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Université Grenoble Alpes

alantha.newman@grenoble-inp.fr

Lukas Vogl

EPFL

lukas.vogl@epfl.ch

April 29, 2024

Abstract

In the classic Correlation Clustering problem introduced by Bansal, Blum, and Chawla [BBC04], the
input is a complete graph where edges are labeled either + or −, and the goal is to find a partition of the
vertices that minimizes the sum of the +edges across parts plus the sum of the −edges within parts. In
recent years, Chawla, Makarychev, Schramm and Yaroslavtsev [CMSY15] gave a 2.06-approximation by
providing a near-optimal rounding of the standard LP, and Cohen-Addad, Lee, Li, and Newman [CLN22,
CLLN23] finally bypassed the integrality gap of 2 for this LP giving a 1.73-approximation for the problem.

While introducing new ideas for Correlation Clustering, their algorithm is more complicated than
typical approximation algorithms in the following two aspects: (1) It is based on two different relaxations
with separate rounding algorithms connected by the round-or-cut procedure. (2) Each of the round-
ing algorithms has to separately handle seemingly inevitable correlated rounding errors, coming from
correlated rounding of Sherali-Adams and other strong LP relaxations [GS11, BRS11, RT12].

In order to create a simple and unified framework for Correlation Clustering similar to those for typical
approximate optimization tasks, we propose the cluster LP as a strong linear program that might tightly
capture the approximability of Correlation Clustering. It unifies all the previous relaxations for the
problem. It is exponential-sized, but we show that it can be (1 + ε)-approximately solved in polynomial
time for any ε > 0, providing the framework for designing rounding algorithms without worrying about
correlated rounding errors; these errors are handled uniformly in solving the relaxation.

We demonstrate the power of the cluster LP by presenting a simple rounding algorithm, and providing
two analyses, one analytically proving a 1.49-approximation and the other solving a factor-revealing
SDP to show a 1.437-approximation. Both proofs introduce principled methods by which to analyze the
performance of the algorithm, resulting in a significantly improved approximation guarantee.

Finally, we prove an integrality gap of 4/3 for the cluster LP, showing our 1.437-upper bound cannot
be drastically improved. Our gap instance directly inspires an improved NP-hardness of approximation
with a ratio 24/23 ≈ 1.042; no explicit hardness ratio was known before.

1 Introduction

Clustering is a classic problem in unsupervised machine learning and data mining. Given a set of data
elements and pairwise similarity information between the elements, the task is to find a partition of the data
elements into clusters to achieve (often contradictory) goals of placing similar elements in the same cluster
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and separating different elements in different clusters. Introduced by Bansal, Blum, and Chawla [BBC04],
Correlation Clustering elegantly models such tension and has become one of the most widely studied for-
mulations for graph clustering. The input of the problem consists of a complete graph (V,E+ ⊎E−), where
E+ ⊎ E− =

(

V
2

)

, E+ representing the so-called positive edges and E− the so-called negative edges. The
goal is to find a clustering (partition) of V , namely (V1, . . . , Vk), that minimizes the number of unsatisfied
edges, namely the +edges between different clusters and the −edges within the same cluster. Thanks to
the simplicity and modularity of the formulation, Correlation Clustering has found a number of applica-
tions, e.g., finding clustering ensembles [BGU13], duplicate detection [ARS09], community mining [CSX12],
disambiguation tasks [KCMNT08], automated labelling [AHK+09, CKP08] and many more.

This problem is APX-Hard [CGW05], and various O(1)-approximation algorithms [BBC04, CGW05]
have been proposed in the literature. Ailon, Charikar and Newman introduced an influential pivot-based
algorithm, which leads to a combinatorial 3-approximation and a 2.5-approximation with respect to the
standard LP relaxation [ACN08]. The LP-based rounding was improved by Chawla, Makarychev, Schramm
and Yaroslavtsev to a 2.06-approximation [CMSY15], nearly matching the LP integrality gap of 2 presented
in [CGW05].

It turns out that (a high enough level of) the Sherali-Adams hierarchy can be used to design a strictly
better than 2-approximation. Cohen-Addad, Lee, and Newman [CLN22] showed that O(1/ε2) rounds of
the Sherali-Adams hierarchy have an integrality gap of at most (1.994 + ε). This approximation ratio was
improved by Cohen-Addad, Lee, Li, and Newman [CLLN23] to (1.73+ ε) in npoly(1/ε)-time, which combines
pivot-based rounding and set-based rounding.

One undesirable feature of [CLLN23] is the lack of a single convex relaxation with respect to which the
approximation ratio is analyzed. For technical reasons, it combines the two rounding algorithms via a generic
round-or-cut framework. Given x ∈ [0, 1]E, each of the two rounding algorithms outputs either an integral
solution with some guarantee or a hyperplane separating x from the convex hull of integral solutions; if both
algorithms output integral solutions, one of them is guaranteed to achieve the desired approximation factor.
Though each of the rounding procedures is based on some LP relaxations, they are different, so there is no
single relaxation that can be compared to the value of the final solution.

In this work, we propose the cluster LP as a single relaxation that captures all of the existing algorithmic
results. Based on this new unified framework, we design a new rounding algorithm as well as principled tools
for the analysis that significantly extend the previous ones, ultimately yielding a new approximation ratio
of 1.437 + ε. The study of the cluster LP sheds light on the hardness side as well, as we prove a 4/3 ≈ 1.33
gap for the cluster LP and a 24/23 ≈ 1.042 NP-hardness of approximation.

1.1 Our Results

We first state the cluster LP here. It is similar to configuration LPs used for scheduling and assignment
problems [BS06, FGMS06]. In the cluster LP, we have a variable zS for every S ⊆ V, S 6= ∅, that indicates
if S is a cluster in the output clustering or not. As usual, xuv for every uv ∈

(

V
2

)

indicates if u and v are

separated in the clustering or not. For any x ∈ [0, 1](
V
2), we define obj(x) :=

∑

uv∈E+ xuv+
∑

uv∈E−(1−xuv)
to be the fractional number of edges in disagreement in the solution x.

min obj(x) s.t. (cluster LP)

∑

S∋u

zS = 1 ∀u ∈ V (1)

∑

S⊇{u,v}

zS = 1− xuv ∀uv ∈
(

V

2

)

(2)

zS ≥ 0 ∀S ⊆ V, S 6= ∅ (3)

The objective of the LP is to minimize obj(x), which is a linear function. (1) requires that every vertex u
appears in exactly one cluster, (2) gives the definition of xuv using z variables.
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The idea behind this LP was used in [CLLN23] to design their set-based rounding algorithm, though the
LP was not formulated explicitly in that paper. Moreover, the paper did not provide an efficient algorithm to
solve it approximately. Our first result shows that we can approximately solve the cluster LP in polynomial
time, despite it having an exponential number of variables. We remark that unlike the configuration LPs for
many problems, we do not know how to solve the cluster LP simply by considering its dual.

Theorem 1. Let ε > 0 be a small enough constant and opt be the cost of the optimum solution to the given
Correlation Clustering instance. In time npoly(1/ε), we can output a solution

(

(zS)S⊆V , (xuv)uv∈(V2)
)

to the

cluster LP with obj(x) ≤ (1 + ε)opt, described using a list of non-zero coordinates. 1

The cluster LP is the most powerful LP that has been considered for the problem. Indeed, previous
algorithms in [CLN22] and [CLLN23] can be significantly simplified if one is given a (1 + ε)-approximate
solution to the LP. A large portion of the algorithms and analysis in [CLN22] and [CLLN23] is devoted
to handle the additive errors incurred by the correlated rounding procedure, which is inherited from the
Raghavendra-Tan rounding technique [RT12]. Instead, we move the complication of handling rounding
errors into the procedure of solving the cluster LP relaxation.

With this single powerful relaxation, we believe that Theorem 1 provides a useful framework for future
work that may use more ingenious rounding of the exponential-sized cluster LP without worrying about
errors. Indeed, the constraints in the cluster LP imply that the matrix (1−xuv)u,v∈V is PSD, 2 and thus the
LP is at least as strong as the natural SDP for the problem. For the complementary version of maximizing
the number of correct edges, the standard SDP is known to give a better approximation guarantee of
0.766 [Swa04, CGW05]. For the minimization version, the standard SDP has integrality gap at least 1.5 (see
Appendix C), but it is still open whether this program has an integrality gap strictly below 2 or not.

We demonstrate the power of the cluster LP by presenting and analyzing the following algorithm, signif-
icantly improving the previous best 1.73-approximation.

Theorem 2. There exists a (1.49+ ε)-approximation algorithm for Correlation Clustering that runs in time
O(npoly(1/ε)).

This is achieved by a key modification of the pivot-based rounding algorithm that is used in conjunction
with the set-based algorithm as in [CLLN23]. In combination with more careful analysis, which involves
principled methods to obtain the best budget function, we obtain a significantly improved approximation
ratio.

In order to obtain an even tighter analysis of the same algorithm, we introduce the new factor revealing
SDP that searches over possible global distributions of triangles in valid Correlation Clustering instances.
By numerically solving such an SDP, we can further improve the approximation ratio of the same algorithm.

Theorem 3. There exists a (1.437 + ε)-approximation algorithm for Correlation Clustering that runs in
time O(npoly(1/ε)).

While the proof includes a feasible solution to a large SDP and is not human-readable, we prove that our
SDP gives an upper bound on the approximation ratio, so it is a complete proof modulo the SDP feasibility of
the solution. Our program and solution can be found at https://github.com/correlationClusteringSDP/SDP1437code/.

We also study lower bounds and prove the following lower bound on the integrality gap of the cluster LP.

Theorem 4. For any ε > 0, the integrality gap of the cluster LP is at least 4/3− ε.

This integrality gap for the cluster LP, after some (well-known) loss, directly translates to NP-hardness.
Apart from the APX-hardness [CGW05], it is the first hardness with an explicit hardness ratio.

1We remark that obj(x) given by the theorem is at most 1 + ε times opt, instead of the value of the cluster LP. This is
sufficient for our purpose. One should also be able to achieve the stronger guarantee of (1 + ε)-approximation to the optimum
fractional solution. Instead of dealing with the optimum clustering C∗ in the analysis, we deal with the optimum fractional
clustering to the LP. For simplicity, we choose to prove the theorem with the weaker guarantee.

2Consider the matrix Y ∈ [0, 1]V ×V where yuv = 1 − xuv for every u, v ∈ V (Yuu = 1,∀u ∈ V ). For every
w ∈ RV , we have wTY w =

∑

u,v∈V yuvwuwv =
∑

u,v

∑

S⊇{u,v} zSwuwv =
∑

u,v

∑

S⊆V zS · (wu · 1u∈S) · (wv · 1v∈S) =
∑

S⊆V zS
(
∑

u∈S wu

) (
∑

v∈S wv

)

≥ 0.

3
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Theorem 5. Unless P = BPP, for any ε > 0, there is no (24/23 − ε)-approximation algorithm for
Correlation Clustering.

1.2 Further Related Work

The weighted version of Correlation Clustering, where each pair of vertices has an associated weight and
unsatisfied edges contribute a cost proportional to their weight to the objective, is shown to be equivalent
to the Multicut problem [DEFI06], implying that there is an O(log n)-approximation but no constant factor
approximation is possible under the Unique Games Conjecture [CKK+06].

In the unweighted case, a PTAS exists when the number of clusters is a fixed constant [GG06, KS09].
Much study has been devoted to the minimization version of Correlation Clustering in various computational
models, for example in the online setting [MSS10, LMV+21, CLMP22], as well as in other practical settings
such as distributed, parallel or streaming [CDK14, ACG+15, CLM+21, PPO+15, CCMU21, Vel22, VGW18,
AW22, BCMT22, BCMT23, CHS24, CM23, CKL+24]. Other recent work involves settings with fair or local
guarantees [AN23, DMN23, HIA23].

2 Algorithmic Framework and Setup for Analysis

In this section, we describe our algorithm for obtaining the improved approximation ratio for Correlation
Clustering. We solve the cluster LP using Theorem 1 to get a fractional solution z = (zS)S⊆V , which

determines x ∈ [0, 1](
V

2) as in (2): xuv := 1−∑S⊇{u,v} zS for every uv ∈
(

V
2

)

. We have obj(x) ≤ (1 + ε)opt.
The theorem will be proved in Section 4. With z, we then run two procedures: the cluster-based rounding
and the pivot-based rounding with threshold 1/3. We select the better result as the final clustering. The
two procedures are defined in Algorithms 1 and 2 respectively. We use N+(u) and N−(u) to denote the sets
of + and −neighbors of a vertex u ∈ V respectively.

Algorithm 1 Cluster-Based Rounding

1: C ← ∅, V ′ ← V
2: while V ′ 6= ∅ do
3: randomly choose a cluster S ⊆ V , with probabilities zS∑

S′ zS′

4: if V ′ ∩ S 6= ∅ then C ← C ∪ {V ′ ∩ S}, V ′ ← V ′ \ S
5: return C

Algorithm 2 Pivot-Based Rounding with Threshold 1/3

1: C ← ∅, V ′ ← V
2: while V ′ 6= ∅ do
3: randomly choose a pivot u ∈ V ′

4: C ← {v ∈ V ′ ∩N+(u) : xuv ≤ 1
3}

5: for every v ∈ V ′ ∩N−(u) do independently add v to C with probability 1− xuv

6: randomly choose a set S ∋ u, with probabilities zS ⊲ We have
∑

S∋u zS = 1
7: C ← C ∪ (S ∩ V ′ ∩N+(u)), C ← C ∪ {C}, V ′ ← V ′ \ C
8: return C

Analysis of Cluster-Based Rounding Procedure. The cluster-based rounding procedure is easy to
analyze. The following lemma suffices.

Lemma 6. For every uv ∈
(

V
2

)

, the probability that u and v are separated in the clustering C output by the

cluster-based rounding procedure is 2xuv

1+xuv
. So the probability they are in the same cluster is 1−xuv

1+xuv
.

4



Proof. We consider the first set S chosen in the cluster-based rounding algorithm such that {u, v} ∩ S 6= ∅.
u and v will be separated iff |S ∩{u, v}| = 1. The probability that this happens is precisely

∑
|S∩{u,v}|=1 zS

∑
S∩{u,v}6=∅ zS

=

2xuv

1+xuv
.

Therefore, a +edge uv will incur a cost of 2xuv

1+xuv
in expectation in the cluster-based rounding procedure,

and a −edge will incur a cost of 1−xuv

1+xuv
. The approximation ratios for a +edge uv and a −edge uv are

respectively 2
1+xuv

and 1
1+xuv

. Notice that the latter quantity is at most 1.

Notations and Analysis for Pivot-Based Rounding Procedure. We now proceed to the pivot-based
rounding procedure in Algorithm 2. We remark that to recover the correlated rounding algorithm in [CLN22]
and [CLLN23], we can use C ← ∅ in Step 4. Then we can obtain their approximation ratios without the
complication of handling rounding errors. The errors are handled in [CLN22] by distinguishing between the
short, median and long +edges. In our algorithm, we also distinguish between short +edges (those with
xuv ≤ 1

3 ) and long +edges (those with xuv > 1
3 ); however, the purpose of this distinction is to get an

improved approximation ratio, instead of to bound the rounding errors.
Our high-level setup of the analysis follows from [CLN22, CLLN23], which in turn is based on [ACN08]

and [CMSY15]. We consider a general budget for every edge. We shall define two budget functions :

• b+ : [0, 1]→ R≥0 and b− : [0, 1]→ R≥0.

They determine the budget buv for the edge uv: if uv ∈ E+, then buv := b+(xuv), and if uv ∈ E−, then
buv := b−(xuv).

We now focus on one iteration of the while loop in Algorithm 2. Suppose u, v, w ∈ V ′ at the beginning
of the iteration, and let C be the cluster constructed at the end. We use u to denote the event that u is
chosen as the pivot. We say vw incurs a cost in the iteration, if vw ∈ E+ and |C ∩ {v, w}| = 1, or vw ∈ E−

and {v, w} ⊆ C. Then, we define

costu(v, w) := Pr[vw incurs a cost | u].

and

∆u(v, w) := Pr[C ∩ {v, w} 6= ∅ | u] · bvw.

costu(v, w) is the probability that vw incurs a cost conditioned on the event u. When an edge vw disappears,
we say vw releases its budget. So, ∆u(v, w) is the expected budget released by vw in the iteration when u
is the pivot. Notice that both costu(v, w) and ∆u(v, w) do not depend on V ′, provided that u, v, w ∈ V ′.

We call a set of three distinct vertices a triangle. A set of two distinct vertices is called a degenerate
triangle. For triangle (u, v, w), let

cost(u, v, w) := costu(v, w) + costv(u,w) + costw(u, v), and ∆(u, v, w) := ∆u(v, w) + ∆v(u,w) + ∆w(u, v).

For degenerate triangle (u, v), let

cost(u, v) := costu(u, v) + costv(u, v), and ∆(u, v) := ∆u(u, v) + ∆v(u, v).

Lemma 7. Suppose that for every V ′ ⊆ V , we have

∑

(u,v,w)∈(V
′

3 )

cost(u, v, w) +
∑

(u,v)∈(V
′

2 )

cost(u, v) ≤
∑

(u,v,w)∈(V
′

3 )

∆(u, v, w) +
∑

(u,v)∈(V
′

2 )

∆(u, v). (4)

Then, the expected cost of the clustering output by Algorithm 2 is at most
∑

uv∈(V2)
buv.
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Proof. Focus on any iteration of Algorithm 2; V ′ is the V ′ at the beginning of the iteration.
The expected cost incurred by all edges in the iteration is

1

|V ′|
∑

u∈V ′

∑

(v,w)∈(V
′

2 )

costu(v, w)
1

|V ′|
∑

(u,v,w)∈(V
′

3 )

cost(u, v, w) +
1

|V ′|
∑

(u,v)∈(V
′

2 )

cost(u, v).

The expected budget released at this iteration is

1

|V ′|
∑

u∈V ′

∑

(v,w)∈(V
′

2 )

∆u(v, w) =
1

|V ′|
∑

(u,v,w)∈(V
′

3 )

∆(u, v, w) +
1

|V ′|
∑

(u,v)∈(V
′

2 )

∆(u, v).

Therefore, if the condition of the lemma holds, then at every iteration of Algorithm 2, the expected cost
incurred is at most the expected budget released. Overall, the expected cost of the final clustering is at most
the expected total budget released by all edges during the whole procedure, which is

∑

uv∈(V2 )
buv. This

finishes the proof of the lemma.

To obtain an approximation ratio of α ∈ [1, 2), we consider a variant of our algorithm, in which we run the
cluster-based rounding procedure (Algorithm 1) with probability α

2 , and the pivot-based rounding procedure
with threshold 1/3 (Algorithm 2) with the remaining probability 1 − α

2 . Clearly, the actual algorithm that
picks the better of the two clusterings generated can only be better. We set up the budget functions b+ and
b− such that every edge pays a cost of at most α times its LP cost in expectation. That is, the following
properties are satisfied for every x ∈ [0, 1]:

α

2
· 2x

1 + x
+
(

1− α

2

)

b+(x) = αx,
α

2
· 1− x

1 + x
+
(

1− α

2

)

b−(x) = α(1− x).

This gives us the following definitions:

b+α (x) :=
α

1− α/2
· x2

1 + x
, and b−α (x) :=

α

1− α/2
· (1 + 2x)(1− x)

2(1 + x)
, ∀x ∈ [0, 1]. (5)

Lemma 8. If the budget functions b+α and b−α satisfy (4) for some α ∈ [1, 2), then our algorithm has an
approximation ratio of α.

Proof. Consider the variant of the algorithm where we run the cluster-based rounding procedure with prob-
ability α

2 , and the pivot-based procedure with threshold 1/3 with the remaining probability of 1 − α
2 . By

Lemma 7, the expected cost of the clustering given by the variant is at most

∑

uv∈E+

(

α

2
· 2xuv

1 + xuv
+
(

1− α

2

)

· b+α (xuv)

)

+
∑

uv∈E−

(

α

2
· 1− xuv

1 + xuv
+
(

1− α

2

)

· b−α (xuv)

)

= α

(

∑

uv∈E+

xuv +
∑

uv∈E−

(1− xuv)

)

= α · obj(x).

The actual algorithm we run can only be better than this variant.

As a baseline, we provide a per-triangle analysis leading to an approximation ratio of 1.5 in Section 5:

Lemma 9. For budget functions b+ ≡ b+1.5 and b− ≡ b−1.5, we have cost(T ) ≤ ∆(T ) for every triangle T .

Clearly, the lemma implies that (4) holds for b+ ≡ b+1.5 and b− ≡ b−1.5. By Lemma 8, our algorithm
gives an approximation ratio of 1.5. We remark that 1.5 is the best possible ratio we can achieve using the
per-triangle analysis. For a ++− triangle with length 1

2 for +edges and length 1 for the −edge, we need to
pay a factor of 2 for each of the 1

2 -length +edge. Then the cluster-based rounding algorithm gives factors of

6



2 and 4
3 for +edges of lengths 0 and 1

2 respectively. For the pivot-based rounding algorithm, the factors are
at least 0 and 2. A combination of the two algorithms can only lead to a factor of 1.5.

To get a better approximation ratio, we provide two analyses that use global distributions of triangles.
The former is purely analytic and the latter relies on solving a factor-revealing SDP. The following two
lemmas are proved in Sections 6 and 7 respectively.

Lemma 10. (4) holds for budget functions b+ ≡ b+1.49 and b− ≡ b−1.49.

Lemma 11. (4) holds for budget functions b+ ≡ b+1.437 and b− ≡ b−1.437.

Combined with Lemma 8, the two lemmas imply Theorems 2 and 3 respectively.

3 Overview of Techniques

In this section, we provide overviews of the techniques used in our results.

Simpler and Better Preclustering Procedure. The concept of preclustering was introduced in [CLLN23].
In a preclustered instance, we predetermine the fate of some edges: for some edges uv, u and v must be in
the same cluster; for some other edges uv, u and v must be separated. Since the relation of being in the
same cluster is transitive, we define a preclustered instance using a pair (K, Eadm), where K is a partition
of V into so called atoms and Eadm ⊆

(

V
2

)

is a set of admissible edges. An atom can not be broken. If u
and v are not in the same atom and uv /∈ Eadm, then u and v must be separated. [CLLN23] showed how to
construct a preclustered instance (K, Eadm), losing only a (1 + ε) factor in the optimum cost, while at the
same time guaranteeing that |Eadm| ≤ O(opt/ε12). This is crucial for their correlated rounding algorithm,
as it loses an additive error depending on |Eadm|. In this work, we still need the preclustering procedure to
bound the rounding error, but now it is inside the procedure of solving the cluster LP.

