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Abstract We describe a protocol to study text-to-

video retrieval training with unlabeled videos, where

we assume (i) no access to labels for any videos, i.e., no

access to the set of ground-truth captions, but (ii) ac-

cess to labeled images in the form of text. Using image

expert models is a realistic scenario given that annotat-

ing images is cheaper therefore scalable, in contrast to

expensive video labeling schemes. Recently, zero-shot

image experts such as CLIP have established a new

strong baseline for video understanding tasks. In this

paper, we make use of this progress and instantiate the

image experts from two types of models: a text-to-image

retrieval model to provide an initial backbone, and im-

age captioning models to provide supervision signal into

unlabeled videos. We show that automatically labeling

video frames with image captioning allows text-to-video

retrieval training. This process adapts the features to

the target domain at no manual annotation cost, conse-

quently outperforming the strong zero-shot CLIP base-

line. During training, we sample captions from multi-

ple video frames that best match the visual content,

and perform a temporal pooling over frame representa-

tions by scoring frames according to their relevance to

each caption. We conduct extensive ablations to pro-

vide insights and demonstrate the effectiveness of this

simple framework by outperforming the CLIP zero-shot

baselines on text-to-video retrieval on three standard

datasets, namely ActivityNet, MSR-VTT, and MSVD.

Code and models will be made publicly available.
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Fig. 1: Framework: Instead of using the ground-truth

video caption, we extract image captions to automati-

cally label unlabeled video frames, which we filter to ob-

tain high-quality captions. The selected captions from

multiple image captioners are incorporated into a text-

to-video retrieval training where each video is paired

with multiple caption labels.

1 Introduction

The research on automatic video understanding has

witnessed a number of paradigm shifts recently. Follow-

ing the rise of neural networks, the initial question was

how to design an architecture to input spatio-temporal

signals [49, 68]. Given the limited video training data,

the focus then shifted to borrowing parameter initial-

ization from image classification pretraining [7]. In an

attempt to provide video pretraining, one line of work

has made costly efforts to annotate video classification

datasets [27]. On the other hand, the research commu-

nity is moving away from closed-vocabulary recogni-

tion training as the progress in language modeling in-

spired advances in retrieval of visual data given open-

vocabulary textual input, bridging the gap between
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symbolic action categories and describing actions as

text [26]. The latest shift was due to the huge scale

of labeled image data, resulting in impressive zero-shot

capability of image-text retrieval models on video ac-

tion recognition tasks [55]. Now, the performance of

CLIP-[55] or BLIP-initialized [32] image features (sim-

ply averaged over video frames) surpasses most previ-

ous works on a large number of video understanding

tasks [32, 40, 73]. This makes researchers question and

rethink where to put their efforts to improve video mod-

eling. In this study, we focus on enhancing the zero-shot

text-to-video retrieval performance of CLIP by making

a realistic assumption that we have access to image ex-

perts, more specifically an image captioning model.

Fully-supervised methods for video retrieval are lim-

ited due to the high cost of video annotation. Even

training with the web-scale video-text pairs [4] do not

outperform CLIP image-text pretraining [8], despite the

rich descriptions typed manually by humans with the

motivation to sell their videos on stock websites. On the

other hand, methods that learn from unlabeled videos

often assume no access to any labels, even for images,

with a particular focus on self-supervised training to

use the structure of the data itself as the training sig-

nal [18, 22, 82]. In this paper, we ask the question of

whether an external off-the-shelf image expert can pro-

vide the supervision signal. We explore the usability of

recently released robust image captioners, namely Clip-

Cap [46] and BLIP [32], which benefit from training

with large-scale image-text pairs. For example, ClipCap

uses both CLIP visual pretraining and GPT-2 language

model pretraining [56]. When applied on video frames,

we observe that, while noisy, the output texts contain

high-quality descriptions, which motivates this explo-

ration.

While the idea of using automatic image captions is

appealing, incorporating such noisy labels for training

introduces additional challenges. To address this issue,

we first employ a filtering approach where we select the

captions that better describe the frame by computing

the CLIPScore metric [25]. Measuring such cross-modal

similarity between the visual frame and the output text

is similar in spirit to the filtering step in [32]. Further-

more, we ensemble multiple image captioners to obtain

a larger pool of labels. We experimentally validate the

benefit of these steps in our ablations.

In this work, we test whether off-the-shelf image

captioning models can serve as an automatic labeling

strategy for video retrieval tasks. We propose a sim-

ple framework to answer this question. Our main base-

line, as well as our weight initialization, is CLIP [55].

We finetune this model such that video frame embed-

dings and the automatic captions map to the cross-

modal joint space after contrastive retrieval training.

Since one caption may not be representative of the

video, we introduce multi-caption training to effectively

use multiple textual labels per video, by extending the

query-scoring method of [5]. This is to overcome the

potential noise in automatic labels, as well as a way

to augment data. Moreover, since our approach does

not require manual labeling, we can go beyond a single

dataset and combine multiple data sources during train-

ing. This particularly improves performance on smaller

datasets. We demonstrate through experiments that

our approach to pseudo-label unlabeled video frames

with image captioning is a simple, yet effective strat-

egy that boosts the performance over baselines.

Our contributions are three-fold: 1) We propose a

new simple approach to train video retrieval models

using automatic frame captions, which constitute free

labels for supervision (see Figure 1). To the best of our

knowledge, off-the-shelf captioning has not been used

for such objectives in prior work at the time of con-

ducting this research1. 2) We outperform the zero-shot

state-of-the-art CLIP model on three text-to-video re-

trieval benchmarks. 3) We provide extensive ablations

about the design choices on how to select high-quality

captions, incorporating multiple image captioners, tem-

poral pooling with multi-caption query-scoring, as well

as combining multiple datasets. The code and models

will be publicly available.

2 Related Work

We briefly overview relevant works on text-to-video

retrieval, self-supervised learning on unlabeled videos,
pseudo-labeling, and captioning.

Text-to-video retrieval. Methods for text-to-video

retrieval only recently started to train end-to-end neu-

ral network models [4, 21] thanks to (i) the pow-

erful initialization from ViT [16] and (ii) large-scale

video datasets: noisy HowTo100M data [45] with ASR-

based text supervision from speech, or more recently

the cleaner manually annotated WebVid data [4]. The

progress in text-to-image retrieval [12, 55] then trig-

gered advances in text-to-video retrieval. Recent meth-

ods employ the CLIP [55] image backbone and ex-

plore the possibility of adding temporal modeling

(e.g., CLIP2TV [20], CLIP4Clip [40], CLIP2Video [17],

CLIP-ViP [79], TS2-Net [37], ViFi-CLIP [57]). Their

results suggest that the simple averaging of embed-

dings over frames remains to be a strong baseline that

is difficult to improve on. Several works have explored

1 This paper is an extension of the preliminary work pre-
sented in [70].
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fine-grained contrastive learning [84] for videos [41, 83],

e.g., considering both frame-word and frame-sentence

comparisons [41]. Bain et al. [5] presents a simple yet

effective method to pool video frame representations

with a weighted averaging based on query-scoring. In

this work, we extend this method to use multiple cap-

tions instead of a single label per video. We also use

CLIP [55] as our baseline, as well as our initializa-

tion. Similar to other retrieval methods [4, 40, 43], we

employ a contrastive objective [51]. Unlike these ap-

proaches that assume manually annotated video data

[4, 5, 40] or noisy speech signal [43, 77], we obtain our

supervision from automatic captioning annotations. In

our experiments, we show superior zero-shot perfor-

mance over prior models trained on video-text pairs

from HowTo100M [45] or WebVid [4].

Self-supervised learning on unlabeled videos.

