
ar
X

iv
:2

40
4.

17
56

6v
1 

 [
m

at
h.

N
T

] 
 2

6 
A

pr
 2

02
4

EXTENDED GENUS FIELDS OF ABELIAN EXTENSIONS OF RATIONAL

FUNCTION FIELDS

JUAN CARLOS HERNANDEZ-BOCANEGRA AND GABRIEL VILLA–SALVADOR

ABSTRACT. In this paper we obtain the extended genus field of a finite abelian
extension of a global rational function field. We first study the case of a cyclic
extension of prime power degree. Next, we use that the extended genus fields
of a composite of two cyclotomic extensions of a global rational function field is
equal to the composite of their respective extended genus fields, to obtain our
main result. This result is that the extended genus field of a general finite abelian
extension of a global rational function field, is given explicitly in terms of the field
and of the extended genus field of its “cyclotomic projection”.

1. INTRODUCTION

The concepts of genus field and extended (or narrow) genus field depend on the
respective concepts of Hilbert Class Field (HCF) and extended (or narrow) Hilbert
Class Field. The theory of the genus goes back to Gauss. The HCF concept is much
more recent. The first to translate the theory of Gauss on genus to “modern terms”,
was Hilbert. Nowadays it may be used to study the “easy” part of the HCF of a
finite extension of the field of rational numbers.

The first to give a definition of a genus field for number fields, was H. Hasse,
who defined the genus field of a quadratic extension of Q. Since the genus field is
related with the HCF, one natural way to study genus fields is by means of class
field theory. However, we may study genus fields of abelian extensions of the
rational field by means of Dirichlet characters.

For number fields, the definition of Hilbert and extended Hilbert Class Field
are canonically given as the maximal abelian unramified and the maximal abelian
unramified at the finite primes of the field respectively. The definition of the genus
field is not absolute, as is the HCF, but depends on an extension. A. Fröhlich gave
a general definition of genus fields for any number field. Fröhlich definition is also
canonical.

We are interested in global function fields. In this context, there are several
different definitions of HCF of a global field K depending on which aspect we are
interested in. In this paper we study the extended genus field of a finite abelian
extension K/k where k = Fq(T ) is a global rational function field. Let p∞ be
infinite prime of k. Then we define HCF of K as the maximal unramified abelian
extensionKH of K such that the infinite primes of K (those above p∞) decompose
fully inKH . B. Anglès and J.-F. Jaulent ([1]) give the same concept by means of the
idèle norm subgroup corresponding to KH . They also define the extended HCF of
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any global field K by means of the norm subgroup of KH+ in the idèle group JK
of K . We use the definitions of Anglès and Jaulent of KH and KH+ to define the
genus Kge and the extended genus Kgex fields of K with respect to the extension
K/k and compare our findings with the concepts of extended genus fields given
in [8] and in [3].

We first study the case of a cyclic extension of k of prime power degree ln. We
consider four possible type of primes l: (1) l = p, the characteristic of k (Artin-
Schreier-Witt case); (2) l ∤ q − 1, l 6= p; (3) ln|q − 1 (Kummer case), and (4) lρ|q − 1,
1 ≤ ρ < n and ln ∤ q − 1 (“semi-Kummer” case). Our main results are Theorems
5.20 and 6.2.

The main tools used in this paper are the Carlitz theory of cyclotomic function
fields and class field theory, particularly the concepts of HCF and genus fields
developed by Anglès and Jaulent.

2. NOTATIONS AND GENERAL RESULTS

For the general Carlitz–Hayes theory of cyclotomic function fields, we refer to
[12, Ch. 12] and [9, Cap. 9]. For the results on genus fields of function fields we
refer to [2, 5, 6] and [9, Cap. 14].

We will be using the following notation. Let k = Fq(T ) be a global rational
function field, where Fq is the finite field of q elements. Let RT = Fq[T ] and let
R+

T denote the set of the monic irreducible elements of RT . For N ∈ RT , k(ΛN )
denotes the N–th cyclotomic function field where ΛN is the N–th torsion of the
Carlitz module. For a D ∈ RT we define D∗ := (−1)degDD.

We will call a field F a cyclotomic function field if there exists N ∈ RT such that
F ⊆ k(ΛN ).

Let N ∈ RT . The Dirichlet characters χ mod N are the group homomorphisms
χ : (RT /〈N〉)∗ −→ C∗. Given a group X of Dirichlet characters modulo N , the
field associated to X is the fixed field F = k(ΛN )H where H =

⋂

χ∈X kerχ. We say

that F corresponds to the group X and that X corresponds to F . We have that
X ∼= Hom(Gal(F/k),C∗). When X is a cyclic group generated by χ, we have that
the field associated toX is equal to F = k(ΛN )kerχ and we say that F corresponds
to χ.

Given a cyclotomic function field F with Dirichlet group charactersX , we have
that the ramification index of P ∈ R+

T in F/k equals |XP | where XP = {χP |
χ ∈ X} and χP is the P–th component of χ, see [5]. The maximum cyclotomic
extension of F unramified at the finite prime divisors is the field that corresponds
to Y :=

∏

P∈R+
T
XP This field is denoted as Fgex.

We denote the infinite prime of k by p∞. That is, p∞ is the pole divisor of T and
1/T is an uniformizer for p∞.