We greatly simplify the preclustering procedure from [CLLN23], and as a result, we achieve a much
better bound of O(opt/ε2) on |Eadm|. [CLLN23] used the agreement graph to construct the atoms; roughly
speaking, two vertices are in agreement if their neighborhood sets are similar to each other. The analysis
uses many technical structural lemmas from [CLM+21], which solves Correlation Clustering in the online
setting. In contrast, our construction of atoms is simple: we construct an O(1)-approximate clustering C,
mark vertices whose costs are large, and then K is obtained from C by removing marked vertices and creating
singletons for them. The set of admissible edges is roughly defined as follows: we construct a graph (V,E1)
where two vertices are neighbors if their +degrees are similar. Then an edge uv is admissible if u and v have
many common neighbors in E+ ∩ E1.

Solving Cluster LP by Preclustering. As we mentioned, we move the complication of handling round-
ing errors to the step of solving the cluster LP. As in [CLLN23], we construct a preclustered instance
(K, Eadm), and formulate an LP relaxation aimed at finding the (1 + ε)-approximate good clustering for
(K, Eadm), that we call the bounded sub-cluster LP. In contrast to [CLLN23], which solves many instances of
this LP embedded in their round-or-cut framework, we only solve the LP once, therefore avoiding this heavy
framework. With a solution (x, y) to the LP, we run a procedure that constructs a single cluster C randomly.
The probability that any vertex is in C is precisely 1/y∅, where y∅ is the fractional number of clusters in y.
The probabilities that exactly one of u and v is in C, and both of them are in C, are respectively xuv

y∅
and

1−xuv

y∅
up to some error terms arising from the Raghavendra-Tan rounding procedure. As usual, xuv is the

extent in which u and v are separated.
To construct the solution z = (zS)S⊆V for the cluster LP, we generate y∅∆many clusters C independently,

for a large enough polynomial ∆. Roughly speaking, the solution z is 1
∆ times the multi-set of clusters C

we generated. The error incurred by the Raghavendra-Tan rounding procedure can be bounded in terms of
|Eadm|, and the error from sampling can be bounded using concentration bounds.
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1.49-approximation. We start with the algorithm of [CLLN23], but make several key modifications both
in the design and in the analysis. This allows us to significantly improve the approximation ratio, first to 1.5
and, eventually, to 1.49, which shows that, perhaps surprisingly, even the rather low approximation factor
of 1.5 is not tight for Correlation Clustering. The first key ingredient is to use a principled budget function
for the pivot-based rounding procedure, defined earlier in (5), which is designed to optimally balance the
approximation factor of edges between the two rounding procedures. This new budget function is better
than the one used in [CLLN23], but does not allow us to reach 1.5 without changing the algorithm. Indeed,
the budget for the short +edges in +++ triangles is still too low to reach the approximation ratio 1.5. Thus,
the second key ingredient is to add the threshold step to the pivot-based rounding procedure for the short
+edges (i.e., +edges uv with xuv ≤ 1/3). By adding this threshold step, the cost of the triangles containing
such edges decreases; for example, a +++ triangle with all short edges now has cost zero. This allows us to
use the new budget function and still reach 1.5. Notice that making the threshold too large would result in
too much cost for ++− triangles.

Finally, we observe that, analogous to the correlated rounding approach of [CLN22], only the bad triangles
are tight, meaning their cost equals their budget. Roughly speaking, a bad triangle is a ++− triangle whose
two +edges have value very close to half and whose −edge has value close to one. This allows us to apply a
charging argument, in which tight triangles have part of their cost paid for by triangles that are not tight (i.e.,
that have extra budget). Now there are no tight triangles (i.e., all triangles have some unused budget), and
we can decrease the α in the budget function from 1.5 to 70/47. As previously [ACN08, CMSY15, CLN22,
CLLN23], the analysis necessary to reach 1.5 and go below requires a case-by-case analysis of triangle types
to ensure that the budget allocated to each triangle covers its cost. Both the new threshold step and the
new budget functions result in an analysis that is more involved than what was required in [CLLN23], but
is still feasible.

1.437-approximation. The above charging argument between different types of triangles can be more
systematically expressed by a factor-revealing SDP. Given a cluster LP solution zS and vertices u, v, w, let
us define yuv :=

∑

S⊇{u,v} zS (resp. yuvw :=
∑

S⊇{u,v,w} zS) be the probability that u, v (resp. u, v, w) are

in the same cluster. Given any quadruple T = (a, b, c, d) ∈ [0, 1]4, let ηT represent the number of triangles
(u, v, w) such that of yuv = a, yuw = b, yvw = c, yuvw = d. The above 1.49-approximation analysis can be
regarded as putting one constraint on the distribution of ηT . To enhance the approximation ratio and reduce
the budget function, we opt for a more detailed categorization of triangles, imposing stronger constraints on
ηT .

Consider an imaginary rounding procedure, where given a pivot u, the cluster C that contains u is
simply chosen with probability zC (note that

∑

C∋u zC = 1). Let Xv denote the event that node v is
included in the cluster of node u in this rounding. We can show E[Xv · Xw] = yuvw and E[Xv] · E[Xw] =
yuvyuw. The covariance matrix COVu, where COVu(v, w) = E[Xv ·Xw] − E[Xv] · E[Xw] = yuvw − yuvyuw,
must be positive semidefinite (PSD). This PSD constraint on the covariance matrix enforces a stronger
constraint on ηT . For instance, if all non-degenerate triangles centered at u are ++− triangles with y value
(yuv = 0.5, yuw = 0.5, ywv = 0, yuvw = 0), then the covariance matrix of COVu cannot be PSD because
COVu(v, w) = yuvw − yuvyuw = −0.25 for almost all non-diagonal entries.

For a triangle T = (yuv, yuw, yvw, yuvw), we discretize yuv, yuw, yvw to incorporate the PSD constraint. We
partition the interval [0, 1] into numerous subintervals I1, I2, ..., It. Each triangle with y value (yuv ∈ Ii, yuw ∈
Ij , yvw ∈ Ik, yuvw) is placed in one of these interval combinations. We can rearrange COVu as Qu ∈ Rt×t,
where Qu(Ii, Ij) =

∑

yuv∈Ii,yuw∈Ij
(yuvw − yuvyuw). Considering Q =

∑

u∈V Qu, we can represent Q using T
and ηT . The PSD property of Qu implies Q is PSD, thus enforcing a constraint on ηT .

Despite there being infinitely many types of triangles in each range Ii, Ij , Ik, our key observation is that
yuvw − yuvyuw is multi-linear. Therefore, we only need a few triangles in each range to represent all possible
triangles. We want to mention the triangles we need are fixed so can be precomputed and the only unsure
variable is ηT . To compute a lower bound

∑

ηT (∆(T )− cost(T )), we set up a semi-definite program (SDP)
under the constraint that Q is PSD. This SDP is independent of cluster LP and relies on the chosen interval
and budget function. By employing a practical SDP solver, we demonstrate that

∑

ηT (∆(T )−cost(T )) ≥ 0.
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Gaps and Hardness. A high-level intuition for the cluster LP is the following: (any) LPs cannot distin-
guish between a random graph and a nearly bipartite graph. For the cluster LP, given a complete graph
H = (VH , EH) with n = |VH |, our Correlation Clustering instance is G = (VG, EG) where VG = EH and
e, f ∈ VG have a plus edge in G if they share a vertex in V . Consider vertices of H as ideal clusters in G
containing their incident edges. The LP fractionally will think that it is nearly bipartite, implying that the
entire EH can be partitioned into n/2 ideal clusters of the same size. Of course, integrally, such a partition
is not possible in complete graphs.

For the cluster LP, it suffices to consider a complete graph instead of a random graph. We believe (but
do not prove) that such a gap instance can be extended to stronger LPs (e.g., Sherali-Adams strengthening
of the cluster LP), because it is known that Sherali-Adams cannot distinguish a random graph and a nearly
bipartite graph [CMM09].

The idea for the NP-hardness of approximation is the same. The main difference, which results in a
worse factor here, is that other polynomial-time algorithms (e.g., SDPs) can distinguish between random
and nearly bipartite graphs! So, we are forced to work with slightly more involved structures.

Still, we use a similar construction for 3-uniform hypergraphs; let H = (VH , EH) be the underlying
3-uniform hypergraph and G = (VG, EG) be the plus graph of the final Correlation Clustering instance
where VG = EH and e, f ∈ EH has an edge in G if they share a vertex in H . We use the hardness result
of Cohen-Addad, Karthik, and Lee [CAL22] that shows that it is hard to distinguish whether H is nearly
bipartite, which implies that half of the vertices intersect every hyperedge, or close to a random hypergraph.

Organization. We show how to solve the cluster LP in Section 4, proving Theorem 1. It uses our improved
preclustering procedure, which will be described in Section A. We prove Lemmas 9, 10 and 11 in Sections 5,
6 and 7 respectively; they will prove Theorems 2 and 3. We give the (43 − ε)-integrality gap of the cluster
LP (Theorem 4) in Section 8, and the improved hardness of 24/23− ε (Theorem 5) in Section 9.

Global Notations. For two sets A and B, we use A△B = (A \ B) ∪ (B \ A) to denote the symmetric
difference between A and B. We used N+

u and N−
u to denote the sets of + and −neighbors of a vertex

u respectively in the Correlation Clustering instance. For a clustering C of V , we define obj(C) to be the

objective value of C. For any x ∈ [0, 1](
V

2), we already defined obj(x) =
∑

uv∈E+ xuv +
∑

uv∈E−(1 − xuv).
Recall that we defined costu(v, w),∆u(v, w), cost(T ) and ∆(T ) for a triangle T = (u, v, w) or a degenerate
triangle T = (u, v) in Section 2; they depend on the budget functions b+ and b−.

4 Solving Cluster LP Relaxation Approximately

In this section, we show how to solve the cluster LP in polynomial time, by proving Theorem 1, which is
repeated below.

Theorem 1. Let ε > 0 be a small enough constant and opt be the cost of the optimum solution to the given
Correlation Clustering instance. In time npoly(1/ε), we can output a solution

(

(zS)S⊆V , (xuv)uv∈(V2)
)

to the

cluster LP with obj(x) ≤ (1 + ε)opt, described using a list of non-zero coordinates.

We define some global parameters used across this section. Let ε1 = ε3, εrt = ε21 = ε6, and r =
Θ(1/ε2rt) = Θ(1/ε12) be an integer, with some large enough hidden constant. The subscript “rt” stands for
Raghavendra-Tan.

4.1 Preclustering

We use the definition of a preclustered instance from [CLLN23], with some minor modifications.

Definition 12. Given a Correlation Clustering instance (V,E+ ⊎E−), a preclustered instance is defined by
a pair (K, Eadm), where K is a partition of V (which can also be viewed as a clustering), and Eadm ⊆

(

V
2

)

is
a set of pairs such that for every uv ∈ Eadm, u and v are not in a same set in K.
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Each set K ∈ K is called an atom. An (unordered) pair uv between two vertices u and v in a same
K ∈ K is called an atomic edge; in particular, a self-loop uu is an atomic edge. A pair that is neither an
atomic nor an admissible edge is called a non-admissible edge.

There are two minor differences between our definition and the one in [CLLN23]. First, we require that
K forms a partition; this can be guaranteed by adding singletons. Second, we do not require an edge between
two different non-singleton atoms to be non-admissible. Our construction can guarantee this condition, but
it is not essential.

Definition 13. Given a preclustered instance (K, Eadm) for some Correlation Clustering instance (V,E+ ⊎
E−), a clustering C of V is called good with respect to (K, Eadm) if

• u and v are in the same cluster in C for an atomic edge uv, and

• u and v are not in the same cluster in C for a non-admissible edge uv.

The following theorem with a worse bound on |Eadm| was proved in [CLLN23]. We give a cleaner proof
of the theorem in Section A; as a byproduct, it achieves a better bound on |Eadm|.

Theorem 14. For any sufficiently small ε > 0, there exists a poly(n, 1
ε )-time algorithm that, given a Cor-

relation Clustering instance (V,E+ ⊎ E−) with optimal value opt (which is not given to us), produces a
preclustered instance (K, Eadm) such that

• there exists a good clustering w.r.t (K, Eadm), whose cost is at most (1 + ε)opt, and

• |Eadm| ≤ O
(

1
ε2

)

· opt.

We can assume in the preclustered instance (K, Eadm), the edges between two different atoms K and K ′

are all admissible, or all non-admissible. If one edge between them is non-admissible, we can change all other
edges to non-admissible edges. This will not change the set of good clusterings, and it will decrease |Eadm|.

We apply Theorem 14 to obtain a preclustered instance (K, Eadm), with the unknown good clustering
C∗1 . We define Ku to be the atom that contains u, and ku = |Ku|. We shall use Nadm(u) to be the set of
vertices v such that uv ∈ Eadm; so Nadm(u) = Nadm(v) if v ∈ Ku. We further process the good clustering
C∗1 using the following procedure in [CLLN23]. This procedure is not a part of our algorithm; it is only for
analysis purpose.

1: while there exists some Ku in a cluster C ∈ C∗1 with ku < |C| ≤ ku + ε1 · |Nadm(u)| do
2: C∗1 ← C∗1 \ {C} ∪ {Ku, C \Ku}

Claim 15. The procedure increases obj(C∗1 ) by at most 2ε1 · |Eadm|.

Proof. Whenever we break C intoKu and C\Ku in the procedure, the cost increase is at most ku ·(|C|−ku) ≤
ku · ε1 · |Nadm(u)| = ε1

∑

v∈Ku
|Nadm(v)|. We separate each atom Ku at most once. Therefore, the total cost

increase is at most ε1
∑

v∈V |Nadm(v)| = 2ε1 · |Eadm|.

So, the cost of C∗1 after the procedure will be at most (1 + ε)opt +O(ε1)|Eadm|. Crucially, the following
property is satisfied:

(A1) For every u ∈ V , Ku is either a cluster in C∗1 , or in a cluster of size more than ku + ε1 · |Nadm(u)|.

4.2 Bounded Sub-Cluster LP Relaxation for Preclustered Instances

Following [CLLN23], we form an LP relaxation aiming at finding the good clustering C∗1 . In the LP, we have
a variable ysS , for every s ∈ [n], and S ⊆ V of size at most r (recall that r = Θ(1/ε12)), that denotes the
number of clusters in C∗1 of size s containing S as a subset. When S 6= ∅, there is at most one such cluster
and thus ysS ∈ {0, 1} indicates if S is a subset of a cluster of size s in C∗1 . For every S ⊆ V of size at most r,
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let yS :=
∑

s y
s
S denote the number of clusters (of any size) in C∗1 containing S as a subset. Again, if S 6= ∅,

then yS ∈ {0, 1} indicates if S is a subset of a cluster in C∗1 . For every uv ∈
(

V
2

)

, we have a variable xuv

indicating if u and v are separated or not in C∗1 . We call the LP the bounded sub-cluster LP relaxation, as
we have variables indicating if a small set S is a subset of a cluster or not.

We use the following type of shorthand: ysu for ys{u}, y
s
uv for ys{u,v}, and ysSu for ysS∪{u}. The bounded

sub-cluster LP is defined as follows. In the description, we always have s ∈ [n], u ∈ V and uv ∈
(

V
2

)

. For
convenience, we omit the restrictions. By default, any variable of the form yS or ysS has |S| ≤ r; if not, we
do not have the variable and the constraint involving it.

min obj(x) (bounded sub-cluster LP)

n
∑

s=1

ysS = yS ∀S (6)

yu = 1 ∀u (7)

yuv + xuv = 1 ∀uv (8)

1

s

∑

u

ysSu = ysS ∀s, S (9)

ysS ≥ 0 ∀s, S (10)

xuv = 0 ∀u, v in a same K ∈ K (11)

xuv = 1 ∀non-admissible edge uv (12)

ysu = 0 ∀u, s ∈ [ku − 1] ∪
[

ku + 1, ku + ε1|Nadm(u)|
]

(13)

∑

T ′⊆T

(−1)|T ′|ysS∪T ′ ∈ [0, ysS] ∀s, S ∩ T = ∅ (14)

(6) gives the definition of yS, (7) requires u to be contained in some cluster, and (8) gives the definition
of xuv . (9) says if ysS = 1, then there are exactly s elements u ∈ V with ysSu = 1. (An exception is when
S = ∅; but the equality also holds.) (10) is the non-negativity constraint. (11) and (12) follows from that
C∗1 is a good clustering, and (13) follows from (A1). The left side of (14) is the number of clusters of size s
containing S but does not contain any vertex in T . So the inequality holds. This corresponds to a Sherali-
Adams relaxation needed for the correlated rounding [RT12], see Lemma 16. The running time for solving

the LP is nO(r) = nO(1/ε12).

4.3 Sampling One Cluster Using LP Solution to the Bounded Sub-Cluster LP

We solve the bounded sub-cluster LP to obtain the y and x vectors. Given y, we can use the procedure
construct-cluster described in Algorithm 3, which is from [CLLN23], to produce a random cluster C.

Algorithm 3 construct-cluster(y)

1: randomly choose a cardinality s, so that s is chosen with probability
ys
∅

y∅

2: randomly choose a vertex u ∈ V , so that u is chosen with probability
ys
u

sys
∅

3: define a vector y′ such that y′S =
ys
Su

ys
u

for every S ⊆ V of size at most r − 1

4: apply the Raghavendra-Tan correlated rounding technique over the fractional set y′ to construct a cluster
C ⊆ V that does not break any atom, and return C

With (14), the Raghavendra-Tan technique can be applied:

Lemma 16 ([RT12]). In Step 4 of Algorithm 3, one can sample a set C ⊆ V that does not break atoms in
time nO(r) such that

• For each v ∈ V , Pr[v ∈ C] = y′v.

•
1

|Nadm(u)|2
∑

v,w∈Nadm(u)

∣

∣Pr[v, w ∈ C]− y′vw
∣

∣ ≤ εrt.

Recall that εrt = Θ(1/
√
r) and the hidden constant inside Θ(·) is large enough.
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As in [CLLN23], we define errsvw|u to be the error generated by the procedure when we choose s as the
cardinality and u as the pivot:

errsvw|u :=

∣

∣

∣

∣

Pr
[

v, w ∈ C|s, u
]

− ysuvw
ysu

∣

∣

∣

∣

, ∀vw ∈
(

V

2

)

,

and

errsvw :=
1

sys∅

∑

u∈V

ysu · errsvw|u and errvw :=
∑

s

ys∅
y∅
· errsvw

as the error for vw conditioned on s, and the unconditioned error. Notice that all these quantities are
expectations of random variables, and thus deterministic.

The following two lemmas can be proved using the same arguments as in [CLLN23].

Lemma 17 ([CLLN23]). For any v ∈ V , we have Pr[v ∈ C] = 1
y∅
.

Lemma 18 ([CLLN23]). Focus on an edge vw ∈
(

V
2

)

.

1. Pr [v ∈ C,w /∈ C] ≤ 1
y∅
· xvw + errvw.

2. Pr [|{v, w} ⊆ C] ≤ 1
y∅
· yvw + errvw.

A similar lemma to the following is proved in [CLLN23]. The parameters we use here are slightly different
and we provide a proof for completeness.

Lemma 19.
∑

vw∈(V2)

errvw ≤ O(ε1) ·
1

y∅
|Eadm|.

Proof. Throughout the proof, we assume u, v, w are all in V , vw and uw are in
(

V
2

)

.
Fix some s ∈ [n], u ∈ V with ysu > 0, and we now bound

∑

vw errsvw|u. If s = ku, then C = Ku; no errors

will be created and the quantity is 0. Assume s > ku. By (13), we have that s > ku + ε1 · |Nadm(u)|, since
otherwise we shall ysu = 0. By the second property of Lemma 16, we have

∑

vw errsvw|u ≤ εrt
2 |Nadm(u)|2.

(Notice that if one of v and w is not in Nadm(u), then errsvw|u = 0.) Recall that εrt = ε21. Therefore,

∑

vw∈(V2)

errsvw|u ≤
εrt
2
· |Nadm(u)|2 ≤

εrt
2ε1
· |Nadm(u)| · (s− ku)

=
ε1
2
· |Nadm(u)| ·

∑

v∈Nadm(u)

ysuv
ysu

=
ε1
2
·

∑

v,w∈Nadm(u)

ysuv
ysu

.

The first equality is by (9) and ysuv = ysu for every v ∈ Ku. (To see this, notice that ysuv ≤ ysu is implied
by (14). We have yuv =

∑

s y
s
uv, yu =

∑

s y
s
u, and yuv = yu = 1 if v ∈ Ku.)

Considering the inequalities over all u ∈ V , we have

∑

vw

errsvw =
1

sys∅

∑

u

ysu ·
∑

vw

errsvw|u ≤
1

sys∅

∑

u

ysu ·
∑

v,w∈Nadm(u)

ε1
2
· y

s
uv

ysu
=

ε1
2
· 1

sys∅
·

∑

u∈V,v,w∈Nadm(u)

ysuv

=
ε1
2
·
∑

v∈V

ysv
sys∅

∑

u∈Nadm(v),w∈Nadm(u)

ysuv
ysv

≤ ε1
2
·
∑

v∈V

ysv
sys∅

∑

uw∈Eadm

(

ysuv + ysvw
ysv

)

≤ ε1 ·
∑

v∈V

ysv
sys∅

∑

uw∈Eadm

Pr[C ∩ {u,w} 6= ∅ | s, v is pivot]

= ε1
∑

uw∈Eadm

Pr[C ∩ {u,w} 6= ∅ | s].
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To see the last inequality, notice that
ys
uv

ys
v

= Pr[u ∈ C|s, v is pivot] ≤ Pr[C ∩ {u,w} 6= ∅|s, v is pivot]. The

same inequality holds for
ys
vw

ys
v
.

Finally, we take all s into consideration:

∑

vw

errvw =
∑

s

ys∅
y∅
·
∑

vw

errsvw ≤ ε1 ·
∑

s

ys∅
y∅

∑

uw∈Eadm

Pr[C ∩ {u,w} 6= ∅|s]

= ε1 ·
∑

uw∈Eadm

Pr[C ∩ {u,w} 6= ∅] ≤ 2ε1
y∅
|Eadm|+ 3ε1

∑

uw∈(V2)

erruw.