A relevant line of work is representation learning on

unlabeled videos, which is often referred to as self-

supervised learning. In this category, several works [18,

22, 62, 66, 82] use instance discrimination for videos in

a similar fashion with SimCLR [10] or BYOL [23] in

the image setting. The majority of methods also make

use of the multimodal nature of videos, e.g., incorporat-

ing the audio signal in the training [1, 2, 47, 54, 58]. A

popular approach is to use the noisy speech signal in un-

curated instructional videos such as HowTo100M [45].

The text obtained via ASR is directly considered as the

corresponding label, which is then used within a con-

trastive objective [44, 53, 77]. [44] designs a multiple

instance training, VideoCLIP [77] performs retrieval-

augmented pretraining, and Support-set [53] defines a

multi-task captioning objective. These self-supervised

works may be complementary to our method, but our

focus in this work is different in that we seek supervision

from external image models that provide pseudo-labels,

which can be considered as an alternative route to self

supervision.

Pseudo-labeling. Our work is also relevant to pseudo-

labeling (or self-labeling) approaches. Unlike the semi-

supervised [30, 64, 65] or few-shot [76] setup considered

in these works, our pseudo-labels do not require any

annotations for the problem at hand. In particular, the

concurrent work of [76] utilizes image experts to aid

video-language learning, however, requiring a small set

of labeled videos. In a similar fashion, VideoCC [48] ex-

ploits image-text datasets to assign automatic captions

to videos for audiovisual retrieval, but is limited by the

finite image captioning dataset source. Our work dif-

fers from [48] by generating captions for multiple video

frames, rather than retrieving from such a finite set.

While these two approaches may potentially be comple-

mentary, in our Appendix, we show that nearest neigh-

bor retrieved captions perform worse than generated

captions.

In text-image pretraining, BLIP [32] and BLIP-

2 [31] employ a bootstrapping approach for image cap-

tioning, which falls into the semi-supervised category,

i.e., they start training with a set of labeled images

(whereas we never train on labeled videos). In fact, we

employ BLIP as one of our image captioners to obtain

automatic video labels. In our experiments, we also in-

vestigate the impact of using BLIP initialization as op-

posed to CLIP.

Captioning. There has been increasing interest in the

task of generating text to describe a given visual con-

tent [3, 11, 13, 15, 39, 52, 61, 71, 80]. Although many

works focus on integrating object information as addi-

tional guidance (e.g., Oscar [34], VLP [89]), such meth-

ods perform well on domains similar to that of the ob-

ject detection model (e.g., COCO dataset [35]). Clip-

Cap [46] shows robust performance across datasets of

various domains without making use of an explicit ob-

ject detection module. Instead, [46] makes use of two

powerful pretrained models (CLIP [55] and GPT-2 [56])

and learns a mapping model between the image features

and the language generation. More recently, BLIP [32],

BLIP-2 [31] and CoCa [85] extend the contrastive CLIP

training by jointly learning image captioning. Align

and tell [75] also incorporates a video captioning head

into their text-video retrieval model during training.

OFA [74] further supports a variety of image-language

tasks in a unified framework, where captioning can be

performed by prompting the visual question answering

model with ‘What does the image describe?’. Very re-

cently, CapDec [50] attaches a text decoder on top of

the frozen CLIP image encoder by exploiting text-only

data to train an autoencoder with the CLIP text en-

coder.

In our work, we employ ClipCap [46] and BLIP [32]

as our image captioning experts, from which we obtain

the supervision signal for unlabeled videos. While both

of them are only image-based models, we find that their

performance is satisfactory on video frames. The perfor-

mance of video captioning models are currently behind

those of image captioning approaches, mainly due to

limited training data [52, 71]. Future work can explore

them as their performance improves. Recent works of

ClipVideoCap [81], Lavander [33], CLIP4Caption [67],

HiREST [87], and TextKG [24] obtain promising re-

sults. However, our setup in this work considers no ac-

cess to labeled videos.
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(a)

(b)

Fig. 2: Caption selection and multi-caption query-scoring (MCQS): (a) To select the best captions for a

given video, we first extract image captions from both ClipCap [46] and BLIP [32] models for M number of
frames. We then compute the CLIPScore [5] (gray box), and finally select Top K = 2 captions for each captioner:

c1 and c2 for ClipCap (highlighted in green), and c3 and c4 for BLIP (highlighted in blue). (b) MCQS takes a

caption embedding c̄l and weights the frame embeddings v̄1...v̄N according to the query-scoring temporal poooling

function fp to obtain a video representation ṽl. Finally, we simply average the four similarities obtained with their

respective query-scoring.

3 Training with automatic captions

In this section, we first describe how we obtain au-

tomatic captions for labeling videos, then present our

multi-caption video retrieval training, and finally, give

implementation details for our experimental setup.

The overview of our method is illustrated in Fig-

ure 2. In summary, we start by constructing a set of la-

bels for each video, by applying image captioning mod-

els on video frames. Given these noisy frame-level cap-

tions (from multiple image captioners), we select the

high-quality ones by sorting them according to their

CLIPScore [25]. We adopt a contrastive video-text re-

trieval training using a multi-caption query-scoring ap-

proach, where we incorporate all the selected captions

into the objective. Next, we detail these steps.

Selecting high-quality captions. Given an unla-

beled training video v consisting of F frames, we select

M frames from the video (M ≤ F ) and extract cap-

tions using I image captioners to form an initial set of

labels C = {Ci}Ii=1, where Ci = {ci1, ci2, . . . , ciM}. We

then obtain I textual descriptions per frame, resulting

in a total of M × I labels per video.
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While we investigate several variants of label forma-

tion from captions in our experiments, our final strat-

egy is the following. We select a subset of the initial

labels, mainly to eliminate noisy captions that do not

well represent the corresponding video frame. To this

end, we employ CLIPScore [25] as a way to measure the

cross-modal similarity between a caption and its corre-

sponding frame. For each captioner, we keep the top-K

captions (K < M) with the highest CLIPScores, which

gives us a remaining L = K × I labels per video. We

refer to this subset as C′. Note that some captions are

repetitive across frames due to visual similarity within

a video; we therefore conjecture that such a subset se-

lection does not cause a significant loss in information.

Contrastive video retrieval objective with multi-

caption query-scoring. In this work, we employ a rel-

atively standard vision-language cross-modal training,

where the goal is to find a joint space between videos

and automatic captions. Given a video v, we compute

visual embeddings V̄ = {v̄n}Nn=1 on N video frames

(N ≤ F ) using a visual encoder fv : v̄n → Rd. Similarly,

we compute textual embeddings with the text encoder

ft from the corresponding set of labels C′ to obtain pos-

itive text representations C̄ = {c̄l}Ll=1, where c̄l ∈ Rd

(with the same embedding dimension as v̄n). To obtain

a single video embedding, we perform temporal pool-

ing over video frame representations. Inspired by the

query-scoring introduced by [5], our pooling depends

on the text representation, simply through weighted av-

eraging, where frame weights are proportional to their

similarity with the text. The pooled video embedding is

then compared against the text to obtain a single sim-

ilarity. Differently from [5], we have multiple texts c̄l.

We therefore apply query-scoring multiple times, and

obtain multiple similarities, which we combine by a sim-

ple mean operation (experiments with weighted mean

do not yield improvements; see Section 4.2). More for-

mally,

Φ(V̄, C̄) =
1

L

∑
l∈L

ϕ(ṽl, c̄l), where ṽl = fp(V̄, c̄l), (1)

represents a similarity between a set of video frame em-

beddings V̄ and a set of caption embeddings C̄, where
ϕ(.) is the cosine similarity and fp is the query-scoring

[5] temporal pooling function also inputting the text:

fp(V̄, c̄l) =
∑
n∈N

wnv̄n,where wn =
eϕ(v̄n,c̄l)/τ∑
j∈N eϕ(v̄j ,c̄l)/τ

.

