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The Floquet exponents of periodic field lines are studied through the variations of the
magnetic action on the magnetic axis, which is assumed to be elliptical. The near-axis
formalism developed by Mercier, Solov’ev and Shafranov is combined with a Lagrangian
approach. The on-axis Floquet exponent is shown to coincide with the on-axis rotational
transform, and this is a coordinate-independent result. A discrete solution suitable for
numerical implementation is introduced, which gives the Floquet exponents as solutions
to an eigenvalue problem. This discrete formalism expresses the exponents as the eigen-
values of a 6× 6 matrix.
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1. The need for and the origin of the rotational transform
Magnetostatic equilibria are characterized by the following equations,

∇p = J ×B, ∇×B = J , ∇ ·B = 0, (1.1)

where B is the magnetic field, J is the current density, and p is the scalar pressure.
These equations imply that magnetic field lines lie on surfaces of constant p, and that
the constant pressure surfaces are toroidal (Kruskal & Kulsrud 1958). The phase portrait
of B, where the magnetic field lines are treated like integral curves of a Hamiltonian
dynamical system, is characterized by the topology of the level sets of p. A (regular)
flux surface is a closed surface along which the pressure is constant and ∇p ̸= 0. An
equilibrium field satisfying Eq.(1.1) such that ∇p ̸= 0 almost-everywhere is said to be
integrable (Burby et al. 2021). A magnetic field line action can be defined (Cary &
Littlejohn 1983), which serves as a starting point for the Lagrangian integration carried
out in this paper.

For magnetic confinement of plasmas in toroidal geometries, that the magnetic field
lines rotate poloidally (the short way) as they rotate toroidally (the long way) around the
torus is essential for canceling charged particle drifts, which would otherwise lead to loss
(Spitzer 1958). The number of poloidal rotations that a field line achieves per toroidal
period is called the rotational transform, ι (Spitzer 1958).

The Poincaré first return map is defined as follows: given a toroidal magnetic configu-
ration in the domain Ω, and any poloidal section Σ of Ω, the first return map is defined
by the intersection of field lines and Σ after one toroidal period. By Brouwer’s fixed-point
theorem (Brouwer 1910), there must be at least one magnetic axis, defined as a closed
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field line such that its intersection with any poloidal plane Σ is a fixed point of this map
(Mercier et al. 1974). In the axisymmetric case, such an axis is a circle located at the
center of a family of nested flux surfaces.

Magnetic fields with continuously nested flux surfaces, equivalently invariant surfaces
of Hamiltonian dynamical flows, are only guaranteed if there is a continuous symmetry
(Noether 1918). Nonetheless, many surfaces with sufficiently irrational rotational trans-
form will persist under small symmetry-destroying perturbations (see Kolmogorov 1954;
Arnol’d 1963; Moser 1962) and also the texts and reviews (Moser 1973; Arnold 1978;
Meiss 1992; Lichtenberg & Lieberman 1992).

In this work, only the following needs to be assumed: there is at least one surface
that is invariant under the Poincaré map, and everywhere inside this surface the toroidal
component of the field is nonzero.

Except at fixed points, iterating the Poincaré map once will rotate points around
the magnetic axis, as measured by mean of an arbitrary angle, θ. Following a field line
by successive iterations of the map gives a sequence of angles θn, measured between
iterations n and n + 1. This sequence of angular displacements enables to define the
rotational transform,

ι := lim
N↑∞

1

2πN

N∑
n

θn. (1.2)

This is purely geometric, in the sense that it describes the linking of a field line around a
reference axis. Denoting the toroidal and poloidal magnetic fluxes, ψ and χ respectively,
then, as shown by Mercier et al. (1974), ι can also be expressed as the ratio of differential
fluxes,

ι =
dχ

dψ
. (1.3)

Mercier (see Mercier 1964; Helander 2014) expressed the rotational transform as an
integral along the axis

ι = N +
1

2π

∮
dℓ

cosh η

( J0
2B0

+ δ′ − τ
)
, (1.4)

with ℓ denoting the arc length. The on-axis current density and magnetic field are denoted
by J0 andB0 respectively, and the torsion of the axis by τ . The eccentricity of flux surfaces
is described by η, and δ is a parameter describing their rotation around the axis, with
δ′ := dδ/dℓ. N is an integer coming from the phase of the rotation term δ (see Pfefferlé
et al. 2018). (Note: Spitzer (1958) had identified independently that a way to generate
some rotational transform is to give torsion to an axis.)

This expression provides invaluable insight, showing how rotational transform can be
produced by plasma currents, as is used by tokamaks, or by geometrical shaping, as is
used by stellarators. Mercier’s expression was derived starting from the fluxes definition
Eq.(1.3). The fluxes were expanded in a power series of the distance to the axis by
constructing custom polar coordinates, so-called Mercier coordinates, which are described
in Appendix C.

In this paper, we present a derivation of Mercier’s formula using Lagrangian integra-
tion. This approach expresses the rotational transform as a Floquet exponent of the
field lines. In Section 2, the magnetic field line action is defined. Stationary curves of
the action are shown to be field lines, enabling to identify a magnetic axis. Assumption
is made in this paper that the axis is elliptical, but the formalism can be applied to
the hyperbolic case. In Section 3, Mercier’s formula, Eq.(1.4) is derived from the second
variation of the action. The result is obtained through a near-axis expansion of the null
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eigenspace of the second variation operator. The periodicity enables the use of a Floquet
description of the solutions. This same result is derived through the theory of the Hill’s
infinite determinant, analogous to Schrödinger’s equation in a periodic potential. In both
cases, the rotational transform is shown to be a Floquet exponent of the null eigenspace
of the second variation operator. In Section 4, a discrete formalism is introduced so that
the Floquet exponents can be solved for numerically.

2. Description of the magnetic field line action
Let us start by defining the magnetic field line action, as introduced by Cary &

Littlejohn (1983). This is defined as a line integral depending on the integration contour.
In this paper, those will be assumed to be closed curves, embedded in a toroidal domainΩ,
in which there exists a magnetic field with non-vanishing toroidal component, and at least
one smooth magnetic surface enclosing the curve. Let us consider a closed, differentiable
curve C ⊂ R3 with total length L, closing after one toroidal transit. The latter assumption
that the curve closes after one toroidal period is a necessary condition for a magnetic
axis. C is parameterized by the C1, L−periodic vector-valued function

x : [0, L] → R3

ℓ 7→ x(ℓ) ∈ C,
(2.1)

ℓ being the arc length and we note x′ := dx/dℓ. The action is defined as the circulation
along C of the magnetic vector potential A, with B = ∇×A in Ω,

S :=

∮
C
dℓ A · x′. (2.2)

Properties of the magnetic field are accessible through calculus of variations, performed
on the action. The variations are performed with respect to changes in the geometry of
the curve. The first variation with respect to a variation δx is

δS[δx] =
∮
C
dℓ x′ ×B · δx, (2.3)

which shows that stationary curves are tangential to the magnetic field and hence field
lines. We used that δA[δx] = δx ·∇A. From Eq.(2.3), a magnetic axis can be identified.
We will focus in particular on elliptical axes, which can be shown to be local minima of
the action, but one can apply the following formalism to hyperbolic axes as well. Let us
denote an elliptical axis by Ca. Additional properties of the field appear at higher orders
of variations of S. For the rotational transform in particular, the second order variation
δ2S is of interest.

3. Verification of Mercier’s formula for the Floquet exponent
3.1. The second variation as an operator

In order to express the on-axis rotational transform, the second order variation of the
action applied to the axis needs to be derived. Assume that an elliptical axis Ca has
been found as a stationary curve of the action. The formalism is identical for hyperbolic
axes, but in this paper, we focus on the elliptic case. The second variation of the action
performed from the axis Ca is

δ2S[δx] =
∮
Ca

dℓ δ(x′ ×B · δx) =
∮
Ca

dℓ δx · (δx′ ×B + x′ × δB), (3.1)
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where f ′ := df/dℓ for any f . Using δB = δx · ∇B and the Einstein’s summation
convention, we write the second variation as an operator,

δ2S =

∮
Ca

dℓ δxi δ2S

δxiδxj
δxj , (3.2)

where
δ2S

δxiδxj
= ϵijkB

k d

dℓ
+ ϵimkx

′m∂jB
k, (3.3)

and i, j, k,m ∈ {1, 2, 3}, which in matrix form reads

M :=
δ2S
δxδx

= − (I ×B)
d

dℓ
+ x′ × (∇B)T. (3.4)

The identity tensor is denoted by I . Note that the covariant tensor M can be easily
symmetrized (see Hudson & Dewar 2009). However, the direction in which the derivative
d/dℓ is taken has to be chosen carefully. We shall continue with the non-symmetric form
Eq.(3.4).