To see the last inequality, we notice that C ∩ {u,w} 6= ∅ is the union of the 3 disjoint events: u ∈ C and
w /∈ C, u /∈ C and w ∈ C, and {u,w} /∈ C. By Lemma 18, we have Pr[C∩{u,w} 6= ∅] ≤ 2xvw+yvw

y∅
+3·erruw ≤

2
y∅

+ 3 · erruw. So, we have
∑

vw errvw ≤ 1
1−3ε1

· 2ε1y∅
|Eadm|. This proves the lemma.

4.4 Construction of Solution to the Cluster LP Using Independently Sampled

Clusters

With all the ingredients, we can now describe our algorithm for solving the cluster LP approximately,

finishing the proof of Theorem 1. Let ∆ = Θ
(

n2 logn
ε21|Eadm|

)

with a large enough hidden constant, and ∆y∅ being

an integer. (We assume |Eadm| ≥ 1 since otherwise the preclustered instance is trivial.) We run Algorithm 3
∆y∅ times independently to obtain clusters C1, C2, · · · , C∆y∅

.
We use the following variant of Chernoff bound.

Theorem 20. Let X1, X2, X3, · · · , Xn be independent (not necessarily iid) random varibles which take values
in [0, 1]. Let X =

∑n
i=1 Xi, µ = E[X ], and µ′ ≥ µ be a real. Then for any δ ∈ (0, 1), we have

Pr[X < (1− δ)µ] < e−δ2µ/2 and Pr[X > µ+ δµ′] < e−δ2µ′/3.

For every u ∈ V , let Ru = {t : u ∈ Ct}. Notice that ∆y∅ · |Eadm|
y∅n2 = Θ

(

logn
ε21

)

, with a large enough hidden

constant. Using Chernoff bound and union bound, we can prove that with probability at least 1− 1/n, the
following conditions hold.

• For every u ∈ V , we have |Ru| ≥ (1 − ε1)∆y∅ · 1
y∅

= (1− ε1)∆.

• For every u, v ∈ V such that uv ∈ E+, we have

|Ru \Rv| ≤ ∆y∅

(

xuv

y∅
+ erruv + ε1 ·max

{

xuv

y∅
+ erruv,

|Eadm|
y∅n2

})

≤ (1 + ε1)∆(xuv + y∅erruv) +
ε1∆|Eadm|

n2
. (15)

• For every uv ∈ E−, we have

|Ru ∩Rv| ≤ ∆y∅

(

yuv
y∅

+ erruv + ε1 ·max

{

yuv
y∅

+ erruv,
|Eadm|
y∅n2

})

≤ (1 + ε1)∆(yuv + y∅erruv) +
ε1∆|Eadm|

n2
.

From now on we assume the conditions hold. For every u ∈ V , we let R′
u be the set of the ⌈(1− ε)∆⌉

smallest indices in Ru. Clearly, |R′
u ∩R′

v| ≤ |Ru ∩Rv|. We show |R′
u \R′

v| is still upper bounded by (15).

Claim 21. For every uv ∈ E+ we have max{|R′
u \R′

v|, |R′
v \R′

u|} ≤ (1 + ε1)∆(xuv + y∅erruv) +
ε1∆|Eadm|

n2 .
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Proof. For convenience, we use B to denote the upper bound (1+ε1)∆(xuv +y∅erruv)+
ε1∆|Eadm|

n2 . We think
of R′

u (R′
v resp.) as obtained from the set Ru (Rv resp.) by removing the largest indices one by one. Wlog

we assume |Ru| ≥ |Rv|; and thus initially |Rv \Ru| ≤ |Ru \Rv| ≤ B. We remove the elements from Ru and
Rv in two stages.

In the first stage we do the following. While |Ru| > |Rv|, we remove the largest index from Ru. This can
not increase |Ru \Rv|. After the first stage, we have |Ru \Rv| = |Rv \Ru| ≤ B.

In the second stage we do the following. While |Ru| = |Rv| > ⌈(1 − ε)∆⌉, we remove the largest index
in Ru from Ru, and do the same for Rv. Consider one iteration of the while loop. If the two indices are
the same, then |Ru \ Rv| = |Rv \ Ru| does not change. Otherwise, wlog we assume the index we removed
from Ru is larger. Then removing the index in Ru will decrease |Ru \Rv|. So the iteration can not increase
|Ru \Rv| = |Rv \Ru|.

Then, for every t ∈ [1,∆y∅], we define C′
t = {u : t ∈ R′

u} ⊆ Ct; then every v is contained in C′
t for

exactly ⌈(1 − ε)∆⌉ values of t. We define zS = 1
⌈(1−ε)∆⌉ · |{t : C′

t = S}| for every S ⊆ V with S 6= ∅. Define

x̃uv = 1−∑{u,v}⊆S zS for every uv ∈
(

V
2

)

. Then (x̃, z) is a valid solution to the cluster LP.

For a uv ∈ E+, we have

x̃uv =
1

⌈(1 − ε)∆⌉ · |R
′
u \R′

v| ≤
1 + ε1
1− ε

(xuv + y∅erruv) +
ε1|Eadm|
(1− ε)n2

.

For a uv ∈ E−, we have

(1− x̃uv) =
1

⌈(1− ε)∆⌉ · |R
′
u ∩R′

v| ≤
1 + ε1
1− ε

(1− xuv + y∅erruv) +
ε1|Eadm|
(1− ε)n2

.

Therefore,

obj(x̃) ≤ (1 +O(ε))






obj(x) + y∅

∑

uv∈(V2)

erruv






+O(ε1)|Eadm| ≤ (1 +O(ε))obj(x) +O(ε1)|Eadm|

≤ (1 +O(ε)) · opt +O(ε3) ·O
( 1

ε2
)

· opt = (1 +O(ε))opt.

The second inequality is due to Lemma 19, and the third one used that |Eadm| ≤ O
(

1
ε2

)

· opt. By scaling ε,
the upper bound can be made to (1 + ε)opt. This finishes the proof of Theorem 1.

5 Triangle Analysis used in 1.5-Approximation: Proof of Lemma 9

The goal of this section is to prove Lemma 9, which is restated here.

Lemma 9. For budget functions b+ ≡ b+1.5 and b− ≡ b−1.5, we have cost(T ) ≤ ∆(T ) for every triangle T .

The proof of Lemma 9 follows from Lemma 25, 26, 27, 28, 29 which we prove in this section. First, we
recall some notation.

Notations and Useful Observations We define some notation and make some observations that will
be useful in this section and in Sections 6 and 7. Recall that we are given a polynomial-sized LP solution

(z = (zS)S⊆V , x ∈ [0, 1](
V
2)) to (cluster LP). For a +edge uv, we say uv is short if xuv ≤ 1

3 and long
if xuv > 1

3 . Notice that the pivot-based rounding procedure (Algorithm 1) treat short and long +edges
differently. For vertices u, v, w ∈ V , we define

yuv :=
∑

S⊇{u,v}

zS ∈ [0, 1], yuvw :=
∑

S⊇{u,v,w}

zS ∈ [0, 1], yuv|w := yuv − yuvw ∈ [0, 1],
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yu|v|w := 1− yuv|w − yuw|v − yvw|u − yuvw = 1− yuv − yuw − yvw + 2yuvw ∈ [0, 1].

To see that yu|v|w ∈ [0, 1], notice that yuv + yuw + yvw − 2yuvw =
∑

S zS · (1{u,v}⊆S +1{u,w}⊆S +1{v,w}⊆S −
2 · 1{u,v,w}⊆S). The quantity after zS is either 0 or 1, depending on the size of S ∩ {u, v, w}. In an integral
solution z, yuv, yuvw, yuv|w and yu|v|w, respectively, indicate if u and v are in the same cluster, if u, v and w
are all in the same cluster, if u and v are in the same cluster not containing w, and if u, v, w are in three
different clusters. These definitions also hold when u, v and w are not distinct vertices.

In the following two claims, we focus on one iteration of the while loop in Algorithm 2. V ′ is the vertex
set at the beginning of the iteration, and C is the cluster obtained at the end. We use u to denote the event
that u is the chosen pivot.

Claim 22. Let u, v ∈ V ′ (it is possible that u = v). Then

Pr[v ∈ C | u] =
{

1 if uv is a short +edge

1− xuv = yuv otherwise
.

Claim 23. Let u, v, w ∈ V ′ with v 6= w. Then

Pr[{v, w} ⊆ C | u] =
{

yuvw if both uv and uw are long +edges

Pr[v ∈ C | u] · Pr[w ∈ C | u] otherwise
,

Pr[v ∈ C ∧ w /∈ C | u] =
{

yuv|w if both uv and uw are long +edges

Pr[v ∈ C | u] ·
(

1− Pr[w ∈ C | u]
)

otherwise
.

We now prove some useful facts about the budget functions defined in Section 2,

b+α (x) =
α

1− α/2
· x2

1 + x
, and b−α (x) =

α

1− α/2
· (1 + 2x)(1− x)

2(1 + x)
, ∀x ∈ [0, 1].

Lemma 24. For any α ∈ [1, 2), b+α (x) is convex and decreasing. Moreover, b−α (x) is increasing.

Proof. Consider the first and second derivative of b+α (x),

d

dx
b+α (x) =

α

1− α/2
· x(2 + x)

(1 + x)2
≥ 0,

d2

d2x
b+α (x) =

α

1− α/2
· 2

(x+ 1)3
≥ 0.

Here, we used that α
1−α/2 ≥ 0 and x ≥ 0. Similar, for b−α (x),

d

dx
b−α (x) =

α

1− α/2
· −x(x+ 2)

(1 + x)2
≤ 0.

Now we start the proof of Lemma 9. Note that for α = 1.5, the budget functions simplify to

b+(x) :=
6x2

1 + x
, and b−(x) :=

3(1 + 2x)(1 − x)

(1 + x)
, ∀x ∈ [0, 1].

We will prove the lemma by considering each possible triangle type separately. That is, degenerate triangles,
triangles with no +edge (−−− triangles), triangles with one +edge (+−− triangles), triangles with two
+edges (++− triangles) and lastly, triangles with three +edges (+++ triangles). Moreover, recall that
the pivot rounding algorithm treats short +edges differently than long +edges. Therefore, for each type of
triangle, we consider different cases that specify how many short and long +edges the triangle contains.
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Degenerate triangles For the case when two of the vertices u, v, w are identical, we want to make sure
that cost(u, v) ≤ ∆(u, v).

Lemma 25. Fix budget functions b+ ≡ b+α and b− ≡ b−α , where α ≥ 4/3. For any degenerate triangle T , we
have cost(T ) ≤ ∆(T ).

Proof. For a −edge with value x this is equivalent to

(1− x) ≤ α(1 + 2x)(1− x)

(2 − α)(1 + x)
.

This holds true since α(1+2x)
(2−α)(1+x) ≥ α

(2−α) ≥ 1, for any α ≥ 1. For short +edges the cost is 0 and the inequality

holds trivially. For long +edges with value x > 1
3 we need,

x ≤ 2αx2

(2− α)(1 + x)
.

This holds true since 2αx2

(2−α)(1+x) ≥
2α/3

(2−α)(1+1/3) ≥ 1 for any α ≥ 4/3.

5.1 +++ Triangles

Lemma 26. Fix the budget function b+ ≡ b+α , where α = 1.5. For any +++ triangle T , we have cost(T ) ≤
∆(T ).

Proof. We distinguish between the following cases: the triangle has three short edges, two short edges, one
short edge or no short edge.

(s,s,s) cost(T ) = 0 and ∆(T ) ≥ 0.

(s,s,l) For a +++ triangle T = (u, v, w), assume that uv is long and uw, vw are short:

cost(T ) = 2 · xuv,

∆(T ) = b+(xuv) + b+(xuw) + b+(xvw) ≥ b+(xuv) + 2 · b+
(

xuw + xvw

2

)

≥ b+(xuv) + 2 · b+
(xuv

2

)

.

Here, we used that the function b+ is convex (Lemma 24) together with the triangle inequality, xuv ≤
xuw + xvw. For xuv > 1/3, we have that

∆(T ) ≥ b+(xuv) + 2 · b+
(xuv

2

)

≥ 3

2
xuv +

7

6
xuv ≥ 2 · xuv = cost(T ).

(s,l,l) For a +++ triangle T = (u, v, w), assume that uv is short and uw and vw are long:

cost(T ) = xuw + xvw + yvw + yuw − 2 · yuvw
∆(T ) = b+(xuw) + b+(xvw) + b+(xuv) · (yvw + yuw − yuvw)

≥ b+(xuw) + b+(xvw).

Because xuw > 1/3,

b+(xuw) ≥
3

2
xuw =

3

2
(1− yuw).

Hence,

∆(T )− cost(T ) ≥ 1

2
(xuw + xvw)− yvw − yuw + 2 · yuvw
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= 1− 3

2
(yvw + yuw) + 2 · yuvw

≥ yuv + yvw + yuw − 2 · yuvw −
3

2
(yvw + yuw) + 2 · yuvw

= yuv −
1

2
(yvw + yuw)

≥ 0.

For the first inequality we used 1 − (yuv + yvw + yuw − 2 · yuvw) ≥ 0 and for the second that yvw, yuw ≤ 2
3

and yuv ≥ 2
3 .

(l,l,l) For a +++ triangle T where we use correlated rounding, [CLN22] show that cost(T )
∆(T ) ≤ 1, when we

use budget 3
2x for each +edge. We have b+(x) ≥ 3

2x for x ≥ 1/3.

5.2 −−− Triangles

Lemma 27. Fix the budget function b− ≡ b−α , where α ≥ 1. For any −−− triangle T , we have cost(T ) ≤
∆(T ).

Proof. We have that b−α (x) = α
1−α/2 ·

(1+2x)(1−x)
2(1+x) ≥ (1 − x). As before, α(1+2x)

(2−α)(1+x) ≥ α
(2−α) ≥ 1, for any

α ≥ 1. [CLLN23] shows that the inequality holds true if the coefficient is 1.

cost(T ) = yuvyuw + yuvyvw + yuwyvw.

∆(T ) ≥ (yuv + yuw − yuvyuw)yvw + (yuv + yvw − yuvyvw)yuw + (yuw + yvw − yuwyvw)yuv

= 2(yuvyuw + yuvyvw + yuwyvw)− 3yuvyuwyvw ≥ yuvyuw + yuvyvw + yuwyvw.

5.3 +−− Triangles

Lemma 28. Fix budget functions b+ ≡ b+α and b− ≡ b−α , where α ≥ 4
3 . For any +−− triangle T , we have

cost(T ) ≤ ∆(T ).

Proof. We have to prove the following two cases.

short +edge For a +−− triangle T = (u, v, w), assume that uv is a short +edge and uw and vw are
−edges.

b−α (x) =
α

1− α/2
· (1 + 2x)(1− x)

2(1 + x)
≥ 2(1− x)

Therefore, we have for cost(T ) and ∆(T ),

cost(T ) = yuw + yvw + yuw + yvw − 2 · yuwyvw ≤ 2(yuw + yvw),

∆(T ) ≥ b−(xuw) + b−(xvw) ≥ 2(yuw + yvw).

long +edge For a +−− triangle T = (u, v, w), assume that uv is a long +edge and uw and vw are −edges.
For x ≥ 1/3, we can lower bound the budget of the +edge,

b+α (x) =
α

1− α/2
· x2

1 + x
≥ 2α/3

(2− α)(1 + 1/3)
x ≥ x.
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As above, b−(x) ≥ 2(1− x). The inequality is true if the coefficient for the +edge is 1 and for the −edge is
2, [CLLN23].

cost(T ) = yuwyuv + yvwyuv + yuw + yvw − 2yuwyvw = (2− xuv)(yuw + yvw)− 2yuwyvw.

∆(T ) ≥ (yuw + yvw − yuwyvw)xuv + 2(yuw + yuv − yuwyuv)yvw + 2(yvw + yuv − yvwyuv)yuw

= (yuw + yvw − yuwyvw)xuv + 2(1− xuv + yuwxuv)yvw + 2(1− xuv + yvwxuv)yuw

= (2− xuv)(yuw + yvw) + 3yuwyvwxuv.

5.4 ++− Triangles

Lemma 29. Fix budget functions b+ ≡ b+α and b− ≡ b−α , where α = 3
2 . For any +−− triangle T , we have

cost(T ) ≤ ∆(T ).

Proof. Again, we distinguish cases depending on the number of short +edges.

(s,s) For a ++− triangle T = (u, v, w), assume that uv is a −edge and uw, vw are short +edges.

cost(T ) = 2 · xuv + 1, (16)

∆(T ) = b−(xuv) + b+(xuw) + b+(xvw) ≥ b−(xuv) + 2 · b+
(

xuw + xvw

2

)

≥ b−(xuv) + 2 · b+
(xuv

2

)

. (17)

As before, we used the convexity of b+ (Lemma 24) together with the triangle inequality, xuv ≤ xuw + xvw .
The derivative of (17) w.r.t. xuv is less than 0 for xuv ≥ 0,

− 6xuv(4 + 3xuv)

(1 + xuv)2(2 + xuv)2
≤ 0.

Hence, (17) is decreasing with xuv. Observe that xuv ≤ xuw + xvw ≤ 2
3 . Since the cost is increasing with

xuv we only need to check the case xuv = 2
3 ,

∆(T )− cost(T ) ≥ b−
(

2

3

)

+ 2 · b+
(

1

3

)

− 7

3
=

1

15
.

(s,l) For a ++− triangle T = (u, v, w), assume that uv is a −edge, uw is a short +edge and vw is a long
+edge.

cost(T ) = xuv + yvw + yvw + yuv − 2yvwyuv = 1 + 2ywv(1− yuv) = 1 + 2(1− xwv)xuv,

∆(T ) = b+(xvw) + b−(xuv) + b+(xuw)(yvw + yuv − yvwyuv)

= b+(xvw) + b−(xuv) + b+(xuw)(2 − xvw − xuv − (1− xvw)(1− xuv)).

Case 1 xvw ≥ xuv.

∆(T ) ≥ b+(xuv) + b−(xuv) = 3.

cost(T ) is always less than 3.
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Case 2 xvw ≤ xuv. We have xuw ≥ xuv − xvw by triangle inequality. Since b+(x) is increasing by Lemma
24,

∆(T ) ≥ b+(xvw) + b−(xuv) + b+(xuv − xvw)(2 − xvw − xuv − (1 − xvw)(1 − xuv)).

For a fixed z := xuv, define x := xvw ≥ 1
3 . We need to argue that the difference

∆(T )− cost(T ) = b+(x) + b−(z) + b+(z − x)(2− x− z − (1− x)(1 − z))− 1− 2(1− x)z (18)

is non-negative.

Claim 30. (18) is increasing with x.

Proof. The derivative of (18) w.r.t. x is

2(6x5z + x4(4− 15z)z + 4x3z(−3− 5z + 3z2) + x2z(−11 + 7z + 22z2 − 3z3))

(1 + x)2(1− x+ z)2

+
2(−z(5 + z + 2z2 + 3z3) + x(12 + 6z + 14z2 + 8z3 − 6z4))

(1 + x)2(1− x+ z)2
, (19)

which is non-negative as long as the numerator is non-negative. The numerator is a concave function in x.
Indeed, the second derivative of the numerator in (19) w.r.t. x is

4z(−11 + 60x3 + x2(24− 90z) + 7z + 22z2 − 3z3 + 12x(−3− 5z + 3z2)). (20)

We want to show that (20) is non-positive. This is equivalent to

−11 + 60x3 + x2(24− 90z) + 7z + 22z2 − 3z3 + 12x(−3− 5z + 3z2) ≤ 0. (21)

Note that (21) is a convex function in x. Indeed, the second derivative w.r.t. x of (21) is equal to

12(4 + 30x− 15z) ≥ 0.

The inequality holds true since either z ≥ 2/3 and x ≥ z− 1
3 or z ≤ 2/3. Hence, (21) is maximized for either

x = z, x = 1/3 or x = z − 1/3.

x = z, (21) = −11− 29z − 14z2 + 3z3 ≤ 0,

x =
1

3
, (21) = −163

9
− 23z + 34z2 − 3z3 ≤ 0,

x = z − 1

3
, (21) =

13

9
− 15z − 26z2 + 3z3 ≤ 0.

All inequalities above hold for 1
3 ≤ z ≤ 1. Thus, the numerator of (19) is concave and minimized for either

x = 1, x = 1/3 or x = z − 1/3.

x = z, 2z(7 + 5z + z2) ≥ 0,

x =
1

3
,

2

27
(108− 124z + 95z2 + 96z3 − 144z4) ≥ 0,

x = z − 1

3
, − 8 +

688

81
z +

86

9
z2 +

22

3
z3 +

14

3
z4 ≥ 0.

The first two inequalities hold for 1
3 ≤ z ≤ 1. The last inequality holds for 2

3 ≤ z ≤ 1. We can conclude that
(18) is indeed increasing with x. ♦

Therefore, we can assume that x = 1/3 if z ≤ 2/3 or x = z − 1/3.
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Case 2.1 x = 1/3.

(18) =
1

2
+ b−(z) + b+

(

z − 1

3

)(

1− 1

3
z

)

− 1− 4

3
z. (22)

The derivative of (22) is equal to

−2(−22 + 124z + 494z2 + 510z3 + 153z4)

3(1 + z)2(2 + 3z)2
.

For z ≥ x = 1/3, we have that,

−22 + 124z + 494z2 + 510z3 + 153z4 ≥ 95.

Hence, (22) is decreasing with z. For z = 2/3, (22) = 2/5.

Case 2.2 x = z − 1/3.

(18) = b+
(

z − 1

3

)

+ b−(z) +
1

2

(

7

3
− 2z −

(

4

3
− z

)

(1− z)

)

− 1− 2

(

4

3
− z

)

z (23)

The derivative of (23) is equal to

−80− 148z − 65z2 + 72z3 + 135z4 + 54z5

2(1 + z)2(2 + 3z)2
.

For 0 ≤ z ≤ 1, we have that,

−80− 148z − 65z2 + 72z3 + 135z4 + 54z5 ≤ 0.

Hence, (23) is decreasing with z. For z = 1, (23) = 1
10 .

