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Nonlinearity induced nonreciprocity is studied in a system comprising two resonators coupled to
a one-dimensional waveguide when the linear system does not exhibit nonreciprocity. The analysis
is based on the Hamiltonian of the coupled system and includes the dissipative coupling between
the waveguide and resonators, along with the input-output relations. We consider a large number
of scenarios which can lead to nonreciprocity. We pay special attention to the case when the
linear system does not exhibit nonreciprocal behavior. In this case, we show how very significant
nonreciprocal behavior can result from Kerr nonlinearities. We find that the bistability of the
nonlinear system can aid in achieving large nonreciprocity. Additionally, We bring out nonreciprocity
in the excitation of each resonator, which can be monitored independently. Our results highlight the
profound influence of nonlinearity on nonreciprocal behavior, offering a new avenue for controlling
light propagation in integrated photonic circuits. Nonlinearity induced nonreciprocity would lead to
significant nonreciprocity in quantum fluctuations when our system is treated quantum mechanically.

I. INTRODUCTION

The nonreciprocal propagation of light is increasingly
attracting attention [1–5]. Time reversal symmetry
breaking is a necessary condition for nonreciprocity. His-
torically, this has been achieved with magneto-optical
(Faraday-rotation) crystals that require an external mag-
netic bias. However, these crystals are not compatible
with semiconductor chip integration due to their bulki-
ness and complexity. More generally, nonreciprocity of-
ten naturally arises if the medium is chiral as is typical in
magnetic systems [6]. Recent studies in chiral quantum
optics have shown that strong light confinement in cer-
tain structures can lock the local light polarization along
its direction of travel, yielding direction-dependent emis-
sion characteristics [7]. It is more challenging to produce
nonreciprocity in achiral systems. Some standard demon-
strations of nonreciprocity use phase matching conditions
in a nonlinear medium [8, 9]. Clearly, the phase matching
conditions can not be simultaneously satisfied for two op-
posite directions of propagation and this would result in
nonreciprocity. A recent demonstration of nonreciprocity
is based on the intrinsic nonlinearities of two-level super-
conducting artificial atoms [10]. Additionally, the use
of synthetic electric and magnetic fields, or a suitable
modulation of the refractive index, are attracting con-
siderable attention for producing nonreciprocity without
the need for traditional magnetic fields [11–18]. Syn-
thetic fields are preferable over magnetic fields [19, 20]
as implementation of synthetic fields is straightforward.
It should be noted that the nonreciprocal transport has
consequences in several other contexts like heat transport
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[21–24], one-way amplification [25]; quantum fluctuations
and quantum entanglement [26–30]. One would like to
have systems that are scalable and integrable leading to
the theoretical development and experimental realization
of nonreciprocal devices such as isolators, circulators, and
directional amplifiers.

Waveguide-coupled resonator systems are increasingly
capturing the interest of researchers for their pivotal role
in facilitating nonreciprocal light propagation, a critical
mechanism for unidirectional wave transport, and a foun-
dational element for future quantum-information net-
works. These systems are especially attractive because
of the waveguide-mediated dissipative coupling and the
resulting bound states in continuum which can be instru-
mental in enhancing nonreciprocal effects [10, 25, 31–33].
One way to produce nonreciprocity in such systems is to
use both dissipative and dispersive couplings among res-
onators. Unidirectional propagation was demonstrated
using the combined effect of the dispersive and dissipa-
tive couplings [6]. The question that we address in this
work is how to achieve nonreciprocity if the resonators
are far apart so that dispersive coupling is almost zero.
One way is to use Kerr nonlinearity and unidirectional
propagation of waves inside the resonators as would be
the case of resonators coupled by a waveguide [34–36].
This is different from the bidirectional propagation inside
the resonator, which always produces nonreciprocity as
demonstrated in several experiments [37, 38]. Generally,
Kerr nonlinearity has been small for most materials and
requires higher powers however with the development of
superconducting circuits, this is no longer the case as the
Kerr nonlinearity is then fairly large [39].