We will show that the null eigenspace of M is of particular interest. Indeed, by
periodicity of the field lines considered to compute the action, the eigenspaces of the
operator M are related to geometric properties of the neighboring field lines, including
the rotational transform. Let v be a null eigenfunction of M such that

Mv = 0. (3.5)

For v to be nontrivial, Eq.(3.5) rewrites

det (M) = 0. (3.6)

We will demonstrate that the condition Eq.(3.5) is satisfied by solutions v, such that
their Floquet exponent is the on-axis rotational transform, and Eq.(3.6) will serve in the
discrete formalism introduced in Section 4. To solve Eq.(3.5), the near-axis formalism
developed by Mercier, Solov’ev and Shafranov (Solov’ev & Shafranov 1970; Mercier et al.
1974) will be used. Near-axis formalism in the inverse coordinate approach, where the
flux surface ψ is used as a coordinate, has proved to be very successful in understanding
quasisymmetry Garren & Boozer (1991); Landreman & Sengupta (2018, 2019); Rodríguez
et al. (2023). However, for this work, the near-axis formalism in direct or Mercier-
Solov’ev-Shafranov coordinates (Jorge et al. 2020b,a; Sengupta et al. 2024) is more
relevant.

3.2. Derivation of the Floquet exponent from the second variation
The operator is expanded in the Solov’ev-Shafranov’s coordinates, introduced in Ap-

pendix C.2. The latter set of coordinates is closely related to the Mercier coordinates,
presented in Appendix C.1.

In what follows, it will be assumed that the magnetic axis is a closed curve Ca ⊂ R3

parameterized by the vector field r0, with the arc length ℓ as parameter, and a total
length L. The basis of expansion is taken to be {e1, e2, e3}, whose expressions in terms
of t, N and B are given in Appendix C.2, but the results will always be expressed in
terms of the Solov’ev-Shafranov’s vectors {t,N ,B}. Additionally, the following notation
is adopted: f ′ = df/dℓ for any f .

3.2.1. Magnetic field expansion near an elliptic magnetic axis
From Eq.(3.4), the magnetic field B needs to be described in the vicinity of the axis

r0 for M to be expanded in the near-axis formalism. The expansion of B in Solov’ev-
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Shafranov’s coordinates is carried in the limit x, y ≪ 1, or in other words, is limited to
linear terms only. The magnetic field can be written in contravariant form as√

|g|B =
√
|g|B1e1 +

√
|g|B2e2 +

√
|g|B3e3, (3.7)

with√
|g|B1 = a1x+ a2y,

√
|g|B2 = b1x+ b2y,

√
|g|B3 = B0 + c1x+ c2y, (3.8)

where a1, a2, b1, b2, c1, c2 are periodic functions of ℓ, B0 the 0th order magnitude of B
and

√
|g| = h as defined in Appendix (C.2). Therefore, in the limit x, y ≪ 1, h = 1 and

the magnetic field reads

B = (B0 + c1x+ c2y) t+ [a1x+ (a2 + u′B0)y]N
+ [(b1 − u′B0)x+ b2y]B +O(x2 + y2).

(3.9)

A direct calculation shows that,

∇B = κB0tn+ a1NN + b2BB +B′
0tt+ (a2 + u′B0)BN

+ (b1 − u′B0)NB + (c1N + c2B)t,

x′ × (∇B)T = κB0bt+B [a1N + (a2 + u′B0)B]−N [(b1 − u′B0)N + b2B] ,

(3.10)

which yields, using dyadic algebra

∇ ·B = I : ∇B = B′
0 + a1 + b2,

∇×B = −I×.∇B = (b1 − a2 − 2u′B0)t+ (c2 − κB0 sin δ)N
− (c1 − κB0 cos δ)B.

(3.11)

Here κ denotes the local curvature of the axis r0. Additionally, Eq.(C 9) has been used
to rewrite b in terms of N and B. Requiring that ∇ ·B = 0 and ∇×B = J0t, one finds

a1 + b2 = −B′
0,

b1 − a2
2B0

= u′ +
J0
2B0

, c1 = κB0 cos δ, c2 = κB0 sin δ. (3.12)

So far, only two constraints have been derived for the four expansion functions
a1, a2, b1, b2. Turning to the Mercier representation, Eq.(D 2) and Eq.(D 7) of B brings
in additional conditions. Together with the definitions of N and B,

B

B0
= t

[
1 + κ

√
x2 + y2 cos (u− δ)

]
+N

[
−1

2

(
B′

0

B0
+ η′

)
x+

(
−J0
2B0

+
J0

2B0
− τ + δ′

cosh η
sinh η

)
y

]

+B
[(

J0
2B0

+
J0

2B0
− τ + δ′

cosh η
sinh η

)
x− 1

2

(
B′

0

B0
− η′

)
y

]
+O(x2 + y2),

(3.13)

where δ, as explained in Appendix C, describes the rotation of elliptical flux surfaces
around the expansion axis r0. As for η, it describes the eccentricity of the flux surfaces
around r0. Defining

Ω0(ℓ) =
J0

2B0
− τ + δ′

cosh η
, (3.14)
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the comparison between the Mercier representation Eq.(3.13) and the Solov’ev-Shafranov
representation Eq.(3.9) yields for the expansion coefficients

a1
B0

= −1

2

(
B′

0

B0
+ η′

)
,

a2
B0

= −
(
u′ +

J0/2

B0

)
+Ω0 sinh η,

b2
B0

= −1

2

(
B′

0

B0
− η′

)
,

b1
B0

=

(
u′ +

J0/2

B0

)
+Ω0 sinh η,

(3.15)

which satisfy the relations Eq.(3.12). From the definition of Ω0, we can further simplify
a2 and b1 as

a2
B0

= −Ω0e
−η,

b1
B0

= Ω0e
η. (3.16)

As a check of correctness for the above expressions, one can show that B ·∇ψ = 0, where
√
gB ·∇ =

√
gB1∂x +

√
gB2∂y +

√
gB3∂ℓ

= B0∂ℓ + (a1x+ a2y)∂x + (b1x+ b2y)∂y.
(3.17)

The flux surface function ψ for the elliptic case is given in the Mercier representation by
Eq.(D 10) or equivalently in the Solov’ev-Shafranov representation by

ψ(x, y) = B0(e
ηx2 + e−ηy2). (3.18)

3.2.2. The second variation tensor and its null eigenspace
Now that the magnetic field has been properly expressed and expanded in Solov’ev-

Shafranov’s coordinates, the obtained B and ∇B can be substituted in Eq.(3.4) to
expand the second variation tensor. From Eq.(3.10) we find that it is given by

M := M1
d

dℓ
+ M2 ,

M1 = (NB −BN )B0,

M2 = κB0 [B cos δ −N sin δ] t+B [a1N + (a2 + u′B0)B]

−N [(b1 − u′B0)N + b2B] .