(2)

We set the softmax temperature hyperparameter τ =

0.1 in our experiments.

From a batch of B visual-texts pair samples,

{(V̄1, C̄1), (V̄2, C̄2), ..., (V̄B , C̄B)}, we train with a sym-

metric contrastive loss using InfoNCE [51], i.e., treating

all other samples in the batch as negatives:

Lv2c = − 1

B

∑
b∈B

log
exp(Φ(Vb,Cb))∑

j∈B exp(Φ(Vb,Cj))
(3)

Lc2v = − 1

B

∑
b∈B

log
exp(Φ(Vb,Cb))∑

j∈B exp(Φ(Vj ,Cb))
(4)

L = Lc2v + Lv2c, (5)

The final loss is the sum of video-to-captions (Lv2c) and

captions-to-video (Lc2v) retrieval loss terms. Next, we

detail the optimization procedure.

Implementation details. We instantiate two image

captioners (I = 2) from ClipCap [46] and BLIP [32]

models. ClipCap model is pretrained on the 3M im-

ages of the Google Conceptual Captions image-text

dataset [63], using a MLP mapping between CLIP [55]

image backbone and GPT-2 [56] text generation mod-

els. BLIP jointly trains for retrieval and captioning us-

ing 129M images (including a subset of LAION [60])

using a bootstrapping approach. We use the publicly

available model, which is further finetuned on the

COCO dataset [35]. Given one captioner, we extract

M = 10 captions per video from equally spaced frames.

We empirically set the number of high-quality captions

to top K = 2 per captioner (i.e., L = K × I = 4). On a

single GTX1080 GPU, the captioning cost for ClipCap

and BLIP is 0.65 fps and 0.93 fps, respectively.

We minimize the loss function in Eq. 5 using

Adam [28] optimizer and a learning rate schedule with

a cosine decay [38] as described in [40]. For ActivityNet,

we train on 16 Tesla V100 GPUs for 10 epochs, with ini-

tial learning rate 10−5 and mini-batch size B = 64. For

MSR-VTT and MSVD, we train on 4 NVIDIA GeForce

GTX 1080 for 10 epochs, with initial learning rate 10−4

and mini-batch size B = 16.

The weights of our dual encoder model are initial-

ized from CLIP [55] pretraining in all experiments un-

less explicitly stated otherwise, both for the image (fv)

and the text (ft) encoders. The image encoder archi-

tecture follows ViT-B/16 [16] in all experiments. The

text encoder architecture follows GPT-2 [56]. Both en-

coders are Transformer-based [69], operating with an

embedding dimensionality of d = 512.

We resize the frames to 224 × 224 resolution be-

fore inputting them to the model. We use N = 10 ran-

dom frame sampling during training based on segments

as in [4, 72] (note that these do not necessarily match
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the M = 10 captions). The resulting spatio-temporal

raw video input is of 224 × 224 × 10 dimensions. Each

video frame is independently passed through the im-

age encoder to obtain an embedding dimensionality of

512 using the output corresponding to the [cls] token.

The temporal aggregation is obtained via query-scoring

as explained above, i.e., weighted averaging over frames

where the weights are obtained as frame-text similarity.

The resulting video-level representation is therefore of

dimensionality 512. During training, we use the multi-

caption query-scoring method in Eq. 1. At test time,

we compute the visual embeddings on the center spa-

tial crop over 10 equally spaced frames. During evalua-

tion, as we only have a single query text, multi-caption

query scoring is not possible. We thus evaluate using

the regular query-scoring method.

4 Experiments

We start with Section 4.1 by describing the datasets

and evaluation metrics used to report the results of

our experiments. We then present our ablations in Sec-

tion 4.2, quantifying the effects of (i) the captioning

model, (ii) caption selection, (iii) combining caption-

ers, (iv) training with multiple captions per video, and

(v) combining datasets. Next, we present a state-of-the-

art comparison in Section 4.3, followed by experiments

on BLIP initialization instead of CLIP in Section 4.4.

Finally, we provide a qualitative analysis in Section 4.5,

as well as a discussion on limitations in Section 4.6.

4.1 Datasets and evaluation metrics

We conduct experiments on three established bench-

marks for text-to-video retrieval, namely Activi-

tyNet [29], MSR-VTT [78], and MSVD [9] datasets.

ActivityNet Captions [29] contains 20k

YouTube videos. Videos are segmented into 42k clips

with an average length of 45s. We use the 10,009 videos

from the training set, and evaluate on the “val1” split

(4917 videos). Note that we extract equally spaced

captions per clip, not per video.

MSR-VTT [78] is composed of 10k YouTube

videos. The length of the videos varies from 10s to 32s,

with an average of 15s. We train with the Training-9k

split as in [4, 36, 40, 83], and report results on the 1k

split with single video text-pairs as in [40, 86].

MSVD [9] consists of 1970 videos split into 1200

training, 100 validation, and 670 test videos. The

dataset contains both short videos (∼1s) and long

videos (∼60s). Given the small size of the dataset, we

ActivityNet MSR-VTT MSVD
R@1 R@5 R@1 R@5 R@1 R@5

CLIP baseline [55] 23.4 49.3 32.8 55.7 39.4 64.6

Ours w/ OFA [74] 27.6 55.6 33.6 59.2 41.1 67.4
Ours w/ ClipCap [46] 26.7 53.5 34.7 59.8 40.6 68.9
Ours w/ BLIP [32] 27.9 54.2 35.8 60.6 41.1 69.1

Table 1: Captioning models: Training with auto-

matic captions obtained with OFA [74], ClipCap [46],

and BLIP [32] all improve over the zero-shot CLIP base-

line [55] on all three text-to-video retrieval benchmarks.

BLIP captions result in best performances.

train using three different seeds and average the results

on the test split.

As previously explained, even though these datasets

contain ground-truth captions, we do not use them dur-

ing training (see experiments in Section A on fully-

supervised setting). We report the standard evaluation

protocols: text-to-video (T2V) recall at rank 1 and 5

for all experiments. Recall at rank k (R@k) quantifies

the number of times the correct video is among the top

k results. Higher recall means better performance.

4.2 Ablation study

This work constitutes an exploratory study to test

whether captions can provide a training signal for un-

labeled videos. The answer is yes; however, there are

certain design choices we make. Here, we provide abla-

tions to measure the sensitivity to these decisions. More

specifically, we investigate the effects of the captioning

model and the quality of the captions provided to the

model, To further improve the results, we make use of

multiple captions per video during training, and com-

bine datasets to train a single model.

(i) Captioning models. The first design choice is

on the image captioning model to use. In Table 1, we

present a comparative study experimenting with three

recent captioning models: OFA [74], ClipCap [46] and

BLIP [32]. More specifically, we use the best available

model checkpoints: OFA-huge trained with 20M pub-

licly available image-text pairs, ClipCap trained with

Conceptual Captions, and BLIP-Large trained with

129M images, finetuned on COCO. Best results are ob-

tained with BLIP, potentially due to the large amount

of pretraining compared to the other two models. The

results also demonstrate the effectiveness of using cap-

tions to improve over the strong CLIP baseline [55],

where we average video frame embeddings using the

frozen CLIP. Note that this is the same as the mean

pooling method used in CLIP4Clip [40]. In this exper-

iment, we randomly select one caption out of the two
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Captioner Caption ActivityNet MSR-VTT MSVD
selection R@1 R@5 R@1 R@5 R@1 R@5

ClipCap

Rand(10) 25.1 51.9 31.8 55.2 39.8 68.5
Middle 1 25.7 52.4 34.1 56.9 38.9 67.0
Top 1 26.0 53.3 34.3 58.0 40.5 68.6
Rand(Top 2) 26.7 53.5 34.7 59.8 40.6 68.9
Rand(Top 3) 26.7 53.5 33.1 59.0 40.5 68.4

BLIP

Rand(10) 26.3 52.7 34.6 60.5 40.5 68.7
Middle 1 25.7 52.4 33.2 57.8 40.1 69.9
Top 1 27.6 54.6 34.9 60.3 41.8 68.3
Rand(Top 2) 27.9 54.2 35.8 60.6 41.1 69.1
Rand(Top 3) 27.8 54.2 35.6 59.5 40.9 68.2

Table 2: Caption selection: For both captioners, we

compare training with a random caption at each epoch,

training with only the middle frame caption, and train-

ing with different number of Top K captions (best

CLIPScore [25]). Using CLIPScore filtering improves

over using all the 10 captions or only using the middle

one on both datasets. Selecting the Top 2 captions re-

sults in overall best performance.

best captions during training. We next assess the influ-

ence of this selection.