The manuscript is organized as follows. In Section II
we present details of our model and use semiclassical
approach and temporal coupled-mode theory (TCMT)
[40, 41] to obtain basic equations for the fields in the two
resonators dissipatively coupled to a waveguide. We also
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present input-output relations. In Section III we derive
equations for the transmission amplitudes which depend
nonlinearly on the fields in the nonlinear medium. In Sec-
tion IV, we derive conditions when nonreciprocity with-
out nonlinearity is possible and establish connection with
some of the existing results. In Section V, we conduct a
thorough analysis to understand how the system’s pa-
rameters affect nonreciprocal behavior, highlighting the
substantial nonreciprocity due to nonlinearity. In cer-
tain parameter domain the system exhibits bistability
and then we present nonreciprocity in bistable transmis-
sion. In Section VI we give nonreciprocity in the exci-
tation of the resonators. In Section VII we discuss the
popular system consisting of a magnetic system coupled
dissipatively to a resonator [6, 42, 43]. Our insights not
only enhance the comprehension of nonreciprocal behav-
ior in both linear and nonlinear systems but also facilitate
the development of novel integrated photonic circuit de-
signs, where the control of light propagation is crucial.
We finally conclude with remarks about nonreciprocity
in quantum fluctuations if the system is described by full
quantum theory.

II. MODEL AND BASIC EQUATIONS

We consider a system composed of two resonators a
and b coupled to a one-dimensional waveguide, as de-
picted in Fig. 1. The resonators have resonance frequen-
cies ωa and ωb, respectively. Resonator a can exhibit Kerr
nonlinearity. Positioned at a distance xab apart, the two
resonators are coupled directly via a complex parameter
J . In addition, they also interact through the propagat-
ing waves in the waveguide. The waveguide modes, both
incoming (ε1→, ε2←) and outgoing (ε1←, ε2→), where
1, 2 specifies the port, are coherent and operating at the
driving frequency ωd. The resonant modes are excited by
the incoming waves (ε1→, ε2←) of two ports with some
coupling constants kaℓ, kbℓ (ℓ = 1, 2). We can write the
Hamiltonian of the system (we set ℏ = 1) in the rotating

FIG. 1. Two resonators a and b, coupled through a parameter
J , are connected to a one-dimensional waveguide, facilitating
the interactions with incoming and outgoing waves. The sep-
aration xab between resonators leads to a phase shift in wave
propagation. Γa,b denotes the external damping rates, and
γa,b denotes the intrinsic damping rates.

frame of drive field as

H = ∆aa
†a+∆bb

†b+ Ja†b+ J∗b†a+ Ua†2a2

+ i(ka1ε1→a† − k∗a1aε
†
1→) + i(ka2e

iϕε2←a† − k∗a2e
−iϕaε†2←)

+ i(kb1e
iϕε1→b† − k∗b1e

−iϕbε†1→) + i(kb2ε2←b† − k∗b2bε
†
2←).
(1)

Here, ∆a = ωa − ωd, ∆b = ωb − ωd are the detuning
of the resonant frequencies ωa and ωb compared to the
driving frequency, ωd. U quantifies the strength of third-
order nonlinearity in mode a. The phase shift is ϕ =
ωdxab/vp, experienced by the drive as it travels between
the resonators, with vp denoting the phase velocity of the
drive.
In what follows, we use the semiclassical description

and adopt the TCMT. The dynamics of the system in
the rotating frame of the drive can be given as

d

dt
c = −i∆c− Γc+Kεεεin

−
(

0 iJ
iJ∗ 0

)
c− 2iU(a†a)

(
1 0
0 0

)
c,

(2)

εεεout = C
(
εεεin −D†c

)
, (3)

where c = (a, b)T , εεεin = (ε1→, ε2←)T , εεεout =

(ε1←, ε2→)T , ∆ =

(
∆a − iγa 0

0 ∆b − iγb

)
with the in-

trinsic damping rates γa, γb due to the material loss

included, C =

(
0 eiϕ

eiϕ 0

)
for the direct scattering in

the absence of resonators. The matrix Γ characterizes
the exponential decay process. The matrices K and D†

describe the coupling of the resonator to the input and
output fields, respectively. The coupling matrix K are
followed based on the structure of the Hamiltonian [Eq.
(1)],

K =

(
ka1 ka2e

iϕ

kb1e
iϕ kb2

)
. (4)

In order to connect the Γ and D matrices to the coupling
parameters kaℓ and kbℓ, we look into the energy conser-
vation constraint when γa = γb = J = U = 0. Followed

by energy conservation, d(c†c)/dt = εεε†inεεεin − εεε†outεεεout.
With an assumption of no incoming waves, εεεin = 0,
the rate of change of energy for resonators becomes
d(c†c)/dt = d(a†a + b†b)/dt = −c†(Γ + Γ†)c, and the

outgoing power is εεε†outεεεout = c†DD†c. The energy con-
servation constraint in this case leads to DD† = Γ+Γ†.
For εεεin ̸= 0 and at steady state where dc/dt = 0, we
find DK−1∆ = ∆K−1†D† and Γ†K−1†D† +DK−1Γ =
Γ + Γ†, valid for any matrix ∆ [40, 41]. Thus we can
determine that D = K, and

Γ =

(
Γa Γb→a

Γa→b Γb

)
=

(
|ka1|2+|ka2|2

2 ka2k
∗
b2e

iϕ

k∗a1kb1e
iϕ |kb1|2+|kb2|2

2

)
.