(l,l) For a ++− triangle T = (u, v, w), assume that uv is a −edge and uw, vw are long +edges. We will
proceed similar to [CLLN23]. For −edges we use a coefficient of 3, b−(x) ≥ 3(1− x). For +edges define the
coefficient f(x) = 6x

1+x , b
+(x) = f(x) · x.

∆(T ) ≥ 3(yuw + yvw − yuvw)yuv + f(xvw)(yuw + yuv − yuwyuv)(1 − yvw)

+ f(xuw)(yvw + yuv − yvwyuv)(1− yuw)

= f(xvw)yuw + f(xuw)yvw + (f(xuw) + f(xa,c))yuv + (3− f(xuw)− f(xvw))(yuw + yvw)yuv

− (f(xuw) + f(xvw))yuwyvw(1 − yuv)− 3yuvwyuv.

cost(T ) = yuvw + yuw + yuv − 2yuwyuv + yvw + yuv − 2yvwyuv = yuvw + yuw + yvw + 2yuv − 2(yuw + yvw)yuv.

The difference between the cost and the budget is at least,

∆(T )− cost(T ) ≥ (f(xvw)− 1)yuw + (f(xuw)− 1)yvw + (f(xuw) + f(xa,c)− 2)yuv

+(5− f(xuw)− f(xvw))(yuw + yvw)yuv − (f(xuw) + f(xvw))yuwyvw(1− yuv)− 3yuvwyuv − yuvw. (24)

We can decrease yuv until yuv = yuvw.

Claim 31. (24) is increasing with yuv.
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Proof. We will show that the derivative of (24) w.r.t. yuv is non-negative. The derivative of (24) w.r.t. yuv
is equal to

(5 − f(xuw)− f(xvw)))(yuw + yvw) + (f(xuw) + f(xvw)− 2) + (f(xuw) + f(xvw))(yuwyvw)− 3yuvw. (25)

Observe that f(x) ≤ 3 and f(x) ≥ 2 if x ≥ 1
2 . Hence, if xuw , xvw ≥ 1

2 ,

(25) ≥ −(yuw + yvw) + 2 + 4(yuwyvw)− 3yuvw ≥ 1 + 4y2uvw − 3yuvw ≥ 0.

Note that f(x) ≤ 2 if x ≤ 1
2 and f(x) ≥ 3

2 if x ≥ 1
3 . Hence, If

1
3 ≤ xuw ≤ 1

2 and xvw ≥ 1
3 , then,

(25) ≥ 1 + 3(yuwyvw)− 3yuvw ≥ 1 + 3y2uvw − 3yuvw + 1 + 3yuvw(1− yuvw) ≥ 0.

♦

Substituting yuvw = yuv into (24) yields,

(f(xvw)− 1)yuw + (f(xuw)− 1)yvw + (5− f(xuw)− f(xvw))(yuw + yvw)yuv

+(f(xuw) + f(xvw)− 3)yuv − (f(xuw) + f(xvw))yuwyvw(1− yuv)− 3y2uv. (26)

We have to show that (26) is non-negative. For yuv we have the constraints yuv = yuvw ≤ min{yuw, yvw}
and yuv ≥ (yuw + yvw− 1)+. (26) is a quadratic in yuv with leading coefficient −3. Hence, (26) is minimized
either by yuv = (yuw + yvw − 1)+ or by yuv = min{yuw, yvw}.

Case 1: yuv = 0. In this case,

(26) = (f(xvw)− 1)yuw + (f(xuw)− 1)yvw − (f(xuw) + f(xvw))yuwyvw. (27)

If xuw, xvw ≥ 1
2 , then,

(27) = f(xvw)(yuw − yuwyvw) + f(xuw)(yvw − yuwyvw)− (yuw + yvw)

≥ 2(yuw − yuwyvw) + 2(yvw − yuwyvw)− (yuw + yvw)

= yuw + yvw − 4yuwyvw

≥ 0.

For the last inequality we used that yuw, yvw ≤ 1
2 and hence, yuw ≥ 2yuwyvw. Otherwise, we can assume

w.l.o.g. that x := xvw ≤ 1
2 ≤ 1− x ≤ xuw =: y, since 1 ≥ yuv + yuw + yvw − 2yuvw = yuv + yuw.

Claim 32. (27) is increasing with y = xuw.

Proof. The derivative of (27) w.r.t. y is

(2y + y2)(7 + x− 12x2) + 6x2 − x− 1

(y + 1)2(x+ 1)
≥ 0.

The inequality holds since for y ≥ 1
2 and x ≤ 1

2 , the numerator is bounded by

(2y + y2)(7 + x− 12z2) + 6x2 − x− 1 ≥ 31

4
+

1

4
x− 9x2 ≥ 0.

♦

Hence, (27) is minimized for y = (1− x),

(27) ≥ (f(1− y)− 1)(1− y) + (f(y)− 1)y − (f(y) + f(1− y))y(1− y). (28)
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Claim 33. (28) is decreasing with y.

Proof. The derivative of (28) w.r.t y is

6(2y − 1)(2y4 − 4y3 − 6y2 + 8y + 5)

(y − 2)2(y + 1)2
≥ 0,

since (2y − 1) ≥ 0 for y ≥ 1
2 and (2y4 − 4y3 − 6y2 + 8y + 5) ≥ 0. ♦

Thus, (28) is minimized for y = 1
2 . We have that y = xuw, x = xvw = 1

2 . As before,

(28) =

(

f

(

1

2

)

− 1

)

1

2
+

(

f

(

1

2

)

− 1

)

1

2
−
(

f

(

1

2

)

+

(

1

2

))

1

4
= 0.

Case 2: yuw + yvw ≥ 1 and yuv = yuw + yvw − 1. In this case,

(26) = (f(xvw)− 1)yuw + (f(xuw)− 1)yvw + (5− f(xuw)− f(xvw))(yuw + yvw)(yuw + yvw − 1)

+(f(xuw) + f(xvw)− 3)(yuw + yvw − 1)

−(f(xuw) + f(xvw))yuwyvw(2− (yuw + yvw)) − 3(yuw + yvw − 1)2. (29)

Setting y := xuw and x := xvw , we get

(29) =

(

6x

1 + x
− 1

)

(1− y) +

(

6y

1 + y
− 1

)

(1− y) +

(

5− 6y

1 + y
− 6x

1 + x

)

(2− y − x)(1 − y − x)

+

(

6y

1 + y
+

6x

1 + x
− 3

)

(1− y − x)−
(

6y

1 + y
+

6x

1 + x

)

(1− y)(1− x)(y + x) − 3(1− y − x)2

=
2− 3x+ 3x2 + 2x3 − 2y3(−1 + 2x+ 6x2) + y2(3 + 7x− 8x2 − 12x3)− y(3 + 4x− 7x2 + 4x3)

(1 + y)(1 + x)
. (30)

Since x+ y ≤ 1, we can assume w.l.o.g. that y ≤ 1
2 .

Claim 34. (30) is decreasing with y.

Proof. The derivative of (30) w.r.t. y is equal to

4y3(−1 + 2x+ 6x2) + y2(−9 + 5x+ 44x2 + 12x3) + 2y(−3− 7x+ 8x2 + 12x3) + 5 + x− 4x2 + 6x3

−(1 + y)2(1 + x)
. (31)

(31) is less than or equal to 0 if and only if the numerator is non-negative. Since x ≥ 1
3 ,

(−1 + 2x+ 6x2) ≥ 1

3
,

(−9 + 5x+ 44x2 + 12x3) ≥ −2,
(−3− 7x+ 8x2 + 12x3) ≥ −4,

(5 + x− 4x2 + 6x3) ≥ 46

9
.

Thus, the numerator of (31) is lower bounded by

4

3
y3 − 2y2 − 8y +

46

9
≥ 0.

The inequality holds for y ≤ 1
2 . ♦

(30) is minimized for y = 1− x. This implies that yuv = 1− xuw − xvw = 1− x− y = 0 as in Case 1.
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Case 3: yuv = min{yuw, yvw}. Assume that yuv = yuw ≤ yvw. We will use the lower bound f(x) ≥ 3
2x for

x ≥ 1
3 ,

(26) ≥ 1

2
yuw +

1

2
yvw + 2(yuw + yvw)yuw − 3yuwyvw(1 − yuw)− 3y2uw (32)

The coefficient of yvw in (32) is 1
2 − yuw + 3y2uw ≥ 0. Hence, (32) is minimized for yvw = yuw,

(32) ≥ yuw − 2y2uw + 3y3uw ≥ 0,

for yuw ≥ 0.

6 Triangle Analysis used in 1.49-Approximation: Proof of Lemma 10

In this section we will prove Lemma 10. The only type of triangles for which the budget functions b+1.5 and
b−1.5 are tight (i.e., for which ∆(T ) = cost(T )), are ++− triangles with value 0.5 for the +edges and value 1
for the −edge. If we start to decrease α to be less than 1.5, the inequality ∆(T ) ≥ cost(T ) for budgets b+α
and b−α will be violated on tight triangles T . However, similar to [CLN22], we will charge these bad triangles
(i.e., triangles that are close to the tight case) to other triangles that have some slack (i.e., triangles for
which ∆(T )− cost(T ) > 0). Therefore, using a charging argument, we can decrease the approximation ratio
from 1.5 to α = 70

47 ≈ 1.49. This motivates the following definitions used in [CLN22].

Definition 35 (Bad and chargeable triangles). Let η = 1/12,

• A ++− triangle T = (u, v, w) is a bad triangle centered at u if xuv, xuw ∈ [0.5 − η, 0.5 + η] and
xvw ≥ 1− η.

• A triangle T = (u, v, w) is a chargeable triangle centered at u if it has two +edges with value xuv, xuw ∈
[0.5−η, 0.5+η] and a third edge with value xvw ≤ 1−η. A chargeable triangle is either a ++− triangle
or a +++ triangle.

• Note that chargeable ++− triangles and bad triangles are only centered at one vertex, while a chargeable
+++ triangle can be centered at either one or all three vertices.

• A +edge uv is a chargeable degenerate triangle if xuv ∈ [0.5− η, 0.5 + η]. We say that the degenerate
triangle uv is centered at both u and v.

The following lemma says that the number of chargeable triangles is close to the number of bad triangles.
This enables us to charge the loss we incur on bad triangles (i.e., the value ∆(T )−cost(T ) < 0) to chargeable
triangles with value ∆(T )− cost(T ) > 0.

Lemma 36 ([CLN22]). For any vertex v, the number of bad triangles centered at v is at most the number
of chargeable triangles (degenerate and non-degenerate) centered at v.

Starting with triangles that are neither bad nor chargeable, we can show that for these triangles, ∆(T )
remains larger than or equal to cost(T ) when lowering α.

Lemma 37. Fix budget functions b+ ≡ b+α and b− ≡ b−α , where α = 70
47 . For any triangle T that is neither

chargeable nor bad, we have cost(T ) ≥ ∆(T ).

For bad triangles this is not the case, however, we can give a lower bound which is negative.

Lemma 38. Fix budget functions b+ ≡ b+α and b− ≡ b−α , where α = 70
47 . For any bad triangle T , we have

∆(T )− cost(T ) ≥ − 1
36 .

Next, we have to deal with chargeable triangles.

Lemma 39. Fix budget functions b+ ≡ b+α and b− ≡ b−α , where α = 70
47 .
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• For any chargeable +++ triangle T , we have ∆(T )− cost(T ) ≥ 1
12 .

• For any chargeable ++− triangle T , we have ∆(T )− cost(T ) ≥ 1
36 .

• For any chargeable degenerate triangle T , we have ∆(T )− cost(T ) ≥ 1
18 .

Before proving the statements above, we show how to combine them to prove Lemma 10.

Proof of Lemma 10. We have to show the following inequality.

(4) =
∑

uvw∈(V
′

3 )

cost(u, v, w) +
∑

uv∈(V
′

2 )

cost(u, v) ≤
∑

uvw∈(V
′

3 )

∆(u, v, w) +
∑

uv∈(V
′

2 )

∆(u, v).

Let C+++ ⊆
(

V ′

3

)

, C++− ⊆
(

V ′

3

)

and C+ ⊆
(

V ′

2

)

be the set of chargeable +++, chargeable ++− and
chargeable degenerate triangles, respectively. Define C := C+++ ∪ C++− ∪ C+ to be the set of chargeable

triangles and define B ⊆
(

V ′

3

)

to be the set of bad triangles. For all triangles T that are neither bad nor
chargeable, we have by Lemma 37 that ∆(T ) ≥ cost(T ). Thus,

∑

T∈(V
′

3 )

(

∆(T )− cost(T )
)

+
∑

uv∈(V
′

2 )

(

∆(u, v)− cost(u, v)
)

≥
∑

T∈B

(

∆(T )− cost(T )
)

+
∑

T∈C

(

∆(T )− cost(T )
)

.

By Lemma 38 and Lemma 39,

∑

T∈B

(

∆(T )− cost(T )
)

+
∑

T∈C

(

∆(T )− cost(T )
)

≥
∑

T∈B

− 1

36
+

∑

T∈C+++

1

12
+

∑

T∈C++−

1

36
+
∑

T∈C+

1

18
.

For a fixed vertex v, let Bv, C
+++
v , C++−

v , C+
v be the bad triangles, chargeable +++ triangles, chargeable

++− triangles and chargeable degenerate triangles centered at v, respectively. Remember that bad triangles
and chargeable ++− triangles are centered at one vertex. Moreover, degenerate triangles are centered at
their endpoints and +++ triangles can be centered at each of their three vertices.

∑

T∈B

− 1

36
+

∑

T∈C+++

1

12
+

∑

T∈C++−

1

36
+
∑

T∈C+

1

18
.

≥
∑

v∈V ′

∑

T∈B(v)

− 1

36
+

1

3

∑

T∈C+++
v

1

12
+

∑

T∈C++−
v

1

36
+

1

2

∑

T∈C+
v

1

18
≥ 0.

The last inequality holds by Lemma 36.

In order to prove Lemmas 37, 38 and 39 we will again consider each type of triangle individually. The
case of −−− triangles, +−− triangles and (non-chargeable) degenerate triangles are already handled in
Section 5. In particular, Lemma 27, Lemma 28 and Lemma 25 show that in these cases ∆(T ) ≥ cost(T )
as long as α ≥ 4

3 . Hence, we only need to improve the analysis for +++, ++− triangles and chargeable
degenerate triangles. For α = 70

47 , the budget functions are equal to,

b+(x) :=
70

12

x2

1 + x
, and b−(x) :=

35

12

(1 + 2x)(1 − x)

(1 + x)
, ∀x ∈ [0, 1].

Degenerate triangles

Lemma 40. Fix the budget function b+ ≡ b+α , where α = 70
47 . For any chargeable degenerate triangle T , we

have that ∆(T )− cost(T ) ≥ 1
18 .
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Proof. Let T = (u, v) be a chargeable degenerate triangle. By definition, uv is a +edge and we have that
xuv ≥ 0.5− η. Thus,

∆(T )− cost(T ) ≥ 175

102
x− x ≥ 365

1224
≥ 1

18
.

6.1 +++ triangles

(s,s,s) cost(T ) = 0 and ∆(T ) ≥ 0.

(s,s,l)

Lemma 41. Fix the budget function b+ ≡ b+α , where α = 70
47 . For any +++ triangle T with one long +edge,

we have cost(T ) ≤ ∆(T ).

Proof. For a +++ triangle T = (u, v, w), assume that uv is long and uw, vw are short:

cost(T ) = 2 · xuv,

∆(T ) = b+(xuv) + b+(xuw) + b+(xvw) ≥ b+(xuv) + 2 · b+
(

xuw + xvw

2

)

≥ b+(xuv) + 2 · b+
(xuv

2

)

.

Here, we used Lemma 24 together with the triangle inequality, xuv ≤ xuw + xvw. For xuv ≥ 1/3, we have
that,

b+(xuv) + 2 · b+
(xuv

2

)

≥
(

70

12
· xuv

1 + xuv
+

70

12
·

xuv

2

1 + xuv

2

)

xuv ≥
55

24
xuv ≥ 2xuv.

(s,l,l)

Lemma 42. Fix the budget function b+ ≡ b+α , where α = 70
47 . For any +++ triangle T with two long +edges,

we have ∆(T )− cost(T ) ≥ 1
12 .

Proof. For a +++ triangle T = (u, v, w), assume that uv is short and uw and vw are long:

cost(T ) = xuw + xvw + yvw + yuw − 2 · yuvw = 2− 2 · yuvw
∆(T ) = b+(xuw) + b+(xvw) + b+(xuv) · (yvw + yuw − yuvw).

∆(T )− cost(T ) = b+(xuw) + b+(xvw) + b+(xuv) · (yvw + yuw − yuvw)− 2 + 2 · yuvw. (33)

The derivative of (33) w.r.t. yuvw is

2− b+(xuv) ≥ 2− 35

12
· 1
6
≥ 0.

For the first inequality we used that xuv ≤ 1
3 . Hence, (33) is increasing with yuvw. Since yuvw ≥

yuv+yuw+yvw−1
2 , (33) is minimized for yuvw = max{ yuv+yuw+yvw−1

2 , 0}.
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Case 1: yuv + yuw + yvw − 1 ≥ 0 and yuvw = yuv+yuw+yvw−1
2 .

(33) ≥ b+(xuw) + b+(xvw) + b+(xuv) ·
(

yvw + yuw −
yuv + yuw + yvw − 1

2

)

− 2 + yuv + yuw + yvw − 1

(34)

≥ 35

24
· xuw +

35

24
· xvw + b+(xuv) ·

(

1− xvw + xuw − xuv

2

)

− (xuv + xuw + xvw) (35)

For the last inequality we used that for x ≥ 1/3,

b+(x) ≥ 35

24
· xuw .

The derivative of (35) w.r.t. xuw is

35

24
− 1

2
· b+(xuv)− 1 ≥ 35

24
− 1

2
· 35
72
− 1 ≥ 0.

For the first inequality we used that xuv ≤ 1
3 and that b+(x) is increasing with x. Thus, (35) is increasing

with xuw . By symmetry, the same is true for xvw . Therefore, (35) is minimized for xuw = xvw = 1
3 .

(35) ≥ 35

36
+ b+(xuv) ·

(

1− 1

2
+

xuv

2

)

−
(

2

3
+ xuv

)

=
1

16
(105x2

uv − 36xuv + 11) ≥ 277

560
≥ 1

12
.

Case 2: yuvw = 0.

(33) = b+(xuw) + b+(xvw) + b+(xuv) · (yvw + yuw)− 2. (36)

(36) is increasing with xuv . Moreover, xuv is lower bounded by 2− (xuw + xvw) since 1 ≥ yuv + yuw + yvw −
2yuvw = yuv + yuw + yvw. Hence,

(36) ≥ b+(xuw) + b+(xvw) + b+(2− (xuw + xvw)) · (yvw + yuw)− 2

≥ 2b+
(

xuw + xvw

2

)

+ b+(2− (xuw + xvw)) · (2− (xvw + xuw))− 2

For the last inequality we used Lemma 24. Substituting z = xuw + xvw,

(36) ≥ 2b+
(z

2

)

+ b+(2− z) · (2− z)− 2

=
35z4 − 105z3 − 117z2 + 572z − 488

6(z − 3)(z + 2)
≥ 1

12
(37)

The inequality holds for 2 ≥ z = xuw + xvw ≥ 2− xuv ≥ 2− 1
3 = 5

3 .

(l,l,l)

Lemma 43. Fix the budget function b+ ≡ b+α , where α ≥ 24
17 ≈ 1.41. For any +++ triangles T with three

long +edges, we have cost(T ) ≤ ∆(T ).

Proof. For α = 24
17 the budget function b+(x) is equal to 4.8 · x2

1+x . Let x = xuv, y = xuw and z = xvw .
We use the following notation: a = yuv|w, b = yuw|v, c = yvw|u, p = yuvw and q = yu|v|w. Notice that
a + b + c + p + q = 1. We assume that x ≤ y ≤ z. Our goal is to show that cost(T ) ≤ ∆(T ). For a +++
triangle T = (u, v, w), assume that x = uv, y = uw and z = vw and 1/3 < x ≤ y ≤ z.

cost(T ) = yuv + yuw − 2 · yuvw + yuv + yvw − 2 · yuvw + yuw + yvw − 2 · yuvw = 2 · (yuv + yuw + yvw)− 6yuvw
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∆(T ) = b+(xvw) · (yuv + yuw − yuvw) + b+(xuw) · (yuv + yvw − yuvw) + b+(xuv) · (yuv + yuw − yuvw)

Since 1/3 < x = 1− a− p, we have the constraint that a+ p < 2/3. Our goal is to show

4.8 · cost(T )
∆(T )

=
2(1− p− q)

(1−a−p)2(1−a−q)
(2−a−p) + (1−b−p)2(1−b−q)

(2−b−p) + (1−c−p)2(1−c−q)
(2−c−p)

≤ 4.8, (38)

We can fix p + q, which means that a + b + c = 1 − p − q. We want to argue that the denominator of the
LHS of (38) is minimized when r := a = b = c = (1− p− q)/3.

Claim 44. For fixed p ≥ 0 and fixed q, the function f(a) := (1−a−p)2(1−a−q)
(2−a−p) is convex when a + p < 2/3,

a, p, q ≥ 0 and a+ p+ q ≤ 1.

Proof. We want to show that the second derivative is positive on the specified ranges for a, p and q.

f ′′(a) =
2(a3 + 3a2(p− 2) + 3a(p− 2)2 + p3 − 6p2 + 11p+ q − 7)

(a+ p− 2)3
.

Since a + p < 2/3, the denominator is always negative. So we need to show that the numerator is also
negative.

2(a3 + 3a2(p− 2) + 3a(p− 2)2 + p3 − 6p2 + 11p+ q − 7) < 0

⇐⇒ a3 + 3a2(p− 2) + 3a(p− 2)2 + p3 − 6p2 + 11p+ q < 7.

We can replace q = 1− a− p since this is the maximum value for q, so we have

a3 + 3a2(p− 2) + 3a(p− 2)2 + p3 − 6p2 + 10p− a < 6. (39)

We want to prove (39) when a+ p < 2/3 and a, p ≥ 0. Define

h(a) := a3 + 3a2(p− 2) + 3a(p− 2)2 + p3 − 6p2 + 10p− a.

