cell solutions.

An alternative approach is the use of multiscale methods. In these approaches, the solution is
sought on a coarse grid using multiscale basis functions, which are solutions of local problems and are
computed locally. In [15, 16, 18], the authors propose Multiscale Finite ELement Method (MsFEM)
approaches, where a limited number of basis functions via local solutions are computed, and the
accuracy and robustness of the approach are demonstrated. In [9, 4, 6, 8, 7, 5], the authors propose
multiscale enrichment and design the Generalized Multiscale Finite Element Method (GMsFEM).
In these approaches, multiscale basis construction is proposed and analyzed. By adding additional
multiscale basis functions on the pore scale, the accuracy of the coarse-grid simulation improves.
In further generalization [3, 2], the authors propose the Constraint Energy Minimizing Generalized
Multiscale Finite Element Method (CEM-GMsFEM) approach. In this approach, multiscale basis
functions are constructed in oversampled regions using constraints. It can be shown that the
accuracy of these approaches is independent of small scales.

Figure 1: Illustration of two continua (red and blue).

In our paper, we utilize the concept of multicontinuum homogenization proposed in [10]. The
main idea of multicontinuum homogenization is to formulate a coarse-grid equation using constraint
cell problems. These approaches borrow some ideas from CEM-GMsFEM; however, their goal is to
derive macroscopic equations and identify macroscopic variables that smoothly vary over the spatial
region. In multicontinuum homogenization, one deals with problems where multiple macroscopic
media are present. In this case, we consider perforated domains with vastly different perforation
sizes (see Fig. 1). Such perforated media arise in many applications, where one deals with vastly
different sizes of regions, for example, blood vessels, perforation sizes, fractures, vugs, and so on.
In these problems, it is more advantageous to separate the two media, as the solution in each type
of perforation (small and large) can behave drastically differently. Indeed, if the effects of these
perforations are lumped into one average across both small and large perforations, then the effects
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of small perforations will be ignored, as their effects are much weaker compared to those in large
ones. For this reason, we propose a multicontinuum approach for such homogenization that can
handle problems without scale separation.

Some of the main ingredients of the proposed approach are the use of constraint cell problems and
multicontinuum homogenization expansion. In our approach, we propose cell problem formulations
that are constrained in different parts of the perforations. More precisely, our cell problems constrain
averages and gradients of the solution in subregions of perforations. These cell problems are used
in a multiscale multicontinuum expansion. By substituting this expansion into the macroscale
equation, we derive a system of equations that describe the coarse-grid system.

One of the main differences between our approach and multiscale methods is that the proposed
methods provide a coarse-grid model in the form of differential equations. This is because we
seek smooth functions that can approximate the coefficients in multiscale numerical approaches
and can formulate macroscopic models for these global coarse-grid smooth solutions. We perform
numerical experiments for Laplace’s equation in perforated domains, even though our approach can
be used for other applications. We choose several types of perforated domains that include thick
and small channels, representing two continua. We solve the cell problems and compute the effective
properties. Effective properties are directional and larger if more channels are in the corresponding
direction. We compare the coarse-grid solution to the averaged fine-grid solutions. The averages are
taken in each subregion. Our numerical results show that the errors are small, and the macroscopic
model accurately predicts the averages of the fine-grid solution.

Our contributions in this paper are as follows:

• Development of a framework for multicontinuum homogenization in perforated regions by
identifying various continua regions.

• Formulation of multicontinuum constraint cell problems and multiscale expansion.

• Derivation of macroscopic equations in the form of coupled convection-diffusion-reaction equa-
tions.

• Presentation of numerical results for various types of multicontinua media.

The paper is organized as follows. In Section 2, we present preliminaries. Section 3 is devoted
to the description of multicontinua approach. The numerical results are presented in Section 4. We
make some conclusions in Section 5.

2 Preliminaries

In this section, we present the model problem and review some previous work. Consider the following
equations in a perforated domain,

L(u) = f in Ωϵ, (1)

subject to some boundary and initial conditions. Here, ϵ denotes multiscale quantities, such as
domains or variables, and Ω ⊂ Rd (with d = 2, 3) is a bounded domain. Let Bϵ be the set of
perforations within Ω, and define Ωϵ = Ω \ Bϵ.

