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Nonreciprocal transport effects can occur in the normal state of conductors and in superconductors when both inversion
and time-reversal symmetry are broken. Here, we consider systems where magnetochiral anisotropy (MCA) of the
energy spectrum due to an externally applied magnetic field results in a rectification effect in the normal state and a su-
perconducting (SC) diode effect when the system is proximitised by a superconductor. Focussing on nanowire systems,
we obtain analytic expressions for both normal state rectification and SC diode effects that reveal the commonalities
– as well as differences – between these two phenomena. Furthermore, we consider the nanowire brought into an
(almost) helical state in the normal phase or a topological superconducting phase when proximitised. In both cases
this reveals that the topology of the system considerably modifies its nonreciprocal transport properties. Our results
provide new insights into how to determine the origin of nonreciprocal effects and further evince the strong connection
of nonreciprocal transport with the topological properties of a system.

I. INTRODUCTION

A diode is a device in which the resistance depends on the
direction of current flow and is a fundamental element of most
modern electronics. A diode effect requires a non-reciprocal
resistance, R, due to a current, I, such that R(+I) ̸= R(−I). In
other words, it requires the current to be rectified. To achieve
such an effect it is necessary that inversion symmetry and
time-reversal symmetry are both broken simultaneously. In
most cases time-reversal symmetry is broken by dissipation
and the required inversion symmetry breaking is achieved ex-
trinsically, e.g., by forming a pn-junction.

In contrast, however, it is also possible for a nonreciprocal
resistance to arise as an intrinsic property of a material, e.g.,
due to the band structure. For instance, applying an exter-
nal magnetic field can result in a magnetochiral anisotropy
(MCA) of the band structure that also results in a diode
effect.1–10 In particular, MCA results in a resistance that is
proportional to the current, I, itself, such that R=R0(1+γBI),
where R0 is the reciprocal resistance, B is the magnetic field
strength, and γ the MCA rectification coefficient.4

Whilst the above diode effects occur in the normal state, it
has also recently been discovered that it is possible to have
a diode effect in superconductors.11–13 In this case a super-
conducting material or Josephson junction exhibits a critical
current, I±c , that is dependent on the direction of current flow,
such that e.g. I+c > |I−c |, where ± indicates the direction of
current flow.12–42 These effects are known as the supercon-
ducting (SC) diode and Josephson diode effect, respectively.
This difference in critical current enables a diode effect be-
cause there exists a range of currents – in the above example
|I−c | < |I| < I+c – that experiences the zero-resistance of a su-
perconductor in one direction but has a finite resistance for
current flow in the opposite direction.12,13

Several mechanisms have been proposed to produce SC
diode effects. As in normal state diodes, broken inver-
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FIG. 1. Energy spectrum: Schematic normal state band structure,
ε(k), of a one-dimensional system with spin-orbit interaction (SOI),
i.e., a nanowire. Inversion symmetry breaking plays a crucial role in
both the case of normal state rectification and the SC diode effect.
In particular, a difference in Fermi velocity for the inner and outer
branches of the band structure (vin ̸= vout) directly results in an SC
diode effect. The difference in velocity also stems from the differ-
ence in band curvature for the inner and outer Fermi points, which
is what results in a normal state rectification. Both the normal state
rectification and SC diode effect are substantially modified when a
magnetic field component opens a gap at k = 0, as in (b), resulting in
an (almost) helical state of the normal state and a topological super-
conducting state in the proximitised system.

sion symmetry – either explicitly or intrinsically – and bro-
ken time-reversal symmetry – either explicitly by a magnetic
field21,22,24 or by some other mechanism17–19,37–40 – are re-
quired. In particular, it has been shown that MCA of the un-
derlying energy spectrum in a superconductor can also result
in a SC diode or a Josephson diode effect.13,24,25,30

Although normal state rectification and the SC diode ef-
fect can both stem from MCA of the energy spectrum,9,24–26

the relationships between the two effects have not been ex-
plored. Understanding how MCA of the normal state and su-
perconducting phase relate to each other can provide evidence
a given SC diode effect is due to intrinsic broken inversion
symmetry and could provide a roadmap to producing better
SC diodes based on MCA which has significant potential tech-
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nological applications.28,32,35,42,43 Furthermore, such a rela-
tionship could provide a measure of the reduction of spin-orbit
interaction (SOI) due to metallisation effects44,45 in hybrid SC
devices, which is an essential ingredient for realising topolog-
ical superconductivity46 and controlling Andreev spin-qubits
in such devices.47 Finally, it has been shown that SC diode
effects can be altered dramatically in the topological super-
conducting phase,24,30,48 which is still not fully understood,
and further insights into the connections with topology could
be gained from the normal state rectification effect.