(3.19)

Observing the dyadic form of M , it is clear that tangential components vt of of the
eigenvectors v = (vt, vN , vB)T will not contribute to Mv = 0. Therefore, vt can be
absorbed by redefining vN and vB. Thus, the null eigenvectors are chosen to be of the
form v = vNN + vBB. We note that

d

dℓ
v =

(
vN ′ + u′vB

)
N +

(
vB ′ − u′vN

)
B + κ

[
vN cos (u− δ) + vB sin (u− δ)

]
t. (3.20)

The tangential terms ∝ t are not relevant since they do not contribute to Mv = 0. The
equations for vN , vB then read

B0

(
0 +1

−1 0

)
d

dℓ

(
vN

vB

)
+

(
−b1 −b2
a1 a2

)(
vN

vB

)
= 0. (3.21)

From Eq.(3.21), by periodicity of the ai/B0 and bi/B0, i = 1, 2, the system can
immediately be rewritten in the form of a periodic system

dv

dℓ
= A(ℓ)v, v =

(
vN

vB

)
. (3.22)
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Here, A(ℓ) is periodic in ℓ. The Floquet theorem, Eq.(A 6), can be applied to conclude
that the solution must be of the form

v = U(ℓ)eCℓ/L, (3.23)

where U is a symplectic periodic matrix (with period L) and C is a constant Hamiltonian
matrix (Duignan & Meiss 2021). The eigenvalues of C are the Floquet exponents, which
must be purely imaginary near an elliptic axis and real in the hyperbolic case.

Although the system is already in a form that allows to solve for the exponents ν by
mean of Eq.(3.23), identifying the matrices C and U can be somewhat troublesome. For
that reason, Eq.(3.21) be alternatively rewritten in the following ordinary differential
equation (ODE) form

dvN

a1vN + a2vB
=

dvB

b1vN + b2vB
=

dℓ

B0
, (3.24)

which shows that the eigenvector v satisfies the general characteristic equation along the
magnetic field

dX
√
gB1(X ,Y, ℓ)

=
dY

√
gB2(X ,Y, ℓ)

=
dℓ

√
gB3(X ,Y, ℓ)

. (3.25)

The eigenvector v components vN , vB can be identified with X ,Y, the displacements of
the magnetic field line from the closed field line r0 along the rotated normal and binormal
directions. The expansion coordinates (x, y) ought not to be confused with (X ,Y), which
are the solutions of the characteristic ODEs Eq.(3.25). The equations for (X ,Y) are

X ′ +
1

2

(
B′

0

B0
+ η′

)
X +Ω0e

−ηY = 0,

Y ′ +
1

2

(
B′

0

B0
− η′

)
Y −Ω0e

+ηX = 0.

(3.26)

Introducing the variables X,Y defined through

X =
1√
B0

e−η/2X(ℓ), Y =
1√
B0

e+η/2Y (ℓ), (3.27)

which is possible since the periodicity is conserved, the system reduces to the simple
harmonic oscillator,

X ′ +Ω0Y = 0, Y ′ −Ω0X = 0, Ω0 =

J0/2
B0

− τ + δ′

cosh η
, (3.28)

with ‘time-dependent’ frequency Ω0(ℓ), ℓ being the time-like parameter. Using the
complex variable Z = X + iY , the system reshapes as a single complex ODE,

Z ′ − iΩ0Z = 0 ⇒ Z(ℓ) = Z0 exp

∫ ℓ

0

iΩ0(s)ds. (3.29)

Separating the periodic and non-periodic parts of the exponential, we obtain

Z(ℓ) = Zp(ℓ)e
iνℓ/L, Zp(ℓ) = Z0 exp

∫ ℓ

0

iΩ̃0(s)ds, (3.30)

Ω :=
1

L

∫ L

0

Ω0(s)ds, Ω̃0 = Ω0 −Ω.
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Comparing Eq.(3.30) with the Floquet form Eq.(3.23), we find that ν is given by

ν =

∫ L

0

Ω0(s)ds (mod 2π) =

∮ J0(s)/2
B0(s)

− τ(s) + δ′(s)

cosh η(s)
ds (mod 2π) = 2πι. (3.31)

It matches the expression for the rotational transform Eq.(1.4) up to a factor 2π, as ν
represents an angle and ι the number of turns that this angle constitutes. It follows that
solving for the null eigenspace of the second variation tensor expanded in the Solov’ev-
Shafranov near-axis formalism yields the correct on-axis rotational transform. The exact
same approach can be followed in the hyperbolic case.

3.2.3. Derivation of the Floquet exponent from the Hill’s determinant equation
Here we shall pursue an alternative approach to obtain the Floquet exponent, using the

theory of the Hill’s infinite determinant. This way of solving for the Floquet exponents
of a periodic system has been known for a long time (Magnus 1953); however, to the
authors’ knowledge, it is the first time that such an approach is used from the magnetic
action. We start with the system Eq.(3.26) written as

X ′ =
1

B0
(a1X + a2Y), Y ′ =

1

B0
(b1X + b2Y). (3.32)

Eliminating Y from Eq.(3.32), we obtain the following second order ODE for X ,

X ′′ + 2C1X + C2 = 0, (3.33)

where

2C1 = −a
′
2

a2
+ 2

B′
0

B0
, C2 = D − a2

B0

(
a1
a2

)′

, D =
1

B2
0

(a1b2 − a2b1). (3.34)

We can eliminate the first derivative term from Eq.(3.33) by the change of variables

X = exp

(
−
∫
C1dℓ

)
Ψ =

√
a2
B0

X, (3.35)

which leads to

Ψ ′′ + ω2Ψ = 0, ω2 ≡ C2 − C ′
1 − C2

1 . (3.36)

Eq.(3.36) is in the form of Hill’s equation or a Schrodinger equation with a periodic
potential ω2. We note that the linear transformation Eq.(3.35) implies that both X and
Ψ have the same Floquet exponent. This is because the multiplication factor

√
a2/B0 is

periodic in nature and therefore does not change the Floquet exponent.
Leveraging the periodicity of ω2, ω2(ℓ+ L) = ω2(ℓ), we can Fourier expand

ω2(ℓ) =
∑
k∈Z

Ωke
iℓ 2π

L k, (3.37)

where the {Ωk}k∈Z denote the Fourier coefficients of ω2. Let the fundamental solutions
of Eq.(3.36) be given by Ψ±(ℓ) such that

Ψ+(0) = 1, Ψ−(0) = 0, Ψ ′
+(0) = 0, Ψ ′

−(0) = 1, (3.38)

where these conditions have been chosen such that the basis functions Ψ± are linearly
independent and with unit Wronskian. The Floquet solutions are given by

Ψ+(ℓ) = e+iνℓσ+(ℓ), σ+(ℓ+ L) = σ+(ℓ), σ+(0) = 1,

Ψ−(ℓ) = e−iνℓσ−(ℓ), σ−(ℓ+ L) = σ−(ℓ), σ−(0) = 0,
(3.39)
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where σ+ and σ− satisfy the periodicity condition and the linear independence, and ν
denotes the Floquet exponents that we seek for. Nothing more needs to be known about
the functions σ± since their coefficients will not appear in the final expression for the
Floquet exponents. Let us now Fourier expand the Floquet solution as

Ψ+ = eiνℓ
∑
n∈Z

bne
i 2πn

L ℓ =
∑
n∈Z

bne
iℓ( 2πn

L +ν), (3.40)

where {bn}n∈Z is the set of Fourier coefficients of σ+. The Fourier expansion of Eq.(3.36)
reads

Ψ
′′

+(ℓ) + ω2(ℓ)Ψ+(ℓ) = −
∑
n∈Z

bn

(
ν +

2πn

L

)2

eiℓ(ν+
2nπ
L )

+

(∑
k∈Z

Ωke
iℓ 2π

L k

)(∑
n∈Z

bne
iℓ( 2πn

L +ν)

)

=
∑
n∈Z

(∑
k

Ωkbn−k −
(
2πn

L
+ ν

)2

bn

)
eiℓ(

2πn
L +ν)

= 0.