To simplify the notations, let V (Ωϵ) be the appropriate solution space, and
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V0(Ω
ϵ) = {v ∈ V (Ωϵ), v = 0 on ∂Ωϵ}.

The variational formulation of (1) is to find u ∈ V (Ωϵ) such that

(L(u), v)Ωϵ = (f, v)Ωϵ , ∀v ∈ V0(Ω
ϵ),

where (·, ·) denotes a specific inner product for scalar functions or vector functions in the perforated
domain Ωϵ. In the following, we provide two examples for the abstract notations.

1. For the Laplace operator,
L(u) = −∆u, (2)

we assume the boundary conditions is homogeneous Dirichlet.

2. For Stokes equations, we have

L(u, p) =

∇p− µ∆u

∇ · u

 , (3)

where µ is the viscosity, p is the fluid pressure, u represents the velocity.

Next, we review some related techniques for multiscale modeling for problems in perforated
domains. These include homogenization, MsFEM, GMsFEM techniques and their variations.

Y ∗B

ϵ Ki

Ki,1

Dj

Figure 2: Left: Periodic perforated domain Ωϵ. Right: Non-periodic perforated domain.

2.1 Homogenization

In this subsection, we briefly review homogenization techniques and refer to [14, 20]. We assume the
perforations are periodic (see Fig. 2). In this context, ϵ represents the period of the perforations.
For a given cell Y , we denote the perforated region as B, and define the remaining part within Ωϵ

as Y ∗ = Y \B.
In homogenization, we obtain macroscopic equations using two-scale expansion that are formu-

lated in the whole domain without perforations

L∗(u∗) = f in Ω, (4)
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where L∗ is the macroscopic operator. The form of the macroscopic operator depends on microscopic
equations. For example, for Laplace operator,

L∗(u∗) = −∇ · (a∗ij∇u∗),

where

a∗ij =

∫
Y ∗
δij + ∂yi

wj(y) dy,

and wj satisfied −∆wj = 0 in Y ∗. On the other hand, for Stokes equations, the macroscopic
equations differ from the microscopic equations and have the following form

L∗(u∗, p∗) =

 div(u∗)

u∗ + a∗ij∇p∗


where a∗ij =

∫
Y ∗ wj · ei =

∫
Y ∗ ∇wi : ∇wj , wj is the cell solution of the following problem,

−µ∆wj +∇pj = ej , in Y ∗,

div(wj) = 0, in Y ∗,

wj = 0, on ∂B.

2.2 Multiscale finite element method

Another class of approaches involves the use of multiscale basis functions. In these methods,
multiscale finite element basis functions are constructed to solve the problem on a coarse grid.
As detailed in [16, 17], the MsFEM approach can be employed to address non-periodic scenarios,
as illustrated in Fig. 2. Let T H denote a uniform mesh that partitions the domain Ω, where Ki

represents the coarse cell corresponding to the portion within Ωϵ, i.e., Ki ⊂ Ωϵ. Besides, we use Ej

to denote the coarse edge, and E is the set of all Ej .
For Laplace equations on the fine grid, we need to construct the local basis functions as shown

in (5), where xj are coarse vertices in Ωϵ.{
−∆ϕj = 0, in Ki,

ϕj = µj , on ∂Ki.
(5)

where µj represents some boundary conditions, as described in [15]. Additionally, more basis
functions are required to address the absence of coarse vertices not included in Ωϵ.{

−∆ψi = 1, in Ki,

ψi = 0, on ∂Ki.
(6)

2.3 Generalized multiscale finite element method

For the Generalized Multiscale Finite Element Method (GMsFEM), an extension beyond the single
basis function paradigm of MsFEM is available, as outlined in [5]. Similar to the MsFEM framework,
we employ a rectangular mesh T H to partition the domain Ω. Here, Dj represent the support of
multiscale basis functions the same as the MsFEM.
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For the snapshot space, we generally have two options. The first option is to use all fine-grid
basis functions, while the other option is to solve the following equations.{

L(ψsnap
l ) = 0, in Di,

ψsnap
l = δhl , on ∂Di.