In this paper, we investigate systems with MCA of the en-
ergy spectrum and consider relations between the normal state
rectification effect and SC diode effect when proximitised by
a superconductor. Focussing on nanowire systems,46,49 we
obtain analytic expressions for both normal state rectification
and SC diode effects that reveal the links in how both phe-
nomena precisely rely on inversion symmetry breaking of the
bulk band structure. We also investigate the case where the
nanowire is brought into an (almost) helical state in the nor-
mal phase or a topological superconducting phase when prox-
imitised. This reveals, in both the normal state and proximi-
tised systems, that the topology of the system considerably
modifies the nonreciprocal transport response. Interestingly,
the normal state rectification is generically enhanced in the
(almost) helical phase, whereas the SC diode effect is sub-
stantially reduced. We conclude with a discussion of the re-
lations between these two effects and how this can potentially
be leveraged to achieve better SC diodes, as well as provides
insights into the origins of nonreciprocal effects.

II. NONRECIPROCAL TRANSPORT IN THE NORMAL
STATE OF NANOWIRES

We will first investigate normal state nonreciprocal trans-
port in a (quasi) one-dimensional nanowire. In particular, we
focus on the diffusive regime with a scattering rate 1/τ as, for
instance, considered in recent experiments on topological in-
sulator nanowires.9 For simplicity we consider only a single
subband of a one-dimensional band structure. As such, we
assume that the system is shorter than the localization length
and do not take into account other conductivity channels, e.g.,
in the bulk of the TI nanowire. Although sufficient for our
purposes to understand relations between normal state rectifi-
cation and the SC diode effect, these contributions can still be
important in real experimental systems since they affect γ , the
rectification coefficient.

A. Calculation of nonlinear conductivity

The normal state of a nanowire in the presence of a mag-
netic field is described by the following Hamiltonian,24

hk = ξkσ0 +(αk +∆z)σ3 +∆xσ1 −µ, (1)

where ξk = ξ−k (to be defined later), ∆z (∆x) is the Zeeman
energy due to a magnetic field parallel (perpendicular) to the

SOI vector, i.e. direction, of strength αk = −α−k, defin-
ing the quantisation axis, and σi denote the Pauli matrices.
The eigenenergies are described by an energy dispersion ε(s)k ,
where k is the momentum along the nanowire and s the band
index. We will first consider the case of a magnetic field that
is parallel to the SOI vector [Fig. 1(a)] and then later consider
the case where an additional component of magnetic field per-
pendicular to the SOI vector results in an (almost) helical pair
of states at Fermi levels within the resulting gap [Fig. 1(b)].

To calculate the current, we expand the Fermi distribu-
tion function in powers of electric field, E, applied along the
nanowire, such that fl(k) ∝ E l , and then solve the Boltzmann
equation in the constant relaxation time approximation (as in,
e.g., Refs. 4,9,10) such that the lth order current contribution
is given by

jl = σlE l =
e

2π

(
eτE

h̄

)l

∑
s=±, i∈{L,R}

sgn
[
vs

ks
i

]
V s

l,ks
i
, (2)

where e< 0 is the electron charge, h̄V s
l,k = ∂ l

kε(s)k , h̄vs
k = ∂kε(s)k ,

and ks
i is the right (R) or left (L) Fermi wavevector associated

with the band s =± [blue/red in Fig. 1(a)]. The full current at
all orders of electric field is given by j = ∑l jl .

B. Rectification due to magnetic field parallel to SOI vector

We now consider the case of a magnetic field parallel to the
SOI vector (see Fig. 1) and expand around each band mini-
mum to cubic order in δks = k − skSO with s = ± the band
index and where skSO is the momentum corresponding to the
band minima in the absence of magnetic fields [see Fig. 1(a)],
such that

ε(s)k ≈−εSO −µ − s∆z +
αm

2
(δks)