Given a finite extension K/k and a definition of HCF KH and of extended HCF
KH+ of K , the respective genus and extended genus field of K with respect to k
are the extensions KL such that L is the maximal abelian extension of k contained
in KH and in KH+ , respectively.

We will use both notations: eP (F |k) or eF/k(P ) to denote the ramification index
of the prime P of k in F . For the place p∞ we use the notation e∞(F |k).

When K/k is a finite abelian extension, it follows from the Kronecker–Weber
Theorem that there exist N ∈ RT , n ∈ N∪{0} and m ∈ N such that K ⊆ nk(ΛN )m,
where, for any F , Fm := FFqm(T ), for any N ∈ RT , nk(ΛN ) := Lnk(ΛN ), and
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Ln is the maximum subfield of k(Λ1/Tn ) where p∞ is totally and wildly ramified.
Then we define

E := MK ∩ k(ΛN ) (2.1)

where M = Lnkm. Then Kge = EH
geK where H is the decomposition group of

the infinite primes in KEge/K (see [2, Theorem 2.2]). The group H is also the
decomposition group of the infinite primes of K in KE/K .

For any global function field L, PL denotes the set of all places of L.
For x ∈ Z, vl(x) denotes the valuation of x at l. That is, vl(x) = γ if lγ |x and

lγ+1 ∤ x. We write vl(0) = ∞.

3. BASIC RESULTS

One result on ramification of tamely ramified extensions, used frequently, is the
following theorem.

Theorem 3.1 (Abhyankar’s Lemma). Let L/K be a separable of global function fields.
Assume that L = K1K2 with K ⊆ Ki ⊆ L, 1 ≤ i ≤ 2. Let p be a prime divisor of K
and P a prime divisor in L above p. Let Pi := P ∩ Ki, i = 1, 2. If at least one of the
extensions Ki/K is tamely ramified at p, then

eL/K(P|p) = lcm[eK1/K(P1|p), eK2/K(P2|p)],
where eL/K(P|p) denotes the ramification index. �

Next, we present some basic facts on finite cyclic groups and we apply them to
the case of a finite field.

Let G be a cyclic group of order n, say G = 〈a〉. Let Λm the unique subgroup

of G or order m where m|n. We have Λ = 〈an/m〉. Let t ∈ N and let Gt := {x ∈
G | x = yt for some y ∈ G}. We have Gt = imϕt, where ϕt : G → G is given by
ϕt(x) = xt.

Note that if t ∈ N and d = gcd(t, n), then Gd = Gt, namely, if α, β ∈ Z are such
that αt+ βn = d, we have

Gd = Gαt+βn = (Gα)t(Gn)β ⊆ Gt · 1 = Gt.

Conversely, let t = κd with κ ∈ N. Then Gt = (Gκ)d ⊆ Gd.
We also have that Λd = Λt since if x ∈ Λt, then xt = 1 = (xt)α · (xn)β =

xαt+βn = xd so that Λt ⊆ Λd. Conversely, if t = κd and if x ∈ Λd then 1 = xt =
(xd)κ = 1κ = 1.

Now, if d|n, then Gd = Λn/d because we have the exact sequence

1 −→ Λd −→ G
ϕd−→ Gd −→ 1,

obtaining |Gd| = |G|
|Λd|

= n
d = |Λn/d| and, if x ∈ Gd, there exists y ∈ G such that

x = yd that implies xn/d = (yd)n/d = yn = 1 so that Gd ⊆ Λn/d. Thus Gd = Λn/d.
We apply the previous basic results to the multiplicative groups of the finite

field F∗
q that is a cyclic group of q − 1 elements.

Lemma 3.2. Let l be a prime number and n ∈ N, with ln|q− 1. Let F := Fq

(

ln
√
β
)

with
β ∈ F∗

q . Then F = Fqls for some 0 ≤ s ≤ n.
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Proof. Let µ = ln
√
β. Then µln = β ∈ F∗

q . Set s, 0 ≤ s ≤ n to be the minimal

non-negative integer such that µls = θ ∈ F∗
q . If s = 0, then µ = θ ∈ F∗

q and

f(X) = X ls − θ = X − θ is irreducible.
For any s, we will see that f(X) = X ls − θ is an irreducible polynomial. We

have f(X) = X ls − θ =
∏ls

j=1(X − ζjlsµ), where ζm denotes a primitive m-th root

of unity. Let G := Gal(Fq(µ)/Fq). Let σ ∈ G, σ 6= Id and let σ(µ) = ζjlsµ, where
j = j0l

b, with gcd(j0, l) = 1. We choose an element σ ∈ G such that b is minimal.

We have σ(µ) = ζj0l
b

ls µ = ζj0
ls−b

µ. Let i0 ∈ Z be such that j0i0 ≡ 1 mod ls. Then

σi0(µ) = ζj0i0
ls−b

(µ) = ζls−bµ. This G is a cyclic group and of order ls−b and

ls−b
∏

ε=1

(X − ζεls−bµ) = X ls−b − µls−b ∈ Fq[X ].

Hence µls−b ∈ F∗
q . Therefore b = 0, |G| = ls, and X ls − θ = Irr(µ,X,Fq) is irre-

ducible.
It follows that [Fq(µ) : Fq] = |G| = ls and F = Fq(µ) = Fq(

ln
√
β) = Fq(

ls
√
θ) =

Fls . �

Remark 3.3. We have Fq(
ln
√
β) = Fqls , where s is the minimal non-negative integer

such that µls ∈ F∗
q , with µ = ln

√
β.