(3.41)

In order for Eq.(3.41) to be verified, the following condition has to hold,∑
k∈Z

Ωkbn−k −
(
2πn

L
+ ν

)2

bn = 0, n ∈ Z, (3.42)

which can be rewritten in the following matrix form, after dividing Eq.(3.42) by Ω0 −
(2πn/L+ ν)2: ∑

m∈Z
Bnmbm = 0, n ∈ Z, (3.43)

where the matrix B is defined as

Bnn = 1, Bnm =
Ωn−m

Ω0 −
(
2πn
L + ν

)2 . (3.44)

It yields the following determinant equation,

detBnm = 0. (3.45)

The above determinant can be considered a function of the Floquet exponents ν,

detBnm(ν) := ∆(ν) ≡ det

(
δnm +

Ωn−m

Ω0 −
(
2πn
L + ν

)2
)
, n,m ∈ Z. (3.46)

For Eq.(3.45) to be verified, we seek for the Floquet exponents ν such that ∆(ν) = 0.
Following Z. X. Wang (1989), we are now going to show that the exponents can be
deduced from the very simple expression Eq.(3.50). One notes that ∆(ν) is a 2π-periodic
function, with poles in ν = ±

√
Ω0−2πn/L, n ∈ Z. It can be shown that the determinant

is absolutely convergent in the whole ν-plane, expect in these poles. Therefore, ∆ is
meromorphic. Moreover, as the imaginary part Im(ν) → ±∞, ∆(ν) → 1. Let us now
define the complex function f as

f(ν) := cot
L

2
(ν −

√
Ω0)− cot

L

2
(ν +

√
Ω0). (3.47)



10 S. Guinchard, W. Sengupta and S. R. Hudson

It is useful to introduce f since it has the same poles as ∆ and the periodicity. Moreover,
it is bounded as Im(ν) → ±∞. This way, there has to exist a constant K ∈ C such that

D(ν) ≡ ∆(ν) +Kf(ν) (3.48)

has no singularity in the whole ν plane. Together with the fact that it is bounded as
|ν| → ∞, according to Liouville’s theorem, D is a constant function. In the limit |ν| → ∞,
we see that D = 1. To determine K, take ν = 0,

ν = 0 =⇒ K =
1−∆(0)

f(0)
=

1−∆(0)

2 cot
√
Ω0L
2

. (3.49)

Using the value of K from Eq.(3.49), the Floquet exponent equation reduces to

sin2 ν
L

2
= ∆(0) sin2

√
Ω0L

2
. (3.50)

Although Eq.(3.50) is very simple, one obstacle remains to compute the exponents: one
has to evaluate the infinite determinant, ∆(0). We refer to Z. X. Wang (1989) for some
approximations of ∆(0). For instance, when the Ωn are sufficiently small, ∆(0) can be
approximated by the order-3 determinant with B00 as central element (we remind that
the determinant involves summation over all Z), providing

∆(0) ≃ 1 +
2Ω2

1

Ω0 (4−Ω0)
2 +

2Ω2
1Ω2

Ω0 (4−Ω0)
2 − Ω2

2

(4−Ω0)
2 . (3.51)

However, this approximation breaks down when the coefficients become too large as n
increases. As of the exponents computed, they might not all be suitable for ι. One has to
discard the results that are not relevant. Moreover, we emphasize that the exponents may
be shifted by 2kπ/L, with k integer, without changing the mathematics of the system,
by periodicity. However, one has to carefully choose the adapted value for ι, by setting
the appropriate phase shift (see Eq.(1.4)).

In a nutshell, the second variation of the magnetic action, at an elliptical axis, has
been expanded in the Solov’ev-Shafranov near-axis formalism. It has been shown that
the null-eigenspace of this operator yields the correct on-axis rotational transform, upon
applying Floquet theory to solve for the latter. On the other hand, solving for the null-
eigenspace has led to a system that could be rewritten in the form of a Hill’s equation.
The Floquet exponents appear as solutions of an infinite determinant equation, that can
only be approximated analytically. The derivation of the on-axis rotational transform as
a Floquet exponent of the null-eigenvectors of δ2S has also been carried on in Mercier
coordinates, to support the previous conclusions - see Appendix (D).

Magnetic confinement devices’ design needs fast and accurate computation of ι. Cur-
rently, the most widely used method to compute ι is to use field-line tracing (Todoroki
2003). Field-line tracing methods compute ι as an infinite time limit of following a field
line. In practice, it can be done by following a field line sufficiently long to achieve
convergence. As an alternative, one can also compute Greene’s residue of the axis, which
is related to ι (see Greene 1979; Hanson & Cary 1984; Hudson 2004). Even though it still
involves O.D.E. integration, we can limit ourselves to just one circuit around the torus.

In the following section, we introduce a new method to compute ι as a solution to a
discrete problem involving the magnetic action. The action is discretized in a similar way
as in Mackay & Meiss (1983) and Hudson & Suzuki (2014).
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4. Discrete formalism: piecewise action
We have seen that the problem described in the previous section, involving the second

order variation of the magnetic action to determine the on-axis Floquet exponent, leads
to the operator equation Eq.(3.5). In another approach, magnetic axis can be discretized,
and the rotational transform can be determined from the multipliers of the latter curve.
The multipliers have been shown to be linked to the residue of the curve (see Mackay
& Meiss 1983; Greene 1979). This discrete approach is explored in what follows. We
consider

S =

n−1∑
i=1

∫
Ci

A · dℓ,

=

n−1∑
i=1

S(xi,xi+1),

(4.1)

meaning the curve has been discretized with n ∈ N points. So far, the way the Ci are
defined is not important. Only the endpoints matter. The particular case where the Ci
are segments is given in Appendix E. The following notation will be adopted for the
derivatives,

S
[i,i+1]
1 := ∇xiS

[i,i+1] = ∇xiS(xi,xi+1),

S
[i,i+1]
2 := ∇xi+1S

[i,i+1] = ∇xi+1S(xi,xi+1),
(4.2)

as well as for the second-order derivatives,

S[i,i+1]
21 := ∇xi+1

S
[i,i+1]
1 , (4.3)

and similarly for S12, S11 and S22. Let us also define generalized periodic orbits of type
(q), as orbits with

xi+q = xi, (4.4)
for some q ∈ N. Therefore, the magnetic axis as discretized above is a general periodic
orbit of type (n). The terminology orbit for field lines is justified by the Hamiltonian
behavior of the magnetic field. Moreover, the discretized action Eq.(4.1) satisfies the
periodicity condition

n−1∑
i=1

S(xi+n,xi+n+1) =

n−1∑
i=1

S(xi,xi+1) + C, (4.5)

where the Calabi invariant C = 0. In the one-dimensional case, as dealt with in Mackay &
Meiss (1983), the existence of extrema of the action is ensured by an additional convexity
condition on the Lagrangian, −L12 > 0. In our three-dimensional case, this can be
generalized in that the second order derivatives tensors S[i,i+1]

12 ought to be negative
definite for all i,

xTS12
[i,i+1]x < 0, x ∈ R∗3, 1 ⩽ i ⩽ n. (4.6)

This way, the action of periodic orbits of type (n) is bounded below and Poincaré-Birkhoff
theorem (Birkhoff 1913) ensures the existence of at least two stationary trajectories
among the space of all generalized periodic paths of type (n), one that minimizes the
action and is elliptic, and one that is a saddle called minimax and is usually hyperbolic
but can be alternating hyperbolic, where hyperbolic and elliptic describe the behavior of
nearby trajectories.

For an (n)-periodic curve that extremizes the action, the latter has to be stationary
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with respect to an arbitrary variation in its geometry δxi, and the stationarity condition
can be expressed in terms of the previously defined derivatives,

δS[δxi] =
[
∇xi

S[i−1,i] +∇xi
S[i,i+1]

]
· δxi = 0,

⇔ S
[i−1,i]
2 + S

[i,i+1]
1 = 0.

(4.7)

Note that Eq.(4.7) holds for any 1 ⩽ i ⩽ n, and the stationarity condition is expressed
for each point in terms of the two nearest neighbors. This way, a magnetic axis can be
identified. Similarly to the continuous case dealt with in Section 3, the neighboring field
lines have to satisfy

∇xi−1
S

[i−1,i]
2 · δxi−1 +∇xi+1

S
[i,i+1]
1 · δxi+1 +∇xi

(
S

[i−1,i]
2 + S

[i,i+1]
1

)
· δxi = 0, (4.8)

which we rewrite in terms of the arguments of the action as

S[i−1,i]
12 · δxi−1 + S[i,i+1]

21 · δxi+1 +
(

S[i−1,i]
22 + S[i,i+1]

11

)
· δxi = 0, 1 ⩽ i ⩽ n. (4.9)

From Mackay & Meiss (1983), we know that the multipliers λ of a (n)-periodic orbit are
defined by existence of a tangent orbit satisfying

δxi+n = λδxi, (4.10)

so the following holds

δxn+1 = λδx1, δx0 = λ−1δxn. (4.11)

They can be written in their Floquet form (Greene 1979),

λ = eiν , (4.12)

where the Floquet exponent ν describes the average rotation angle per period of the
(n)-orbit, therefore, the rotational transform ι. Since Eq.(4.9) is valid for any 1 ⩽ i ⩽ n,
together with Eq.(4.11), it can be rewritten in the tensor form,

(
S[01]
22 + S[12]

11

)
S[12]
12 λ−1S[01]

21

S[12]
21 S[23]

12

. . .
. . . . . . S[n−1,n]

12

λS[n,n+1]
12 S[n−1,n]

21

(
S[n−1,n]
22 + S[n,n+1]

11

)





δx1

...