2 +
sβ
6

(δks)
3 , (3)

where the quadratic coefficient αm > 0 is related to the band
mass and the coefficient β is related to cubic SOI. Here, µ is
the chemical potential and ∆z = gµBBz/2 is the Zeeman en-
ergy due to the magnetic field Bz along the SOI axis with µB
the Bohr magneton and g the g-factor. Note, the chemical po-
tential, µ , is measured from the band crossing point at k = 0
and −εso is the energy of the band minima, both in the absence
of a magnetic fields. We will see that this is the minimal order
expansion required to obtain a finite nonreciprocal effect. We
also note that we assume that β is not too large (βkSO ≪ αm)
such that the quadratic expansion is already a good approxi-
mation of the bands and cubic corrections are small. In this
case, we could ignore the spurious Fermi points at large mo-
mentum arising from the cubic order, alternatively, an addi-
tional quartic term can remove these spurious crossings.50

Using Eq. (2) to calculate the second-order conductivity,
i.e. the leading order nonreciprocal component, at tempera-
ture T = 0, we obtain

σn
2 =

e
2π

(eτ
h̄

)2 β
h̄

(
k+R − k−R − k+L + k−L

)
(4)

≈ e
π

(eτ
h̄

)2 β
h̄2 ∆z

(
1

vin
+

1
vout

)
,
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where vin (vout) are the Fermi velocities of the inner (outer)
branches of the spectrum in the absence of a magnetic field
[see Fig. 1(a)]. In the second line the approximation is to
leading order in β and ∆z, which are treated perturbatively,
such that k+R +k−L ≈ 2∆z/h̄vout and k−R +k+L ≈−2∆z/h̄vin. We
note that, in general, vout ̸= vin if β ̸= 0, which is required to
achieve a finite σn

2 . A significant cubic contribution, β , arises,
for instance, in germanium nanowires10 or topological insu-
lator (TI) nanowires.9 We note that in the absence of the cu-
bic term in our expansion of the energy spectrum, β = 0, the
nonreciprocal coefficient will vanish unless higher orders of
momentum in Eq. (3) are included. In other words, a purely
quadratic dispersion, even with broken inversion symmetry,
is not sufficient to produce a finite nonreciprocal conductiv-
ity.9,10 In the absence of magnetic fields, due to the presence
of time-reversal symmetry, as expected, σn

2 vanishes.

C. Rectification in the (almost) helical state

We now consider the case where an additional component
of magnetic field parallel to the nanowire (perpendicular to
the SOI vector) opens a partial gap at small momentum. The
chemical potential µ can be placed inside this partial gap and
the system hosts a pair of (almost) helical states51–54 [see
Fig. 1(b)]. Similar to above, using Eq. (2) to calculate the
second order conductivity gives us

σh
2 =

e
2π

(eτh

h̄

)2 β
h̄

(
k+R + k−L

)
≈ e

π

(eτh

h̄

)2 β
h̄2

∆z

vout
, (5)

where τh is the scattering time in the helical state. As such we
find the simple relationship between the second order conduc-
tivities in both cases

σh
2 /σn

2 ≈
(τh

τ

)2 vin

vin + vout
, (6)

where vin and vout are, as above, the Fermi velocities without
an applied magnetic field.

The nonreciprocal conductivity can be either reduced or en-
hanced, depending on the relative ratios of vin/vout and τh/τ .
However, backscattering is reduced in the (almost) helical
state and so we generically expect that the scattering time will
be much longer for this case, τh ≫ τ . Therefore, the increase
of scattering time expected in an (almost) helical state and the
fact it appears as the square of the τh/τ , likely results in an
increase of σ2.

III. SUPERCONDUCTING DIODE EFFECT IN
PROXIMITISED NANOWIRES

We now turn to the SC diode effect in nanowires.24,33,34,41

We will assume that the superconductivity in the nanowire
is induced by the proximity effect and therefore no self-
consistent treatment of the pairing potential is required. Such
a setup was considered numerically in Ref. 24, where it was
shown that a change of sign and dramatic reduction in the
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FIG. 2. Superconducting diode efficiency: The diode efficiency ini-
tially increases linearly with Zeeman energy before saturating at a
Zeeman field that is set by the difference in Fermi velocities of the
inner and outer branches, see Eq. (15). The linearised approxima-
tion utilised for analytic calculations (dark blue line) is a good ap-
proximation for the diode efficiency at low temperatures. For the
numerical solution, the full energy spectrum of Hk,q [see Eq. (7)] is
used to find the maxima and minima of the current [see Eq. (10)] at
the indicated finite temperature. We use a hk, as defined in Eq. (1)
with ξk =

h̄
2m0

k2 +Ck4 and αk = αSOk. Here m0 is the band mass,
C the quartic contribution that results in vout ̸= vin necessary for a
finite SC diode effect, and αSO the linear spin-orbit coefficient. Pa-
rameters: m0 = 0.015 me, C = 2 · 105 meV nm4, αSO = 0.65 eV Å,
µ = 0.4 meV, ∆ = 0.2 meV, ∆x = 0.