(ii) Caption selection. Automatically generated cap-

tions vary in quality. We select captions with high

image-text compatibility to eliminate potential noise in

our training. The above image captioning models do

not output a confidence score; therefore, we use CLIP-

Score [25] between the generated caption and the cor-

responding input video frame as a caption quality mea-

sure.

In Table 2, we evaluate whether such filtering is ben-

eficial. In this experimental setup, we train with one

caption as the video label. We experiment with five

different variants per captioner: (a) randomly selecting

one of the 10 extracted captions at each epoch, (b) us-

ing only the caption corresponding to the middle frame

(i.e., same label in all epochs), (c) using only the best

caption (i.e., top 1 based on the CLIPscore metric), (d)

randomly selecting one of the 2 best captions at every

epoch, (e) randomly selecting one of the 3 best cap-

tions at every epoch. The results support the idea that

CLIPScore is an effective filtering method to keep the

highest quality captions. On all three datasets, and on

both captioners (ClipCap and BLIP), using the best

caption(s) slightly improves over using all the captions

or the middle one. Especially for ActivityNet, where

the videos are relatively long, it is expected that the

caption of the middle frame may not be representative

of the video. However, there exists a trade-off between

the number of captions and their quality. With more

captions per video, we avoid overfitting as this may

serve as data augmentation. On the other hand, the

variance among the caption qualities starts to increase.

We empirically find that taking the best two captions

ActivityNet MSR-VTT MSVD
R@1 R@5 R@1 R@5 R@1 R@5

C 26.7 53.5 34.7 59.8 40.6 68.9
B 27.9 54.2 35.8 60.6 41.1 69.1

C+B 27.3 54.5 36.5 61.5 41.7 70.0

Table 3: Combining two captioners: We observe

slight improvements when using captions from both

ClipCap (C) and BLIP (B) over using them individ-

ually.

constitutes a good compromise, yielding a promising

performance overall. However, the difference between

top 1, 2, or 3 (last three rows) is not significant.

(iii) Combining captioners. One way to increase the

number of captions per video without decreasing the

quality of the captions is to use the best K captions

from each captioner to form the label set. In Table 3, we

test this hypothesis by taking two captioners ClipCap

and BLIP, to then ensemble their labels. The results

are slightly better than the performance of individual

captioners on most metrics. One can potentially further

extend to more captioners I > 2.

Note that we could also select the top K from all the

captions combined from both captioners. This would be

equivalent to taking the best 2 captions out of the 20 (10

per captioner). However, this leads to poorer results,

perhaps due to the different CLIPScore distributions

(slight preference for ClipCap potentially because of the

CLIP backbone), and the tendency to output repetitive

captions across frames for a given captioner. We provide

further analysis in Section D.

(iv) Multi-caption query-scoring (MCQS). So far,

we have only used one caption as a video label dur-

ing each training iteration (even if this is randomly

selected from a pool of 4). Here, we explore how to

effectively combine multiple captions to get a richer

video label, potentially capturing more global content

beyond a single-frame caption. In Table 4, we com-

pare multi-caption query-scoring (MCQS) with single-

caption query-scoring (QS) for the 4 captions from Clip-

Cap and BLIP as before.

We first evaluate the effect of QS for the uniform

mean baselines (i.e., only at test time for the CLIP

baseline, and also at training for one random caption

baseline). Our first observation from Table 4 is that QS

at evaluation marginally improves the baselines (33.9

vs 32.8 for CLIP, 37.6 vs 36.5 for Rand on MSR-VTT

R@1). Training and evaluating with QS gives a further

boost (38.3 vs 37.6).

In the last three rows of Table 4, we then explore

three variants of our approach for using multiple cap-
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Caption Temporal pooling ActivityNet MSR-VTT MSVD
pooling train eval R@1 R@5 R@1 R@5 R@1 R@5

CLIP baseline [55]
mean 23.4 49.3 32.8 55.7 39.4 64.6
QS 23.8 50.0 33.9 57.3 38.5 64.6

Rand(4)
mean mean 27.3 54.5 36.5 61.5 41.7 70.0
mean QS 27.8 55.0 37.6 64.3 41.9 70.0
QS QS 28.4 56.6 38.3 64.8 42.4 70.2

Concat(4) QS QS 29.8 57.7 27.3 50.9 35.1 62.6
Weighted(4) MCQS QS 29.0 57.0 38.6 63.2 41.5 70.5
Mean(4) MCQS QS 29.7 57.1 39.0 64.6 42.5 70.1

Table 4: Multi-caption query-scoring: Using all se-

lected captions during training increases performance

over only using one caption. The CLIP baseline and

the model trained with randomly choosing one the 4

caption labels are evaluated with query-scoring (QS)

for fair comparison. All models use Top-2 from both

captioners (i.e., 4 captions in total from C+B).

tions: a) concatenating captions into a single text and

just using vanilla QS, b) weighted, or c) mean simi-

larity pooling in MCQS. Simple concatenation signif-

icantly decreases the performance on MSR-VTT and

MSVD, probably due to the distribution shift caused

by the longer sentences during training (4 sentences

during training vs 1 sentence at evaluation). On the

other hand, ActivityNet results remain similar or even

slightly improve as the standard evaluation protocol

also concatenates ground-truth descriptions at test time

[40]. The mean similarity pooling in MCQS obtains an

overall improvement across datasets, over both CLIP

and single-caption baselines. We observe a decrease in

performance when dynamically weighting the similari-

ties based on the ClipScore (with a softmax tempera-

ture of 0.1). We therefore keep the method simple and

use the mean of similarities when jointly training with

multiple captions in MCQS.

(v) Training with multiple datasets. Given that

our framework does not require manually annotated

videos, we are not constrained by the fixed size of a

dataset’s training split, and we can train with more

data. In Table 5, we compare how the performance

differs when: (i) training and evaluating on the same

dataset (Self) versus (ii) training with more data by

combining multiple datasets (Combined). The result-

ing combined training set has the following distribu-

tion in terms of number of video clips coming from

each dataset: ∼79% ActivityNet, ∼19% MSR-VTT,

and ∼2% from MSVD. The percentages represent the

relative contribution of each dataset to the combined

training set, derived from the total number of videos

available in each dataset, with a uniform sampling ap-

proach that leads to a higher representation of Activ-

ityNet due to its larger size. Such joint training im-

proves performance moderately for the two relatively

bigger datasets (ActivityNet and MSR-VTT), and more

Vision ActivityNet MSR-VTT MSVD
Method Data Backbone R@1 R@5 R@1 R@5 R@1 R@5

CLIP w/ QS [55] WiT ViT-B/32 20.8 45.5 30.7 54.0 33.6 62.7
CLIP w/ QS [55] WiT ViT-B/16 23.8 50.0 33.9 57.3 38.5 64.6