(7)

The snapshot space in Di is defined as V snap(Di) = spanl{ψ
snap
l }. Then, we need use a spectrum

problem to reduce the dimension of the local snapshot space,

ai(ψ
i
j , v) = λijsi(ψ

i
j , v), ∀v ∈ V snap(Di). (8)

In here, si(u, v) =
∫
Di
κ̃uv, and ai(u, v) =

∫
Di

∇u · ∇v for Laplace problem (2), while ai(u, v) =∫
Di

∇u : ∇v for Stokes equations (3). By selecting the smallest li eigenvalues, the eigenfunctions
will construct the offline space. At last, the multiscale space is construct by the combination of
partition unity and offline space,

Vms = spani,j{χiψ
i
j}.

2.4 Constraint energy minimizing Generalized multiscale finite element
method

For Constraint energy minimizing - Generalized multiscale finite element method (CEM-GMsFEM),
we need two steps to construct the multscale space, refer to [2, 21].

First, we need to construct a auxiliary space, sovling (9) in a coarse cell Ki,

ai(ϕ
i
j , v) = λijsi(ϕ

i
j , v), ∀v ∈ V (Ki). (9)

and select the first li smallest eigenvalues and corresponding eigenfunctions. In here, si(u, v) =∫
Ki
κ̃uv, and ai(u, v) =

∫
Ki

∇u · ∇v for Laplace problem (2) and ai(u, v) =
∫
Ki

∇u : ∇v for Stokes

equations (3). We can define the local auxiliary space, V i
aux = span{ϕ1i , · · · , ϕ

li
i }. The global inner

product a(·, ·), s(·, ·) is the sum of each Ki, we can also define a global operator π : H1
0 (Ω

ϵ) → Vaux,

π(u) =

Nc∑
i=1

li∑
j=1

si(u, ϕ
i
j)

si(ϕij , ϕ
i
j)
ϕij , ∀u ∈ V.

The multiscale basis functions need to solve a minimization problem.

1. For Laplace equations,

ψi
j,ms = argmin{a(ψ,ψ) + s(π(ψ)− ϕij , π(ψ)− ϕij) | ψ ∈ V0(Ki,mi

)}. (10)

2. For Stokes problem,

ψi
j,ms = argmin{a(ψ,ψ) + s(π(ψ)− ϕij , π(ψ)− ϕij) | ψ ∈ V0(Ki,mi

) and ∇ · ψ = 0}. (11)

The multiscale space is Vms = spani,j{ψi
j,ms}.
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3 Multicontinuum homogenization

In this section, we introduce the model problem and outline the fundamental concept of the multi-
continuum homogenization method applied to perforated domains.

In our study, we define L(·) = −div(κ∇·) in Equation (1), subject to homogeneous Dirichlet
boundary conditions: {

−div(κ∇u) = f, in Ωϵ,

u = 0, on ∂Ωϵ.
(12)

Similar to the homogenization example presented in Section 2, we assume that the perforations
Bϵ exhibit some periodicity in Equation (12). Here, we use ϵ to represent the periodicity, which
corresponds to the width of a single structure. In applications, channels of different widths may
possess varying capabilities in transporting flow. Thus, we categorize continua based on the width
of the channels. In this paper, we focus on the two-continua method, as illustrated in Figure 3.
Specifically, we use two distinct colors to denote different channels, where blue represents thick
channels and red indicates thin channels. It’s worth noting that this method can be easily extended
to handle multi-channel scenarios.

The weak formulation of Equation (12) is given by:

a(u, v) = (f, v), ∀v ∈ H1
0 (Ω

ϵ), (13)

where

a(u, v) =

∫
Ωϵ

κ∇u∇v, (f, v) =

∫
Ωϵ

fv.

Kϵ
p,1Kϵ

p

Figure 3: Illustration.

Before presenting the computation, let’s review the computational mesh. We denote a coarse
block in the partition of the domain Ω as K, with a diameter much larger than the heterogeneities,
i.e., larger than the smallest size of the regions. Use Nc to denote the number of coarse grid. Similar
to CEM-GMsFEM, we extend the coarse block Kp by l coarse blocks, denoted by Kp,l. We use
Kϵ to represent the computational domain within K, defined as Kϵ = Ωϵ ∩ K. Additionally, we
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introduceKϵ
p,l as the remaining part of the oversampled domain Kp,l in Ωϵ, which may contain more

local geometric information, as illustrated in Figure 3. To distinguish between different continua,
we define the characteristic function for continuum i as ψi, satisfying ψi = δij within continuum j.