We have

h′(a) = 3a2 + 6ap+ 3p2 + 11− 12a− 12p.

We want to show that h′(a) > 0 when a+ p < 2/3 and a, p ≥ 0. We have

3a2 + 6ap+ 3p2 + 11 > 8 > 12(a+ p),

so we conclude that h′(a) > 0 on the desired domain. Therefore, we can maximize the value of a in order to
maximize h(a). We set a = 2/3− p. This gives

(2/3− p)3 + 3(2/3− p)2(p− 2) + 3(2/3− p)(p− 2)2 + p3 − 6p2 + 10p− (2/3− p)

=
29p

3
+ 3(2/3− p)2(p− 2) + (2− 3p)(p− 2)2 − 4p2 − 10

27

=
134

27
− p < 6,

as desired. We conclude that the function f is convex on the relevant range of a and p. ♦

By Claim 44, we know that f(a) + f(b) + f(c) ≥ 3 · f(a+b+c
3 ), so the denominator of the LHS of (38) is

minimized when a = b = c, so set r = a = b = c. Then we have

cost(T )

∆(T )
=

2(1− p− q)

f(a) + f(b) + f(c)
≤ 2(1− p− q)

3 · f(a+b+c
3 )

≤ 2(1− p− q)

3 (1−r−p)2(1−r−q)
(2−r−p)

.
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Setting r := (1 − p− q)/3, we obtain

cost(T )

∆(T )
≤ 6(1− p− q)(5 − 2p+ q)

(2− 2p+ q)2(2 − 2q + p)
.

Notice that a+ p = r + p = (1− p− q)/3 + p < 2/3 implies q < 1, since p ≥ 0.

Claim 45. For fixed 0 ≤ p < 2/3 and for 0 ≤ q < 1−p, the function ℓ(q) := 6(1−p−q)(5−2p+q)
(2−2p+q)2(2−2q+p) is maximized

when q = 0.

Proof. We show that the derivative of ℓ is negative for the appropriate range of q.

ℓ′(q) = −6(14p3 − 3p2(5q + 16) + 18p(2q + 1) + 2(q − 1)2(q + 8))

(p− 2q + 2)2(−2p+ q + 2)3
.

Notice that the denominator is always positive for the appropriate range of p and q. So we need to show the
following holds for 0 ≤ p ≤ 2/3 and 0 ≤ q < 1.

ℓ2(q) := 14p3 − 3p2(5q + 16) + 18p(2q + 1) + 2(q − 1)2(q + 8) > 0. (40)

If the following inequality holds, then we can conclude that ℓ2 is minimized when q is minimized. Taking
the derivative with respect to q, we want to show

ℓ′2(q) = −15p2 + 36p+ 6(q2 + 4q − 5) < 0. (41)

Since ℓ′′2(q) = 12q + 24 > 0, we can replace q with its maximum value 1− p. Then we have

ℓ′2(q) ≤− 15p2 + 36p+ 6((1− p)2 + 4(1− p)− 5) = −9p2 ≤ 0.

So when q < 1, Inequality (41) holds. Thus, we have that ℓ2 is minimizes when q is minimizes, which is
when q = 0. So we have

ℓ2(q) ≥ ℓ2(0) = 14p3 − 48p2 + 18p+ 16.

Taking the first and second derivatives of this function with respect to p, we have 42p2 − 96p + 18 and
84p− 96 < 0 for p ∈ [0, 1], so we conclude that the function is concave on this domain. Thus, the minimum
values occur at the extreme values, which are p = 0 and p = 2/3. So we have ℓ2(q) > min{16, 10.8}. Thus,
we conclude that the Inequality (40) holds. ♦

Now we can set q = 0 and define

h(p) :=
6(1− p)(5 − 2p)

(2− 2p)2(2 + p)
=

3(5− 2p)

(2− 2p)(2 + p)
.

We are looking for the maximum value of h(p) for 0 ≤ p < 2/3. We have

h′(p) =
−6p2 + 30p+ 3

2(p2 + p− 2)2
and h′′(p) =

6p3 − 45p2 − 9p− 33

(p2 + p− 2)3
.

and h′(p) > 0, when p ∈ [0, 1]. Thus, h is an increasing function of p. Notice that if q = 0, then p < 1/2
(and r = 1/6), because we have p+ r = p+(1−p)/3 < 2/3. Thus, we can conclude that the maximum value
h have and not violate any of the constraints is h(1/2) = 4.8. This concludes the proof of Lemma 43.

Lemma 46. Given budget functions b+ ≡ b+α where α = 70
47 . For a +++ triangles T with three long +edges

where furthermore, two of the +edges have distance x ∈ [0.5− η, 0.5 + η], we have ∆(T )− cost(T ) ≥ 1
12 .
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Proof. By Lemma 43, we know that cost(T ) ≤ 4.8 · 1270 ·∆(T ). Here, we use that Lemma 43 only requires
a coefficient of 4.8 but we have a coefficient of 70

12 since the lemma provides a strictly bigger α = 70
47 > 24

17 .
Thus,

∆(T )− cost(T ) ≥
(

1− 4.8 · 12
70

)

∆(T ) =
31

175
∆(T ).

We will conclude the prove by lower bounding ∆(T ). For T = (u, v, w), let xuv, xuw ∈ [0.5− η, 0.5 + η].

∆(T ) ≥ b+(xuv) · (yuv + yvw − yuvw) + b+(xuw) · (yuw + yvw − yuvw)

≥ b+(xuv) · (yuw + yvw − yuvw) + b+(xuw) · (yuv + yvw − yuvw)

≥ b+(xuv) · yuw + b+(xuw) · yuv

≥ 2 · b+(0.5− η) · (0.5− η) =
4375

7344

We have that ∆(T )− cost(T ) ≥ 31
175 · 43757344 = 775

7344 ≥ 1
12 .

6.2 ++− triangles

Observe that ++− triangles have to contain two long +edges to be bad or chargeable. Hence, for ++−
triangles that contain at most one long +edge, it is enough to prove that ∆(T ) ≥ cost(T ).

Lemma 47. Fix budget functions b+ ≡ b+α and b− ≡ b−α , where α = 70
47 . For any ++− triangles T with at

most one long +edge, we have cost(T ) ≤ ∆(T ).

Proof. We distinguish two cases, the triangle contains two short +edges or one short +edge.

(s,s) For a ++− triangle T = (u, v, w), assume that uv is a −edge and uw, vw are short +edges:

cost(T ) = 2xuv + 1, (42)

∆(T ) = b−(xuv) + b+(xuw) + b+(xvw) ≥ b−(xuv) + 2 · b+
(

xuw + xvw

2

)

≥ b−(xuv) + 2 · b+
(xuv

2

)

. (43)

As above, we used that b+(x) is convex and increasing together with the triangle inequality, xuv ≤ xuw+xvw.
The derivative of (43) w.r.t. xuv is less than 0 for xuv ≥ 0,

70

12
· xuv(4 + 3xuv)

(1 + xuv)2(2 + xuv)2
≤ 0.

Hence, (43) is decreasing with xuv. Observe that xuv ≤ xuw + xvw ≤ 2
3 . Since the cost is increasing with

xuv we only need to check the case xuv = 2
3 .

∆(T )− cost(T ) ≥ b−
(

2

3

)

+ 2 · b+
(

1

3

)

− 7

3
= 0.

(s,l) For a ++− triangle T = (u, v, w), assume that uv is a −edge and uw is a short +edge and vw is a
long +edge:

cost(T ) = xuv + yvw + yvw + yuv − 2yvwyuv = 1 + 2ywv(1 − yuv) = 1 + 2(1− xwv)xuv

∆(T ) = b+(xvw) + b−(xuv) + b+(xuw)(yvw + yuv − yvwyuv)

= b+(xvw) + b−(xuv) + b+(xuw)(2− xvw − xuv − (1− xvw)(1 − xuv))
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Case 1 xvw ≥ xuv.

∆(T ) ≥ b+(xuv) + b−(xuv) =
35

12
,

cost(T ) = 1 + 2(1− xvw)xuv ≤ 1 +
4

3
=

7

3
≤ 35

12
.

For the second inequality, we used that xvw ≥ 1
3 .

Case 2 xvw ≤ xuv. By triangle inequality we have xuw ≥ xuv − xvw. Remember that by Lemma 24 b+(x)
is increasing with x,

∆(T ) ≥ b+(xvw) + b−(xuv) + b+(xuv − xvw)(2− xvw − xuv − (1− xvw)(1− xuv))

For a fixed z := xuv, define x := xvw ≥ 1
3 . We need to argue that the difference

∆(T )− cost(T ) = b+(x) + b−(z) + b+(z − x)(2− x− z − (1− x)(1 − z))− 1− 2(1− x)z (44)

− 1− 2(1− x)z (45)

is non-negative. To this end, we want to prove that (45) is increasing with x. The derivative of (45) w.r.t.
x is

70x5z − x4z(175z − 47) + 2x3z(70z2 − 117z − 70)− x2z(35z3 − 257z2 − 81z + 129)

6(x+ 1)2(x− z − 1)2

+
−2x(35z4 − 47z3 − 82z2 − 35z − 70)− z(35z3 + 23z2 + 11z + 58)

6(x+ 1)2(x− z − 1)2
(46)

We will show that the numerator of (46) is non-negative,

70x5z − x4z(175z − 47) + 2x3z(70z2 − 117z − 70)− x2z(35z3 − 257z2 − 81z + 129)

−2x(35z4 − 47z3 − 82z2 − 35z − 70)− z(35z3 + 23z2 + 11z + 58) ≥ 0. (47)

(47) is concave in x. Indeed, consider the second derivative,

2z(−129 + 700x3 + 81z + 257z2 − 35z3 − 6x2(−47 + 175z) + 6x(−70− 117z + 70z2)) (48)

(48) is convex in x. The second derivative of (48) is equal to

24z(47 + 350x− 175z). (49)

(49) is positive since either x ≥ 2/3 or z ≤ x+ 1
3 . Hence, to show that (48) is non-positive we need to check

x = z, x = 1
3 and x = z − 1

3 .

x = z, (48) = 2z(−129− 339z − 163z2 + 35z3) ≤ 0,

x =
1

3
, (48) = − 2

27
z(5717 + 7281z − 10719z2 + 945z3) ≤ 0,

x = z − 1

3
, (48) =

2

27
z(443− 4761z − 8181z2 + 945z3) ≤ 0.

For all cases we assumed that 1
3 ≤ z ≤ 1. Since we now know that (47) is concave in x, we only need to

check x = z, x = 1
3 and x = z − 1

3 .

x = z, (47) = z(82 + 59z + 12z2) ≥ 0,

x =
1

3
, (47) =

1

243
(11340− 12956z + 10167z2 + 10224z3 − 15120z4) ≥ 0,

x = z − 1

3
, (47) =

1

243
(−11340 + 12104z + 13737z2 + 10539z3 + 6615z4) ≥ 0.

For the first two cases, we assumed 0 ≤ z ≤ 1. For the third case 2/3 ≤ z ≤ 1. We can conclude that (45)
is increasing with x. Hence, we can assume that either x = 1

3 or x = z − 1
3 .
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Case 2.1 x = 1
3 .

(45) =
35

72
+ b−(z) + b+

(

z − 1

3

)(

1− 5

3
z

)

− 1− 4

3
z

=
1458− 221z − 443z2 − 1284z3 − 1260z4

216(1 + z)(2 + 3z)
≥ 0.

The inequality is true since the numerator is non-negative for z ≤ x+ 1
3 = 2

3 .

Case 2.2 x = z − 1/3.

(45) = b+
(

z − 1

3

)

+ b−(z) +
35

72

(

7

3
− 2z −

(

4

3
− z

)

(1 − z)

)

− 1− 2

(

4

3
− z

)

z

=
1458− 587z − 1754z2 + 12z3 + 981z4

216(1 + z)(2 + 3z)
≥ 0.

The inequality holds true since the numerator is non-negative for 0 ≤ z ≤ 1.

(l,l) The only case that is left are ++− triangles with two long +edges. This case includes the bad triangles
as well as chargeable triangles. For a ++− triangle T = (a, b, c), assume that bc is a −edge and ab, ac are
long +edges. Before we start to distinguish between bad triangles, chargeable triangles and triangles that are
neither, we will prove three claims that will be used in each of the three cases. For −edges we use a coefficient
of 35

12 , b
−(x) := 35

12 (1 − x) ≤ b−α (x). For +edges define the coefficient f(x) := 70
12 · x

1+x , b
+(x) = f(x) · x.

Claim 48. For a ++− triangle T = (a, b, c), ∆(T )− cost(T ) is minimized for ybc = yabc.

Proof.

∆(T ) =
35

12
(yab + yac − yabc)ybc + f(xac)(yab + ybc − yabybc)(1 − yac) + f(xab)(yac + ybc − yacybc)(1− yab)

= f(xac)yab + f(xab)yac + (f(xab) + f(xa,c))ybc + (
35

12
− f(xab)− f(xac))(yab + yac)ybc

− (f(xab) + f(xac))yabyac(1− ybc)−
35

12
yabcybc.

cost(T ) = yabc + yab + ybc − 2yabybc + yac + ybc − 2yacybc = yabc + yab + yac + 2ybc − 2(yab + yac)ybc.

The difference between the cost and the budget is at least,

∆(T )− cost(T ) ≥ (f(xac)− 1)yab + (f(xab)− 1)yac + (f(xab) + f(xa,c)− 2)ybc −
35

12
yabcybc − yabc

+

(

35

12
+ 2− f(xab)− f(xac)

)

(yab + yac)ybc − (f(xab) + f(xac))yabyac(1 − ybc). (50)

We can decrease ybc until ybc = yabc. (50) is increasing with ybc. Indeed, we will show that the derivative of
(50) w.r.t. ybc is non-negative. The derivative of (50) w.r.t. ybc is equal to

(

35

12
+ 2− f(xab)− f(xac)

)

(yab + yac) + (f(xab) + f(xac)− 2) + (f(xab) + f(xac))(yabyac)−
35

12
yabc (51)

Observe that f(x) ≤ 35
12 and f(x) ≥ 35

18 if x ≥ 1/2. Hence, if xab, xac ≥ 1
2 ,

(51) ≥
(

2− 35

12

)

(yab + yac) +

(

35

9
− 2

)

+

(

35

9

)

(yabyac)−
35

12
yabc
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≥ 35

36
+

(

35

9

)

y2abc −
35

12
yabc ≥ 0

For the second inequality we used that yab + yac ≤ 1 and yabc ≤ yab, yac. Note that f(x) ≤ 35
18 if x ≤ 1

2 and
f(x) ≥ 35

24 if x ≥ 1
3 . Hence, If

1
3 ≤ xab ≤ 1

2 and xac ≥ 1
3 , then,

(

35

12
+ 2− 15

9

)

(yab + yac) + (
35

12
− 2) + (

35

12
)(yabyac)−

35

12
yabc

=

(

13

4

)

(yab + yac) +
11

12
+ (

35

12
)(yabyac)−

35

12
yabc

≥ 11

12
+

35

12
y2abc +

43

12
yabc ≥ 0.

For the second inequality we used that yabc ≤ yab, yac. ♦

Substituting yabc = ybc into (50) yields,

∆(T )− cost(T ) ≥ (f(xac)− 1)yab + (f(xab)− 1)yac + (2 +
35

12
− f(xab)− f(xac))(yab + yac)ybc

+(f(xab) + f(xac)− 3)ybc − (f(xab) + f(xac))yabyac(1 − ybc)−
35

12
y2bc (52)

We want to determine a lower bound for (52). For ybc we have the constraints ybc = yabc ≤ min{yab, yac}
and ybc ≥ (yab + yac − 1)+. (52) is a quadratic in ybc with leading coefficient − 35

12 . Hence, (52) is minimized
at the boundaries.

Claim 49. For a ++− triangle T = (a, b, c) with ybc = min{yab, yac},

∆(T )− cost(T ) ≥ 5

6
ybc −

11

6
y2bc +

35

12
y3bc ≥ 0

.

Proof. Assume that ybc = yab ≤ yac. We will use the lower bound f(x) ≥ 35
24 for x ≥ 1

3 ,

(52) ≥ (
35

24
− 1)yab + (

35

24
− 1)yac + 2(yab + yac)yab + (

35

12
− 3)yab −

35

12
yabyac(1− yab)−

35

12
y2ab (53)

The coefficient of yac in (53) is

11

24
− 11

12
yab +

35

12
y2ab ≥ 0

Hence, (53) is minimized for yac = yab,

(53) ≥ 5

6
yab −

11

6
y2ab +

35

12
y3ab ≥ 0.

♦

Claim 50. Let L ∈ [0, 1]. For a ++− triangle T = (a, b, c) with ybc = (yab + yac − 1) ≥ L, ∆(T )− cost(T )
is minimized for ybc = L.

Proof. Set x := xab and z := xac. In this case,

(52) = (f(z)− 1)(1− x) + (f(x)− 1)(1− z) + (2 +
35

12
− f(x)− f(z))(2− x− z)(1− x− z)

+(f(x) + f(z)− 3)(1− x− z)− (f(x) + f(z))(1− x)(1 − z)(x+ z)− 35

12
(1− x− z)2.
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This simplifies to

(52) = −−23 + 36z − 35z2 − 24z3 + x(36 + 47z − 83z2 + 46z3)

(12(1 + x)(1 + z))

−x2(−35− 83z + 92z2 + 140z3) + 2x3(−12 + 23z + 70z2)

(12(1 + x)(1 + z))
(54)

Since x + z ≤ 1 − L ≤ 1, we can assume that x ≤ 1
2 . We will show that (54) is decreasing with x. The

derivative of (54) w.r.t. x is equal to

−59 + 11z − 48z2 + 70z3 + 4x3(−12 + 23z + 70z2)

12(1 + x)2(1 + z)

−2x(−35− 83z + 92z2 + 140z3) + x2(−107 + 55z + 512z2 + 140z3)

12(1 + x)2(1 + z)
(55)

We will show that the numerator of (55) is non-negative.

59 + 11z − 48z2 + 70z3 ≥ 1618

27
,

−12 + 23z + 70z2 ≥ 31

9
,

−35− 83z + 92z2 + 140z3 ≥ −1276

27
,

−107 + 55z + 512z2 + 140z3 ≥ −718

27
.

For all inequalities we used that 1
3 . The numerator of (55) is lower bounded by

2

27
(809− 1276x− 359x2 + 186x3) ≥ 0.

The inequality holds for 0 ≤ x ≤ 1
2 . We can conclude that (54) is decreasing with x and hence, minimized

for x = 1− L− z. This implies that ybc = 1− xab − xac = L. ♦

Now, we are ready to prove the lower bounds for bad ++− triangles, chargeable ++− triangles and
++− triangles that are neither. We will start with bad ++− triangles and since they are the worst case we
will give a lower bound for all ++− triangles.

Lemma 51. Given budget functions b+ ≡ b+α and b−(x) ≡ 35
12 (1− x) ≤ b−α (x), where α = 70

47 . For any ++−
triangles T with two long +edges, we have ∆(T )− cost(T ) ≥ − 1

36 .

Proof. By Claim 48, we know that

∆(T )− cost(T ) ≥ (f(xac)− 1)yab + (f(xab)− 1)yac + (2 +
35

12
− f(xab)− f(xac))(yab + yac)ybc

+(f(xab) + f(xac)− 3)ybc − (f(xab) + f(xac))yabyac(1 − ybc)−
35

12
y2bc (56)

Again, this is a quadratic function with leading coefficient − 35
12 and thus minimized for either ybc = yabc =

min{yab, yac} or ybc = (yab+ yac− 1)+. If ybc = yabc = min{yab, yac}, then by Claim 49, ∆(T )− cost(T ) ≥ 0.
By Claim 50, we know that the case ybc = (yab + yac − 1) ≥ 0 reduces to the case ybc = 0,

(56) ≥ (f(xac)− 1)yab + (f(xab)− 1)yac − (f(xab) + f(xac))yabyac. (57)

If x ≥ 1
2 , then f(x) ≥ 35

18 . Thus, for xab, xac ≥ 1
2 ,

(57) = f(xac)(yab − yabyac) + f(xab)(yac − yabyac)− (yab + yac)
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≥ 35

18
(yab − yabyac) +

35

18
(yac − yabyac)− (yab + yac)

=
17

18
yab +

35

18
yac −

35

9
yabyac

≥ 34

9
yabyac −

35

9
yabyac

= −1

9
yabyac

≥ − 1

36

For the second inequality we used that yab, yac ≤ 1
2 and hence, yab ≥ 2yabyac. For the last inequality, we

used that yab, yac ≤ 1
2 . Otherwise, assume w.l.o.g. that z := xac ≤ 1

2 ≤ 1− z ≤ xab = x.

Claim 52. (57) is increasing with x if z ≤ 1
2 + η.

Proof.

(57) =
−12− 6z + 41z2 + x2(41 + 6z − 70z2) + 6x(−1 + z2)

(1 + x)(1 + z)
. (58)

The derivative of (58) w.r.t x is equal to

6 + 6z − 35z2 + x(82 + 12z − 140z2) + x2(41 + 6z − 70z2)

6(1 + x)2(1 + z)
. (59)

We will show that the numerator of (59) is non-negative.

6 + 6z − 35z2 ≥ −347

144

82 + 12z − 140z2 ≥ 1489

36

41 + 6z − 70z2 ≥ 1

2
· 1489

36

For all inequalities we used that 1
3 ≤ z ≤ 0.5 + η. The numerator of (59) is lower bounded by

−347 + 5956x+ 2978x2

144
≥ 0.

The inequality holds for x ≥ 1
3 . ♦

Hence, (58) is minimized for x = (1− z),

(58) ≥ (f(1− x)− 1)(1− x) + (f(x)− 1)x− (f(x) + f(1− x))x(1 − x). (60)

The derivative of (60) is
70

12
· (−5 + 2x+ 22x2 − 8x3 − 10x4 + 4x5)

(2− z)2(1 + x)2
≥ 0,

The inequality holds since
−5 + 2x+ 22x2 − 8x3 − 10x4 + 4x5 ≥ 0

for x ≥ 1
2 . Thus, (58) is minimized for x = 1

2 . We have that x = xab, z = xac =
1
2 .

(58) = (f(1/2)− 1)
1

2
+ (f(1/2)− 1)

1

2
− (f(1/2) + f(1/2))

1

4
= − 1

36
.
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Next, we will deal with ++− triangles that are chargeable. As soon as the distance of the −edge is
bounded away from 1, we can improve the lower bound.