ActBERT [90] H ResNet-101 - - 8.6 23.4 - -
SupportSet [53] H R(2+1)D-34 00.1 00.2 08.7 23.0 08.9 26.0
MIL-NCE [43] H I3D - - 09.9 24.0 - -
VideoCLIP [77] H S3D - - 10.4 22.2 - -
Frozen[4] WebVid ViT-B/16-time - - 24.7 46.9 - -
CLIP4Clip [40] WiT ViT-B/32 - - 31.2 53.7 - -
VideoCC [48] WiT+VCC ViT-B/32 - - 33.7 57.9 - -
BLIP [32] (dual) † B ViT-B/16 26.3 52.5 35.7 59.2 35.2 63.3
BLIP [32] (cross-modal) B ViT-B/16 35.6 60.9 43.3 65.6 40.6 67.9

Ours (Self) WiT+PL ViT-B/16 29.7 57.0 39.0 64.6 42.5 70.0
Ours (Combined) WiT+PL ViT-B/16 30.6 57.9 39.2 65.1 44.6 71.8

Table 5: Training on the combination of datasets:

We compare training and evaluating on the same

dataset (Self), and training with the three combined

datasets (Combined = ActivityNet + MSR-VTT +

MSVD), and show that combining datasets removes

the need of training three separate models and slightly

improves the overall performance. We perform favor-

ably compared to the state of the art on zero-shot

retrieval (i.e., not using ground-truth video labels in

downstream datasets). Colored lines are obtained from

our implementation. † denotes results we obtained with

the code from [32]. PL is short for pseudo-labels (using

automatic captions). H: HowTo100M, VCC: VideoCC.

B: COCO+VG+CC+SBU+LAION.

significantly for the small MSVD dataset. In the Ap-

pendix Section C.1, we also report cross-dataset eval-

uations (e.g., training with ActivityNet and evaluat-

ing on MSR-VTT). This experiment provides addi-

tional insights into the generalizability of our approach

across different dataset domains. An additional advan-

tage is to obtain a single model instead of multiple

dataset-specific models. Future work can exploit includ-

ing larger scale datasets provided sufficient computing

resources.

4.3 Comparison with the state of the art

In Table 5, we summarize other zero-shot methods re-

porting performances mainly for MSR-VTT, and our

method performs favorably against the state of the art.

The rows that are colored are from our implementa-

tion, in comparable settings (e.g., using QS); uncol-

ored rows correspond to other works. Red rows de-

note our baselines, green rows show our final models.

Note that CLIP4Clip [40] zero-shot version is similar

to our CLIP baseline [55] since they both use a frozen

CLIP to mean-pool over frame embeddings. One dif-

ference is our use of query scoring, which was previ-

ously ablated in Table 4. Another difference may be

due to different hyperparameters such as the number

of frames (N = 10 in ours vs 12 in [40]). Note that in
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Backbone Cross-modal Method ActivityNet MSR-VTT MSVD
(init.) Encoder? R@1 R@5 R@1 R@5 R@1 R@5

CLIP [55] No
Baseline 23.8 50.0 33.9 57.3 38.5 64.6
Ours 29.7 57.1 39.0 64.6 42.5 70.1

No
Baseline 21.0 45.4 33.0 54.8 31.3 59.7

BLIP [32] Ours 23.4 48.0 33.8 60.5 33.7 62.2

w/o COCO
Yes

Baseline 32.1 57.1 41.4 63.3 39.6 63.9
Ours 32.5 59.3 42.1 64.0 40.2 66.3

BLIP [32]

No
Baseline 28.2 56.3 37.4 62.2 37.7 67.3
Ours 30.7 58.3 39.4 64.4 38.2 67.6

Yes
Baseline 35.1 60.6 43.5 66.3 40.6 67.9
Ours 34.6 60.6 43.5 66.5 42.2 68.5

Table 6: Initialization with BLIP:We show the com-

parison between the baseline versus our finetuning with

automatic captions across various settings: CLIP/BLIP

initialization, BLIP backbone with/without COCO

finetuning, BLIP backbone with only the dual encoder

or with subsequently reranking with its cross-modal en-

coder. Our method demonstrates improvements over

the baseline across different initialization settings, but

the gain is reduced as the baseline performance in-

creases. For fairness, unlike the original BLIP evalua-

tion, we use Query-Scoring (QS) when computing dual

encoder similarities.

contrast to other works, we have access to the train-

ing videos (denoted with PL in Table 5), albeit without

their corresponding ground-truth labels. On the other

hand, some of the competitive methods require an ex-

ternal large source of videos such as WebVid [4] and

VideoCC [48]. Others rely on noisy speech signal from

the extensive HowTo100M data [44, 53, 77, 90], but

their performances remain inferior.

Among prior works, BLIP [32] obtains higher per-

formance than our method on MSR-VTT and Activi-

tyNet. However, the BLIP model fundamentally differs

from dual encoder approaches in that BLIP also con-

tains a cross-modal encoder that is used for an addi-

tional image-text matching (ITM in their paper) as a

classification task. The matching score from this classi-

fication head is then ensembled with the cosine similar-

ity obtained by the dual encoder. Cross-modal encoders

are known to perform better than dual encoders; how-

ever, they are less efficient [42]. We, therefore, gray out

this line in Table 5 to highlight this difference. On the

other hand, we compute the performance of the BLIP

dual encoder, by considering only the cosine similar-

ity between the unimodal embeddings (similar in spirit

to CLIP). The result is much lower, for example for

MSR-VTT 35.7 R@1, i.e., lower than both (i) their en-

sembled result 43.3 and (ii) our best model using only a

dual encoder 39.2. We next extend our investigation to

evaluate the applicability of our method on this more

recent cross-modal BLIP encoder as an intialization in-

stead of CLIP.

4.4 BLIP initialization

To evaluate the applicability of our method across var-

ious model initializations, we experiment with addi-

tional backbones beyond the primary CLIP model. In

particular, we incorporate the BLIP model [32], which

is available with and without COCO finetuning. The

implementation details of BLIP, are summarized in Sec-

tion E of the Appendix.

In Table 6, we compare (a) CLIP and BLIP, (b)

two versions of BLIP pretraining, (c) both the effi-

cient dual encoder version and the expensive reranking

with the cross-modal version of BLIP as done in [32],

(d) with/without our finetuning with automatic cap-

tions. Across all datasets and model configurations, we

find that our finetuning with automatic captions consis-

tently improves over the baselines, with the exception

of the last two rows. The improvement is more signifi-

cant for the CLIP backbone, than for BLIP where the

baseline performance is already close to that of fully-

supervised approaches (see Table A.1 of the Appendix).

In other words, with greater baseline results of the un-

derlying backbone, the more marginal the performance

gains become.

We further note that the reranking operation with

the cross-modal encoder, while generally leading to im-

proved performance, is significantly less efficient than

using the dual encoder alone. Specifically, in [32], an ini-

tial retrieval is obtained with the dual encoder, and the

top-k (k = 128) retrieved videos are reranked with the

costly cross-modal encoder. Without the cross-modal

encoder, the CLIP-based model with our approach

demonstrates superior performance (refer to rows with

“No” under “Cross-modal Encoder” in Table 6). We

also clarify that the BLIP baseline performances for

both dual and cross-modal encoder configurations are

slightly different when compared to Table 5, due to the

incorporation of QS in the evaluation for a fair com-

parison; for example, MSR-VTT R@1 shows 37.4 vs

35.7 for the dual encoder and 43.5 vs 43.3 for the cross-

modal encoder with and without QS, respectively. For

the cross-modal encoder setup, QS is only used at the

dual encoder retrieval stage, but not in reranking as the

encoder inputs all frames without needing a temporal

pooling as in [32].