In the multicontinuum homogenization method, we postulate that the solution u can be ex-
pressed as a series expansion of macroscopic variables Ui. Typically, due to the non-periodic nature
of geometric configurations or coefficients within the operator, such as permeability κ, local infor-
mation ϕ must be computed within each coarse block Kϵ

p. It is crucial to emphasize that while the
variable Ui is defined across the global domain Ω, the local information ϕi is confined to Ωϵ. We
represent the solution u as follows:

u = ϕiUi + ϕmi ∂mUi + ϕmn
i ∂2mnUi + · · · , (14)

where ∂m = ∂
∂xm

, ∂2mn = ∂2

∂xm∂xn
. In general, we consider only the average and the gradient,

u ≈ ϕiUi + ϕmi ∂mUi. (15)

Figure 4: Illustration of the computational process for a cell problem.

The construction of local information ϕi is divided into Nc local problems, as depicted in Fig. 4.
Here, we denote ϕi|Kϵ

p
= ϕpi . Subsequently, the superscript p will be omitted, as local computation

will be performed for each coarse block Kϵ
p, i.e., ϕi|Kϵ

p
= ϕi. From previous work [10, 1], it’s evident

that the cell problem is crucial for obtaining an accurate macroscopic equation. These cell problems
are typically formulated by constraining the original equation within an oversampled domain Kϵ

p,l.
Our first cell problem imposes constraints to represent the constants in the average behavior of
each continuum. ∫

Kϵ
p,l

κ∇ϕi · ∇v −
∑
j,q

βq
ij∫

Kϵ
q
ψj

∫
Kϵ

q

ψjv = 0,∫
Kϵ

q

ϕiψj = δij

∫
Kϵ

q

ψj .

(16)
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Our second cell problem imposes constraints to represent the linear functions in the average behavior
of each continua. ∫

Kϵ
p,l

κ∇ϕmi · ∇v −
∑
j,q

βmq
ij∫

Kϵ
q
ψj

∫
Kϵ

q

ψjv = 0,∫
Kϵ

q

ϕmi ψj = δij

∫
Kϵ

q

(xm − cmj)ψj .

(17)

where cmj satisfy
∫
Kϵ

p
(xm − cmj)ψj = 0. It’s important to note that (16) and (17) will use the zero

Dirichlet boundary condition, meaning that ϕ’s are all zero on ∂Kϵ
p,l, which is consistent with the

original boundary conditions. The oversampling technique aims to remove the boundary effect, but
we still need to constrain ϕ’s in Kϵ

p.
Following the above assumption, we only consider the average and gradient of macroscopic

variables. In particular, we have:

u ≈ ϕiUi + ϕmi ∂mUi,

v ≈ ϕjVj + ϕmi ∂mVj .
(18)

Substituting (18) into (13), we obtain the following equation:

a(ϕiUi, ϕjVj) + a(ϕiUm, ϕ
n
j ∂nVj) + a(ϕmi ∂mUi, ϕjVj)

+a(ϕmi ∂mUi, ϕ
n
j ∂nVj) = (f, ϕjVj) + (f, ϕnj ∂nVj).

(19)

Define an local inner product ap(u, v) =
∫
Kϵ

p
κ∇u,∇v. Considering Ui and Vi as macroscopic

variables, they can be taken out of the integrals over K. Thus, we have:

a(ϕi, ϕj)UiVj + a(ϕi, ϕ
n
j )Ui∂nVj + a(ϕmi , ϕj)∂mUiVj

+a(ϕmi , ϕ
n
j )∂mUi∂nVj = (f, ϕj)Vj + (f, ∂nϕj)∂nVj .

(20)

In Equation (20), considering that Ui and Vi are smooth functions defined in Ω, we derive the
following macroscopic equation for Ui (in strong form):

BjiUi +Bm
ji∂mUi − ∂nB

n

jiUi − ∂n(B
mn
ji ∂mUi) = bj , (21)

where the coefficients are piecewise-constant vectors or matrices, we have:

Bji = a(ϕi, ϕj), B
m
ji = a(ϕmi , ϕj)

B
n

ji = a(ϕi, ϕ
n
j ), B

mn
ji = a(ϕmi , ϕ

n
j ), bj = (f, ϕj).