Corollary 3.4. With the above notations, if m ∈ N, we have [Fq(
ln+m√

β) : Fq] = ls+m.

Proof. Set δ = ln+m√
β, then δl

m

= µ = ln
√
β, and µls = δl

m+s

= θ ∈ F∗
q . Clearly

m+ s is minimal. �

We consider µ = ln
√
β, with β ∈ F∗

q and [Fq(
ln
√
β : Fq] = ls for some 0 ≤ s ≤ n.

Set µls = θ ∈ F∗
q , β = µln = (µls)l

n−s

= θl
n−s

. Hence β ∈ Gln−s

, where G = F∗
q .

In case that there would exist ε ∈ F∗
q such that β = εl

n−s+1

it would imply that

µln = εl
n−s+1

and thus µ = (εl
n−s+1

)1/l
n

= εl
n−s+1−n

= εl
−s+1

= ls−1√
ε. Therefore

X ls−1 − ε has µ as a root. It would follow that [Fq(µ) : Fq] ≤ ls−1 < ls contrary to

our hypothesis, Therefore β ∈ Gln−s \Gln−s+1

.

Conversely, if β ∈ Gln−s \ Gln−s+1

, then β = κl
n−s

where κ in not an l-power.
Therefore

µ1/ln = (κ)l
n−s

)1/l
n

= κl
−s

= ls
√
κ,

hence Fq( l
n√µ) ⊆ Fqls . In case that Fq( l

n√µ) ⊆ Fqls−1 it would follow that µls−1 ∈
F∗
q contrary to our hypothesis.

We have proved:

Theorem 3.5. We have that [Fq(
ln
√
β) : Fq] = ls if and only if β ∈ (F∗

q)
ln−s \(F∗

q)
ln−s+1

.
�

A basic result on cyclic groups of prime power degree that we need is the fol-
lowing.

Proposition 3.6. Let G be a cyclic group of order lτ with l a prime number. Given
H1, H2 < G, then H1 ⊆ H2 or H2 ⊆ H1. In particular H1 ∩ H2 = Hj with j = 1 or
j = 2 and if H1 6= {Id} and H2 6= {Id}, then H1 ∩H2 6= {Id}.
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Proof. By cyclicity, G has a unique subgroup of each of the divisors of |G| = lτ .
These subgroups are Λ0 ⊆ Λ1 ⊆ · · · ⊆ Λτ with |Λi| = li. The result follows. �

4. EXTENDED GENUS FIELDS AND CLASS FIELD THEORY

First we establish the definition of extended genus fields according to Anglès and
Jaulent [1]. For the terminology and notations we refer to [11].

We have that k∞ ∼= Fq

((

1
T

))

is the completion of k at p∞. Let x ∈ k∗∞. Then x is
written uniquely as

x =
( 1

T

)nx
λxεx with nx ∈ Z, λx ∈ F∗

q and εx ∈ U (1)
∞ ,

where U
(1)
∞ = U

(1)
p∞

is the group of the one units of k∞. We write π∞ := 1/T , which
is an uniformizer at p∞.

The sign function is defined as φ∞ : k∗∞ −→ F∗
q given by φ∞(x) = λx for x ∈ k∗∞.

We have that φ∞ is an epimorphism and kerφ∞ = 〈π∞〉 × U
(1)
∞ .

For a finite separable extension L of k∞, we define the sign of L∗ by the mor-

phism φL := φ∞ ◦NL/k∞
: L∗ −→ F∗

q . We have L∗

kerφL
∼= A ⊆ F∗

q .

For a global function field L, let P be the set of places of L dividing p∞. We
define the following subgroups of the group of idèles JL as:

UL :=
∏

v|∞

L∗
v ×

∏

v∤∞

ULv and U+
L :=

∏

v|∞

kerφLv ×
∏

v∤∞

ULv , (4.1)

where we denote v ∤ ∞ if v /∈ P and v|∞ if v ∈ P . The groups ULL
∗ and U+

L L
∗ are

open subgroups of JL, the idèle group of L.

Definition 4.1. Let K/k be a finite abelian extension. Then the Hilbert Class Field
(HCF) KH and the extended HCF KH+ of K are the fields corresponding to the idèle
subgroups UKK

∗ and U+
KK

∗ of JK respectively. By class field theory ([9, Theorem
17.6.198]), the respective genus Kge and extended genus fields Kgex with respect to the
extension K/k, correspond to the idèle subgroups (NK/k UK)k∗ and (NK/k U

+
K)k∗ of Jk

respectively.

By class field theory we have

Gal(KH/K) ∼= JK/UKK
∗.

We have that KH+/K is an unramified extension at the finite prime divisors of K ,
KH ⊆ KH+ and

Gal(KH+/K) ∼= JK/U
+
KK

∗.

Let K/k be a finite abelian extension then, with the notation given above, if
E = MK ∩k(ΛN ), we have Kgex = DK for some subfield (EH

ge)gex ⊆ D ⊆ Egex for
some decomposition group H (see [11]). In most cases we have H = {Id}. In this
case, (EH

ge)gex = Egex and Kgex = EgexK .

In this paper, we particularly study the case (EH
ge)gex 6= Egex. A general result is

the following.