...
δxn

 = 0, (4.13)

where the block-tridiagonal form with corners arises naturally. Denoting by M the matrix
of second derivatives, we get an equation for the multipliers:

M(λ)δx = 0. (4.14)

The blank spaces in M are blocks of 0. Note that each block in M is of size 3 × 3 since
the Slm contain the second derivatives of a line integral embedded in three-dimensional
space. Thus, for a (n)-periodic curve, M ∈ M3n×3n, and δx ∈ R3n. For Eq.(4.14) to hold,
the determinant of M ought to be zero to avoid the trivial solution δx = 0.

For a block tridiagonal matrix defined as in Eq.(4.13) with λ ∈ C, an expression exists
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to compute the determinant (Molinari 2008),

detM(λ) =
(−1)3n

(−λ)3
det
(

TS − λI6
)
det
( n∏

i=1

S12[i, i+ 1]
)
,

TS =

n∏
i=1

(
−S−1

12

[i,i+1]
(S[i−1,i]

22 + S[i,i+1]
11 ) −S−1

12

[i,i+1]
S[i−1,i]
12

I3 0

)
,

(4.15)

which required to define the so-called transfer matrix TS . Our generalized convexity con-
dition Eq.(4.6) that ensured existence of minimizing orbits garanties that the determinant
of the transfer matrix can be computed as S[i,i+1]

12 is invertible ∀i. The mutlipliers λ are
then given by the solutions of

λ−3 det
(

TS − λI
)
= 0, (4.16)

so they are the non-zero eigenvalues of TS . Once the multipliers have been computed,
the Floquet exponent can be easily determined from Eq.(3.31).

Alternatively, note that Eq.(4.13) gives a recursive relation for the δxi,(
S[01]
22 + S[12]

11

)
δx1 + S[12]

12 δx2 + λ−1S[01]
21 δxn = 0,

λS[n,n+1]
12 δx1 + S[n−1,n]

21 δxn−1 +
(

S[n−1,n]
22 + S[n,n+1]

11

)
δxn = 0,

S[k−1,k]
21 δxk−1 +

(
S[k−1,k]
22 + S[k,k+1]

11

)
δxk + S[k,k+1]

12 xk+1 = 0; 2 ⩽ k ⩽ n− 1.

(4.17)

Eq.(4.17) can be rewritten as (
δxn+1

δxn

)
= J

(
δx1

δx0

)
, (4.18)

with

J :=

n∏
k=1

(
−S−1

12

[k,k+1]
(S[k−1,k]

22 + S[k,k+1]
11 ) −S−1

12

[k,k+1]
S[k−1,k]
12

I 0

)
. (4.19)

The multipliers of a periodic orbit are the eigenvalues of the derivatives of the return
map around the orbit, J (Mackay & Meiss 1983), so upon comparison with Eq.(4.15),
J = TS confirming the result from Eq.(4.16).

The strength of this method resides in the fact that the problem is reduced to finding
the eigenvalues of a 6 × 6 matrix. In fact, the size of the operator matrix M increases
linearly with the number of discretization points, but of interest are solely the eigenvalues
of the matrix TS , whose size is 6 × 6, no matter how many discretization points have
been used. The derivation of the aforementioned results in the case where the curve of
interest is discretized by piece-wise linears is given in Appendix E.

5. Conclusion
In this paper, after having introduced the rotational transform, the Hamiltonian

behavior of toroidal magnetic fields was used to motivate the definition of a magnetic
action. The latter action served as starting point to express the on-axis rotational
transform from a novel approach. The focus has been made on elliptical magnetic axes,
but this method applies to hyperbolic axes as well, and more generally, to any periodic
field line.
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The action and resulting properties were studied through the lens of the calculus of
variations, where variations of the curves’ geometry were performed. The first variation
led to the result that extremizing curves are magnetic field lines, enabling to identify a
magnetic axis. The nature of the axis then defines whether the curve is a local minimum or
a saddle point. Such a characteristic can be derived looking at the second order variation.
The second variation also sheds light on the geometry of the neighboring field lines.
Studying the null-eigenspace of the second variation enabled the derivation of the on-
axis rotational transform, with a focus made on elliptical axes. The second variation, seen
as an operator, was expanded in the near-axis formalism developed by Mercier, Solov’ev
and Shafranov, to yield a system of periodic differential equations. The periodicity of the
system allowed the use of Floquet theory to solve for the eigenspace. The key result is
that the Floquet exponents of the axis were shown to match Mercier’s expression Eq.(1.4)
of the rotational transform. Additionally, solving for the null-eigenspace was shown to
lead to a Hill’s equation, from which the Floquet exponents were expressed as solutions
of an infinite determinant equation.

Following this continuous derivation of the on-axis rotational transform through the
Floquet exponents of the null-eigenspace of the second variation, a discrete approach
was introduced. It consists in discretizing the field line of interest and by linearity, to
define the action as a sum of piecewise actions. This approach was described by Mackay
& Meiss (1983) for one-dimensional Lagrangian systems. We provide a generalization of
this method as our action is based on field lines who are in essence three-dimensional.
Solving for the Floquet exponents was shown to be closely related to solving for the
multipliers of the curve, described by Mackay & Meiss (1983) and Greene (1979) and
the parallel between the two approaches was made as a consistency check. The on-axis
Floquet multiplier is computed by finding the eigenvalues of a 6 × 6 matrix, made of
second derivatives of the action. Its efficiency in comparison with field line tracing will
be studied in future work.

Finally, this paper applies the near-axis formalism to recovering the rotational trans-
form from a Lagrangian approach. Although the method has been introduced for elliptical
axes, also called O−points, it can be applied to hyperbolic axes, or X−points, with the
only difference being that the Floquet exponents are real, not purely imaginary; and,
more generally, to all periodic orbits. The discrete approach stands as an alternative to
compute the rotational transform instead of following field lines. We aim at using this
method in stellarator optimization. Lagrangian integration has recently been applied to
determine the sensitivity of the geometry of the magnetic axis to perturbations (Hudson
et al. 2024).

Acknowledgements
We dedicate this paper to Bob Dewar. The authors would like to thank A. Bhattachar-

jee and E. J. Paul for stimulating discussions and helpful suggestions.

Funding
W.S. was supported by a grant from the Simons Foundation/SFARI (560651, AB), and

the Department of Energy Award No. DE-SC0024548. This manuscript is based upon
work supported by the U.S. Department of Energy, Office of Science, Office of Fusion
Energy Sciences, and has been authored by Princeton University under Contract Number
DE-AC02-09CH11466 with the U.S. Department of Energy.



Application of Lagrangian techniques 15

Declaration of interests
The authors report no conflict of interest.

Data availability
The data that support the findings of this study are available from the corresponding

author upon reasonable request.

Appendix A. Floquet Theory
Floquet theory was formulated by Gaston Floquet towards the end of the 19th century,

in his attempt to solve linear differential equations with periodic coefficients (Floquet
1883). Suppose one needs to solve the linear system,

ẋ = A(t)x , x(t0) = x0, (A 1)

where A ∈ Mn×n is periodic in t with period T . Considering n linearly independent
solutions {x1, . . .xn} of Eq.(A 1), it is useful to introduce the so-called fundamental
matrix X by grouping the xi together

X (t, t0) :=
(
x1;x2; . . . ;xn

)
, (A 2)

where the xi are column vectors, and the second argument has been added to specify
that the initial condition occurs at time t0. Thus, Eq.(A 1) can be rewritten as

d

dt
X (t, t0) = A(t)X (t, t0). (A 3)

If X (t0, t0) = I , X is called the principal fundamental matrix. We now state some
well-known theorems of Floquet theory, the proofs of which can be found in Meiss
(2007).