(5)
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Here, Γa, Γb are the external damping rates into the
waveguide modes, while Γa→b(b→a) is the radiative in-
teraction between the two resonators via waveguide.

III. TRANSMISSION PROPERTIES OF THE
MODEL

We now set out to show how to derive the transmis-
sion parameters for the forward propagation (ε1→ drive)
and the backward propagation (ε2← drive) from the ba-
sic equations in Section II. In the long-time limit, the
operators in the Hamiltonian [Eq. (1)] reduce to their
expectation values. For conciseness, we omit the nota-
tion ⟨.⟩, and the terms a, b and εℓ⇄ now denote the com-
plex amplitudes of the resonant and waveguide modes, re-
spectively. When achieving the steady state with ȧ = 0,
ḃ = 0, Eq. (2) results in the nonlinear response of the
system to the counter-propagating drives,

D(x)a = ε1→[−ka1(i∆b + γb + Γb) + kb1e
iϕ(Γb→a + iJ)]

+ ε2←[−ka2e
iϕ(i∆b + γb + Γb) + kb2(Γb→a + iJ)],

(6)

D(x)b

= ε1→[ka1(Γa→b + iJ∗)− kb1e
iϕ(i∆a + γa + Γa + 2ix)]

+ ε2←[ka2e
iϕ(Γa→b + iJ∗)− kb2(i∆a + γa + Γa + 2ix)],

(7)
where

D(x) = (Γa→b + iJ∗)(Γb→a + iJ)

− (i∆a + γa + Γa + 2ix)(i∆b + γb + Γb),
(8)

and x = U |a|2. The value of x is obtained by solving
the cubic equation that results from taking the square
of the norm of both sides of Eq. (6). This may yield
multiple solutions for x, which will be discussed in detail
in Section V.

The transmission parameters (t→ and t←) for both
forward and backward driving direction (ε1→ and ε2←
drive, respectively) can be determined analytically using
the steady-state solutions Eq. (6), (7), and the input-
output relation Eq. (3). When we set the backward
drive ε2← = 0, x = x→ is determined, the transmission
parameter for the forward (rightward) propagation from
port 1 is

t→ =
ε2→
ε1→

=
eiϕ

D(x→)
[iJ∗(Γb→a − Γ∗a→b + iJ)

− (i∆a + γa −
|ka1|2 − |ka2|2

2
+ 2ix→)

× (i∆b + γb −
|kb1|2 − |kb2|2

2
)],

(9)

and when we set the forward driving ε1→ = 0, x = x← is
determined, the transmission parameter for the backward

(leftward) propagation from port 2 is

t← =
ε1←
ε2←

=
eiϕ

D(x←)
[iJ(Γa→b − Γ∗b→a + iJ∗)

− (i∆a + γa +
|ka1|2 − |ka2|2

2
+ 2ix←)

× (i∆b + γb +
|kb1|2 − |kb2|2

2
)].

(10)

The parameter x in the transmission parameter contains
the effect of nonlinearity.
When considering just one nonlinear resonator, a, with

ϕ = J = kb1 = kb2 = 0, the transmission parameters for
both propagation directions are reduced to

t→ =
i(∆a + 2x→) + γa − (|ka1|2 − |ka2|2)/2

i(∆a + 2x→) + γa + Γa
, (11)

t← =
i(∆a + 2x←) + γa + (|ka1|2 − |ka2|2)/2

i(∆a + 2x←) + γa + Γa
. (12)

The nonlinear response of the resonator a to the input
fields is

a =
ka1ε1→ + ka2ε2←

i(∆a + 2x) + γa + Γa
. (13)

When |ka1| = |ka2|, as required by time reversal symme-
try [40, 41], the system exhibits reciprocal transmission
even if U ̸= 0, as indicated in Eq. (13) where x will be
the same for counter-propagating drives ε1→ and ε2←. In
other models [35], a different direct scattering matrix C
results in different constraints when time reversal sym-
metry is imposed. This leads to nonreciprocal behavior
in systems with a single nonlinear resonator.