SC diode efficiency occurred for values of Zeeman energy,
∆x, when the topological superconducting phase transition had
occurred. Here, we establish analytically the origin of the SC
diode effect and the connection to the topological supercon-
ducting phase transition. These insights will allow us to see
the common features with the normal state rectification effect
discussed above.

A. Calculation of supercurrent

When brought into proximity with a superconductor a pair-
ing potential, ∆, is induced in the nanowire. Furthermore, the
presence of a current through the nanowire can be described
by a finite Cooper pair momentum, q, in the nanowire.20–22,24

As such the full Hamiltonian in the presence of a supercur-
rent and pairing potential is given by Hq = 1

2
∫

dkψ†
k Hk,qψk,

where

Hk,q =

(
hk+q/2 −iσ2∆
iσ2∆ −h∗−k+q/2

)
, (7)

and, as in Eq. (1), hk is the normal state Hamiltonian. Here,
ψ†

k = (c†
k+ q

2 ↑
, c†

k+ q
2 ↓
, c−k+ q

2 ↑, c−k+ q
2 ↓), where the creation

(annihilation) operator c†
kσ (ckσ ) acts on an electron with mo-

mentum k and spin σ . Throughout we will assume that ∆ ≥ 0
is real.
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For now we focus only on the case when the magnetic field
is parallel to the SOI vector. To calculate the current we follow
the same approach as in Ref. 24 and to make analytic progress
we linearise the normal state spectrum in the absence of mag-
netic fields, which will be taken later into account perturba-
tively. Furthermore, we assume that superconducting pairing
only occurs between equivalent Fermi points, i.e., only be-
tween outer and only between inner points, such that they can
be treated separately.55 In this case the Hamiltonian of each
pair of Fermi points can be described by

hη ,k = h̄vη(−ησ3k− k0
η)+∆zσ3, (8)

where η = +1(−1) indicates the outer (inner) Fermi points,
such that the k0

−1 (k0
1) is the Fermi wave number of the inner

(outer) point of the + band at zero magnetic field and veloc-
ities v−1 = vin and v1 = vout are as defined above. In Fig. 2,
we show that this approximation captures well the SC diode
behavior at low temperatures. For each pair of Fermi points,
η , the two eigenenergies are given by24 (see the Supplemental
Material (SM) [56])

En,η(∆,q,k)=
√

∆2 + h̄2v2
η(ηk+nk0

η)2+n(−h̄vη ηq/2+∆z),

(9)
where n =±. Here, we chose two branches that correspond to
positive energies in the absence of supercurrents and magnetic
fields. The remaining two branches are related to En,η(∆,q,k)
by particle-hole symmetry and are given by −E−n,η(∆,q,−k).
As in previous studies,21,24 the current can then be obtained
from the free energy density (see the SM [56] for details) such
that

j(q) =
e

π h̄

∫
dk ∑

η ,n=±

[
tanh(βEn,η(0,q,k)/2)∂qEn,η(0,q,k)

− tanh(βEn,η(∆,q,k)/2)∂qEn,η(∆,q,k)
]
, (10)

where β = (kBT )−1, with T being the temperature and kB the
Boltzmann constant.

B. Ground state Cooper pair momentum for magnetic field
parallel to SOI.

When subject to a magnetic field, the ground state super-
conducting condensate could develop a finite Cooper pair
momentum.21,22,57 If there is a finite gap and the energies
En,η(∆,q,k) > 0 for all k, in the zero-temperature limit, the
current is given by

j(q) =
e

2π ∑
η ,n=±

nηvη

∫
dk (1− sgn{En,η(0,q,k)})

=
e
π ∑

η
vη

(
q− 2η∆z

h̄vη

)
=

e
π

q(vin + vout) , (11)

where the first line follows from the fact that, at zero temper-
ature, the terms in Eq. (10) will cancel for all k except where
sgn{En,η(0,q,k)} ≠ sgn{En,η(∆,q,k)}. In the second line,

we note that the ∆z contribution cancels between inner and
outer branches due to the fact that the product of the Cooper
pair velocity of each branch, vη , and the shift in momentum
due to the Zeeman energy η ∆z

h̄vη
results in equal magnitude

contributions with opposite signs (see SM [56] for details).
Importantly, this means that the condition j(q0) = 0 is only
satisfied by q0 = 0 and there is no finite pairing momentum in
the ground state. We will see below that this is not the case
in the topological phase when vin is absent. Although, ana-
lytically only valid at zero-temperature, we find this is a very
good approximation also at finite temperature (see Fig. 3).