Theorem 1 (Abel). The determinant of the fundamental matrix X is

detX (t, t0) = exp

∫ t

t0

trA(s)ds. (A 4)

Moreover, when (t0, t) = (0, T ), it can be rewritten as the product of the so-called Floquet
multipliers

detX (T, 0) =

n∏
i=1

eνiT , (A 5)

where the νi are the Floquet exponents.

The second statement implies that the Floquet multipliers are the eigenvalues of the
monodromy matrix m := X (T, 0), of the linear system Eq.(A 3).

Theorem 2 (Floquet-Lyapunov). The fundamental matrix X solution of the sys-
tem Eq.(A 3) is of the form

X (t, t0) = P(t)e(t−t0)B (A 6)
where the matrix P is symplectic and T -periodic, with P(t0) = I and B is a constant



16 S. Guinchard, W. Sengupta and S. R. Hudson

Hamiltonian matrix, that is

JB = BT JT , J =

(
0 −I
I 0

)
. (A 7)

Appendix B. Frenet-Serret frame
The Frenet-Serret frame is a local basis that spans the three-dimensional space R3.

The terminology ‘local’ arises from the fact that this frame is defined locally along a
curve C ⊂ R3. Let us define the basis vectors, and some essential properties of the frame.
We refer to Duignan & Meiss (2021).

The frame is composed of the three well-known tangent, normal and binormal vectors,
defined and related to each-other as follows. Provided that the curve C is described by
the vector field r0 ∈ R3 and parameterized by the arc length ℓ, the tangent vector t is
defined as

t :=
dr0
dℓ

= r′0. (B 1)

The normal vector accounts for the normalized rate of change of the tangent along the
curve:

n := t′ |t′|−1
. (B 2)

Finally, the binormal vector is the cross product of the tangent and the normal vector:

b := t× n. (B 3)

The curvature κ and the torsion τ of the curve C can be expressed from the derivatives
of r0:

κ := |r′′0 | = |t′|, τ :=
(r′0 × r′′0) · r′′′0

κ2
, (B 4)

provided that the curvature is non-vanishing. The rate of change of the Frenet-Serret
frame along the curve C writes in terms of the curvature and the torsion. The resulting
expressions are the so-called Frenet-Serret formulæ:

d

dℓ

 t
n
b

 =

 0 κ(ℓ) 0
−κ(ℓ) 0 τ(ℓ)

0 −τ(ℓ) 0

 t
n
b

 . (B 5)

With the previous relations, the reader is equipped with what is necessary to delve into
near-axis expansion coordinates, based on the Frenet-Serret frame.

Appendix C. Near-axis expansion coordinates
This section is dedicated to the description of two set of coordinates that have been

proven to be powerful in the expansion of operators or physical quantities in the vicinity of
field lines. The terminology near-axis expansion is used here, as in this paper, expansions
are carried out around magnetic axes, but those coordinates remain suitable for any near-
field line expansion. Section (C.1) is dedicated to the description of Mercier coordinates,
introduced by Mercier (1964), and Section (C.2) deals with the Solov’ev-Shafranov
coordinates, as described in Solov’ev & Shafranov (1970). They are both closely related,
and a correspondence can easily be established between the two. In addition, they both
are based on the Frenet-Serret frame, as described in Appendix (B). We emphasize that
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Figure 1. Mercier’s triad {t,ρ,ω} related to the usual Frenet-Serret {t,n, b}. The plain,
black line is a field line.

in what follows, the coordinates systems are introduced in the context of magnetic fields,
and that each curve that is dealt with is assumed to be a field line.

C.1. Mercier coordinates
Mercier’s coordinate system is based on the Frenet-Serret frame {t,n, b}, and related

to the latter by a rotation of the normal and binormal vectors by a polar angle θ, which is
a purely geometric quantity, as shown in Fig.(1). The field-line (that can be considered to
be a magnetic axis here) C ⊂ R3 and described by r0 is assumed closed and parameterized
by the arc length ℓ with a total length L. Following Mercier et al. (1974), the near-axis
expansion is based on the construction of a tube of radius ρ around the axis, such that
any neighboring point can be described by ρ(ℓ)ρ(ℓ),

r(ℓ) = r0(ℓ) + ρ(ℓ)ρ(ℓ), r′0(ℓ) = t(ℓ), (C 1)

where the dependence in ℓ has been made explicit, but will be omitted in what follows
for the sake of readability. However, it will be made clear whenever the dependence on
quantities is not obvious. Therefore, {t,ρ,ω} is a right-handed triad related to {t,n, b}
by

ρ = n cos θ + b sin θ, ω = b cos θ − n sin θ. (C 2)

It can be showed by direct computation that (ρ, ω = θ +
∫
τdℓ′, ℓ), with τ denoting

the torsion of the axis r0 (see Appendix B), forms an orthogonal coordinate system with
metric

ds2 = dρ2 + ρ2dω2 + h2dℓ2, h = 1− κρ cos θ, (C 3)
where κ denotes the curvature of C. The product κρ can be seen as a measure of the
ratio between the radius of curvature of r0 and the radius of expansion around the
latter. Therefore, from the previous characterization of the Mercier coordinates, a few
differential identities can be derived. Since the basis considered for Mercier coordinates
is the triad {t,ρ,ω}, the identity tensor trivially writes

I = tt+ ρρ+ ωω. (C 4)

By mean of the metric expression Eq.(C 3), the gradient can be derived:

∇ = ρ∂ρ +
ω

ρ
∂ω +

t

h
∂ℓ, (C 5)

where the subscripts denote with respect to which coordinate the partial derivative is
taken. Moreover, some pseudo Poisson formulae can be derived for the derivatives of ρ
and ω, to read

ρ,ω = ω, ρ,ℓ = −t κ cos θ, ω,ω = −ρ, ω,ℓ = t κ sin θ, (C 6)
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Figure 2. Solov’ev-Shafranov triad {t,N ,B} related to the usual Frenet-Serret {t,n, b}. The
plain, black line is a field line.

where the comma represents partial differentiation. Finally, using Eq.(C 5), the gradient
of each basis vector can be easily expressed:

∇t =
κ

h
tn, ∇ρ =

1

ρ
ωω − κ cos θ

h
tt, ∇ω =

κ sin θ

h
tt− 1

ρ
ωρ. (C 7)

In the formalism developed by Mercier, when expanding quantities in powers of ρ, it can
be useful to have an additional ‘phase’ term δ that may simplify expressions. The latter
phase is a function of the arc length ℓ and enables to define the so-called Mercier angle
u:

u := θ + δ = ω −
∫
τdℓ′ + δ. (C 8)

In fact, the δ term describes the rotation of trajectories around the axis r0. One notes
that by periodicity, δ has to satisfy δ(ℓ + L) = δ(ℓ) + 2πn, with n ∈ Z. The rotation
function δ is important for the Solov’ev-Shafranov near-axis expansion as the latter is
based on the construction of ellipses around r0, whose rotation is naturally important.