Proposition 4.2. Let K/k be a finite abelian extension and let E be given by (2.1). Then,
if P1, . . . , Pr are the finite primes of k ramified in K and

ePj (E
H
ge|k) = ePj (E|k) = ePj (Ege|k),

for all 1 ≤ j ≤ r, it follows that (EH
ge)gex = Egex.
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Proof. The group of Dirichlet characters associated to Egex is

Y :=
∏

P∈R+
T

XP =

r
∏

j=1

XPj ,

where X is the group of Dirichlet characters associated to E. Each XPj is cyclic
of order ePj (E|k). The field associated to XPj is the subfield of k(ΛPj ) of degree
ePj (E|k) over k. It follows that

[Egex : k] =
r
∏

j=1

ePj (E|k).

Let Z be the group of Dirichlet characters associated to (EH
ge)gex. The only finite

primes of k possibly ramified in (EH
ge)gex are P1, . . . , Pr. The group of Dirichlet

characteres to (EH
ge)gex is

∏r
j=1 ZPj . By hypothesis, XPj = ZPj for all 1 ≤ j ≤ r.

Therefore (EH
ge)gex = Egex. �

Corollary 4.3. We have (EH
ge)gex 6= Egex ⇐⇒ there exists 1 ≤ j0 ≤ r such that

ePj0 (E
H
gex|k) < ePj0 (E|k) = ePj0 (Ege|k) = ePj0 (Egex|k).

Proof. It follows from Proposition 4.2 and from the facts that Egex/Ege is not rami-
fied at any finite prime and that p∞ is fully ramified in Egex/Ege. �

Therefore, if (EH
ge)gex 6= Egex, or, equivalently, there exists a finite prime Pj ram-

ified in Egex/E
H
ge. The prime p∞ is fully ramified in Egex/E

H
ge.

We have that H ⊆ I∞(Ege/k), the inertia group of p∞ in the extension Ege/k.
It follows that Gal(Egex/E

H
ge) ⊆ I∞(Egex/k) and we have that I∞(Egex/k) is a

cyclic group of order a power of l. Set I := I∞(Egex/k), an l–cyclic group. Further-
more |I| = e∞(Egex|k)|q − 1.

Using Proposition 3.6, we obtain:

Proposition 4.4. Egex = Ege.

Proof. Let G := I = I∞(Egex/k), H1 := IPi (Egex/E
H
ge) and H2 := Gal(Egex/Ege).

By hypothesis, we have H1 6= {Id}. Set Φ := H1 ∩H2 and F := EΦ
gex.

Egex

H2

H1

③③
③③
③③
③③

EH1
gex Ege

H
④④
④④
④④
④④

EH
ge

EI
gex

I

Egex

Φ

F

Egex

F

Ege

Then Pi is fully ramified in Egex/F andEge ⊆ F . Therefore Pi is fully ramified and
non-ramified in Egex/F . Hence F = Egex and H1 ∩H2 = {Id}. Finally, it follows
that H2 = {Id} and that Egex = Ege. �
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In the rest of the section we will focus in the cases (EH
ge)gex 6= Egex.

Definition 4.5. For a finite abelian extension K/k we define Kext := EgexK , where E
is given by (2.1).

In this paper we will proof that always

Kext = Kgex = EgexK,

where K/k is any finite abelian extension.
In [8] we define the extended genus field of a finite abelian extension K/k as

Kext. In general we have Kgex ⊆ Kext.
We recall the following theorem from class field theory.

Theorem 4.6. Let F be a global function field. Let N/F be a finite abelian extension and
let B < CF be the the subgroup of the idèle class group of F corresponding to N . Then, if
Fq is the field of constants of F , Fqκ is the field of constants of N , where

κ := min{σ ∈ N | there exists ~̃α ∈ B such that deg ~̃α = σ}.
Proof. See [9, Teorema 17.6.192]. �

Remark 4.7. Note that if F is any global function field, then the field of the con-
stants of Fgex and of FH+ is the same. Therefore, in the especial case (EH

ge)gex 6=
Egex, if we obtain that if the field of constants of EgexK is contained in the one of
KH+ then, becauseEgexK = EgeK is an extension of constants ofKge, sayEgexK =
KgeFqµ and Kge ⊆ KH ⊆ KH+ and Fqµ ⊆ KH+ , it follows that EgexK ⊆ KH+ and
therefore EgexK ⊆ Kgex. Since Kgex ⊆ EgexK (see [11]), we obtain EgexK = Kgex.

Consider a finite abelian extension K/k. The idèle class subgroup B of the idèle
class group CK , the idèle class group of K , associated to KH+ is

B = U+
KK

∗/K∗ =
(

∏

P|∞

kerφP ×
∏

P∤∞

UP

)

K∗/K∗,

where

UP := UKP
, kerφP := kerφKP

, and φP = φ∞ ◦NKP|k∞
.

We denote NP := NKP|k∞
.

On the one hand, if ~α ∈ U+
K , then ~α =

(

αP

)

P
, αP ∈ UP for P ∤ ∞, so that

degP αP = 0 for P ∤ ∞. On the other hand, if P1 and P2 are two infinite primes,
NP1 K

∗
P1

= NP2 K
∗
P2

. It follows that if we fix an infinite prime P of K , then

Lemma 4.8. We have

κ : = min{σ ∈ N | there exists ~α ∈ U+
K such that deg ~α = σ}

= min{σ ∈ N | there exists ~̃α ∈ B such that deg ~̃α = σ}
= min{σ ∈ N | there exists x ∈ K∗

P such that x ∈ kerφP and degP x = σ}. �

5. CYCLIC EXTENSIONS OF PRIME POWER DEGREE

We study the extended genus field Kgex of a finite cyclic extension K/k of de-
gree ln with l a prime number and n ≥ 1. We will assume that the extension K/k
is geometric, that is, the field of constants of K is Fq. We consider four type of
primes l:
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(1) l = p, where p is the characteristic of k, the Artin-Schreier-Witt case,
(2) l 6= p and l ∤ q − 1,
(3) ln|q − 1, the Kummer case,
(4) lρ|q − 1 wiith 1 ≤ ρ < n and ln ∤ q − 1, the “semi-Kummer” case.