IV. IS NONRECIPROCITY WITHOUT
NONLINEARITY POSSIBLE?

We first investigate the system without any nonlinear
effects, setting U = 0, thus x = U |a|2 = 0. The presence
of the second terms within parentheses in Eq. (9) and
Eq. (10) indicates that even in the absence of a direct
coupling J between the resonators a and b, nonreciprocity
of the transmission can manifest if |ka1| ≠ |ka2| or |kb1| ≠
|kb2|. Conversely, If |ka1| = |ka2| and |kb1| = |kb2|, then
the nonreciprocity condition hinges on the condition that
the coupling constant J ̸= 0.
In the system with |ka1| = |ka2| and |kb1| = |kb2|, from

Eq. (9) and Eq. (10), we can find that the condition for
nonreciprocal transmission (t→ ̸= t←) is

Re[J(Γa→b − Γ∗b→a)] ̸= 0. (14)

For this system equipped with a real coupling constant
J , the condition in Eq. (14) is reduced to

Re(Γa→b) ̸= Re(Γb→a), (15)
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which is determined by the phases of the coupling con-
stants kaℓ and kbℓ, along with the phase shift ϕ accu-
mulated between the two resonators. When kaℓ and kbℓ
are real, if cosϕ = 0, then there is no nonreciprocity;
if cosϕ ̸= 0, then the nonreciprocity condition given by
Eq. (15) simplifies to the requirement that ka1kb1 ̸=
ka2kb2. Since |ka1| = |ka2| and |kb1| = |kb2|, achiev-
ing nonreciprocity requires ka1 = −ka2 and kb1 = kb2,
or kb1 = −kb2 and ka1 = ka2 with ϕ ̸= (2N + 1)π/2
(N ∈ Z). These are exactly the conditions under which
experiments in [6] are done.

In order to see how to achieve ka1 = −ka2 or kb1 =
−kb2, let us conside one of the resonators to be mag-
netic. For a magnetic resonator, the coupling strength
can flip its sign due to the reversal of the magnetic field’s
direction with counter-propagating directions. Most sim-
ply, a monochromatic wave is governed by B = k×E/ω,
where k denotes the wave vector and ω denotes the wave
frequency. The orientation of B depends upon the direc-
tion of k. Accordingly, the potential energy of a magnetic
dipole m in a magnetic field B, given by E = −m · B,
determines the sign of the coupling strength between the
magnetic resonator and the incoming waves. Thus, when
one of the resonators is magnetic, and the other is op-
tical, i.e., ka1 = −ka2 and kb1 = kb2, or ka1 = ka2 and
kb1 = −kb2, with ϕ ̸= (2N + 1)π/2, the nonreciprocity
condition, as stated in Eq. (15), is achieved [6].

In the system composed of two optical resonators
where the coupling strengths are equal for each res-
onator (ka1 = ka2 and kb1 = kb2), utilizing the phase
of the complex coupling strength J can aid in achiev-
ing nonreciprocal transmission. When J is represented
as J = |J |eiθ, the nonreciprocal transmission condition
can be achieved even when Eq. (15) is violated, i.e.,
Re(Γa→b) = Re(Γb→a). Specifically, setting ka1 = ka2 =
ka, kb1 = kb2 = kb, Eq. (9) and Eq. (10) can be reduced
to

t→ =
eiϕ

D(0)
[−2|J |kakbe−iθ sinϕ−|J |2−(i∆a+γa)(i∆b+γb)],

(16)

t← =
eiϕ

D(0)
[−2|J |kakbeiθ sinϕ−|J |2−(i∆a+γa)(i∆b+γb)],

(17)
which indicates that nonreciprocal transmission (t→ ̸=
t←) can occur when sin θ sinϕ ̸= 0, that is, θ ̸= Nπ,
ϕ ̸= Nπ. A recent paper discusses nonreciprocity from
complex J within the context of magnetic films using the
coherent Dzyaloshinskii-Moriya (DM) interaction [25].