Lemma 53. Given budget functions b+ ≡ b+α and b−(x) ≡ 35
12 (1 − x) ≤ b−α (x), where α = 70

47 . For a ++−
triangles T with two long +edges and distance at most 1− η for the −edge, we have ∆(T )− cost(T ) ≥ 1

36 .

Proof. By Claim 48, we know that

∆(T )− cost(T ) ≥ (f(xac)− 1)yab + (f(xab)− 1)yac + (2 +
35

12
− f(xab)− f(xac))(yab + yac)ybc

+(f(xab) + f(xac)− 3)ybc − (f(xab) + f(xac))yabyac(1 − ybc)−
35

12
y2bc (61)

As before, (61) is minimized at the boundaries, i.e. for either ybc = yabc = min{yab, yac} or ybc = max{yab +
yac − 1, η}. If ybc = yabc = min{yab, yac}, then by Claim 49,

∆(T )− cost(T ) ≥ 5

6
ybc −

11

6
y2bc +

35

12
y3bc ≥

1211

20736
≥ 1

36

The inequality holds since ybc ≥ η. By Claim 50 we know that the case ybc = (yab + yac − 1) ≥ η reduces to
the case ybc = η,

(61) ≥ (f(xac)− 1)yab + (f(xab)− 1)yac + (2 +
35

12
− f(xab)− f(xac))(yab + yac)η

+(f(xab) + f(xac)− 3)η − (f(xab) + f(xac))yabyac(1 − η)− 35

12
η2

= (f(z)− 1)(1− x) + (f(x) − 1)(1− z) + (2 +
35

12
− f(x)− f(z))(2− x− z)η

+(f(x) + f(z)− 3)η − (f(x) + f(z))(1− x)(1 − z)(1− η)− 35

12
η2. (62)

Case 1: x, z ≥ 1/2 + η. We have that f(x), f(z) ≥ 2,

(62) ≥ (1− x) + (1 − z) + (
35

12
− 2)(2 − x− z)η + η − 4(1− x)(1 − z)(1− η)− 35

12
η2

≥ η − 35

12
η2 =

109

1728
≥ 1

36
.

Case 2: z ≤ 1/2 + η.

Claim 54. (62) is increasing for x if z ≤ 0.5 + η.

Proof.

(62) =
−(2507 + 1487z − 11100z2 + x(1487 + 467z − 1860z2) + 60x2(−185− 31z + 308z2))

(1728(1 + x)(1 + z))
. (63)

The derivative of (63) w.r.t x is equal to

5
17 + 17z − 154z2 + x(370 + 62z − 616z2) + x2(185 + 31z − 308z2)

144(1 + x)2(1 + z)
(64)

We will lower bound the numerator of (64). Observe that

17 + 17z − 154z2 ≥ −1835

72
(65)

35



370 + 62z − 616z2 ≥ 1769

9
(66)

185 + 31z − 308z2 ≥ 1769

18
(67)

We used that 1
3 ≤ z ≤ 1/2 + η for all of the above inequalities. Hence, we have that the numerator of (64)

is lower bounded by

1/72(−1835+ 14152x+ 7076x2) ≥ 0.

The inequality is true for x ≥ 1/3. ♦

Thus, we can assume that x = 1− η − z since x+ z ≥ 1− η.

(62) ≥ (f(1 − η − z)− 1)(η + z) + (f(1− η − z)− 1)(1− z) + (2 +
35

12
− f(1− η − z)− f(z))(1 + η)η

+ (f(1− η − z) + f(z)− 3)η − (f(1 − η − z) + f(z))(η + z)(1− z)(1− η)− 35

12
η2

=
−32742 + 115291z − 32602z2− 203280z3 + 110880z4

864(1 + z)(−23 + 12z)
≥ 1343

20736
≥ 1

36
. (68)

(68) is minimized for z = 0.5 − η/2. (68) is convex and first derivative is 0 for z = z = 0.5 − η/2. Indeed,
the derivative of (68) is

35(−11 + 24z)(7823 + 11132z − 9482z2 − 5808z3 + 3168z4)

864(1 + z)2(−23 + 12z)2
.

The second derivative of (68) is equal to

385

18
− 3815

432(1 + z)3
+

15260

(−23 + 12z)3
≥ 0.

The inequality holds for 0 ≤ z ≤ 1.

If a ++− triangle is neither chargeable nor bad, it is again enough to show that ∆(T ) ≥ cost(T ). Thus,
we complete the previous lemma with the following.

Lemma 55. Given budget functions b+ ≡ b+α and b−(x) ≡ 35
12 (1 − x) ≤ b−α (x), where α = 70

47 . For a
++− triangles T with two long +edges where one of the +edges has distance x /∈ [0.5− η, 0.5 + η], we have
∆(T )− cost(T ) ≥ 0.

Proof. By Claim 48, we know that

∆(T )− cost(T ) ≥ (f(xac)− 1)yab + (f(xab)− 1)yac +

(

2 +
35

12
− f(xab)− f(xac))(yab + yac

)

ybc

+(f(xab) + f(xac)− 3)ybc − (f(xab) + f(xac))yabyac(1− ybc)−
35

12
y2bc (69)

Again, this is a quadratic function with leading coefficient − 35
12 and thus minimized for either ybc = yabc =

min{yab, yac} or ybc = (yab+ yac− 1)+. If ybc = yabc = min{yab, yac}, then by Claim 49, ∆(T )− cost(T ) ≥ 0.
By Claim 50 we know that the case ybc = (yab + yac − 1) ≥ 0 reduces to the case ybc = 0. Set x = xab and
z = xac.

(69) = (f(z)− 1)(1− x) + (f(x) − 1)(1− z)− (f(x) + f(z))(1− x)(1 − z). (70)

Since x + z ≥ 1 we have either, x ≥ 0.5 + η or z ≥ 0.5 + η. Assume that x ≥ 0.5 + η. We distinguish the
following two cases.
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Case 1: x, z ≥ 1
2 + η. For x ≥ 1

2 + η, f(x) ≥ 2. Thus,

(f(z)− 1)(1− x) + (f(x) − 1)(1− z)− (f(x) + f(z))(1− x)(1 − z) ≥ (1 − x) + (1− z)− 4(1− x)(1 − z) ≥ 0.

For the last inequality we used that (1− z), (1− x) ≤ 1
2 .

Case 2: x ≥ 0.5 + η and z ≤ 0.5 + η. By Claim 52 we know that (70) is increasing with x. Hence, we
have either x = 0.5 + η and z ≥ 0.5− η or x = 1− z and z ≤ 0.5− η. For x = 1− z,

(70) ≥ (f(z)− 1)z + (f(1− z)− 1)(1− z)− (f(1− z) + f(z))z(1− z)

=
23− 76z + 6z2 + 140z3 − 70z4

12 + 6z − 6z2
≥ 0

The inequality holds since both the numerator and the denominator are non-negative for z ≤ 1
2 − η. For

x = 0.5 + η,

(70) ≥ −223− 570z + 2978z2

1368(1 + z)
≥ 0

The numerator is non-negative for z ≥ 1
2 − η.

6.3 Wrapping up: Deferred proofs of Lemma 37, 38, 39

Proof of Lemma 37. We have to show that ∆(T ) ≥ cost(T ) for all triangles T that are neither chargeable
nor bad. This is true for −−− triangles, +−− triangles and degenerate triangles by Lemma 27, Lemma 28
and Lemma 25. Let T be a +−− triangles where uv, uw are +edges and vw is a −edge. If T contains at most
one long +edge, then the inequality holds by Lemma 47. Otherwise, assume that both +edges are long. T
is neither bad nor chargeable if and only if xvw ≤ 1− η or at least one of xuv, xuw is not in [0.5− η, 0.5+ η].
In the first case ∆(T ) ≥ cost(T ) by Lemma 53 and in the second case by Lemma 55. For +++ triangles
the statement holds true by Lemma 41 for triangles with one long +edge, by Lemma 42 for triangles with
two long +edges and by Lemma 43 for triangles with three long +edges. The cost is 0 in the case where all
+edges are short.

Proof of Lemma 38. A bad triangle T is always a ++− triangle with two long +edges. Thus, the bound
follows from Lemma 51.

Proof of Lemma 39. Consider a chargeable ++− triangle T . Both +edges of T are long. Moreover, the
−edge has value x ≤ 1 − η. Thus, ∆(T ) − cost(T ) ≥ 1

36 by Lemma 53. A chargeable +++ triangle T has
either two long + edges or three long +edges. In the first case we have ∆(T ) − cost(T ) ≥ 1

12 by Lemma
42 and in the second case by Lemma 46. For chargeable degenerate triangles T , ∆(T ) − cost(T ) ≥ 1

18 by
Lemma 40.

7 1.437-Approximation: Computer-assisted proof

In this section, by introducing and solving the factor-revealing SDP, we prove Lemma 11, which implies
that our algorithm archives a 1.437-approximation. Let T be defined as the set of all possible triangles,
represented by tuples of values (yuv, yuw, yvw, yuvw) satisfying the condition yuv ≤ yuw ≤ yvw. We consider
positive degenerate triangle uv as a +++ triangle and negative degenerate triangle uv as a −−+ triangle,
both having the same y value (yuv, yuv, 1, yuv). This substitution simplifies our computations, and we will
later show that it doesn’t increase the value of ∆(T ) − cost(T ) for degenerate triangles. Consequently, T
includes both degenerate and non-degenerate triangles and it can be used to lower bound ∆(T )− cost(T ).
Given graph G and the cluster LP solution zS, along with their corresponding y values, we define ηT (y) for
any triangle T ∈ T as the number of such triangles present in graph G.
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In section 5, we demonstrate that, for any triangle T ∈ T , the inequality ∆(T )− cost(T ) ≥ 0 holds. In
section 6, we establish that, for any solution y, it is possible to determine a reduced budget such that the
summation

∑

T ηT (y) · (∆(T )−cost(T )) ≥ 0. The key insight is that ηT (y) for a given solution y cannot take
arbitrary values. In this section, we elucidate how stronger constraints can be imposed on ηT (y), enabling
the use of a smaller budget for

∑

T ηT (y) · (∆(T )− cost(T )).
In this section, we will first outline the constraint we intend to impose on ηT . Subsequently, we will

employ discretization techniques to encompass all possible triangles T . We will then formulate a semi-
definite program to demonstrate that it is possible to achieve

∑

T ηT (y) · (∆(T ) − cost(T )) ≥ 0 within a
reduced budget.

Covariance Constraint. Given cluster LP solution zS and y, for each node u, the covariance matrix
COVu ∈ RV ×V where

COVu(v, w) = yuvw − yuvyuw

is positive semi-definite(PSD). Actually, we can even show a stronger version of the covariance constraint.

Lemma 56. We define yS =
∑

S′⊇S zS′ for every S ⊆ V . For any T ⊆ V, T 6= ∅, the matrix M ∈ RV×V

where Muv = yT∪{u,v} − yT∪{u}yT∪{v} is PSD.

Proof. Fix any vector a ∈ RV . For every S ⊆ V , we define a(S) :=
∑

v∈S av. Then

a⊺Ma =
∑

u,v∈V

(yT∪{u,v} − yT∪{u}yT∪{v})auav

=
∑

u,v∈V

auav





∑

S⊇T∪{u,v}

zS −
(

∑

S⊇T∪{u}

zS

)(

∑

S′⊇T∪{v}

zS′

)





=
∑

S⊇T

zS · a(S) · a(S)−
∑

S⊇T

∑

S′⊇T

zS · zS′ · a(S) · a(S′)

≥
∑

S⊇T,S′⊇T

zSzS′a2(S)−
∑

S⊇T

∑

S′⊇T

zS · zS′ · a(S) · a(S′)

=
∑

S⊇T,S′⊇T

zSzS′

(

1

2
a2(S) +

1

2
a2(S′)− a(S)a(S′)

)

≥ 0.

The first inequlaity used that
∑

S′⊇T zS′ ≤ 1 as T 6= ∅. Therefore, M is PSD.

Lemma 56 places a significant constraint on the distribution of triangles. We want to mention that
the covariance matrix is implied by cluster LP, so we do not need to add extra constraints to the linear
programming.

To leverage the property of the covariance matrix being positive semi-definite (PSD), we begin by parti-
tioning the interval [0, 1] into numerous sub-intervals denoted as I1, I2, ..., It and each sub-interval Ij ∈ [0, 1]
is continuous. Given any yuv ∈ [0, 1], we use I(yuv) to represent the interval containing yuv. Let l(Ij) and
r(Ij) be the left and right boundary of interval Ij . Given a node u, consider the matrix Qu ∈ Rt×t, where
Qu(Ij , Ik) is defined as

Qu(Ij , Ik) =
∑

yuv∈Ij ,yuw∈Ik
v∈V,w∈V

yuvw − yuvyuw

When v = u or w = u, we have yuvw − yuvyuw = 0 and Qu remains well-defined. We first show that Qu is
also PSD.

Lemma 57. Let Qu be the matrix defined above, then Qu � 0.
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Proof. For any given vector a ∈ Rt, let a(Ij) be the value for index Ij .

a⊺ ·Qu · a =
∑

Ij ,Ik

a(Ij)Qu(Ij , Ik)a(Ik)

=
∑

Ij ,Ik

∑

yuv∈Ij ,yuw∈Ik

a(Ij)a(Ik)(yuvw − yuvyuw)

=
∑

v,w

∑

Ij∋yuv,Ik∋yuw

a(Ij)a(Ik)(yuvw − yuvyuw)

=
∑

v,w

∑

yuv,yuw

a(I(yuv))a(I(yuw))(yuvw − yuvyuw)

= bT · COVu · b ≥ 0

where b ∈ Rn and each entry of b is defined as b(v) = a(I(yuv)). The last inequality is using the fact that
the covariance matrix is PSD.

Given a cluster LP solution y, let Q(y) =
∑

u Qu be the sum of Qu for all vertices u in the set V .
According to Lemma 57, we can assert that Q(y) � 0.

We can now express the matrix Q(y) using triangles T ∈ T and the corresponding counts ηT (y). To
achieve this, we need to consider the increase caused by T in the matrices Qu, Qv, and Qw.

Specifically, a non-degenerate triangle T increases the entries Qu(I(yuv), I(yuw)) and Qu(I(yuw), I(yuv))
by yuvw − yuvyuw for the matrix Qu,. Similar computations are performed for Qv and Qw. For degenerate
triangle T = (yuv, yuv, 1, yuv), it increases Qu(I(yuv), I(yuv)) by (yuv − y2uv), increases Qv(I(yuv), I(yuv)) by
(yuv−y2uv) and doesn’t affect andQw. In either case, we increaseQ(I(yuv), I(yuw)) andQu(I(yuw), I(yuv)) by
yuvw−yuvyuw, Q(I(yvu), I(yvw)) andQ(I(yvw), I(yvu)) by yuvw−yvuyvw, Q(I(ywu), I(ywv)) andQ(I(ywv), I(ywu))
by yuvw − ywuywv.

More formally, to compute Q(y). Let C(T ) ∈ R6×6 be matrix that

C(T ) = diag(C(1)(T ), C(2)(T ), ..., C(6)(T ))

where

C(1)(T ) = C(2)(T ) = COVu(v, w) = yuvw − yuvyuw

C(3)(T ) = C(4)(T ) = COVv(u,w) = yuvw − yvuyvw

C(5)(T ) = C(6)(T ) = COVw(v, u) = yuvw − ywvywu

Let Head(T ) ∈ R6×t be a binary matrix, defined as Head(T )(i, I(a)) = 1 when:

(i, a) ∈ {(1, yuv), (2, yuw), (3, yvu), (4, yvw), (5, ywu), (6, ywv)}

and 0 otherwise. Similarly, we define Tail(T ) ∈ R6×t as a binary matrix, defined as Tail(T )(i, I(a)) = 1
when:

(i, a) ∈ {(1, yuw), (2, yuv), (3, yvw), (4, yvu), (5, ywv), (6, ywu)}

We can then express Q(y) as:

Q(y) =
∑

T∈T

ηT (y) · (Head⊺(T ) · C(T ) · Tail(T ))
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Let T (Ii, Ij , Ik) = {(yuv, yuw, yvw, yuvw) ∈ T | yuv ≤ yuw ≤ yvw, yuv ∈ Ii, yvw ∈ Ij , yuv ∈ Ik} be the set
of triangles within the intervals Ii, Ij , Ik. For any two triangles T with (yuv = a, yuw = b, yvw = c) and T ′

with (yuv = a′, yuw = b′, yvw = c′), if T and T ′ are located within the same interval, meaning I(a) = I(a′),
I(b) = I(b′), and I(c) = I(c′), then we have Head(T ) = Head(T ′) and Tail(T ) = Tail(T ′). Given Ii, Ij , Ik,
define Head(Ii, Ij , Ik) = Head(T ) (or Tail(Ii, Ij , Ik) = Tail(T )), where T is an arbitrary triangle such that
T ∈ T (Ii, Ij , Ik). We can then express Q(y) as:

Q(y) =
∑

Ii,Ij ,Ik

Head⊺(Ii, Ij , Ik) ·





∑

T∈T (Ii,Ij ,Ik)

ηT (y) · C(T )



 · Tail(Ii, Ij , Ik)

SinceQ(y) � 0, it provides a constraint for ηT (y). Our target is to show that
∑

T ηT (y)·(∆(T )−cost(T )) ≥
0 under the constraint that Q(y) � 0. We will consider all possible triangles in each range T (Ii, Ij , Ik) and
there will be at most O(t3) different range. For any solution y, the triangle T = {(yuv, yuw, yvw, yuvw) |
yuv ≤ yuw ≤ yvw} satisfies the triangle inequality, that is 1 − yuw + 1 − yvw ≥ 1 − yuv. Therefore, given
range Ii, Ij , Ik, we assume that l(Ii) ≥ l(Ij)+ l(Ik)− 1, r(Ij) ≤ 1+ l(Ii)− l(Ik) and r(Ik) ≤ 1+ l(Ii)− l(Ij),
since there won’t be any triangles in the range when the above inequality doesn’t hold. If necessary, we can
truncate intervals to ensure that these inequalities hold true.

In each range Ii, Ij , Ik, we will use d̃(Ii, Ij , Ik) = minT∈T (Ii,Ij ,Ik)(∆(T ) − cost(T )) to establish a lower

bound on ∆(T )− cost(T ). d̃(Ii, Ij , Ik) can be precomputed and there will be at most O(t3) different d̃ value.

We first show that d̃(Ii, Ij , Ik) is a lower bound even for degenerate triangle. Recall that we treat degenerate
triangle as triangle with y value (yuv, yuv, 1, yuv).

Lemma 58. Let T = (u, v) be a degenerate triangle, for any budget function b+, b− such that b+(0) = 0,
then

cost(u, v)−∆(u, v) ≥ d̃(I(yuv), I(yuv), I(1))

Proof. Let T1 represent the +++ triangle with (yuv, yuv, 1, yuv).If (u, v) is a positive edge and yuv ≥ 2/3,
then cost(u, v) = 0 and ∆(u, v) = 2b+(xuv). In this case, cost(T1) = 0 and ∆(T1) = 2b+(xuv) + b+(0). If
(u, v) is a positive edge and yuv < 2/3, we have cost(u, v) = 2(1 − yuv) and ∆(u, v) = 2b+(xuv). For T1

in this scenario, cost(T1) = 2(1 − yuv) and ∆(T1) = 2b+(xuv) + b+(0)yuv. In either case, we observe that
∆(u, v)− cost(u, v) = ∆(T1)− cost(T1) ≥ d̃(I(yuv), I(yuv), I(1)).

Let T2 be the −−+ triangle with (yuv, yuv, 1, yuv). If (u, v) is a negative edge, then cost(u, v) = 2yuv and
∆(u, v) = 2b−(xuv). For T2, we have cost(T2) = 2yuv+2yuv−2y2uv and ∆(T2) = 2b−(xuv)+b+(0)(2yuv−y2uv).
Therefore, we conclude that ∆(u, v)− cost(u, v) ≥ ∆(T2)− cost(T2) ≥ d̃(I(yuv), I(yuv), I(1)).

We still need to represent Q using ηT . The problem is there might be infinite types of triangles in
each range T (Ii, Ij , Ik), and we are not able to list every possible triangle. To solve this problem, our last
observation is that, for i ∈ [1, 6], C(i)(T ) is a multi-linear function in terms of yuv, yuw, yvw and yuvw.

Since C(i)(T ) is multi-linear, we only need to consider 16 different triangles in each range to cover all
possible triangles, where those triangles’ y value are

yuv ∈ {l(Ii), r(Ii)}, yuw ∈ {l(Ij), r(Ij)}, yvw ∈ {l(Ik), r(Ik)}
yuvw ∈ {max(0, (l(Ii) + l(Ij) + l(Ik)− 1)/2), r(Ik)}.

The yuvw constraints comes from the fact that yuvw ≤ yvw and yuw + yuv + yvw − 2yuvw ≤ 1. Each
triangle might be considered in different ranges multiple times and we shall treat them as different types
of triangles. Let TD(Ii, Ij , Ik) be the set of triangles containing this 16 triangles in T (Ii, Ij , Ik) and TD =
∪Ii,Ij ,IkTD(Ii, Ij , Ik), we can set up a semi-definite programming to lower bound

∑

T ηT (y)·(∆(T )−cost(T )).
In factor-revealing SDP, the variables are ηT that represent the ratio of triangles T ∈ TD and N · ηT is the
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number of triangle of T , where N = n(n−1)(n−2)
6 + n(n−1)

2 = n(n−1)(n+1)
6 . d̃(Ii, Ij , Ik), Head⊺(Ii, Ij , Ik), C(T )

and Tail(Ii, Ij , Ik) are constant and can be pre-computed.

min
∑

Ii,Ij ,Ik

∑

T∈TD(Ii,Ij ,Ik)

ηT · d̃(Ii, Ij , Ik) s.t. (factor-revealing SDP)

Q =
∑

Ii,Ij ,Ik

Head⊺(Ii, Ij , Ik)





∑

T∈TD(Ii,Ij ,Ik)

ηT · C(T )



 · Tail(Ii, Ij , Ik) � 0

ηT ≥ 0 ∀T ∈ TD
∑

T∈TD

ηT = 1,

Our main theorem regarding the SDP program is that

Theorem 59. For any cluster LP solution zS and y , let OPTSDP be the optimal solution for factor-revealing SDP,
then

∑

T

ηT (y) · (∆(T )− cost(T )) ≥ N ·OPTSDP

where N = n(n−1)(n+1)
6 is the number of degenerate and non-degenerate triangles.