5.1. The Artin-Schreir-Witt case: l = p. Since H is a subgroup of the inertia group
of p∞ in E/k and the order of this last group is a divisor of q − 1, the order of H is
relative prime to p. Hence H = {Id}. It follows that (EH

ge)gex = Egex.

5.2. Case l 6= p and l ∤ q − 1. By the same reason of Subsection 5.1, the order of H
is relative prime to l. Thus H = {Id} and (EH

ge)gex = Egex.

5.3. The Kummer case: ln|q − 1.

5.3.1. The genus field in the cyclotomic case. Let K = F = k
(

ln
√
D∗

)

with D =
Pα1
1 · · ·Pαr

r be a Kummer cyclic extension of k. Let X = 〈χ〉 be the group of
Dirichlet characters associated to F . Note that for any ν ∈ N relatively prime to l,
the field associated to χν is F since X = 〈χν〉. The above corresponds to the fact

that F = k
(

ln
√

(Dν)∗
)

.

When D = P ∈ R+
T we have that the character associated to F is

(

P

)

ln
, the

Legendre symbol which is defined as follows: if P is of degree d, then for any

N ∈ RT with P ∤ N , N mod P ∈ (RT /〈P 〉)∗ ∼= F∗
qd . Then

(

N

P

)

ln
is defined as

the unique element of F∗
qd such that N

qd−1
ln ≡

(

N

P

)

ln
mod P . We have that

(

P

)

ln

is the character associated to k
(

ln
√
P ∗

)

(see [9, Proposición 9.6.1]). Let us denote

χP =

(

P

)

ln
. Then χν

P is the character associated to k
(

ln
√

(P ν)∗
)

.

Hence, if χD is the character associated to k
(

ln
√
D∗

)

, then χD =
∏r

j=1 χ
αj
Pj

.

Remark 5.1. Let l be a prime number different to p, the characteristic of K , such

that lκ|q − 1, κ ≥ 1. We have that −1 ∈ (F∗
q)

lκ for all l and all κ except when l = 2

and 2κ+1 ∤ q − 1.

Proof. If l is odd, (−1)l
κ

= −1 for all κ ∈ N. Let l = 2. If 2κ+1|q − 1, Fq contains a

primitive 2κ+1 root of unity ξ. Let µ := ξ2
κ

. Then µ 6= 1 and µ2 = 1. Thus µ = −1.

On the other hand, if 2κ+1 ∤ q−1, ξ /∈ F∗
q . Now if we had µ = −1 = ρ2

κ

for some

ρ ∈ F∗
q , then ρ is a primitive 2κ+1 root of unity, contrary to our hypothesis. �

Corollary 5.2. For any prime number l such that lκ|q − 1, with κ ∈ N, and D ∈ RT

we have k
(

lκ
√
D∗

)

= k
(

lκ
√
D
)

, except when degD is odd, l = 2, and 2κ+1 ∤ q − 1. We

also have that if γ ∈ F∗
q and ε = (−1)degDγ, then Fq

(

lκ
√
ε
)

= Fq

(

lκ
√
γ
)

with the same
exception.

Proof. If degD is even, (−1)degD = 1. If degD is odd, (−1)degD = −1 ∈ (F∗
q)

lκ

except when l = 2 and 2κ+1 ∤ q − 1. The same for Fq

(

lκ
√
ε
)

and Fq

(

lκ
√
γ
)

. �

In general, for a radical extension, we have:
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Theorem 5.3. Let F = k
(

s
√
γD

)

be a geometric separable extension of k, γ ∈ F∗
q , and let

D = Pα1
1 · · ·Pαr

r ∈ RT . Then

eF/k(Pj) =
s

gcd(αj , s)
, 1 ≤ j ≤ r and

e∞(F |k) := eF/k(p∞) =
s

gcd(degD, s)
.

Proof. See [6, §5.1]. �

As a consequence we obtain the following result for a cyclic cyclotomic Kum-

mer extension F = k( l
n√
D∗). LetX be the group of Dirichlet characters associated

toF and let Y =
∏

P∈R+
T
XP be the group associated toM , the maximal cyclotomic

extension of F unramified at the finite primes.
LetP = Pj ,X = XP = 〈χP 〉 and letFP be the field associated toXP . Then FP is

cyclotomic, P is the only ramified prime in FP /k and P is tamely ramified in FP /k.
This implies that FP ⊆ k(ΛP ) and Gal(k(ΛP )/k) ∼= CqdP −1 with dP := degP .

Therefore FP is the only field of degree o(χP ) =: lβP over k. Since FP /k is a

Kummer extension, it follows that FP = k
(

lβP
√
P ∗

)

.