We conclude the quantitative experiments by stat-

ing that pseudolabeling text-video retrieval datasets

with image captioning allows finetuning text-to-image

backbones with no manual annotation cost, which in

turn substantially improves, for example over the frozen

CLIP (e.g., 23.8 vs 30.6 on ActivityNet, 33.9 vs 39.2 on

MSR-VTT, and 38.5 vs 44.6 on MSVD in Table 5).
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Fig. 3: Qualitative results: We provide video retrieval results for our best model trained with the combination

of the three datasets. The examples belong to the test sets of ActivityNet (first two rows), MSR-VTT (third and

fourth rows), and MSVD (last two rows). For each example, we show the text query, the ground-truth video (first

column, blue border), and top 5 retrieved videos from the gallery. Each video is only displayed using the middle

frame, with a green border if matches the ground-truth video, or a red border otherwise. Overall, even cases where

the correct video is not retrieved at the first rank, all the retrieved videos have similar semantic meaning with the

text query.
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4.5 Qualitative analysis

In Figure 3, we illustrate text-to-video results on several

examples on all three datasets. For each test example,

we display (a) the textual query, (b) the ground-truth

video corresponding to the textual query (first column

with blue border), (c) middle frames of the top 5 re-

trieved videos (in order from highest to lowest simi-

larity), and (d) highlighted green border if the video

matches the correct video, or a red border otherwise.

Note that we only visualize the middle frame, which

might not be representative for the overall video. We

observe that most of the retrieved videos contain rele-

vant information to the query text. For example, with

the text query: “cartoon one women in horse and speak

to that calmly”, all the retrieved videos show cartoons.

Moreover, sometimes even if the correct video is not

ranked in the first position, there may be more than

one valid option (e.g., the text query: “a man is play-

ing the flute”). We provide more examples in Section F.

4.6 Limitations

Here, we discuss several limitations of this work. First,

we note that image captioning does not necessarily cap-

ture the dynamic content of videos. In particular, some

videos may only be recognized when observing several

frames. Similarly, our temporal pooling approach re-

mains simple, ignoring the order of frames. Temporal

modeling efforts; however, do not yield gains for re-

trieval benchmarks [5]. As an attempt to incorporate

temporal information, we performed preliminary anal-

ysis using text summarization techniques over the se-

quence of captions, but did not obtain consistent im-

provements (see Section B). Another limitation of our

experiments is to train on the videos from the train-

ing set of a target dataset. Even if we do not use their

labels, this setup ensures minimal domain gap. Future

work can leverage large unlabeled video collections to

remove this need.

5 Conclusion

We showed a simple yet effective framework to uti-

lize an image captioning model as a source of super-

vision for text-to-video retrieval datasets. We demon-

strated significant improvements over the strong zero-

shot CLIP baseline with a comprehensive set of exper-

iments. There are several promising directions for fu-

ture development. One can explore the integration of

more image experts beyond captioning, such as open-

vocabulary object detection. The pseudolabeling ap-

proach could be extended to a wider variety of video

data as mentioned in Section 4.6. The complementar-

ity of self-supervised representation learning methods

could be investigated to increase the supervision sig-

nal in unlabeled videos. Another future direction is

to explore methods to combine the sequence of image

captions into a single video caption.
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APPENDIX

This appendix provides experiments with the fully-

supervised setting (Section A), results with alterna-

tive methods (Section B), additional evaluations (Sec-

tion C), analyses on selecting captions and combining

captioners (Section D), implementation details about

the BLIP initialization experiment (Section E), addi-

tional qualitative results (Section F), and a data avail-

ability statement (Section G).

A Fully-supervised setting

While our focus is on the zero-shot setting, where la-

beled video data is not available, it is worth noting that

for small-scale datasets, annotation costs may not be

prohibitively high allowing for fully-supervised settings.

In the following, we report experiments by training

with the ground-truth captions in the datasets we use,
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Vision ActivityNet MSR-VTT MSVD
Method Data backbone R@1 R@5 R@1 R@5 R@1 R@5

CLIP WiT ViT-B/16 23.8 50.0 33.9 57.3 38.5 64.6

Ours (Self) WiT+PL ViT-B/16 29.7 57.1 39.0 64.6 42.5 70.1
Ours (Comb.) WiT+PL ViT-B/16 30.6 57.9 39.2 65.1 44.6 71.8

GT WiT+GT ViT-B/16 36.4 66.5 42.9 70.9 43.4 74.3
GT w/ QS WiT+GT ViT-B/16 35.1 64.9 44.0 70.5 46.0 73.9
GT w/ QS WiT+GT+PL ViT-B/16 38.3 68.8 45.4 72.4 47.0 75.0

Table A.1: Fully-supervised setting: Comparison of

Baseline, Ours, and training with Ground Truth (GT)

captions. PL denotes training with the dataset videos

without ground truth labels. The last row shows the

results obtained by fine-tuning the Ours (Comb.) model

from Table 5.

by finetuning our proposed model (Section A.1), and

by demonstrating the advantages of MCQS on multi-

captioned data (Section A.2).

A.1 Finetuning with ground-truth captions

We show that our proposed methodology can be used

as a pretraining step. Here, we experiment with ini-

tializing a model trained with automatic captions, and

finetuning with ground-truth captions to further im-

prove the performance. Table A.1 summarizes the re-

sults. The bottom gray lines compare finetuning the

model with ground-truth captions (i) from CLIP ini-

tialization (rows with WiT+GT data), or (ii) from pre-

training with our method (last row with WiT+GT+PL

data). This comparison highlights the benefits of using

our proposed methodology as a pretraining step, as it

leads to further improvement in performance on the

target datasets. We note that when we train with the

ground truth, we keep all hyperparameters the same

for both (i) finetuning from CLIP initialization or (ii)

finetuning from our pretraining with pseudolabels.

A.2 Multi-caption training on MSR-VTT

MSR-VTT videos come with 20 ground-truth captions

per video. Therefore, in the fully-supervised setting, we

can employ our MCQS approach for training. In Ta-

ble A.2, we show that using all ground-truth captions

at a time with MCQS improves over using a single cap-

tion randomly sampled at each training iteration.

B Alternative methods

Retrieving nearest-neighbor caption. One inter-

esting question is whether we need a captioner model

to obtain frame captions. Given that there exists a joint

Caption Temporal pooling MSR-VTT
pooling train eval R@1 R@5

CLIP [55] - QS 23.8 50.0

Random(GT) mean QS 42.9 70.9
Mean(GT) MCQS QS 44.9 73.3

Table A.2: Multi-caption query-scoring training

on MSR-VTT: Comparison of using a random single

ground truth caption versus multiple ground truth cap-

tions at a time.

MSR-VTT MSVD
R@1 R@5 R@1 R@5

CLIP baseline [55] 32.8 55.7 39.4 64.6

Ours w/ OFA [74] 33.6 59.2 41.1 67.4
Ours w/ ClipCap [46] 34.7 59.8 40.6 68.9
Ours w/ BLIP [32] 35.8 60.6 41.1 69.1

Ours w/ NN-CC 35.4 61.1 40.2 66.9

Table A.3: Retrieving nearest neighbor caption

from an image-text dataset: Instead of using a cap-

tioner, we experiment with retrieving the captions from

the Conceptual Captions [63] dataset, using the frame

embedding as query (NN-CC) and obtain comparable

performance to other captioners.

space between images and text through CLIP, an alter-

native approach would be to retrieve the closest text

embedding from a large image-text gallery by querying

with the video frame embedding (similar in spirit to

[48]). We performed this baseline experiment using the

Google Conceptual Captions [63] dataset as the image-

text gallery source, which was also the ClipCap training

set [46]. In a similar fashion to our previous experi-

ments, (i) we extract 10 frames, (ii) retrieve a caption

for each frame, and (iii) compute CLIPScore and fil-

ter them accordingly. In Table A.3, we show that the

retrieved captions can also be used to outperform the

zero-shot baseline. However, as will be seen in the next

section, the retrieved captions appear to be less similar

to the ground truth text than with ClipCap or BLIP

(Table A.3).