(22)

Ultimately, we only need to solve (21) in Ω to obtain the macroscopic solution. It’s important
to note:

1. A suitable oversampling layer can mitigate the boundary effects; achieving high accuracy
typically requires only one or two layers. This is attributed to our knowledge of the interior
boundary conditions and the properties of the macroscopic equation.

2. The concept of the Representative Volume Element (RVE) remains applicable in this context.

9



4 Numerical results

In this section, we conduct numerical experiments to examine the behavior of two different me-
dia with varying conductivity (κ) using four examples. The source term will be fixed at f =
5π2 sin(2πx1) sin(πx2). The computation domain is Ω = [0, 1]2. Unlike previous studies, we adopt
a coarse mesh size H equivalent to the periodicity parameter ϵ, which is also the diameter of a
single structure. We will use a fine mesh size of H/80 to solve the reference solution.

To measure the efficiency of our method, we define the relative L2-error in Ω1 and the relative
L2-error in Ω2 as:

e
(i)
2 =

∑
p

∣∣∣ 1
|Kp|

∫
Kp

Ui − 1
|Kϵ

p∩Ωi|
∫
Kϵ

p∩Ωi
u
∣∣∣2∑

p

∣∣∣ 1
|Kϵ

p∩Ωi|
∫
Kϵ

p∩Ωi
u
∣∣∣2 .

Figure 5: Left: single structure 1. Right: single structure 2.

4.1 Case 1

In this example, we take κ = 1, and use structure 1 as the single structure. We depict the fine-grid
solution in Fig. 6, while the corresponding averaged solution in Fig. 7. From Fig. 7, we conclude
that our method provides an accurate approximation of the averaged solution. In Table 1, we
observe that the error will decay very fast with the coarse mesh size decrease. Besides, we find
that achieving high accuracy only requires oversampling one coarse layer. In Table 2, we present
some coefficient in macroscopic equation, which can demonstrate the relationship between error
and oversampling layers.

4.2 Case 2

In this example, we keep κ = 1 and utilize structure 2 different as Case 1. We present the solu-
tion obtained from the fine-grid approach in Fig. 8, alongside the corresponding averaged solution
displayed in Fig. 9. From the analysis of Fig. 9, we infer that our method yields a precise approxi-
mation of the averaged solution. The data in Table 3 indicates a rapid decay in error as the coarse
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Figure 6: Reference solution for Case 1.

l
ϵ = 1/10 ϵ = 1/20 ϵ = 1/40

e
(1)
2 e

(2)
2 e

(1)
2 e

(2)
2 e

(1)
2 e

(2)
2

0 4.22e-02 1.04e-02 3.32e-02 5.29e-03 3.12e-02 4.31e-03

1 2.12e-03 1.94e-03 1.43e-04 1.22e-04 9.91e-06 7.85e-06

2 2.04e-03 1.93e-03 1.35e-04 1.21e-04 8.89e-06 7.73e-06

Table 1: Relative error in different continuum when use structure 1 and set κ = 1.

l B11 B12 B22

0 60.70 -2.00 383.59

1 50.10 -1.81 365.83

2 50.10 -1.81 365.82

Table 2: Homogenization coefficient in Case 1.
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Figure 7: Average solution for Case 1. Top Left: Reference averaged solution in Ω1. Top Right:
Multiscale average solution in Ω1. Bottom Left: Reference averaged solution in Ω2. Bottom Right:
Multiscale average solution in Ω2.
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mesh size decreases. Moreover, we find that achieving high accuracy only requires oversampling
one coarse layer. Table 4 provides coefficients in the macroscopic equation, aiding the error will
converge with only 1 oversampling layer.

Figure 8: Reference solution for Case 2.

l
ϵ = 1/10 ϵ = 1/20 ϵ = 1/40

e
(1)
2 e

(2)
2 e

(1)
2 e

(2)
2 e

(1)
2 e

(2)
2

0 3.81e-02 1.17e-02 2.93e-02 6.36e-03 2.73e-02 5.30e-03

1 2.26e-03 1.94e-03 1.57e-04 1.23e-04 1.13e-05 7.97e-06

2 2.17e-03 1.92e-03 1.47e-04 1.21e-04 1.02e-05 7.77e-06

Table 3: Relative error in different continuum when use structure 2 and set κ = 1.