C. Diode efficiency in trivial phase.

We define the diode efficiency as19

δ =
j+c − j−c
j+c + j−c

, (12)

where j±c are the critical currents to the left and right, such that
j−c =−min{ j(q)} and j+c =max{ j(q)}. At zero temperature,
we find that the extremal current densities occur precisely at
the values of q, where the system becomes gapless as one of
the energies En,η(∆,q,k) in Eq. (9) becomes zero, i.e. when
the condition En,η(∆,q,k) > 0 for Eq. (11) is no longer satis-
fied for all k (see SM [56] for details).24 Note that |∆z| ≥ ∆
results in a gapless system already for q = 0, such that δ = 0
after this value and we assume throughout 0 ≤ |∆z|< ∆. From
Eq. (9), for each n and η we find that this occurs at the critical
values

1
2

qn
η = η

n∆+∆z

h̄vη
. (13)

Using Eq. (11), the diode efficiency can be written as24

δ =
q+c −q−c
q+c +q−c

, q−c =−max
η

{q−η
η }, q+c = min

η
{qη

η}, (14)

in other words the diode efficiency is set by the largest neg-
ative and smallest positive qn

η . In particular, in the regime of
small |∆z|, both critical momenta q±c correspond to the same
η branch, namely that with the largest vη , and the diode ef-
ficiency grows linearly with Zeeman energy, ∆z. For larger
Zeeman strengths, q±c correspond to different η branches and
the diode efficiency saturates to a constant. For instance, tak-
ing vout > vin, we find the diode efficiency is given by

δ =

{∆z
∆ |∆z|< ∆ vout −vin

vout +vin
∆z
|∆z|

vout −vin
vout +vin

∆ vout −vin
vout +vin

≤ |∆z|< ∆.
(15)

We emphasise that a finite diode efficiency is only possible
when there is a difference in Fermi velocities vin ̸= vout, be-
cause, otherwise, the contributions of two branches cancels
each other even in the presence of a magnetic field. The re-
sulting diode efficiency is shown in Fig. 2 both using this ana-
lytic formula based on the linearised approximation and using
the numerical maxima and minima of Eq. (10) without the lin-
earised approximation (see SM [56] for details).
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FIG. 3. Superconducting diode efficiency of the topological phase:
Numerical calculation of (a) the diode coefficient δ and (b) the
ground-state Cooper pair momentum q0 as a function of the Zeeman
energy ∆x resulting from a magnetic field parallel to the nanowire.
Deep within the topological regime (∆x ≫ ∆), we find that the diode
efficiency is considerably suppressed by the presence of a finite pair-
ing momentum q0 in the ground state of the superconductor. We
find q0 is not strongly affected by small finite temperature. We use
a normal state Hamiltonian, hk, as in Eq. (1) with ξk =

h̄
2m0

k2 +Ck4

and αk = αSOk. Here, m0 is the band mass, C the quartic contri-
bution that results in vout ̸= vin necessary for a finite SC diode ef-
fect, and αSO the linear SOI coefficient. Parameters: m0 = 0.015 me,
C = 2 ·105 meV nm4, αSO = 0.65 eV Å, ∆ = 0.2 meV, µ = 0 meV,
∆z = 0.006 meV.

D. Ground state Cooper pair momentum and diode
efficiency in topological phase

We now turn to the topological phase that can exist for
a region of chemical potential when a parallel Zeeman field
component, ∆x, is sufficiently large.49 We note that for a SC
diode effect to occur we still require a component of mag-
netic field such that ∆z is also non-zero. This means that the
outer branches, which are the only ones contributing to the
current, are no longer Kramers partners. In general Eq. (10)
must now be calculated numerically, as was previously con-
sidered in Ref. 24. However, in this regime a finite pairing
momentum q0 can develop. In particular, if temperature is
sufficiently low and ∆x sufficiently large, such that the contri-
butions from the inner Fermi points can be neglected, solving
Eq. (11) for j(q0) = 0 in the absence of vin contributions gives
a finite pairing momentum q0 ≈ 2∆z/h̄vout. As a result, deep
in the topological phase, the critical current satisfies

j±c =
evout

π
(q±c −q0)≈

2e∆
π h̄

, (16)

since q±c = q±1 = 2(∆+∆z)/h̄vout because the inner branches
no longer result in critical momenta. Note that q0 is precisely
the finite momentum due to the shift of the outer branches by

the ∆z component of the magnetic field, such that q0 = 0 for
∆z = 0. As such, we see that the critical currents deep in the
topological superconducting phase are once again (approxi-
mately) reciprocal and the diode efficiency δ ≈ 0 for suffi-
ciently large ∆x. The full numerical results of δ and q0 in this
regime, for various temperatures T , are shown in Fig. 3 and
confirm this behavior (see SM [56] for details of numerics).