C.2. Solov’ev-Shafranov coordinates
The Solov’ev-Shafranov coordinates system is closely related to the Mercier triad, but

differs in that the expansion is not carried by constructing a tube of radius ρ around the
axis, but an ellipse of semi-axes varying along r0. Let {t,N ,B} be the orthogonal triad
related to the Frenet-Serret frame through a rotation by function δ introduced in the
Mercier formalism such that:

N = n cos δ−b sin δ = ρ cosu−ω sinu, B = n sin δ+b cos δ = ρ sinu+ω cosu, (C 9)

where {t,ρ,ω} form the Mercier basis, with Mercier angle u as defined in Appendix
C.1. Eq.(C 9) shows how intrinsically related the two frames are. Again, the field line
considered, r0, forms a closed curve C parameterized by the arc length ℓ and a total
length L. It is obvious that N and B depend on ℓ, enabling to write

N ′ = −κ cos δt− u′B, B′ = −κ sin δt+ u′N , (C 10)

where κ denotes the curvature of r0, which is a local property. Following Solov’ev &
Shafranov (1970), the position vector r of any point in the vicinity of the axis can be
expressed as

r = r0 + xN + yB, (C 11)

where x and y are expansion parameters depending on the position of the frame {t,N ,B}
through ℓ. In Mercier coordinates, x = ρ cosu and y = ρ sinu. Differentiating r with
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respect to the length parameter ℓ,

dr

dℓ
= ht+ (x′ + u′y)N + (y′ − u′x)B, (C 12)

where the prime denotes total differentiation with respect to ℓ, and r′0 = t. Additionally,
h = 1−κ(x cos δ−y sin δ) = 1−κρ cos θ, and u′ = δ′− τ . It induces the following metric:

ds2 = dx2 + dy2 + 2u′(ydx− xdy)dℓ+
[
h2 + u′

2
(x2 + y2)

]
dℓ2. (C 13)

The covariant and contravariant forms gij and gij of the metric tensor for ds2 read

gij =

 1 0 u′y
0 1 −u′x
u′y −u′x h2 + u′

2
(x2 + y2)

 (C 14)

and

gij =
1

h2

h2 + u′
2
y2 −u′2xy −u′y

−u′2xy 1 u′x
−u′y u′x 1

 (C 15)

with
√
|g| = h. A direct computation shows that the following basis vectors lead to the

same metric tensors:

e1 = ∇x = N − u′y

h
t, e2 = ∇y = B +

u′x

h
t, e3 = ∇ℓ = 1

h
t,

e1 = h (∇y ×∇ℓ) = N , e2 = h (∇ℓ×∇x) = B, e3 = h (∇x×∇y)
= ht+ u′(−xB + yN ),

which will be useful and in fact, more convenient in the near-axis expansion of the
quantities of interest in this paper. Here again, some expressions and differential identities
can be derived in Solov’ev-Shafranov coordinates. The identity tensor writes

I = tt+NN +BB, (C 16)

or alternatively
I = e1e1 + e2e2 + e3e3. (C 17)

The gradient in the basis {ej}j is expressed as

∇ ≡ ej g
ij ∂

∂αi
(C 18)

with α1 = x, α2 = y, α3 = ℓ, and the Einstein’s summation convention.

Appendix D. Derivation of the rotational transform from the action
in Mercier’s coordinates

D.1. Near-axis expansion of the second variation tensor
As we did in the Solov’ev-Shafranov geometry in the body of this paper, in order to

expand the operator

M :=
δ2S
δxδx

= − (I ×B)
d

dℓ
+ x′ × (∇B)T, (D 1)

in Mercier’s coordinates, B is expanded in the parameter ρ such that κρ ≪ 1. To
evaluate M to lowest order in ρ, the magnetic field needs to be expanded up to first
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order. Therefore, we set

B = B0(ℓ)t+ ρB1, B1 =
(
Bρ

1ρ+Bω
1 ω +Bt

1t
)
. (D 2)

The next step in the expansion of M is to compute ∇B. It is straightforward from the
differential identity Eq.(C 5):

∇B =
1

h
(tt B′

0(ℓ) + tn κB0) + ρ B1 + ρ∇B, (D 3)

such that, to leading order

x′ ×∇BT = κB0bt+ (Bρ
1ω −Bω

1 ρ)ρ+ ωω (∂ωB
ρ
1 −Bω

1 )− ωρ (∂ωB
ω
1 +Bρ

1),

−(I ×B) = (ρω − ωρ)B0.
(D 4)

Finally, M as given by Eq.(3.4) simplifies to

M := M1
d

dℓ
+ M2,

M1 = (ρω − ωρ)B0,

M2 = κB0bt+ (Bρ
1ω −Bω

1 ρ)ρ+ ωω (∂ωB
ρ
1 −Bω

1 )− ωρ (∂ωB
ω
1 +Bρ

1).

(D 5)

So far, the power expansion of the gradient of the magnetic field relied on a generic
expression of B in terms of the Bρ

1 , Bω
1 and Bt

1. The latter functions can be determined
enforcing additional constraints such as ∇ · B = 0 and ∇ × B = J0 = J0(ℓ)t. The
divergence and curl of B can be evaluated directly from the ∇B tensor, using dyadic
algebra. From

∇ ·B = I : ∇B = B′
0 + 2Bρ

1 + ∂ωB
ω
1

∇×B = −I×.∇B = t (2Bω
1 − ∂ωB

ρ
1) + (ω − ρ∂ω) (B0κ cos θ −Bt

1),
(D 6)

where ∂ω := ∂/∂ω, it can be easily shown that

Bt
1 = κB0 cos θ = B1t, Bρ

1 = −1

2
(B′

0 + ∂ωb1) = B1ρ, Bω
1 =

1

2
J0 + b1 = B1ω, (D 7)

where, b1 satisfies the Laplace equation(
∂2ω + 4

)
b1 = 0. (D 8)

Following Mercier et al. (1974), the solution of Eq.(D 8) can be expressed as

b1
B0

= bc2 cos (2u)+ bs2 sin (2u) = tanh η(ℓ)

(
δ′ − τ +

J0
2B0

)
cos (2u)+

η′

2
sin (2u), (D 9)

where u is the Mercier angle as introduced in Appendix (C.1). The functions η(ℓ) and
δ(ℓ) represent respectively the eccentricity and the rotation of the elliptic flux-surfaces
winding around the axis, given by the flux function

ψ = ρ2B0 [cosh(η) + sinh(η) sin (2u)] . (D 10)

D.2. Floquet exponents and rotational transform
Now that the MHD constraints have been enforced, let us obtain the null eigenvector

v = vtt + vρρ + vωω of M such that Mv = 0, in order to determine the Floquet
exponents. We take advantage of the fact that Mercier’s coordinates are orthogonal, so
the contravariant and covariant coordinates of a vector in that basis are equal, to avoid a
heavy notation, with superscript for components and derivatives. However, when doing
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similar derivations, one has to be careful with the nature of the components they are
working with. We state that the components vt, vρ, vω are functions of ω and ℓ. The M1

terms can be shown to be

M1
d

dℓ
v = B0

[
ρ (v′ω − κ sin θ vt)− ω(v′ρ + κ cos θ vt)

]
. (D 11)

Similarly,

M2v = ρ [B0v
′
ω + vω(B

′
0 +B1ρ)−B1ωvρ]

+ ω
[
−B0v

′
ρ + vω(B1ω − J0) +B1ρvρ

]
.

(D 12)

Thus, we observe that Mv = 0 only has ρ,ω components with ℓ derivatives of vρ, vω.
The tangential component vt is thus an arbitrary constant, which can be absorbed by
redefining vρ, vω. We shall therefore set vt = 0. The condition Mv = 0 leads to the system

B0

(
0 +1

−1 0

)
d

dℓ

(
vρ
vω

)
+

(
B1ω [B′

0 +B1ρ]
B1ρ [B1ω − J0]

)(
vρ
vω

)
= 0. (D 13)

Substituting the constraints Eq.(D 7) into Eq.(D 13), we obtain the equivalent system of
coupled linear PDEs

v′ω +

(
B′

0

2B0
− ∂ωb1

2B0

)
vω −

(
J0/2

B0
+
b1
B0

)
vρ = 0

v′ρ +

(
B′

0

2B0
+
∂ωb1
2B0

)
vω +

(
J0/2

B0
− b1
B0

)
vω = 0.

(D 14)

Therefore, the the system Eq.(D 14) can be represented in the form

dṽ

dℓ
= A(ℓ)ṽ, ṽ = (vρ, vω)

T. (D 15)

Here, A is a matrix with components periodic in ℓ with period L. Note that this
representation is possible since all the quantities between brackets are depending on ℓ
along the field line from which the expansion is carried, ω included (Solov’ev & Shafranov
1970; Duignan & Meiss 2021). We can directly use Floquet theorem on Eq.(D 15) to
conclude that the solution must be of the form

ṽ = U(ℓ)eCℓ/L, (D 16)

where U is a symplectic periodic matrix and C is a constant Hamiltonian matrix. The
eigenvalues of C are the Floquet exponents, which must be of the form ±iν (ν ∈ R) near
an elliptic axis.