4.3 Case 3

In this example, we take a slow variable coefficient, κ = 2 + sin(πx1) sin(πx2). The structure 1 is
used for the single structure. We present the fine-scale solution in Fig. 10. In Fig. 12, we can see
that our method can provides an accurate approximation of the averaged solution. Different with
the last two examples, we depicted the homogenization coefficient in Fig. 11. In Table 5, we note
that the error will decay with the reduce the coarse mesh size.
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Figure 9: Average solution for Case 2. Top Left: Reference averaged solution in Ω1. Top Right:
Multiscale average solution in Ω1. Bottom Left: Reference averaged solution in Ω2. Bottom Right:
Multiscale average solution in Ω2.

l B11 B12 B22

0 101.10 -6.92 494.14

1 84.57 -5.93 462.72

2 84.57 -5.93 462.72

Table 4: Homogenization coefficient in Case 2.

l
ϵ = 1/10 ϵ = 1/20 ϵ = 1/40

e
(1)
2 e

(2)
2 e

(1)
2 e

(2)
2 e

(1)
2 e

(2)
2

0 4.20e-02 1.02e-02 3.31e-02 5.25e-03 3.11e-02 4.30e-03

1 2.10e-03 1.90e-03 1.39e-04 1.18e-04 9.58e-06 7.54e-06

2 2.02e-03 1.89e-03 1.31e-04 1.17e-04 8.57e-06 7.42e-06

Table 5: Relative error in different continuum when use structure 1 and set κ = 2+sin(πx1) sin(πx2).
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Figure 10: Reference solution for Case 3.

Figure 11: Homogenization coefficient for Case 3. From Left to Right and Top to Bottom:
B11, B12, B22.

15



Figure 12: Average solution for Case 3. Top Left: Reference averaged solution in Ω1. Top Right:
Multiscale average solution in Ω1. Bottom Left: Reference averaged solution in Ω2. Bottom Right:
Multiscale average solution in Ω2.
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4.4 Case 4

In this example, we set κ = 2+sin(πx1) sin(πx2) and utilize Structure 2 as the single structure. The
fine-grid solution is depicted in Fig. 13, while the reference averaged solution and multicontinuum
homogenization solution are presented in Fig. 14. The figures further demonstrate the efficiency of
our method. In Table 6, we show the error by varying the periodic and oversampling layers. We
observe that the error decays very rapidly when decreasing the periodicity. Additionally, in Fig. 15,
we show the homogenization coefficients.

Figure 13: Reference solution for Case 4.

l
ϵ = 1/10 ϵ = 1/20 ϵ = 1/40

e
(1)
2 e

(2)
2 e

(1)
2 e

(2)
2 e

(1)
2 e

(2)
2

0 3.79e-02 1.17e-02 2.92e-02 6.36e-03 2.73e-02 5.30e-03

1 2.20e-03 1.95e-03 1.55e-04 1.23e-04 1.13e-05 7.96e-06

2 2.11e-03 1.93e-03 1.45e-04 1.21e-04 1.02e-05 7.75e-06

Table 6: Relative error in different continuum when use structure 2 and set κ = 2+sin(πx1

2 ) sin(πx2

2 ).
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Figure 14: Average solution for Case 4. Top Left: Reference averaged solution in Ω1. Top Right:
Multiscale average solution in Ω1. Bottom Left: Reference averaged solution in Ω2. Bottom Right:
Multiscale average solution in Ω2.
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Figure 15: Homogenization coefficient for Case 4. From Left to Right and Top to Bottom:
B11, B12, B22.

5 Conclusions

In this paper, we propose a multicontinuum homogenization approach for problems in perforated
domains. The perforated regions are divided into subregions, where each subregion is treated as a
separate continua due to their size differences. Typically, different continua may have significantly
different widths or lengths. We formulate constraint cell problems by imposing constraints in sub-
regions for the averages of the solutions and their gradients. Using the cell solutions, we formulate a
homogenization expansion and derive macroscopic equations. The resulting macroscopic equations
consist of a system of equations. We present numerical results by considering two continua me-
dia with significantly different widths. We consider various diffusion scenarios, and our numerical
results show very good accuracy.
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