IV. DISCUSSION

We have investigated the relations between normal state
nonreciprocal transport and the SC diode effect in proxim-
itized nanowire systems. In both cases MCA can result in
a difference in the inner and outer Fermi velocities and this
is necessary to cause a finite diode effect. This difference
in Fermi velocities generically arises either due to cubic SOI
or due to a momentum dependent mass term in systems with
SOI. We also found that the topology of the system strongly
affects its nonreciprocal transport properties for both normal
and superconducting systems. In the (almost) helical normal
state we found that the rectification is generically enhanced
due to the expected increase in scattering time. In contrast, the
SC diode effect is substantially reduced due to the emergence
of a finite Cooper pair momentum, q0, deep in the topological
phase. Our results indicate that systems with large nonrecip-
rocal transport coefficients in the normal state can be prime
candidates for SC diodes in proximitized systems since the
difference in Fermi velocity of inner and outer pockets is key
in both cases. However, despite their similarities in the trivial
phase, we find that the impact of a topological phase can be
strikingly different for normal state rectification in compari-
son to the SC diode effect.
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51P. Středa and P. Šeba, Phys. Rev. Lett. 90, 256601 (2003).
52B. Braunecker, G. I. Japaridze, J. Klinovaja, and D. Loss, Phys. Rev. B 82,

045127 (2010).
53J. Klinovaja, M. J. Schmidt, B. Braunecker, and D. Loss, Phys. Rev. B 84,

085452 (2011).
54D. Rainis and D. Loss, Phys. Rev. B 90, 235415 (2014).
55J. Klinovaja and D. Loss, Phys. Rev. B 86, 085408 (2012).
56Supplemental Material. We present calculations of the full superconducting

energy spectrum, the current density, and details of the numerics used to
obtain critical currents.

57J. J. Kinnunen, J. E. Baarsma, J.-P. Martikainen, and P. Törmä, Reports on
Progress in Physics 81, 046401 (2018).



Supplemental material:
Relations between normal state nonreciprocal transport and the
superconducting diode effect in the trivial and topological phases

Georg Angehrn, Henry F. Legg, Daniel Loss, and Jelena Klinovaja
Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland

In this supplemental material (SM) we derive the equation for the current in a superconductor nanowire, i.e. Eq. (10) of the
main text. We also give the details of the numerics used for finite temperature calculations in Figs. 2 & 3. Throughout this SM
we follow closely a similar derivation in Ref. 1.

I. ENERGY SPECTRUM OF SUPERCONDUCTING NANOWIRE

We start with the general Hamiltonian, hk, of the normal state of a nanowire [see Eq. (1) of main text],

hk = ξkσ0 +(αk +∆z)σ3 +∆xσ1 −µ. (S1)

We consider a pairing potential, ∆, induced via proximity with a superconductor and in the presence of a current that results in a
finite pairing momentum q, as in Eq. (7) of the main text the Hamiltonian of such a setup is give by

Hq =
1
2 ∑

k
ψ†

k

(
hk+ q

2
−iσy∆

iσy∆ −h∗−k+ q
2

)
ψk. (S2)

Here, as in Eq. (7), ψ†
k =(c†

k+ q
2 ↑

, c†
k+ q

2 ↓
, c−k+ q

2 ↑, c−k+ q
2 ↑), where the operator c†

kσ (ckσ ) creates (annihilates) an electron with
momentum k and spin σ .