V. NONLINEARITY INDUCED
NONRECIPROCITY IF LINEARITY DOES NOT

ALLOW NONRECIPROCITY

As discussed in Section IV, if the direct coupling J
is real and all coupling constants are identical, then the
linear medium fails to achieve nonreciprocity. Here, we

show how nonlinearity can produce significant nonrecip-
rocal behavior. We note that the nonlinearity induced
nonreciprocity has been studied before. Examples in-
clude intrinsic nonlinearities of two level systems [10, 34];
nonlinearities of Brillouin media [8, 9]; nonlinear PT sym-
metric media [44–46]; systems with a different scattering
matrix subjected to conditions imposed by time rever-
sal symmetry [35, 36]. We now consider a Kerr nonlinear
system where there is no coherent coupling J between the
two resonators, i.e., J = 0, and the coupling constants
kaℓ, kbℓ are real and identical for counter-propagating di-
rections, i.e., ka1 = ka2, kb1 = kb2. However, the mode
denoted by a is now characterized by third-order nonlin-
earity, i.e., U ̸= 0. For simplification, we also assume
that ∆a = ∆b = ∆, kaℓ = kbℓ =

√
Γ, where Γ denotes

the total radiative decay rate of an individual resonator
into the waveguide port. At the steady state with ȧ = 0,
ḃ = 0, we have two equations for a and b followed from
Eq. (2) and Eq. (3) (a, b and εℓ⇄ denote the complex
amplitudes as discussed in Section III),

2iŨ |a|2a+ (i∆̃ + γ̃a + 1)a+ eiϕb = ε̃1→ + eiϕε̃2←,

(i∆̃ + γ̃b + 1)b+ eiϕa = eiϕε̃1→ + ε̃2←,
(18)

along with two equations for the input-output relation,

ε̃2→ = eiϕε̃1→ − eiϕa− b,

ε̃1← = eiϕε̃2← − a− eiϕb,
(19)

all of which are normalized with the scaling factor Γ,
leading to the definitions: Ũ = U/Γ, ∆̃ = ∆/Γ, γ̃a =

γa/Γ, γ̃b = γb/Γ, ε̃ℓ⇄ = εℓ⇄/
√
Γ. From Eq. (18), the

nonlinear response of resonator a is obtained,

4x̃3 + 4(Re δ̃)x̃2 + |δ̃|2x̃

= ±|(i∆̃ + γ̃b + 1− e2iϕ)ε̄1→ + (i∆̃ + γ̃b)e
iϕε̄2←|2

∆̃2 + (γ̃b + 1)2
,

(20)

where we introduce x̃ = Ũ |a|2, iδ̃ = i∆̃+γ̃a+1− e2iϕ

i∆̃+γ̃b+1
,

ε̄1→ =
√
|Ũ |ε̃1→, ε̄2← =

√
|Ũ |ε̃2←, with a plus sign in

FIG. 2. The |ε̄|2–x̃ curves, (a) for ε1→ drive, (b) for ε2←
drive. The turning points x̃± are as denoted in the figure.
The black lines are for the unstable states. Γ/2π = 10 MHz,

γ̃a = γ̃b = 0.1, ∆̃ = −0.5, ϕ = 16π/15.
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right hand side for Ũ > 0, and a minus sign for Ũ < 0.
In order to achieve nonreciprocity, in Eq. (20), the coef-
ficients before the input terms ε̄1→ and ε̄2← should dif-
fer, to ensure distinct nonlinear responses to the counter-
propagating drives. Nonreciprocity for the Kerr nonlin-
ear system then hinges on the condition e2iϕ ̸= 1, imply-
ing

ϕ ̸= Nπ, (N ∈ Z). (21)

Note that the cubic equation [Eq. (20)] can have three
real roots under the conditions

(Re δ̃)2 > 3(Im δ̃)2, ŨRe δ̃ < 0, (22)

leading to a bistability response [47]. Now we assmue

Ũ > 0. We plot x̃ against the scaled photon flux at the
input |ε̄|2 with experimentally feasible parameters which
satisfies Eq. (22), illustrated in Fig. 2. The |ε̄|2–x̃ curve
features two turning points subject to d(|ε̄|2)/dx̃ = 0.
With specific region of the amplitude of the input, there
exist three real solutions for x̃, with two representing sta-
ble states and one an unstable state. Fulfilling the non-
reciprocity criterion in Eq. (21) results in two distinct
bistability regions for counter-propagating drives, as il-
lustrated in Fig. 2(a) and Fig. 2(b). As drives increase
nearing the turning points x̃−, sharp jumps in x̃ from one
stable state to another occur.