Captioning bottleneck with text-to-text re-

trieval. Another baseline we design is to use the cap-

tions directly at test time without fine-tuning CLIP.

This constitutes an information bottleneck where the

video is embedded only into a text, as opposed to a

high-dimensional embedding space. To determine the

nearest video given a text query, we use the previously

extracted captions with ClipCap and BLIP. To repre-

sent a given video, (i) we embed the 10 extracted cap-

tions with Sentence-BERT [59] (S-BERT), (ii) select
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ActivityNet MSR-VTT MSVD
Text enc. R@1 R@5 R@1 R@5 R@1 R@5

CLIP baseline [55] 23.4 49.3 32.8 55.7 39.4 64.6

ClipCap [46] CLIP 7.7 20.6 13.2 28.5 18.3 34.8
ClipCap [46] S-BERT 9.3 26.3 16.4 34.3 20.4 44.4

BLIP [46] CLIP 10.6 28.5 15.8 33.3 25.7 47.6
BLIP [32] S-BERT 13.1 32.3 18.1 39.0 28.5 52.3

Table A.4: Captioning bottleneck with text-to-

text retrieval: We experiment with retrieving videos

by representing them with the text embedding of the

extracted captions. This results in lower performance

than the CLIP baseline. We present performances with

two different text encoders, the CLIP [55] text encoder

and Sentence-BERT [59] (S-BERT). See text for more

details.

the two with the highest CLIPScore [25], and (iii) av-

erage their embeddings. We then compare a text query

(also embedded with S-BERT) with this video repre-

sentation using cosine similarity. In Table A.4, we sum-

marize the results. Of the two text encodings tested,

S-BERT performs better than CLIP text encoder as S-

BERT was intentionally trained to detect similar sen-

tences. However, even the best performing caption bot-

tleneck (i.e., BLIP with S-BERT) obtains worse results

than the zero-shot CLIP baseline. The poor perfor-

mance of this caption-based retrieval approach suggests

that captions are not sufficient to be used directly for

retrieval, but they can instead provide a supervision

signal for training.

Text summarization. As mentioned in Section 4.6

of the main paper, we explored using a text sum-

marization model to combine multiple captions in a
given video, and our attempts led to inconsistent re-

sults, as seen in Table A.5. We experimented with

summarizing the 10 captions from the two captioners,

(Summ(10C) for ClipCap and Summ(10B) for BLIP)

and summarizing the filtered and combined 4 captions

(Summ(2C+2B)). To summarize the captions, we use

the Ada language model hosted in OpenAI. We empiri-

cally find that it helps to prepend a randomly sampled

raw caption to the summary, potentially because we

obtain a longer caption with both local and global in-

formation (i.e., results in Table A.5 improve when the

prepend column is not empty, e.g., 37.5 vs 35.9).

C Additional evaluations

In this section, we report cross-dataset evaluations

(Section C.1), multi-caption evaluation on ActivityNet

(Section C.2), and performance metrics for video-to-

text retrieval (Section C.3).

MSR-VTT MSVD
Prepend Summary R@1 R@5 R@1 R@5

2C + 2B - 36.5 61.5 41.7 70.0

- Summ(10C) 32.1 58.0 39.4 64.7
10C Summ(10C) 33.6 58.8 40.3 65.8
- Summ(10B) 33.7 59.2 40.6 68.0
10B Summ(10B) 34.4 59.1 41.0 69.0

- Summ(2C + 2B) 35.9 60.9 40.8 68.8
2C + 2B Summ(2C + 2B) 37.5 62.2 38.6 69.4

Table A.5: Text summarization results: Results

when summarizing the 10 available captions or the Top

2 from each captioner (2C+2B). We explore two vari-

ants, training with only the summary (prepend empty),

or training with the concatenation of a random caption

and the summary. We do not obtain consistent improve-

ments.

Train
Eval ActivityNet MSR-VTT MSVD

R@1 R@5 R@1 R@5 R@1 R@5

CLIP [55] 23.8 50.0 33.9 57.3 38.5 64.6

ActivityNet 29.7 57.0 38.4 62.7 43.3 69.7
MSR-VTT 29.5 56.7 39.0 64.6 43.5 69.2
MSVD 28.8 55.4 37.9 62.7 42.5 70.0

Combined 30.6 57.9 39.2 65.1 44.5 71.8

Table A.6: Cross-dataset evaluation: Diagonal is

training and evaluating on the same dataset (Table 5,

Self row, in the main paper). Training with MSVD leads

to lowest performance (smallest dataset among three).

Note that we train three MSVD models with different

seeds and report the mean of the recalls.

C.1 Cross-dataset evaluation

As mentioned in Section 4.2 of the main paper, we re-

port cross-dataset evaluations. In Table A.6, we use the

models trained with multi-caption query scoring, where

the diagonal corresponds to the second-last row of Sec-

tion 5 (training and evaluating on the same dataset). In-

terestingly, the performance of MSR-VTT training and

evaluating on ActivityNet is almost as good as training

with ActivityNet videos. Furthermore, models trained

only on MSVD perform poorly on all datasets (includ-

ing itself), given its small size.

C.2 Multi-caption evaluation on ActivityNet

To evaluate ActivityNet in all the experiments in the

paper, we concatenate all the ground-truth captions

available for a video and generate a text query as
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ActivityNet
Method Eval R@1 R@5

CLIP [55] QS 23.8 50.0

Ours (Combined) QS 30.6 57.9
Ours (Combined) MCQS 31.7 58.8

Table A.7: Multi-caption query-scoring evalua-

tion on ActivityNet: We compare evaluating with

query-scoring (QS) with a single text query per video

(concatenating descriptions), with multiple-caption

query-scoring.

ActivityNet MSR-VTT MSVD
Method R@1 R@5 R@1 R@5 R@1 R@5

CLIP baseline [55] 21.5 45.6 32.3 56.3 35.4 62.4

Ours (Self) 28.5 56.0 36.5 64.0 40.0 69.7
Ours (Combined) 28.7 55.9 36.4 66.4 41.6 70.5

Table A.8: Video-to-text retrieval metrics: Our

method (2C+2B trained with MCQS and evaluated

with QS) also improves the CLIP baseline on video-

to-text retrieval metrics.

in [19, 40, 88]. Instead of concatenating the multiple

captions to form a single text query, we can use all the

available descriptions of a video as text queries and eval-

uate using our multi-caption query scoring method. In

Table A.7, we observe further improvements with this

approach.

C.3 Video-to-text retrieval metrics

In the main paper, we only report text-to-video re-

trieval metrics. Here, in Table A.8, we report the video-

to-text metrics. We see that our method also improves

over the baseline on these metrics.

D Analysis on selecting captions and

combining multiple captioners

As mentioned in Section 4.2 of the main paper, we pro-

vide further analysis about the source of captions from

multiple frames and multiple captioners.

Quantitative results. One way to check the assump-

tion that selecting the best captions is removing noisy

captions is to compare the captions with the ground

truth. In Table A.9, we compare the extracted captions

with the ground truth with two metrics: METEOR

and CLIPScore. However, unlike in the main paper,

here we compute the CLIPScore between the two texts

ActivityNet MSR-VTT MSVD
# capt. M T-CS M T-CS M T-CS

NN
10 - - 06.9 77.9 07.2 70.1
Top 2 - - 07.8 79.6 08.5 72.1
Max - - 12.0 85.9 14.9 78.4

C
10 15.3 70.3 09.1 81.9 09.3 73.0
Top 2 16.6 71.2 10.4 82.2 10.7 74.2
Max 26.1 78.4 14.9 88.6 17.9 80.6

B
10 17.2 74.0 20.2 85.6 21.0 79.0
Top 2 17.7 74.4 20.5 86.4 21.7 79.8
Max 28.0 80.4 27.5 91.9 31.8 84.6

Table A.9: Comparing automatic captions to

ground-truth text: We compare the extracted cap-

tions from Nearest Neighbour (NN), ClipCap (C) and

BLIP (B) approaches to ground-truth video captions,

with METEOR (M) [6] and Text CLIPScore (T-

CS) [25] metrics. When we evaluate 10 or 2 captions,

we compute the metrics individually for each caption

and report the average. For the maximum, we com-

pute the metrics for all the 10 captions and select the

one with the highest score. Retrieving nearest neigh-

bour captions have the least similarity with the ground

truth text. Filtering captions with CLIPScore (Top 2)

improves all metrics.