Applying the Bogoliubov transformation for fermions, i.e. diagonalising in terms of new fermionic operators γ†
n,k,q and γn,k,q

with n =±, we obtain

Hq =
1
2 ∑

k
ψ̃†

k




ε+(∆,q,k)+ϕ+(∆,q,k) 0 0 0
0 ε−(∆,q,k)+ϕ−(∆,q,k) 0 0
0 0 −ε−(∆,q,k)+ϕ−(∆,q,k) 0
0 0 0 −ε+(∆,q,k)+ϕ+(∆,q,k)


ψ̃k,

(S3)

where we defined

εn(∆,q,k) =
√

∆2 +(δα +nξ̄ )2, (S4)

ϕn(∆,q,k) = n(ᾱ +∆z)+δξ , (S5)

with ξ̄ = 1
2 (ξk+ q

2
+ξ−k+ q

2
), δξ = 1

2 (ξk+ q
2
−ξ−k+ q

2
), ᾱ = 1

2 (αk+ q
2
+α−k+ q

2
), and δα = 1

2 (αk+ q
2
−α−k+ q

2
) in terms of the general

Hamiltonian in Eq. (S1).
To write this in a more manifestly particle-hole symmetric way we note that for k →−k we have: ᾱ → ᾱ , δξ →−δξ , ξ̄ → ξ̄ ,

and δα →−δα , such that εn(∆,q,−k) = ε−n(∆,q,k) and ϕn(∆,q,−k) =−ϕ−n(∆,q,k) and we can write

Hq =
1
2 ∑

k
ψ̃†

k




E+(∆,q,k) 0 0 0
0 E−(∆,q,k) 0 0
0 0 −E+(∆,q,−k) 0
0 0 0 −E−(∆,q,−k)


ψ̃k, (S6)

where throughout ψ̃†
k = (γ†

+,k,q,γ
†
−,k,q,γ+,−k,q,γ−,−k,q) and we have defined the energies as

En(∆,q,k) = εn(∆,q,k)+ϕn(∆,q,k). (S7)

Note that these energies can be either positive or negative and simply correspond to the upper 2×2 block of Eq. (S6).
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These energies allow us to write the Hamiltonian as

Hq = ∑
k,n=±

[
En(∆,q,k)γ†

n,k,qγn,k,q −
1
2

En(∆,k,q)
]
, (S8)

where the final term comes from the anticommutation relations of the fermionic operators γn,k,q. Note that, for ease of analytic
calculations, En(∆,k,q) are defined without a modulus sign compared to Ref. 1, but we stress that the presence or not of the
modulus sign does not affect any of our final results.

II. CALCULATION OF CURRENT

A. Current from the free energy

The current in the nanowire can be obtained from the free energy density Ω(∆,q) which is given by1–3

Ω(∆,q) =− 1
2π

∫
dk∑

n

1
β

ln [cosh(βEn(∆,q,k)/2)] , (S9)

where here we introduced β =(kBT )−1 with kB the Boltzmann constant and T temperature. Next, we can define the condensation
energy density F(q) = Ω(∆,q)−Ω(0,q). From F(q), we can calculate the response to the current1,4

j(q) =
2e
h̄

∂qF(q) =
e

π h̄

∫
dk∑

n

[
tanh(βEn(0,q,k)/2)∂qEn(0,q,k)− tanh(βEn(∆,q,k)/2)∂qEn(∆,q,k)

]
. (S10)

In the case of the linearised approximation, this gives Eq. (11) of the main text. To obtain the finite temperature plots and/or
plots for nonzero ∆x in Figs. 2 & 3, we numerically find the maximum and minimum values of j(q) from Eq. (S10) using the
full energy spectrum as in Eq. (S7).

B. Current at zero temperature

At zero temperature tanh(βx)→ Θ(x)−Θ(−x), where Θ(x) is the Heaviside function. This gives a current

j(q) =
e

π h̄

∫
dk∑

n

{
[Θ(En(0,q,k))−Θ(−En(0,q,k))]∂qEn(0,q,k)− [Θ(En(∆,q,k))−Θ(−En(∆,q,k))]∂qEn(∆,q,k)

}
, (S11)

where we made use of Θ(x/2) = Θ(x).

III. CURRENT FROM LINEARISED SPECTRUM

As in Eq. (8) of the main text, we now linearise the normal state spectrum about the Fermi energy

hηk = h̄vη(−ησ3k− k0
η)+∆zσ3, (S12)

where η =+1(−1) indicates the outer (inner) Fermi points, such that the k0
−1 (k0

1) is the Fermi wave number of the inner (outer)
point of the + band at zero magnetic field and velocities v−1 = vin and v1 = vout are as defined in the main text.