The transmission parameter can be obtained by substi-
tuting the expressions for a and b, derived from Eq. (18),
into the input-output relation given by Eq. (19). Once
the value of x̃ is determined from Eq. (20) for incoming
drives (ε1→, ε2←) from each direction, we can calculate
out the value of a from Eq. (18),

a =
(i∆̃ + γ̃b + 1− e2iϕ)ε̃1→ + (i∆̃ + γ̃b)e

iϕε̃2←

(i∆̃ + γ̃a + 1 + 2ix̃)(i∆̃ + γ̃b + 1)− e2iϕ
, (23)

which exhibits distinct behaviours based on the propa-
gation direction if Eq. (21) is satisfied. When we set
the backward driving ε2← = 0, the steady-state solution

FIG. 3. Transmission spectrum as a function of the scaled
photon flux at the input |ε̄|2. The blue lines are for ε1→
drive, and the yellow lines are for ε2← drive. γ̃a = γ̃b = 0.1.
(a) ∆̃ = 0.5, ϕ = π/2. (b) ∆̃ = −0.5, ϕ = 16π/15, consistent
with Fig. 2. Sudden jumps in |t| at x̃− are found as drives
increase.

x̃ = x̃→ is determined from Eq. (20), the transmission
parameter for the forward (rightward) direction is

t→ =
ε2→
ε1→

=
eiϕ(i∆̃ + γ̃a + 2ix̃→)(i∆̃ + γ̃b)

(i∆̃ + γ̃a + 1 + 2ix̃→)(i∆̃ + γ̃b + 1)− e2iϕ
.

(24)
Similarly, when we set the forward driving ε1→ = 0, the
steady-state solution x̃ = x̃← is determined from Eq.
(20), the transmission parameter for the backward (left-
ward) direction is

t← =
ε1←
ε2←

=
eiϕ(i∆̃ + γa + 2ix̃←)(i∆̃ + γ̃b)

(i∆̃ + γ̃a + 1 + 2ix̃←)(i∆̃ + γ̃b + 1)− e2iϕ
.

(25)
Both transmission parameters share the same depen-

dence on the parameter x̃, which can be different be-
tween counter-propagating drives. When the phase shift
ϕ = Nπ (violating Eq. (21) and leading to x̃→ = x̃←),
the system exhibits reciprocal behavior, i.e., t→ = t←.
Nonetheless, with ϕ ̸= Nπ, resulting in x̃→ ̸= x̃←, it
leads to t→ ̸= t←, indicating nonreciprocal transmission.
The drive power P is related to the coherent photon flux
at the input, through P = ℏωd|ε|2, for the respective di-
rections. Eq. (20) shows that the value of x̃ depends on
the scaled input, i.e., |ϵ̄|2 = UP/ℏωdΓ

2. For a certain
value of x̃, the input power P will be lower if U becomes
higher.
The nonreciprocal behavior of the system is illustrated

in Fig. 3, where the transmission amplitude |t| is plot-
ted against the scaled photon flux at the input |ϵ̄|2 for
counter-propagating inputs. In Fig. 3(a), the phase
ϕ = π/2 satisfies the nonreciprocity condition in Eq.
(21), but does not fulfill the bistability condition in Eq.
(22). As a comparison, in Fig. 3(b) with the same param-
eters as Fig. 2, the phase ϕ = 16π/15, slightly detuned
from π, satisfies both the nonreciprocity and bistabil-
ity conditions. As counter-propagating drives increases
nearing x̃−, corresponding sudden jumps in the trans-
mission amplitude |t| within distinct regions found in
Fig. 3(b) due to bistability aids in achieving large non-
reciprocity. To measure the nonreciprocity, we define the
nonreciprocity parameter of the nonreciprocal system as

FIG. 4. Nonreciprocity parameter I = (|t→| − |t←|)/(|t→| +
|t←|) as a function of the phase shift ϕ. The parameters are

the same as Fig. 3 (Ũ > 0). (a) |ε̄|2 = 2, ∆̃ = 0.5. (b)

|ε̄|2 = 0.9, ∆̃ = −0.5.
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I = (|t→| − |t←|)/(|t→| + |t←|). This is graphically rep-
resented as a function of the phase shift ϕ, with a period
of π, as depicted in Fig. 4. Additionally, we plot the
nonreciprocity parameter when U < 0 as shown in Fig.
5.

In this section, both the resonators are considered op-
tical. When the resonator a is switched to magnetic, i.e.,
ka1 = −ka2 and kb1 = kb2, it results in merely a phase
transformation, ϕ → ϕ+π/2, as discussed in Section VII.