Theorem 5.4. The maximal unramified cyclotomic extension of F = k
(

ln
√
D∗

)

at the

finite primes is M := k( l
n
√

(Pα1
1 )∗, . . . , l

n
√

(Pαr
r )∗). In other words,

Fgex = ( l
n
√

(Pα1
1 )∗, . . . , l

n
√

(Pαr
r )∗).

Proof. It follows since M corresponds to the group of Dirichlet characters Y =
∏

P∈R+
T
XP and the field associated to XP is FP = k

(

lβP
√
P ∗

)

for each P ∈ R+
T .

The result follows. �

Remark 5.5. Let α = lab with gcd(b, l) = 1 and a < n. Then k
(

ln
√

(Pα)∗
)

=

k
(

ln−a√
P ∗

)

and

Fgex = k( l
n−a1

√

P ∗
1 , . . . ,

ln−ar
√

P ∗
r ) = F1 · · ·Fr,

with Fj = k
(

l
n−aj

√

P ∗
j

)

, 1 ≤ j ≤ r.

Another proof of Theorem 5.4 is using Abhyankar’s Lemma. On the one hand
we have that

[M : k] =
∏

P∈R+
T

|XP | =
r
∏

j=1

|XPj | =
r
∏

j=1

eM/k(Pj) =

r
∏

j=1

ln−aj .

On the other hand if, Fj = k
(

l
n−aj

√

(Pj)∗
)

, from Abyankar’s Lemma, FFj/F is
unramified at every finite prime, so FF1 · · ·Fr/F is unramified at the finite primes
and F ⊆ F1 · · ·Fr. Hence F1 · · ·Fr ⊆ Fgex and [F1 · · ·Fr : k] = [M : k]. Therefore
M = F1 · · ·Fr.

The genus field of a cyclotomic cyclic extension, is given by the following theo-
rem.

Theorem 5.6. Let E = k( l
n√
D∗), with D = Pα1

1 · · ·Pαr
r , 1 ≤ αj ≤ ln − 1, αj = bj l

aj

with gcd(bj , l) = 1, 1 ≤ j ≤ r, P1, . . . , Pr ∈ R+
T different monic irreducible polynomials

with degPj = cj l
dj , gcd(cj , l) = 1, 1 ≤ j ≤ r. We order the polynomials P1, . . . , Pr

such that 0 = a1 ≤ · · · ≤ ar ≤ n− 1.
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Let Egex := E1 · · ·Er with Ej = k( l
n−aj

√

P ∗
j ), 1 ≤ j ≤ r. Let

e∞(E|k) = lt with t = n−min{n, vl(degD)},

e∞(Egex|k) = lm with m = max
1≤j≤r

vl(e∞(Ej |k))

= max{n− aj −min{n− aj , dj} 1 ≤ j ≤ r}.
Let i0, 1 ≤ i0 ≤ r, be such that n−ai0 −min{n−ai0, di0} = m and n−aj−dj < m

for j > i0. For m > 0 we have gcd(degPi0 , l
n) = ldi0 , and therefore there exist a, b ∈ Z

such that a degPi0 + bln = ldi0 . For j < i0, we have di0 ≤ dj . Let zj := −acjldj−di0 .

For j > i0, let yj ≡ −cjc−1
i0

mod ln ∈ Z.
Then

Ege = F1 · · ·Fr,

where Fj = Ej with 1 ≤ j ≤ r if m = t, i.e, Ege = Egex, and if m > t ≥ 0, then

Fj :=







































k
(

l
n−aj

√

PjP
zj
i0

)

if j < i0,

k
(

l
di0

+t√

P ∗
i0

)

if j = i0,

k

(

l
n−aj

√

PjP
yjl

dj−di0

i0

)

if j > i0 and dj ≥ di0 ,

k

(

l
n−aj+di0

−dj
√

P l
di0

−dj

j P
yj
i0

)

if j > i0 and di0 > dj .

(5.1)

Proof. See [7, Theorem 3.2]. �

Remark 5.7. When m = t, we may also use the description of Kge given in the
case m > t.

5.3.2. The genus field in the general case. The genus field of a general ln cyclic exten-
sion of k is given by the following theorem.

Theorem 5.8. Let K = k( l
n√
γD) ⊆ k(ΛD )u, with γ ∈ F∗

q , D = Pα1
1 · · ·Pαr

r , 1 ≤
αj ≤ ln − 1, αj = bjl

aj with gcd(bj , l) = 1, 1 ≤ j ≤ r, P1, . . . , Pr ∈ R+
T different

polynomials and some u ∈ N. We order the polynomials P1, . . . , Pr so that 0 = a1 ≤
· · · ≤ ar ≤ n − 1. Let E = Ku ∩ k(ΛD ), t as in Theorem 5.6 and α = vl(|H|). Let

H′ := H |Ege
. Then EH′

ge = F1 · · ·Fi0−1Fi0+1 · · ·Fr( l
di0

+(t−α)√

P ∗
i0
) where Fj are given

in (5.1) for all j. Thus

Kge = EH′

ge K =

r
∏

i=1

i6=i0

FiK( l
di0

+(t−α)
√

P ∗
i0
).

Further, if d = min{n, vl(degD)}, we have

|H| = lα = [Fq(
ln
√

(−1)degDγ) : Fq(
ld
√

(−1)degDγ)].

Proof. See [7, Theorem 4.1]. �

The general structure of Kgex when K/k is a finite l–Kummer extension for a
prime number l, is given by Kgex = DK with D a field satisfying (EH

ge)gex ⊆ D ⊆
Egex.