As such, for this linearised spectrum, ξk = −h̄vη k0
η is a constant and αk = −h̄vη ηk. Using the definitions above, this gives

ξ̄ =−h̄vη k0
η , δξ = 0, ᾱ =−h̄vη η q

2 , and δα =−h̄vη ηk. Leading to

εn,η(∆,q,k) =
√

∆2 + h̄2v2
η(nηk+ k0

η)2 (S13)

and

ϕn,η(∆,q,k) = n(−h̄vη ηq/2+∆z). (S14)
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Such that the superconductor energy spectrum corresponding to each pair of bands, η , defined in Eq. (S6) (see also Fig. S1) is
written as

En,η(∆,q,k) = εn,η(∆,q,k)+ϕn,η(∆,q,k) =
√

∆2 + h̄2v2
η(nηk+ k0

η)2 +n(−h̄vη ηq/2+∆z). (S15)

In particular, we find that

∂qEn,η(∆,q,k) =−nh̄vη η/2, (S16)

in other words this derivative is independent of both k, q, and ∆. This allows us to simplify Eq. (S11) for the current at zero-
temperature, such that

j(q) =
−e
2π

∫
dk ∑

n,η
nvη η

{
[Θ(En,η(0,q,k))−Θ(En,η(∆,q,k))]+ [Θ(−En,η(∆,q,k))−Θ(−En,η(0,q,k))]

}
. (S17)

In particular, if we consider values of q for which En,η(∆,q,k)> 0 for all k (∆−|∆z|> |h̄vη q/2|), then

j(q) =
−e
2π ∑

n,η
nvη η

∫
dk
(

sgn{En,η(0,q,k)}−1
)
. (S18)

In other words the integrand is only non-zero if h̄vη |(nηk+ k0
η)|+ n(−h̄vη ηq/2+∆z) < 0. For each branch, inner and outer,

only a single region satisfies this equality (see Fig. S1). In particular, the extremal momenta of this region, k1 and k2, satisfy
h̄vη(nηk1 + k0

η) = n(−h̄vη ηq/2+∆z)< 0 and −h̄vη(nηk2 + k0
η) = n(−h̄vη ηq/2+∆z)< 0, such that we get to ηn(k2 − k1) =

nηq− 2n∆z
h̄vη

≥ 0. The integral over k yields −2
(

ηnq− 2n∆z
h̄vη

)
Θ
(

ηnq− 2n∆z
h̄vη

)
. Inserting this integral into Eq. (S18) for the current

gives

j(q) =
e
π ∑

η
vη

(
q− 2η∆z

h̄vη

)
=

e
π

q(vin + vout), (S19)

as is found in the main text. Note that the Zeeman energy drops out due to the cancellation of velocity factors.
Finally, we note that in Eq. (S17), if we allow for some k where En,η(∆,q,k) < 0 then these regions will reduce the current

compared to the maximal value allowed when En,η(∆,q,k)> 0 is true for all k (see the main text).

∆z > 0,q > 0∆z > 0,q = 0

−k0
1 −k0

−1 k0
−1 k0

1

-1

0

1

k

E
n
,η
(∆

,q
,k

)/
∆

−k0
1 −k0

−1 k0
−1 k0

1

k

FIG. S1. The energy spectrum: The linearised spectrum En,η (∆,k,q)[En,η (0,k,q)] is shown by solid [dashed] lines. The regions where
sgn{En,η (0,k,q)} ̸= sgn{En,η (∆,k,q)} are the only ones that contribute to j(q) in Eq. (S18). Blue (red) indicates inner (outer) branches
corresponding to η =−1 (η = 1) and Fermi momentum k0

−1 (k0
1). Note that for finite q, one band from each branch moves up in energy for all

k and the other moves down.
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IV. CRITICAL MOMENTA

Here, we give further details of the diode efficiency δ , as in Eq. (15) of the main text. For small ∆z, the critical momenta
q±c correspond to the same branch, η , with the largest Fermi-velocity vη . Assuming vout > vin, we obtain q±c = ∆±∆z

h̄vout
and

δ = q+c −q−c
q+c +q−c

= ∆z
∆ . On the other hand, for ∆ vout −vin

vout +vin
≤ |∆z| < ∆, opposite η branches are responsible for the critical momenta

q±c . In particular, taking ∆z > 0, we obtain q+c = ∆−∆z
h̄vin

and q−c = ∆−∆z
h̄vout

, which gives δ = vout −vin
vout +vin

. Conversely, for ∆z < 0, in this

regime, the result is q+c = ∆+∆z
h̄vout

and q−c = ∆+∆z
h̄vin

, such that we obtain δ =− vout −vin
vout +vin

.
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