VI. NONRECIPROCITY IN EXCITATION OF
EACH RESONATOR

Driving the two resonators coherently from either the
left-side or the right-side give rise to the excitation ener-
gies in the resonators. For magnetic resonators, the re-
sulting excited magnetization can be electrically detected
through the spin currents via the inverse spin Hall effect
(ISHE) [48]. For the linear system (U = 0), when driving
from the left-side, i.e., ε1→ ̸= 0 and ε2← = 0, the energy
ratio of the resonant mode a relative to the incoming
power is found from Eq. (6) and Eq. (7),∣∣∣∣ a→ε1→

∣∣∣∣2
=

1

|D(0)|2
(|ka1|2|i∆b + γb + Γb|2 + |kb1|2|Γb→a + iJ |2)

− 1

|D(0)|2
[Γa→b(−i∆b + γb + Γb)(Γb→a + iJ) + c. c.].

(26)
When driving from the right-side, i.e., ε2← ̸= 0 and
ε1→ = 0, the energy ratio of the resonant mode a rel-
ative to the incoming power is similarly found as∣∣∣∣ a←ε2←

∣∣∣∣2
=

1

|D(0)|2
(|ka2|2|i∆b + γb + Γb|2 + |kb2|2|Γb→a + iJ |2)

− 1

|D(0)|2
[Γ∗b→a(−i∆b + γb + Γb)(Γb→a + iJ) + c. c.].

(27)

FIG. 5. Nonreciprocity parameter I as a function of the phase
shift ϕ. Now we consider the case when Ũ < 0. (a) |ε̄|2 = 2,

∆̃ = −0.5. (b) |ε̄|2 = 0.9, ∆̃ = 0.5.

Nonreciprocal excitations can be achieved by ensuring
asymmetric external emission into counter-propagating
waveguide modes, characterized by differing coupling
strengths, i.e., |ka1| ̸= |ka2| or |kb1| ̸= |kb2|, similar to
nonreciprocal transmission as discussed in Section IV.

For a system where |ka1| = |ka2| and |kb1| = |kb2|, the
necessary conditions to achieve nonreciprocal excitations
(|a→/ε1→|2 ̸= |a←/ε2←|2) are

Γa→b − Γ∗b→a ̸= 0, Γb→a + iJ ̸= 0. (28)

When kaℓ and kbℓ are real, the first condition in Eq. (28)
is reduced to ϕ ̸= Nπ. This condition demonstrates that
the reciprocity of excitations can be broken through the
manipulation of the phase shift accumulated between two
resonators.

For the Kerr nonlinear system with ∆a = ∆b = ∆,
kaℓ = kbℓ =

√
Γ, and J = 0, the necessary condition

for nonreciprocal exitations is ϕ ̸= Nπ. This condition,
serving as the basis for nonreciprocal transmission as dis-
cussed in Section V, can similarly be extracted from Eq.
(20). We plot the ratio (|a/ε̃1→|2, |a/ε̃2←|2) for counter-
propagating drives as a function of the scaled photon flux
as shown in Fig. 6.

Our Kerr nonlinear system can be configured with the
resonator a as either optical type or magnetic type for ex-
perimental realization. For an optical resonator, anhar-
monicity originates from nonlinear response of the elec-
trical polarization. Recent experimental advancements
have showed cavities with significant Kerr nonlinearity,
measured by a Kerr coefficient of U/2π = −12.2 ± 0.1
kHz/Photon [39]. For a magnetic resonator, anharmonic-
ity originates from the nonlinear magnetization. Recent
research into nonlinearities within ferrimagnetic spheres
indicate that ferromagnetic materials, such as Yttrium
Iron Garnet (YIG), can exhibit robust coupling with mi-
crowave fields against temperature. With the growing
research interest in YIG, it stands out as an active Kerr
medium for exploring nonlinearity induced nonreciproc-
ity [49, 50].

FIG. 6. The ratio of the excitation energy in nonlinear res-
onator a (U > 0) relative to the input photon flux for counter-

propagating drives as a function of drive power. (a) ∆̃ = 0.5,

ϕ = π/2. (b) ∆̃ = −0.5, ϕ = 16π/15.
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VII. NONRECIPROCITY INDUCED BY
NONLINEARITY WITH A MAGNETIC

RESONATOR

In this Section, We investigate the transmission prop-
erty of the Kerr nonlinear system, focusing on a case dif-
ferent from the one presented in Section V. Here, the res-
onator a is magnetic with third-order nonlinearity, while
the resonator b is optical, characterized by different con-
ditions ka1 = −ka2 and kb1 = kb2. Similarly, there
is no coherent coupling J between the two resonators
(J = 0), the coupling constants kaℓ, kbℓ are considered
real. For convenience, we also assume ∆a = ∆b = ∆,
ka1 = −ka2 =