Proof. Note that d̃(Ii, Ij , Ik) is the lower bound of ∆(T )− cost(T ) for any T ∈ T (Ii, Ij , Ik). Hence, we have:

∑

T

ηT (y) · (∆(T )− cost(T )) ≥
∑

Ii,Ij ,Ik

∑

T∈T (Ii,Ij ,Ik)

ηT (y) · d̃(Ii, Ij , Ik)

The difficulty of the proof arises from the fact that we only consider triangles from TD(Ii, Ij , Ik), which
contains only 16 triangles. We will show that we can use triangles from TD to represent Q and the objective
value is at most

∑

Ii,Ij ,Ik

∑

T∈T (Ii,Ij ,Ik)
ηT (y) · d̃(Ii, Ij , Ik). For any triangle T with (yuv ∈ Ii, yuw ∈ Ij , yvw ∈

Ik) and l(Ii) ≤ l(Ij) ≤ l(Ik), let T1, T2, ..., T16 be the 16 triangles from TD(Ii, Ij , Ik). We will later show
that there exist λi ≥ 0 such that C(T ) =

∑

i∈[1,16] λi · C(Ti) and
∑

i∈[1,16] λi = 1. Therefore, we can use

T1, T2, ..., T16 to replace T without affecting the Q value. As we use d̃(Ii, Ij , Ik) in the objective function and
∑

i∈[1,16] λi = 1, this substitution doesn’t impact the objective value either.
Combining these findings, for any solution y in cluster LP, we can deduce the existence of a feasible

solution ηT from factor-revealing SDP such that
∑

ηt = 1 and N ·Q(ηT ) = Q(y). Therefore, we have

∑

T

ηT (y) · (∆(T )− cost(T )) ≥
∑

Ii,Ij ,Ik

∑

T∈T (Ii,Ij ,Ik)

ηT (y) · d̃(Ii, Ij , Ik)

≥
∑

Ii,Ij ,Ik

∑

T∈TD(Ii,Ij ,Ik)

N · ηT · d̃(Ii, Ij , Ik) ≥ N ·OPTSDP

We still need to demonstrate the existence of λi ≥ 0 such that C(T ) =
∑

i∈[1,16] λi·C(Ti) and
∑

i∈[1,16] λi =

1. For any triangle T = (yuv, yuw, yvw, yuvw), consider triangle T1 = (l(Ii), yuw, yvw, yuvw) and T2 =

(r(Ii), yuw, yvw, yuvw) with λ = yuv−l(Ii)
r(Ii)−l(Ii)

. We then have C(i)(T ) = (1− λ)C(i)(T1) + λC(i)(T2) for i ∈ [1, 6].

We can apply the same transformation to yuw, yvw, yuvw since C(i)(T ) is multilinear. This completes the
proof.
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Theorem 59 provides a valuable method for establishing a lower bound on
∑

T ηT (y) · (∆(T )− cost(T ))
for any given solution and budget function. To proceed with the computation of this lower bound, we need
to solve factor-revealing SDP. It’s important to emphasize that solving factor-revealing SDP is completely
independent of cluster LP. The value of OPTSDP is determined solely by the chosen budget function and
the selected intervals I1, I2, ..., It.

The estimation errors, which is the difference between
∑

T ηT (y) · (∆(T )− cost(T )) and OPTSDP, mainly

arise from two sources. First, we use d̃(Ii, Ij , Ik) as an estimated value for all triangles within TD(Ii, Ij , Ik).
Second, some of the triangles we consider may violate the triangle inequality, and there’s the possibility that
yuvw could violate its constraint as defined in cluster LP.

Given the budget function, the accuracy of our estimation improves with a greater number of chosen
intervals, but this also leads to longer computation times for solving OPTSDP. Additionally, to enhance the
accuracy of computing OPTSDP, we employ two key techniques. Firstly, we introduce an additional SDP
constraint, and secondly, we discretize the values of yuvw.

Frequency Constraint. We can set up another constraint for ηT . Similarly, given a node u, consider the
frequency matrix

Fu(Ij , Ik) = |{v ∈ V,w ∈ V | yuv ∈ Ij , yuw ∈ Ik}| =
∑

yuv∈Ij ,yuw∈Ik

1

Fu(Ij , Ik) is the number of pairs such that yuv ∈ Ij and yuw ∈ Ik. We want to mention v and w might be
u. Let freq ∈ Rt such that freq(Ij) = |{v ∈ V | yuv ∈ Ij}|, then we can represent Fu as

Fu = freq⊺ · freq

which implies Fu is PSD, too. We will follow the discretization strategy of Q matrix. Let F =
∑

u Fu and
A ∈ R6×6 is defined as

A = diag(1, 1, 1, 1, 1, 1)

Then the increase of F causing by T is

Head⊺(T ) ·A · Tail(T )

It’s worth noting this increase holds even for degenerate triangles. For any degenerate triangle (u, v), it
raises F (I(yuv), I(yuv)), F (I(yuv), I(1)), and F (I(1), I(yuv)) by 2, echoing the increase seen in the triangle
with the y value (yuv, yuv, 1, yuv). However, unlike the Qu vector, Fu also considers cases where v = u and
w = u. In the Qu vector, this case doesn’t impact Qu due to yuuu − yuuyuu = 0. We need to increment
F (I(1), I(1)) by n since η(y) does not account for v = u and w = u. Fortunately, we already include the
+++ triangle T3 = (1, 1, 1, 1); given that T3 doesn’t influence the matrix Q value and ∆(T3)− cost(T3) = 0,
each occurrence of T3 raises F (I(1), I(1)) by 6. By increasing ηT3(y) by n/6, we can effectively represent F
as:

F (y) =
∑

Ii,Ij ,Ik

Head⊺(Ii, Ij , Ik)





∑

T∈T (Ii,Ij ,Ik)

ηT (y) · A



 · Tail(Ii, Ij , Ik)

Given that A is a constant matrix, any T can be utilized to encompass all triangles from T (Ii, Ij , Ik) for F .

Discretization for yuvw. Another technique that enhances estimation accuracy involves discretizing the
yuvw values. We achieve this by subdividing the interval [max(0, (l(Ii) + l(Ij) + l(Ik) − 1)/2), r(Ik)] into
numerous sub-intervals. The specific manner in which we partition this interval depends on both the interval’s
length and its significance in the overall estimation.
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However, it’s crucial to note that discretizing yuvw results in a substantial increase in the number of
triangles to be considered. This surge may render the final SDP impractical to solve. The formulation of
our ultimate factor-revealing SDP is provided below:

min
∑

Ii,Ij ,Ik,Il

∑

T∈TD(Ii,Ij ,Ik,Il)

ηT · d̃(Ii, Ij , Ik, Il) s.t. (factor-revealing SDP)

Q =
∑

Ii,Ij ,Ik

Head⊺(Ii, Ij , Ik)





∑

Il,T∈TD(Ii,Ij ,Ik,Il)

ηT · C(T )



 · Tail(Ii, Ij , Ik) � 0

F =
∑

Ii,Ij ,Ik

Head⊺(Ii, Ij , Ik)





∑

Il,T∈TD(Ii,Ij ,Ik,Il)

ηT ·A



 · Tail(Ii, Ij , Ik) � 0

ηT ≥ 0 ∀T ∈ TD
∑

T∈TD

ηT = 1,

where d̃(Ii, Ij , Ik, Il) = minT∈T (Ii,Ij ,Ik,Il)(∆(T ) − cost(T )), and TD(Ii, Ij , Ik, Il) is the set of triangles such
that

yuv ∈ {l(Ii), r(Ii)}, yuw ∈ {l(Ij), r(Ij)}, yvw ∈ {l(Ik), r(Ik)}, yuvw ∈ {l(Il), r(Il)}.

By appropriately setting intervals, we can demonstrate that OPTSDP remains non-negative, as affirmed in
Lemma 60, even for a reduced budget function. The primary challenge lies in achieving a balance between
estimation error and the running time of solving factor-revealing SDP in practice. For a more in-depth
explanation of the specific settings of Lemma 60, please refer to the details provided in Appendix B.

Lemma 60. For budget functions b+ ≡ b+1.437 and b− ≡ b−1.437 Let OPTSDP be the optiamal value for
factor-revealing SDP, there exist intervals I1, I2, ..., It and intervals for yuvw such that OPTSDP = 0.

Proof of Lemma 11. For budget functions b+ ≡ b+1.437 and b− ≡ b−1.437, For degenerate and non-degenerate
triangles, based on Theorem 59 and Lemma 60, we know that

∑

T

ηT (y) · (∆(T )− cost(T )) ≥ N ·OPTSDP = 0.

8 1.33-gap for Cluster LP

In this section, we show that the cluster LP has a gap of 4/3, proving Theorem 4 restated below.

Theorem 4. For any ε > 0, the integrality gap of the cluster LP is at least 4/3− ε.

The graph of the plus edges of our gap instance is based on the line graph of a base graph; given a based
graph H = (VH , EH), our correlation clustering instance is G = (VG, EG) where VG = EH and e, f ∈ VG

have a plus edge in G if they share a vertex in VH .
A high-level intuition is the following: LPs cannot distinguish between a random graph and a nearly

bipartite graph. Consider vertices of H as ideal clusters in G containing their incident edges. Given a
random graph H , the LP fractionally will think that it is nearly bipartite, implying that the almost entire
EH can be partitioned into n/2 ideal clusters. Of course, integrally, such a partition is not possible in
random graphs. For the cluster LP, it suffices to consider a complete graph instead of a random graph. We
believe (but do not prove) that such a gap instance can be extended to stronger LPs (e.g., Sherali-Adams
strengthening of the cluster LP), because it is known that Sherali-Adams cannot distinguish a random graph
and a nearly bipartite graph [CMM09].
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Proof of Theorem 4. Let H = (VH , EH) be a complete graph on n vertices. Let d = n− 1 be the degree of
H . Our correlation clustering instance G = (VG, EG) is the line graph of H ; VG = EH and e, f ∈ EH has +
edge in G if and only if they share a vertex in H . The + degree of each e ∈ EH in G is 2d− 2.

Consider the following solution for the cluster LP: for every v ∈ VH , let Ev ⊆ EH be the d edges
containing v. The cluster LP has zEv

= 1/2 for every v ∈ vH . Each e ∈ EH belongs to two fractional
clusters, each of which has its d−1 plus neighbors, so fractionally d−1 plus edges incident on it are violated.
Since each violated edge is counted twice, the LP value is

(

n
2

)

(d− 1)/2.
Let us consider the integral optimal correlation clustering of G. Consider a cluster C in the clustering.

Note that every vertex in C has at least |C|/2 plus neighbors in C, which implies |C| ≤ 4d. We apply the
following procedure to C to partition it further.

Claim 61. There is a partition of C into C1, . . . , Cr such that (1) each Ci is a subset of Ev for some v ∈ VH ,
and (2) replacing C by C1, . . . , Cr in the correlation clustering solution increases the objective function by
at most 35|C|.

Proof. For v ∈ VH , let nv := |C ∩ Ev|. Note that
∑

v nv = 2|C|. Without loss of generality, assume
VH = {v1, . . . , vn} with nv1 ≥ · · · ≥ nvn . If e = (vi, vj) ∈ C has i, j > 8, then the number of its plus
neighbors in C is nvi + nvj < 2 · 18 · 2|C| = |C|/2, so it should not exist in C. So, every edge is incident on
vi for some i ≤ 8.

Let us make at most
(

8
2

)

= 28 edges in C between v1, . . . , v8 as singleton clusters; the objective function
increases by at most 28|C|. Then partition the remaining C into E1, . . . , E8 where Ei := C ∩ Evi . Each
e ∈ Ei has at most seven plus neighbors in ∪j 6=iEj , so the objective function increases by at most 7|C|.
So, we partitioned C into C1, . . . , Cr where all the edges in Ci share a common endpoint. We increased the
objective function by at most 35|C|.

After we apply the above procedure to every cluster C, we increased the cost by at most 35|VH | ≤ 35n2

and all the edges in a cluster C share a common endpoint. For v ∈ VH , let Cv be the cluster in the solution
whose common endpoint is v. (If there are many of them, merging them will strictly improve the objective
function value.) Without loss of generality, there are t such clusters Cv1 , . . . , Cvt and let ni := |Cvi | such
that n1 ≥ · · · ≥ nt.

Claim 62.
∑t

i=1 n
2
i ≤ n3/3.

Proof. The LHS is monotone in (n1, . . . , nt), and if there is an edge (vi, vj) ∈ Cj with j > i (which implies
ni ≥ nj), the LHS strictly improves by moving (vi, vj) to Ci. Therefore, the configuration that maximizes
the LHS is when t = n and Cvi contains all the edges of H not incident on v1, . . . , vi−1. In that case, the
LHS is

n−1
∑

i=1

(n− i)2 = n3
n−1
∑

i=1

(
n− i

n
)2 · 1

n
≤ n3

∫ 1

0

(1− x)2dx = n3[x− x2 + x3/3]10 = n3/3,

as desired.

Using this, we can prove a lower bound on the cost of our near-optimal clustering. Note that every
cluster is a clique of +edges. Thus, the only edges violated are +edges. Moreover, there are at most
∑

i∈[t] n
2
i /2 ≤ n3/6 correctly clustered +edges. The cost of our near-optimal clustering is the total number of

+edges of Gminus the number of correctly clustered +edges, namely at most
(

n
2

)

(d−1)−n3/6 = n3/3−o(n3).
Since the cost of the optimal clustering is at most 35n2 lower than ours, it is still n3/3−o(n3). The fractional
solution has the value at most n3/4, so the gap is at least 4/3− o(1).
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9 1.04-NP Hardness

In this section, we show that it is NP-hard (under randomized reductions) to obtain an algorithm with an
approximation ratio of 24/23 ≥ 1.043, proving Theorem 5 restated below.

The idea is similar to the gap for the cluster LP in Section 8, which is based on the fact that the LPs
generally cannot distinguish nearly bipartite graphs and random graphs. The main difference, which results
in a worse factor here, is that other polynomial-time algorithms (e.g., SDPs) can distinguish between them!
So, we are forced to work with slightly more involved structures.

Still, we use a similar construction for 3-uniform hypergraphs; let H = (VH , EH) be the underlying 3-
uniform hypergraph and G = (VG, EG) be the plus graph of the final Correlation Clustering instance where
VG = EH and e, f ∈ EH has an edge in G if they share a vertex in H . We use the following hardness result
of Cohen-Addad, Karthik, and Lee [CAL22] that shows that it is hard to distinguish whether H is nearly
bipartite or close to a random hypergraph.

Theorem 63. For any ε > 0, there exists a randomized polynomial-time algorithm that receives a 3-CNF
formula φ as input and outputs a simple 3-uniform hypergraph H = (VH , EH) where the degree of each vertex
is (1± o(1))d for some d = ω(|VH |) such that the following properties are satisfied with high probability.

• (YES) If φ is satisfiable, there exists U ⊆ VH with |U | = |VH |/2 that intersects every hyperedge in EH .
Moreover, for every u ∈ U , |{e ∈ EH : e ∩ U = {u}}| ≥ (1/2− ε)d.

• (NO) If φ is unsatisfiable, any set of γ|VH | vertices (γ ∈ [0, 1]) do not intersect at least a (1− γ)3 − ε
fraction of hyperedges in EH .

Proof. The same reduction in Theorem 4.1 of (the arXiv version of) [CAL22] yields the desired hardness.
In the following, we highlight the difference between the statement of Theorem 4.1 of [CAL22] and our
Theorem 63 and briefly explain how our additional properties are satisfied by their reduction.

1. Regularity of H : Section 4.5 of [CAL22], based on an earlier weighted hard instance, constructs the
final hard instance H = (VH , EH) as a certain random hypergraph where the degree of each vertex
v is the sum of independent {0, 1} variables with the same expected value. This expected value is
Θ(|VH |1.5), so the standard Chernoff and union bound argument will show that the degree of each
vertex is almost the same with high probability.

2. In the (YES) case, for every u ∈ U , |{e ∈ EH : e ∩ U = {u}}| ≥ (1/2 − ε)d: It follows from their
construction in Section 4.1. The construction is analogous to H̊astad’s celebrated result on Max-
3SAT [H̊as01] where in the (YES) case, almost three quarters of the clauses have one true literal and
almost one quarter have three true literals, so that for each true literal ℓ, roughly half of the clauses
containing ℓ has it as the only true literal.

3. In the (NO) case: the guarantee holds for any value of γ ∈ [0, 1] instead of just 0.5: One can simply
change 1/2 to 1 − γ in the proof of Lemma 4.4 in Section 4.3. It is analogous to the fact that all
nontrivial Fourier coefficients vanish in H̊astad’s result on Max-3SAT and Max-3LIN [H̊as01].

Given such H = (VH , EH), let n := |VH |. Our correlation clustering instance G = (VG, EG) is the line
graph of H ; VG = EH and e, f ∈ EH have a plus edge in G if they share a vertex in H . This means that
every e ∈ VG has (3 ± o(1))d plus edges incident on it; we used the fact that d = ω(n) and e has at most
O(n) other hyperedges that intersect with e with at least two points (which causes double counting).

YES case. Consider U ⊆ VH guaranteed in Theorem 63. Our (randomized) clustering is the following: ran-
domly permute vertices to obtain U = {v1, . . . , vn/2}, and let Ei := {e ∈ EH : vi ∈ e and e∩{v1, . . . , vi−1} =
∅}. Since U intersects every e ∈ EH , (E1, . . . , En/2) forms a partition of EH .

We analyze the expected cost of this clustering. For each e ∈ EH , let save(e) be (the number of plus
neighbors in the same cluster) minus (the number of minus neighbors in the same cluster). Intuitively, it is
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the amount of saved cost between e and its neighbors, compared to the situation where e is a singleton cluster.

Then, the cost of our clustering is the total number of plus edges of G, namely |EH |· 3(1±o(1))d
2 = nd2 · (1±o(1))

2 ,
minus

∑

e∈EH
save(e)/2.

Fix v ∈ U and let Ev := {e ∈ EH : v ∈ e}, E′
v := {e ∈ EH : e ∩ U = {v}}, E′′

v := Ev \ E′
v. Then

|Ev| = (1±o(1))d and |E′
v| ≥ (1/2−ε)d. We would like to compute E[|Ei|2] over random permutations where

i is defined such that vi = v. It is clear that E′
v ⊆ Ei. For each e ∈ E′′

v , the probability that e ∈ Ei is at
least 1/3 (when v comes before the other two vertices of e in the random permutation). And two hyperedges
e, f ∈ E′′

v , the probability that both are in Ei is at least 1/5 (when v comes first among |e∪ f | ≤ 5 vertices).
Therefore,

E[|Ei|2] ≥ |E′
i|2 + 2|E′

i||E′′
i |/3 + |E′′

i |2/5 ≥ d2(1/4 + 1/6 + 1/20−O(ε)) = d2(7/15−O(ε)).

Therefore, the total saving is at least nd2(7/30−O(ε)) and the final cost is at most nd2(1/2−7/60+O(ε)) =
nd2(23/60 +O(ε)).

NO case. Our analysis will be similar to that of the gap instance, slightly more complicated by the fact that
we are working with a non-complete hypergraph. Consider the optimal correlation clustering and consider
one cluster C. For e ∈ C, it has at most (3 ± o(1))d plus edges in G, so |C| ≤ (6 + o(1))d; otherwise, it
is better to make e a singleton cluster. We prove that if C is large, then we can partition C into smaller
clusters where each cluster consists of hyperedges sharing the same vertex in H . For v ∈ EH , let Ev ⊆ EH

be the set of hyperedges containing v.

Claim 64. There is a partition of C into C1, . . . , Cr such that (1) each Ci is a subset of Ev for some v ∈ VH ,
and (2) replacing C by C1, . . . , Cr in the correlation clustering solution increases the objective function by
at most O(n|C|).

Proof. Without loss of generality, assume VH = {v1, . . . , vn} and define ni := |C ∩Evi | such that n1 ≥ · · · ≥
nn. Note that

∑

i ni = 3|C|.
If e = (vi, vj , vk) with i, j, k > 20, then ni + nj + nk < 3 · (3|C|/20) < |C|/2, which implies that e has

more minus neighbors than plus neighbors in C, leading to contradiction. So, every hyperedge is incident
on vi for some i ≤ 20.

Since two vertices of H have at most n hyperedges containing both of them, let us make at most n ·
(

10
2

)

hyperedges in C that contain at least two of v1, . . . , v20 as singleton clusters; the objective function increases
by at most n ·

(

10
2

)

· |C|. Then partition the remaining C into E1, . . . , E20 where Ei := C ∩ Evi . Each
e ∈ Ei has at most 2 · 20 · n plus edges in ∪j 6=iEj (20 choices for vj , 2 choices for a vertex in e ∋ {vi}, and
n choices for hyperedges containing both vertices), so the objective function increases by at most O(n|C|).
So, we partitioned C into C1, . . . , Cr where all the hyperedges in Ci share a common endpoint. In total, we
increased the objective function by at most O(n|C|).

Applying the above procedure for every cluster C increases the objective function by at most O(n·|EH |) =
O(n2d). Then, we have a clustering where all the edges in a cluster C share a common endpoint. C forms
a clique in H . For v ∈ VH , let Cv be the cluster in the solution whose common endpoint is v. (If there are
many of them, merging them will strictly improve the objective function value.) Without loss of generality,
there are t such clusters Cv1 , . . . , Cvt and let ci := |Cvi | such that c1 ≥ · · · ≥ ct.

Claim 65.
∑t

i=1 c
2
i ≤ d2n(0.2 +O(

√
ε)), where ε is the parameter from Theorem 63.