With notations given above, particularly in Theorem 5.6, we consider first the
case m > t.
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Proposition 5.9. Ifm > t then i ≥ 2 and there exists j < i such thatm = n−aj−dj =
n− ai − di.

Proof. First assume that i ≥ 2. Suppose that for all 1 ≤ j ≤ i− 1 we have n− aj −
dj < n− ai − di = m.

We have that for all j 6= i, n− ai − di > n− aj −min{n− aj , dj} ≥ n− aj − dj .
Thus

n− aj − dj < n− ai − di, so that ai + di < aj + dj for all j 6= i. (5.2)

We have

degD =

r
∑

j=1

αj degPj =

r
∑

j=1

bj l
ajcj l

dj

= bicil
ai+di + lai+di+1

(

r
∑

j=1
j 6=i

bjcj l
aj+dj−ai−di−1

)

.

Hence vl(degD) = lai+di . It follows that

n−min{n, vl(degD)} ≥ n− vl(degD) = n− ai − di = m and

t ≥ n−min{n, vl(degD)} ≥ m ≥ t.

Therefore m = t contrary to our assumption. Thus, there exists 1 ≤ j ≤ i − 1 with
n− aj + dj = n− ai − di = m.

The same argument shows that if i = 1, then m = t. �

From Theorems 5.6 and 5.8 we have that for all j 6= i, we have ePj (E
H
ge|k) =

ePj (K|k) = ePj (E|k). In the case when there exists 1 ≤ j ≤ i− 1 such that n− aj −
dj = n− ai − di we obtain that

ePi(Ej |k) = ePi
(

k
( l

n−aj
√

PjP
−acjl

dj−di

i

)

|k
)

= ln−aj−dj+di

= ln−ai = ePi(E|k) = ePi(K|k).

Hence

ePi(E
H
ge|k) = ePi(K|k) = ePi(E|k).

From the above, the following result is immediate.

Proposition 5.10. If there exists 1 ≤ j ≤ i− 1 such that n− aj − dj = n− ai − di, in
particular when m > t, then (EH

ge)gex = Egex. �

The first main result on extended genus fields, is the following:

Theorem 5.11. With the above notations we have that Kgex = EgexK , except in the
following case:

(a).- K 6= E,
(b).- H 6= {Id},
(c).- t = m > 0,
(d).- m = n− ai −min{n− ai, di} > n− aj −min{n− aj , dj} for all j 6= i,
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Proof. If H = {Id} the result follows from [11, Theorem 4.5]. If E = K , K is
cyclotomic and therefore H = {Id}. If m > t, then from Proposition 5.9, we have
that ePj (E

H
ge|k) = ePj (Ege|k) for all 1 ≤ j ≤ r and therefore (EH

ge)gex = Egex. The
result follows from [11, Theorem 4.5]. If n − ai − min{n − ai, di} = n − aj −
min{n− aj , dj} for some j 6= i, then ePj (E

H
ge|k) = ePj (Ege|k) for all 1 ≤ j ≤ r and

therefore (EH
ge)gex = Egex. If t = 0, we have that p∞ in unramified in E/k so that

H = {Id}. �

5.3.3. The especial case. We now consider the especial case, that is, the exception
given in Theorem 5.11.

Let K = k
(

ln
√
γD,

)

be a geometric separable extension of k, with γ ∈ F∗
q and let

D = Pα1
1 · · ·Pαr

r ∈ RT , with P1, . . . , Pr ∈ R+
T distinct, 1 ≤ αj ≤ ln − 1, 1 ≤ j ≤ r.

Let αj = lajbj , l ∤ bj , degPj = cj l
dj , l ∤ cj . We assume that we have the exception

given in Theorem 5.11. Let E = k
(

ln
√
D∗

)

, and degD = lδc with l ∤ c. Then

e∞(K|k) = ln−δ = lt = lm = ln−ai−di , so that δ = ai + di.
Since m = t > 0, we have m = n − ai − min{n − ai, di} = n − ai − di and

n− ai − di > n− aj − dj for all j 6= i. We also have that ε := (−1)degDγ /∈ (F∗
q)

l.

Lemma 5.12. We haveEge = EH
geE. It also holds thatEK/E andEK/K are extensions

of constants and EK = EFq

(

ln
√
ε
)

= KFq

(

ln
√
ε
)

. That is,

EK = E
(

ln
√
ε
)

= K
(

ln
√
ε
)

.

We also have thatEgeK/Kge andEgeK/Ege are extensions of constants. Furthermore,
EgeK = KgeFq

(

ln
√
ε
)

= Kge

(

ln
√
ε
)

and EgeK = EgeFq

(

ln
√
ε
)

= Ege

(

ln
√
ε
)

.

Proof. The extensionEge/E
H
ge is fully ramified at the infinite prime p∞. SinceEH

ge ⊆
EH

geE ⊆ Ege and since e∞(E|k) = e∞(Ege|k), it follows that Ege = EH
geE.

Now EK = k
(

n
√
γD

)

k
(

n
√

(1)degDD
)

= E
(

ln
√
ε
)

= K
(

ln
√
ε
)

.

We also have EgeK = EH
geEK = EH

geKEK = KgeK
(

ln
√
ε
)

= Kge

(

ln
√
ε
)

. There-
fore

EgeK = EgeEK = Ege

(

ln
√
ε
)

.