√
Γ, kbℓ =

√
Γ. At the steady state with

ȧ = 0, ḃ = 0,

2iŨ |a|2a+ (i∆̃ + γ̃a + 1)a− eiϕb = ε̃1→ − eiϕε̃2←,

(i∆̃ + γ̃b + 1)b+ eiϕa = eiϕε̃1→ + ε̃2←,
(29)

along with two equations for the input-output relation,

ε̃2→ = eiϕε̃1→ − eiϕa− b,

ε̃1← = eiϕε̃2← + a− eiϕb,
(30)

where Ũ , ∆̃, γ̃a, γ̃b, ε̃ℓ⇄ are as defined in Section V.
From Eq. (29), the nonlinear response of resonator a is
obtained,

4x̃3 + 4(Re δ̃′)x̃2 + |δ̃′|2x̃

=
|(i∆̃ + γ̃b + 1 + e2iϕ)ε̄1→ − (i∆̃ + γ̃b)e

iϕε̄2←|2

∆̃2 + (γ̃b + 1)2
,

(31)
where we define x̃, ε̄1→, ε̄2← as outlined in Section V,

and introduce iδ̃′ = i∆̃ + γ̃a + 1 + e2iϕ

i∆̃+γ̃b+1
, with the as-

sumption that Ũ > 0. When we set the backward driving
ε2← = 0, the steady-state solution x̃ = x̃→ is determined
from Eq. (31), which then yields the transmission pa-
rameter for the forward (rightward) propagation,

t→ =
ε2→
ε1→

=
eiϕ(i∆̃ + γ̃a + 2ix̃→)(i∆̃ + γ̃b)

(i∆̃ + γ̃a + 1 + 2ix̃→)(i∆̃ + γ̃b + 1) + e2iϕ
.

(32)
Similarly, when we set the forward driving ε1→ = 0, the
steady-state solution x̃ = x̃← is determined from Eq.
(31), which then yields the transmission parameter for
the backward (leftward) propagation,

t← =
ε1←
ε2←

=
eiϕ(i∆̃ + γa + 2ix̃←)(i∆̃ + γ̃b)

(i∆̃ + γ̃a + 1 + 2ix̃←)(i∆̃ + γ̃b + 1) + e2iϕ
.

(33)
Comparing the nonlinear response and the transmis-

sion parameters with those discussed in Section V, the

only crucial alteration is the transformation e2iϕ →
−e2iϕ, equivalent to a phase shift, ϕ → ϕ+ π/2. Conse-
quently, in comparison to the case detailed in Section V,
switching the resonator a from an optical to a magnetic
type results in a transformation in phase, thus in this case
with no coherent coupling (J = 0), the system shows no
nonreciprocity in the absence of nonlinearity but would
show significant nonreciprocity if the phase is not equal
to an odd multiple of π/2. With this transformation, the
parameters in Fig. 3(a) should be adjusted to ϕ = π,
and for Fig. 3(b), the parameters should be adjusted to
ϕ = 47π/30 to achieve corresponding results.
For the linear system (U = 0) equipped with a complex

coupling constant J = |J |eiθ, we consider the case when
the coupling strengths are all real, the nonreciprocal
transmission (t→ ̸= t←) can occur when cosϕ cos θ ̸= 0,
that is, θ ̸= (2N + 1)π/2, ϕ ̸= (2N + 1)π/2, which can
be derived from Eq. (9) and Eq. (10).

VIII. CONCLUSIONS

In our exploration of Kerr nonlinearity induced non-
reciprocity in a system with two waveguide-coupled res-
onators, we unveil the potential of Kerr nonlinearity to
manifest nonreciprocal behavior, particularly when linear
systems fail to exhibit nonreciprocal behavior. We derive
the conditions inducing nonreciprocity and study its de-
pendency on various system parameters. Our analysis re-
veals that nonreciprocal transmission is not only possible
but can be significantly enhanced through the strategic
exploitation of nonlinearity, thus in the case with no co-
herent coupling J = 0, the system shows no nonreciproc-
ity in the absence of nonlinearity but can show significant
nonreciprocity with an appropriately chosen phase ϕ.
Finally, it may be noted that we can discuss non-

reciprocity in a full quantum framework by converting
the classical equation Eq. (2) into nonlinear quantum
Langevin equations for the mode operators. The very
commonly used linearization treatment of quantum fluc-
tuations [51] gives quantum fluctuations in terms of the
values of the mean fields which are determined by Eq.
(2). Thus, the existence of nonreciprocal behavior of
mean field equations would imply nonreciprocity in quan-
tum fluctuations as well. We hope to report on these
aspects in the future.
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