(extracted and ground-truth captions), rather than be-

tween visual and text embeddings. The results motivate

the top-2 selection instead of using all 10 captions. We

also show the maximum (Max), which corresponds to

the comparison of the ground truth with each of the

10 captions individually and selecting the one with the

highest score, as a way to give an upperbound on this

score assuming a perfect selection method (note that

this requires access to the ground truth). We observe

that retrieving nearest neighbor captions has the least

similarity with the ground-truth text.

Different CLIPScore distributions. As seen in Fig-

ure A.1, ClipCap and BLIP captions have different

CLIPScore distributions, with µ being higher for Clip-

Cap, perhaps due to the CLIP backbone. If we were to

select the best 4 captions out of the 20 available ones,

we would be selecting ClipCap captions more often than

BLIP captions.

Top 4 of all the captions. We see in Figure A.2 that

combining captions from different captioners is better

than using only ClipCap or BLIP. Out of the two al-

ternatives: (i) selecting top 4 of the 20 combined set of

captions, (ii) selecting top 2 from each captioner, option

(ii) leads to better results.

Number of different frames. When we select Top

2 from one captioner, our captions come from only two

frames. In Table A.10, we see statistics of the amount

of different frames when combining Top 2 of ClipCap
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Fig. A.1: CLIPScore kernel density estimate: We

plot the CLIPScore distribution for three datasets, and

both models (ClipCap and BLIP). CLIPScore is higher

for ClipCap than for BLIP, potentially because of the

CLIP backbone.

with Top 2 of BLIP. It can be seen that only around 7%

of the time the top captions from both captioners come

from the exact two frames. More than 44% of the time

there is a frame in common with the two captioners.

Finally, most frequently, 4 different frames are selected

from the 10 possible frames: 2 from each captioner.

Repetitive captions. One other benefit of filtering

the captions is that we are left with a set of less repet-

itive captions. See Figure A.3 for the percentage of

unique captions when using 10 captions and Top 2 cap-

tions. We also check that there are less than 1% of over-

lapping captions between the two captioners in any of

the three datasets. This is yet another reason that mo-

tivates us to use different captioners and obtain more

diverse and rich captions.

Fig. A.2: Combining captioners: We compare 4 dif-

ferent strategies: selecting 2 from 10 ClipCap captions,

selecting 2 from 10 BLIP captions, selecting Top 4 from

the 20 combined captions, selecting Top 2 from each

captioner. We highlight the best performance with a

black border.

Dataset 4 frames 3 frames 2 frames

ActivityNet 47.4% 45.4% 7.2%
MSR-VTT 48.5% 44.2% 7.3%
MSVD 47.4% 44.8% 7.8%

Table A.10: Different frames: When using C+B Top-

2 (4 captions), about 47% of the videos have captions

from 4 different frames, and around 45% of the videos

have captions from 3 different frames (i.e., the two cap-

tioners pick the same one frame in their top rankings).

Finally, there are roughly 7% of the videos where both

captioners select the same two frames. In these cases,

multiple captions can still be useful to provide data

augmentation.

Caption Temporal pooling MSVD
Captioners pooling train eval R@1 R@5

CLIP baseline [55]
- mean 39.4 64.5
- QS 38.5 64.5

C + B Rand(4) mean mean 41.7 70.0
C + B Mean(4) MCQS QS 42.5 70.0

C + B + O Rand(6) mean mean 41.8 69.2
C + B + O Mean(6) MCQS QS 42.8 68.5

Table A.11: Combining with OFA: We experiment

with combining three captioners, i.e., using a total of

6 captions by selecting top 2 from each of the ClipCap

(C), BLIP (B), and OFA (O) captioners. While the R@1

metric improves when adding a third captioner, we see

no further improvement in R@5.
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Fig. A.3: Percentage of unique captions: We make

statistics about the percentage of unique extracted cap-

tions within a video (top: for all 10 captions, bottom:

for the best 2 captions). We observe that BLIP cap-

tions are more diverse, and ClipCap ones are a bit more

repetitive.

Beyond two captioners. We explore using three dif-

ferent captions by combining ClipCap (C), BLIP (B)

and OFA (O) in Table A.11. The results do not bring

consistent improvements in both metrics (better R@1,

worse R@5), possibly because OFA performance alone

is not as effective compared to BLIP.

E Implementation details for the BLIP

initialization experiment

We here explain the BLIP implementation details of

the backbone experiments in Section 6. We train using

a method akin to that of BLIP, where the Image-Text

Contrastive (ITC) loss is denoted as our L in Eq. (5).

For the Image-Text Matching (ITM) loss, we extend

the encoder hidden states by the number of frames. We

train with 4 frames and evaluate with 8 frames. We

adopt the ViT-B/16 backbone for the image encoder

and the BERT architecture [14] for the text encoder

as in BLIP. We train the model with a single NVIDIA

RTX A600 using 4 frames, while evaluations are con-

ducted using 8 frames as in the original paper.

F Additional qualitative results

Captioning. Similar to Figure 2 of the main paper, in

Figure A.4, we provide more examples of captioning re-

sults from both ClipCap and BLIP, together with their

corresponding CLIPScores when compared to the im-

age embeddings. In the third picture of the second video

or in the first picture of the third video, we see that

CLIPScore is low when the captions does not match

the frame. In the last video, we see examples of a short

video where all the frames look alike, and the extracted

captions are the same or almost the same.

Retrieval. To complement Figure 3 of the main pa-

per, we provide additional qualitative results in Fig-

ure A.5 for the three datasets: ActivityNet (first two

rows), MSR-VTT (middle two rows) and MSVD (last

two rows).

G Data availability statement

We conducted experiments using three popular text-to-

video retrieval public datasets, namely ActivityNet [29],

MSR-VTT [78], and MSVD [9]. The URLs to download

the datasets are:

– ActivityNet

– MSR-VTT

– MSVD

We complement them with our automatic caption la-

bels and will release these along with our code and pre-

trained models.

https://cs.stanford.edu/people/ranjaykrishna/densevid/
https://github.com/albanie/collaborative-experts/blob/master/misc/datasets/msvd/README.md
https://www.mediafire.com/folder/h14iarbs62e7p/shared


20 Ventura, Schmid, Varol

Fig. A.4: Qualitative results for captioning: We visualize further captioning results by both ClipCap and

BLIP as in Figure 2 of the main paper. First two rows are on ActivityNet, third row on MSR-VTT, last row on

MSVD.



Learning text-to-video retrieval from image captioning 21

Fig. A.5: Qualitative text-to-video retrieval results: Above, video retrieval results for our best model (Com-

bined) are shown. The examples belong to the test sets of ActivityNet (first two rows), MSR-VTT (third and

fourth rows), and MSVD (last two rows). Each example is shown with the text query, the ground-truth video

(first column, blue border), and the top 5 retrieved videos from the gallery. Every video is only displayed using

the middle frame, with a green border if it matches the ground-truth video, or a red border otherwise. Overall,

all the retrieved videos have similar semantic meaning with the text query, even in cases where the correct video

is not retrieved at the first rank.