Proof. Here, we use the NO case guarantee from Theorem 63: for any γ ∈ [0, 1] and choice of γn vertices, it
covers at most 1 − (1 − γ)3 + ε = 3γ − 3γ2 + γ3 + ε fraction of the edges, which is equivalent to: for every
i ∈ [n],

i
∑

j=1

ci ≤ (3(i/n)− 3(i/n)2 + (i/n)2 + ε)|EH |. (71)
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Let δ = o(1) be such that every vertex of H has degree at most (1 + δ)d, which means that (1 + δ)d ≥ c1 ≥
· · · ≥ ct. And let fi/n := ci/((1 + δ)d). Then (71) becomes

1

n

i
∑

j=1

fj/n ≤ (3(i/n)− 3(i/n)2 + (i/n)2 + ε)
|EH |

(1 + δ)dn
≤ (3(i/n)− 3(i/n)2 + (i/n)2 + ε)/3. (72)

(Note that |EH | ≤ (1 + δ)dn/3.) Interpreting 1
n

∑i
j=1 fj/n as

∫ 1

0 f(x)dx where f(x) = c⌈xn⌉, we have that
∑t

i=1 |ci|2 ≤ (1+ δ)2d2nmaxf
∫ 1

0 f(x)2dx, where the maximum is taken over functions f : [0, 1]→ [0, 1] with
the constraints that

1. For all y ∈ [0, 1],
∫ y

x=0

f(x)dx ≤ y − y2 + y3/3 + ε/3. (73)

(Compared to (72), we add more constraints for every y ∈ [0, 1], but it is valid to do so since the
step function f(·) defined above satisfies all these constraints; if (73) is violated for some value y ∈
(i/n, (i + 1)/n) for some integer i, (72) is violated at (i + 1)/n because f(y) stays the same in the
interval while the upper bound increases strictly less than linearly.)

2. f decreasing with f(0) ≤ 1.

Then one see that the optimal f satisfies either f(y) = 1 or
∫ y

x=0
f(x) = y− y2+ y3+ ε/3 for every y ∈ [0, 1).

If it is not satisfied at some y, we can increase f(y) while decreasing f(z) for some z > y, which will still

satisfy the constraints and increase
∫ 1

0 f(x)2dx. Therefore, we can conclude that f(y) = 1 for y ≤ τ and
∫ y

x=0

f(x)dx = y − y2 + y3/3 + ε/3⇒ f(y) = (y − y2 + y3/3 + ε/3)′ = 1− 2y + y2

for y > τ , where τ = Θ(
√
ε) is the solution of τ = τ − τ2 + τ3 + ε/3. Then, we can bound

∫ 1

x=0

f(x)2dx ≤ O(
√
ε) +

∫ 1

x=0

(1− 2x+ x2)2dx ≤ 0.2 +O(
√
ε),

which implies that
∑

i c
2
i ≤ d2n(0.2 +O(

√
ε)).

Using this, we can prove a lower bound on the cost of our near-optimal clustering. Note that every
cluster is a clique of +edges. Thus, the only edges violated are +edges. Moreover, there are at most
∑

i∈[t] c
2
i /2 ≤ d2n(0.1 + O(

√
ε) correctly clustered +edges. The cost of our near-optimal clustering is the

total number of +edges of G minus the number of correctly clustered +edges, namely at least nd2(1/2 −
0.1 − O(

√
ε)) = nd2(0.4 − O(

√
ε)). Since the cost of the optimal clustering is at most O(n2d) lower than

ours, it is still nd2(0.4−O(
√
ε)) using d = ω(n).

Since the value in the YES case is at most (23/60 +O(ε))nd2, so the gap is almost 24
23 ≥ 1.043.

10 Open Problems

We highlight several problems left open by this work.

• Our algorithm computes a (1+ǫ)-approximate solution for Cluster LP in npoly(1/ǫ) time. An intriguing
question is whether Cluster LP can be solved in time f(ǫ) · poly(n), for some function f . (e.g.,
O(2poly(1/ǫ)n100)).

• Our analysis of the rounding procedure, which achieves a 1.437-approximate ratio, currently requires
computer assistance. One challenge is to determine whether a similar approximate ratio can be achieved
without computer assistance. Additionally, although computer assistance enables us to impose more
constraints on ηT—thereby slightly reducing the approximate ratio—it remains substantially above
the theoretical lower bound. Exploring the possibility of achieving an approximate ratio of 4/3+ ǫ, or
even surpassing the 4/3 approximate ratio, represents a critical area for future research.
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• Recent findings by Cohen-Addad, Lolck, Pilipczuk, Thorup, Yan, and Zhang [CALP+24] demonstrate
that a 1.847-approximate ratio is achievable in Õ(m) time, where m is the number of +edges. Can we
show some kind of tradeoff between the running time and the approximate ratio?
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A Preclustering

The goal of this section is to prove Theorem 14, which is repeated below:

Theorem 14. For any sufficiently small ε > 0, there exists a poly(n, 1
ε )-time algorithm that, given a Cor-

relation Clustering instance (V,E+ ⊎ E−) with optimal value opt (which is not given to us), produces a
preclustered instance (K, Eadm) such that

• there exists a good clustering w.r.t (K, Eadm), whose cost is at most (1 + ε)opt, and

• |Eadm| ≤ O
(

1
ε2

)

· opt.
For convenience, we assume every u has a self-loop in E+. Let N+

u be the set of +neighbors of u; so we
have u ∈ N+

u . Let d+u = |N+
u | be its +degree. Let C∗ be the optimum clustering, and opt = obj(C∗) be its

cost. We assume ε > 0 is at most a small enough constant; we define β = 0.1 to be an absolute constant.

A.1 Constructing Atoms

In the first step of the algorithm for the proof of Theorem 14, we define the set K of atoms. We use any
known O(1)-approximation algorithm for the Correlation Clustering problem to obtain a clustering; for
example, we can use the 3-approximation combinatorial algorithm of [ACN08] to obtain a clustering C with
obj(C) ≤ 3 · opt.

Our K is obtained from C by marking some vertices and creating singletons for them. We view K both
as a clustering and as the set of atoms. The algorithm is described in Algorithm 4.

Algorithm 4 Construction of K
1: for every non-singleton C ∈ C do
2: for every u ∈ C do: mark u if |N+

u △C| > β
2 · |C|

3: if at least β|C|
3 vertices in C are marked then mark all vertices in C

4: let K be the clustering obtained from C by removing marked vertices and creating a singleton cluster for
each of them

5: return K

Lemma 66. obj(K) ≤ O (1) · opt, where we view K as a clustering.

Proof. If a cluster C has less than β|C|
3 marked vertices before Step 3, then the cost incurred by separating

the marked vertices in C is at most 2
β = O(1) times the cost of edges incident to these vertices in C. On the

other hand, if C has at least β|C|
3 marked vertices before Step 3, the cost of edges incident to C in C is at

least β
2 · |C| ·

β|C|
3 · 12 = Ω(|C|2). The cost incurred by breaking C into singletons is at most

(

|C|
2

)

. As every
edge is charged at most twice, the cost incurred by creating singletons for all marked vertices is at most
O(1) · obj(C). So obj(K) ≤ O(1) · opt as obj(C) ≤ 3 · opt.

Lemma 67. For every non-singleton K ∈ K, and every u ∈ K, we have |N+
u △K| < β|K|.

Proof. Assume K ⊆ C for some C ∈ C. So the vertices in C \ K are marked, the vertices in K are

unmarked, and |C \K| < β|C|
3 . For every u ∈ K, we have |N+

u △C| ≤ β
2 · |C| because it is unmarked. Then

|N+
u △K| ≤ β

2 · |C|+
β|C|
3 = 5β

6 · |C| ≤
5β
6 ·

|K|
1−β/3 ≤ β|K| for our choice of β.

Lemma 68. Consider the optimum clustering C∗. Any atom K ∈ K is completely inside a cluster in C∗.
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Proof. The lemma holds trivially if K is a singleton. Assume towards the contradiction that K is a non-
singleton and not inside a cluster in C∗. By Lemma 67, we have that |N+

u △K| < β|K| for every u ∈ K. In
particular, this implies that |K \N+

u | < β|K| and |N+
u \K| < β|K|. We consider two cases as in [CLLN23].

First, suppose no cluster in C∗ contains at least 2|K|
3 vertices in K. We consider the operation of removing

all vertices in K from their respective clusters in C∗, and creating a single cluster K. The saving in cost is

at least 1
2 · |K| · (

|K|
3 − β|K|) − 1

2 · |K| · β|K| = (16 − β)|K|2 > 0, as β = 0.1. This contradicts that C∗ is
optimum.

Then, consider the other case where there is some C ∈ C with |C ∩K| ≥ 2|K|
3 . Let u be any vertex in

K \C; it must exist as K is not completely inside C. Then, we consider the operation of moving u from its

cluster to C. The saving in cost is at least (23 − 2β)|K| − |K|
3 = (13 − 2β)|K| > 0 as β = 0.1, contradicting

that C∗ is optimum.

With Lemma 68, we now restrict ourselves to clusterings that do not break atoms. As a result, we can
then assume all the edges between two vertices in a same atom K ∈ K are +edges. The assumption only
decreases opt and can only make the two properties of Theorem 14 harder to satisfy. We use Ku for every
u ∈ V to denote the atom that contains u. We let ku = |Ku|.

It is convenient for us to distribute the +edges incident to an atom K ∈ K equally to the vertices in K.
For every u, v ∈ V , we define

wuv :=
1

kukv

∑

u′∈Ku,v′∈Kv

1u′v′∈E+ .

to be the probability that an edge between a random vertex in Ku and a random vertex in Kv is a +edge.
So wuv ∈ [0, 1] for every pair uv; in particular, if v ∈ Ku, we have wuv = 1. We shall call wuv the weight
of the edge uv. For any set u ∈ V, V ′ ⊆ V , we define w(u, V ′) :=

∑

v∈V ′ wuv be the total weight of edges
between u and V ′. Let wu := w(u, V ) be the total weight of all edges incident to u. In this new instance, wuv

fraction of edge uv has a + sign, and the remaining 1−wuv fraction has a − sign; wu is the total fractional
number of +edges incident to u, which can be treated as the +degree of u. This new instance is equivalent
to the original one. Till the end of this section we focus on this instance and call it the averaged instance to
distinguish it from the original one.

A.2 Defining Admissible Edges

In this section, we give a (1 + O(ε))-approximate clustering C∗1 that does not break atoms. Then we define
the set Eadm of admissible edges so that all edges between two different clusters in C∗1 are admissible. We
shall bound |Eadm| in terms of obj(K), which is at most O(1) · opt. Notice that the construction of C∗1 is not
a part of our algorithm for Theorem 14, but the definition of admissible edges is.

Lemma 69. There is a clustering C∗1 of cost at most (1 + O(ε))opt that does not break any atom K ∈ K,
and satisfies the following condition: For every u,C with Ku ( C ∈ C∗1 , we have wu,C > |C|

2 + ε · wu.

Proof. Start with C∗1 = C∗; notice that it does not break any atom. While the condition does not hold for

some C ∈ C∗1 and u ∈ C, i.e., wu,C ≤ |C|
2 + ε · wu, we update C∗1 ← C∗1 \ {C} ∪ {C \Ku,Ku}. This finishes

the construction of C∗1 ; clearly it does not break any atom.
We then consider how much cost increment the procedure incurs. Focus on any iteration of the while

loop. At the beginning of the iteration, the cost of edges incident to any vertex in Ku in the clustering C∗1
(w.r.t the averaged instance) is

|C| − w(u,C) + w(u, V \ C) = w(u, V ) + |C| − 2w(u,C) ≥ wu + |C| − 2

( |C|
2

+ ε · wu

)

= (1− 2ε)wu.

The inequalilty is by the condition of while loop.
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The cost increment incurred by separating Ku and C \Ku in the iteration is

ku ·
(

w(u,C \Ku)− (|C \Ku| − w(u,C \Ku))
)

= ku(2w(u,C \Ku)− |C \Ku|)
≤ ku ·

(

2w(u,C)− |C|
)

≤ 2εku · wu.

Again, the second inequality is by the condition of the while loop.
We can charge the cost increment using the (1− 2ε)ku ·wu cost from edges incident to u: every unit cost

is used to charge 2ε
1−2ε unit cost increment. Notice that every edge is charged at most twice. So, we have

obj(C∗1 )− obj(C) ≤ 4ε
1−2ε · obj(C∗1 ). This implies that obj(C∗1 ) ≤

(

1 +O(ε)
)

obj(C∗) = (1 +O(ε))opt.

We let C∗1 be the (1 + O(ε))-approximate clustering satisfying the properties of Lemma 69. We now
proceed to the definition of Eadm; this should be independent of C∗1 .

Lemma 70. For every cluster C ∈ C∗1 and two vertices u, v ∈ C, we have wu > εwv.

Proof. Assume v /∈ Ku since otherwise wu = wv. So C contains both Ku and Kv. Lemma 69 implies

wu ≥ wu,C > |C|
2 . On the other hand, it implies ε · wv < w(v, C) − |C|

2 ≤ |C| −
|C|
2 = |C|

2 . Therefore,
wu > εwv.

Then, we define a set E1 of edges so that uv ∈ E1 if εwv < wu < wv

ε ; so (V,E1) is undirected and
contains a self-loop (u, u) for every u ∈ V . By Lemma 70, we have

Corollary 71. Every C ∈ C∗1 forms a clique (with self-loops) in (V,E1).

Also, notice that E1 may not be a subset of E+. We use N1
u to denote the neighbor sets of u in the

graph (V,E1).

Lemma 72. For any cluster C ∈ C∗1 , any two vertices u, v ∈ C with v /∈ Ku have
∑

p∈N1
u∩N1

v
wupwvp >

ε · (wu + wv).

Proof. Notice that Ku,Kv ⊆ C. By Corollary 71, we have C ⊆ N1
u and C ⊆ N1

v . By Lemma 69, we have

w(u,C) > |C|
2 + εwu, and w(v, C) > |C|

2 + εwv. Therefore,

∑

p∈N1
u∩N1

v

wupwvp ≥
∑

p∈C

wupwvp ≥
∑

p∈C

(wup + wvp − 1) = w(u,C) + w(v, C) − |C|

>
|C|
2

+ εwu +
|C|
2

+ εwv − |C| = ε(wu + wv).

The second inequality is by that wvp, wup ∈ [0, 1].

Define a set E2 of edges so that uv ∈ E2 if and only if v ∈ Ku, or the following holds: uv ∈ E1 and
∑

p∈N1
u∩N1

v
wupwvp > ε(wu + wv). Notice that E2 ⊆ E1. Corollary 71 and Lemma 72 implies

Corollary 73. Every C ∈ C∗1 forms a clique (with self-loops) in (V,E2).

Let d2u and N2
u denote the degree and neighbor set of u in the graph (V,E2) respectively.

Lemma 74. d2u − ku ≤ O( 1
ε2 )(wu − ku).

Proof. Notice that d2u − ku is precisely the number of edges uv ∈ E2 with v /∈ Ku. Consider the graph
(V,E1) with edge weights w: Every edge vp ∈ E1 has weight wvp. We define the weight of a 2-edge path
u-p-v in (V,E1) to be wupwpv. By the definition of E2, if v /∈ Ku, then uv ∈ E2 only if the total weight of
2-edge paths of the form u-p-v is at least ε(wu + wv) > εwu.

First, consider the paths u-p-v with p /∈ Ku. The total weight of all such paths (over all p and v) is at
most (wu − ku) · wu

ε . This holds since the total weight of edges between u and V \Ku in the complete graph
is wu− ku, and any neighbor p of u in (V,E1) has wp < wu

ε by the definition of E1. Then consider the paths
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u-p-v with p ∈ Ku and v /∈ Ku. The total weight of all such paths is at most ku(wu− ku) as any p ∈ Ku has
wp = wu and kp = ku.

Therefore, the total number of verticies v /∈ Ku with uv ∈ E2 is at most

(wu − ku) · wu

ε + ku(wu − ku)

εwu
≤ 1

ε2
(wu − ku) +

1

ε
(wu − ku) = O

( 1

ε2
)

(wu − ku).

Therefore, we can define uv to be admissible, i.e., in Eadm, if uv ∈ E2 and v /∈ Ku. This finishes the
description of the preclustered instance (K, Eadm). The total number of admissible edges is

|Eadm| =
1

2

∑

u∈V

(d2u − ku) ≤ O
( 1

ε2
)

∑

u∈V

(wu − ku) = O
( 1

ε2
)

· obj(K) ≤ O
( 1

ε2
)

· opt.

The second equality is by that obj(K) = 1
2

∑

u∈V (wu − ku) and the last inequality is by Lemma 66. We can
scale ε down by a constant at the beginning, so that the cost of C∗1 is at most (1 + ε)opt. This finishes the
proof of Theorem 14.

B Detail of Lemma 60

We repeat the factor-revealing SDP for convenience.

min
∑

Ii,Ij ,Ik,Il

∑

T∈TD(Ii,Ij ,Ik,Il)

ηT · d̃(Ii, Ij , Ik, Il) s.t. (factor-revealing SDP)

Q =
∑

Ii,Ij ,Ik

Head⊺(Ii, Ij , Ik)





∑

Il,T∈TD(Ii,Ij ,Ik,Il)

ηT · C(T )



 · Tail(Ii, Ij , Ik) � 0

F =
∑

Ii,Ij ,Ik

Head⊺(Ii, Ij , Ik)





∑

Il,T∈TD(Ii,Ij ,Ik,Il)

ηT ·A



 · Tail(Ii, Ij , Ik) � 0

ηT ≥ 0 ∀T ∈ TD
∑

T∈TD

ηT = 1,

We aim to demonstrate that OPTSDP = 0 for the budget functions b+ ≡ b+1.437 and b− ≡ b−1.437, where
OPTSDP is the optimal value for factor-revealing SDP. We describe the specific interval choices and small
tricks employed to expedite the computation of factor-revealing SDP.

We opt to divide the interval [0, 1] into 37 sub-intervals with the following splitting points:

[0.0, 0.1,0.15, 0.2, 0.3, 0.32, 1/3, 0.34, 0.36, 0.38, 0.4, 0.42, 0.43, 0.44, 0.45, 0.46, 0.47, 0.48, 0.49, 0.5, 0.51,

0.52, 0.53, 0.54, 0.56, 0.58, 0.6, 0.62, 0.65, 0.7, 0.8, 0.9, 0.95, 0.96, 0.97, 0.98, 0.99, 1]

For intervals Ii, Ij , Ik where Ii ∈ [0.42, 0.60] and Ij ∈ [0.42, 0.60], we discretize the yuvw value. For each
Ii, Ij , Ik, we split the interval

Il = [max(0, (l(Ii) + l(Ij) + l(Ik)− 1)/2), r(Ik)]

into 10 sub-intervals, each with the same length. For triangles in different ranges but with the same
yuv, yuw, yvw value, they are treated as different triangles since they affect different locations in the Q
matrix. However, if two triangles have the same yuv, yuw, yvw, yuvw and are located in the same Ii, Ij , Ik, but
are located in different Il intervals, they can be treated as the same triangle since they affect Q in the same
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way. We may need to use different d̃ values to lower bound T when T is in a different range. Assume I
(τ)
l

and I
(τ+1)
l share yuvw = r(I

(τ)
l ) = l(I

(τ+1)
l ) value. To lower bound ∆(T ) − cost(T ) in different ranges, we

set d̃(T ) = min
T1∈T (Ii,Ij ,Ik,I

(τ)
l

)∪T (Ii,Ij ,Ik,I
(τ+1)
l

)
∆(T1)− cost(T1). This trick reduces the number of triangles

to consider when discretizing yuvw, considering only 12 triangles instead of 20.
We choose to create numerous subintervals, especially around 0.5, to obtain precise estimates for ++−

triangles with y values of (yuv = 0.5, yuw = 0.5, yvw = 0, yuvw = 0) and +++ triangles with y values of
(yuv = 0.5, yuw = 0.5, yvw = 0.5, yuvw = 0.5). When determining the intervals, our strategy involves setting
up a budget function and identifying instances where OPTSDP becomes negative, allowing us to refine the
interval splitting for these problematic cases.

Approximately 274,000 triangles are considered for the current interval configuration. The SDP solver
is executed on Google Cloud with N2 CPUs, taking around 44,000 seconds to produce the OPTSDP. It’s
important to note that loading all triangles into memory poses a bottleneck, requiring approximately 200
GB of memory.

Lower bound of the factor-revealing SDP One might wonder whether using more intervals and denser
splitting of yuvw’s interval could demonstrate OPTSDP ≥ 0 for a smaller budget function. Unfortunately, even
with more subintervals, a significant improvement is not achievable if we only use Q and F as constraints.

Lemma 75. For the budget functions b+ ≡ b+1.421 and b− ≡ b−1.421, there does not exist intervals I1, I2, ..., It
and intervals for yuvw such that OPTSDP ≥ 0.

Proof. Consider the ++− triangle T1 with y value (yuv = 0.5, yuw = 0.5, yvw = 0, yuvw = 0) and +++
triangles T2 with y values of (yuv = 0.5, yuw = 0.5, yvw = 0.5, yuvw = 0.5). If ηT1 = 0.75 and ηT2 = 0.25,
both Q and F are PSD. Additionally, ∆(T1)− cost(T1) ≈ −0.1819 and ∆(T2)− cost(T2) ≈ 0.54519, leading
to OPTSDP ≤ ηT1(∆(T1)− cost(T1)) + ηT2(∆(T2)− cost(T2)) < 0.

C Standard SDP Relaxation

The following is a natural SDP relaxation previously used in approximation algorithms for the maximization
problem [CGW05, Swa04] augmented with triangle inequality from the standard LP relaxation.

min obj(x) =
∑

ij∈E+

xij +
∑

ij∈E−

(1− xij) (SDP)

xij = 1− vi · vj ∀i, j ∈ V

vi · vj ≥ 0 ∀i, j ∈ V

vi · vi = 1 ∀i ∈ V

xij ≤ xik + xjk ∀i, j, k ∈ V

vi ∈ Rn ∀i ∈ V.

Lemma 76. The integrality gap of (SDP) is at least 1.5.

Proof. Let Sk be a star with k leaves and one center vertex with degree k. Here, the sdpk value is for the
basic relaxation. Then the value optk = k− 1. Consider the sdp solution where there are k unit vectors, one
for each leaf, each with a 1 in the ith position. The vector corresponding to the center vertex has length k
and each entry is 1/

√
k. Then the integrality gap is at least

optk
sdpk

=
k − 1

k −
√
k
.

Notice that for k = 2, 3, the above vector configuration leads to distances that violate the triangle inequality.
Thus the k yielding the largest integrality gap that also does not violate the triangle inequality is k = 4,
which gives a gap of 3/2.
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