An equivalent approach to solve the system from Eq.(D 14) and hence identify the
exponents ν, is to use the fact that b1 only has second harmonics in u. This allows us to
seek a solution, where ṽ only has first harmonics in u. From now on, we will follow this
approach. We will show that there exist solutions to Mv = 0 with(

vρ(ℓ)
vω(ℓ)

)
=

(
vρc(ℓ)
vωc(ℓ)

)
cosu+

(
vρs(ℓ)
vωs(ℓ)

)
sinu. (D 17)

Substituting the above into Eq.(D 14), together with the expressions for B1ρ, B1ω from
Eq.(D 7) yields first and third order harmonics in u. Equating the terms with first
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harmonics in u, the v′ω equation yields
v′ωc − (τ − δ′)vωs −

(
J0/2

B0

)
vρc +

B′
0

2B0
vωc +

1

2
(ac2c + as2s) = 0

v′ωs + (τ − δ′)vωc −
(
J0/2

B0

)
vρs +

B′
0

2B0
vωs +

1

2
(as2c − ac2s) = 0.

(D 18)

Equating the third harmonics terms lead to the following constraints

ac2c = as2s, as2c = −ac2s, (D 19)

where the a terms have the following definitions

ac2c = −bc2
B0

vρc −
bs2
B0

vωc, as2s = −bs2
B0

vρs +
bc2
B0

vωs,

as2c = −bs2
B0

vρc +
bc2
B0

vωc, ac2s = −bc2
B0

vρs −
bs2
B0

vωs.

(D 20)

The constraint Eq.(D 19) and the definitions Eq.(D 20) imply, together with b2s2+b2c2 ̸= 0
that

vρs = vωc, vρc = −vωs, (D 21)

which allows us to rewrite Eq.(D 18) solely in terms of vωc, vωs. Simplification leads to
v′ωc +

(
B′

0

2B0
− bs2
B0

)
vωc +

(
J0/2

B0
− τ + δ′ +

bc2
B0

)
vωs = 0

v′ωs +

(
B′

0

2B0
+
bs2
B0

)
vωs −

(
J0/2

B0
− τ + δ′ − bc2

B0

)
vωc = 0.

(D 22)

Finally, substituting Eq.(D 9), we get
v′ωc +

(
B′

0

2B0
− η′

2

)
vωc +

e+η

cosh (η)

(
J0/2

B0
− τ + δ′

)
vωs = 0

v′ωs +

(
B′

0

2B0
+
η′

2

)
vωs −

e−η

cosh (η)

(
J0/2

B0
− τ + δ′

)
vωc = 0.

(D 23)

It is possible to further simplify the system by introducing new variables X,Y ,

vωc =
1√
B′

0

e+η/2X(ℓ), vωs =
1√
B′

0

e−η/2Y (ℓ) (D 24)

such that Eq.(D 23) reduces to

X ′ +Ω0(ℓ)Y = 0, Y ′ −Ω0(ℓ)X = 0, Ω0(ℓ) =

J0/2
B0

− τ + δ′

cosh η
. (D 25)

One notes that Eq.(D 25) has the exact same form as Eq.(3.27), which describe a harmonic
oscillator system with a ‘time’-dependent frequency Ω0. Once again, using the complex
variable Z = X + iY , the system can be rewritten as a single complex ODE

Z ′ − iΩ0Z = 0 ⇒ Z(ℓ) = Z0 exp

∫ ℓ

0

iΩ0(s)ds. (D 26)
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Separating the periodic and non-periodic parts of the exponential we get

Z(ℓ) = Zp(ℓ)e
iνℓ/L, Zp(ℓ) = Z0 exp

∫ ℓ

0

iΩ̃0(s)ds, (D 27)

Ω ≡ 1

L

∫ L

0

Ω0(s)ds, Ω̃0 = Ω0(ℓ)−Ω.

Comparing Eq.(D 27) with Eq.(D 16), we find that ν, given by

ν =

∫ L

0

Ω0(s) ds (mod 2π) =

∮ J0(s)/2
B0(s)

− τ(s) + δ′(s)

cosh η(s)
ds (mod 2π), (D 28)

is the Floquet exponent for the system. It confirms the result obtained in the Solov’ev-
Shafranov coordinates, and it is a second confirmation that the second-variation of the
magnetic field action, when expanded by mean of a near-axis formalism and combined
with Floquet theory, yields the correct on-axis rotational transform. This was expected
since the result is coordinate independent.

Appendix E. Discrete formalism - the piecewise linear discretization
A discrete method to compute the on-axis Floquet exponent has been introduced in

Section 4. Here, we give the computations in the particular case of the curve is broken
down to a concatenation of segments. Recall that the discrete action was introduced as

S =

n−1∑
i=1

∫
Ci

A · dℓ, (E 1)

Thus, taking the Ci to be segments, the action sums up to a sum of integral along
piecewise linears Ci := {R3 ∋ x = ζ(xi+1 − xi) + xi | ζ ∈ [0, 1]}:

S =

n−1∑
i=1

S(xi,xi+1),

S(xi,xi+1) =

∫ 1

0

dζ A
(
ζ(xi+1 − xi) + xi

)
· (xi+1 − xi)

=

∫ 1

0

dζ A
(
v(x(ζ))

)
· u,

(E 2)

with x(0) = xi and x(1) = xi+1, and the vector fields u and v defined as follows:

u(xi,xi+1) = xi+1 − xi,

v(ζ,xi,xi+1) = ζ(xi+1 − xi) + xi,
(E 3)

such that ∇xi
u(xi,xi+1) = −I , ∇xi+1

u(xi,xi+1) = I , ∇xi
v(ζ,xi,xi+1) = (1 − ζ)I ,

∇xi+1
v(ζ,xi,xi+1) = ζI . Since

∇xi

[
A(v(xi)) · u(xi)

]
= JT

A◦v(xi) · u(xi) + JT
u (xi) ·A(v(xi))

=
[
JT
v (xi) · JT

A(v(xi))
]
· u(xi) + JT

u (xi) ·A(v(xi)),
(E 4)
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where JT
a stands for the transpose of the Jacobian matrix of the vector field a, one gets

the following first order derivatives of the action

S
[i,i+1]
1 =

∫ 1

0

(1− ζ)JT
A

(
ζ(xi+1 − xi) + xi

)
· (xi+1 − xi)−A

(
ζ(xi+1 − xi) + xi

)
dζ,

S
[i−1,i]
2 =

∫ 1

0

ζJT
A

(
ζ(xi − xi−1) + xi−1

)
· (xi − xi−1) +A

(
ζ(xi − xi−1) + xi−1

)
dζ.

(E 5)

A direct computation of the second derivatives reads

S[i−1,i]
12 =

∫ 1

0

dζζ
[
(1− ζ)∇vJT

A(v) · (xi − xi−1)− JT
A(v)

]
+ (1− ζ)JA(v),

S[i,i+1]
21 =

∫ 1

0

dζ(1− ζ)
[
ζ∇vJT

A(v) · (xi+1 − xi) + JT
A(v)

]
+ ζJA(v),

S[i−1,i]
22 =

∫ 1

0

dζζ
[
ζ∇vJT

A(v) · (xi − xi−1) +
(
JA(v) + JT

A(v)
)]
,

S[i,i+1]
11 =

∫ 1

0

dζ(1− ζ)
[
(1− ζ)∇vJT

A(v) · (xi+1 − xi)−
(
JA(v) + JT

A(v)
)]
.

(E 6)

The second order derivatives above can be easily computed numerically. We remind the
multipliers λ of the curve are given by solutions of

detM(λ) = (−1)nλ−3 det
(

TS − λI6
)
det
( n∏

i=1

S12[i, i+ 1]
)

TS =

n∏
i=1

(
−S−1

12

[i,i+1]
(S[i−1,i]

22 + S[i,i+1]
11 ) −S−1

12

[i,i+1]
S[i−1,i]
12

I3 0

)
,

(E 7)

and that they are linked to the Floquet exponent by λ = eiν . From the set of expressions
Eq.(E 6), the determinant of M can be computed, leading to the multipliers. The above
can be implemented numerically as a novel tool to compute the on-axis Floquet-exponent.
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