�

Corollary 5.13. The field of constants of EgeK is Fq

(

ln
√
ε
)

. �

Theorem 5.14. In the exceptional case given in Theorem 5.11, we have that Ege = Egex,
the field of constants of Kge is FqdegK p∞ , the field of constants of EgexK is Fq

(

ln
√
ε
)

.

Proof. Since m = t, we have Ege = Egex. �

Later on, we will see that the field of constants of Kge is Fq

(

lδ
√
γ
)

.
We fix an infinite prime P of K and we denote K∞ := KP.
Since K∞ = k∞

(

ln
√
γD

)

, degD = d = lδc with l ∤ c, we have

D(T ) = T d + ad−1T
d−1 + · · ·+ a1T + a0

= T d
(

1 + ad−1

( 1

T

)

+ · · · a1
( 1

T

)d−1
+ a0

( 1

T

)d
)

= T dD1(1/T ).
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We have that D1(1/T ) ∈ U
(1)
∞ and since l is different to the characteristic, it follows

that (U
(1)
∞ )l

n

= U
(1)
∞ . Therefore

K∞ = k∞
(

ln
√

γD
)

= k∞
(

ln
√

γT dD1(1/T )
)

= k∞
(

ln
√

γT lδc
)

.

Since gcd(l, c) = 1, there exists c1 ∈ Z such that cc1 ≡ −1 mod ln. Thus

K∞ = k∞
(

ln
√

γc1T lδcc1
)

= k∞
(

ln
√

γc1(1/T )lδ
)

= k∞
(

ln
√

γc1πlδ
∞

)

.

Now [K∞ : k∞] = e∞(K|k)f∞(K|k) = ln−δ degK P. Set K0 = k
(

lδ
√
γD

)

⊆ K .

We have that e∞(K0|k) = lδ

gcd(degD,lδ)
= lδ

gcd(lδc,lδ)
= lδ

lδ
= 1 and e∞(K|K0) =

e∞(K|k) = ln−δ = [K : K0]. Therefore p∞ is fully ramified in K/K0.

K = k
(

ln
√
γD

)

ln−δ

K0 = k
(

lδ
√
γD

)

k

K∞

e∞(K|k)=ln−δ

K0,∞

f∞(K|k)=degK P=lλ

k∞

We have f∞(K|k) = f∞(K0|k) = f∞(K0,∞|k∞) = degK P and

K0,∞ = k∞
(

lδ
√

γD
)

= k∞
(

lδ
√

γT d
)

= k∞
(

lδ
√

γT lδc
)

= k∞
(

lδ
√
γ
)

.

Lemma 5.15. The field of constants of Kge is Fq

(

lδ
√
γ
)

. �

Let

f∞(K|k) = degK P = [K0,∞ : k∞] = [Fq

(

lδ
√
γ
)

: Fq] =: lλ.

We also have

EK = E
(

ln
√
ε
)

= K
(

ln
√
ε
)

.

Then, EK/E is an extension of constants and, since degE p∞ = 1, it follows that

f∞(EK|k) = f∞(EK|E) = [EK : E] = [Fq

(

ln
√
ε
)

: Fq] =: lν .

Now, |H| = f∞(EK|K) = f∞(EK|k)
f∞(K|k) = lν

lλ
= lν−λ =: lu. The field of constants

of Kge is Fqlλ and the field of constants of EgeK is Fq

(

ln
√
ε
)

= Fqf∞(EK|k) = Fqlν .

We have Fq

(

lδ
√
γ
)

= Fq

(

lδ
√
γc1

)

= Fqlλ . Therefore [Fq

(

lδ
√
γc1

)

: Fq] = lλ. From

Theorem 3.5, we obtain that γc1 ∈ (F∗
q)

lδ−λ \ (F∗
q)

lδ−λ+1

.

Let γc1 = θl
δ−λ

, with θ ∈ F∗
q and θ /∈ (F∗

q)
l. Then

K∞ = k∞
(

ln
√

γc1πlδ
∞

)

= k∞
(

ln
√

θlδ−λπlδ
∞

)

= k∞
(

ln−δ+λ
√

θπlλ
∞

)

.

The element ξ := ln−δ+λ
√

θπlλ
∞ satisfies ξl

n−δ+λ

= θπlλ

∞, that is, ξ is a root of

X ln−δ+λ − θπlλ

∞ ∈ k∞[X ]. Since [K∞ : k∞] = ln−δ+λ, the polynomial

X ln−δ+λ − θπlλ

∞
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is irreducible. We also have K0,∞ = k∞
(

lδ
√
γ
)

= k∞Fqlλ and K/K0 is fully rami-

fied at p∞.

Set Π̃ := ξ = ln−δ+λ
√

θπlλ
∞. Then Π̃ln−δ+λ

= θπlλ

∞ and

vP∞

(

Π̃ln−δ+λ)

= ln−δ+λvP∞(Π̃) = e∞(K∞|k∞)v∞
(

θπlλ

∞

)

= e∞(K|k)lλ = ln−δlλ = ln−δ+λ.

Hence vP∞(Π̃) = 1 and Π̃ is prime element of K∞. We also have

degK∞
Π̃ = degK∞

P∞vP∞(Π̃) = degK p∞ · 1 = lλ.

Now θ /∈ (F∗
q)

l. Let ζln−δ+λ be a primitive ln−δ+λ-th root of unity and set N∞ :=
NK∞|k∞

. We have

Irr(Π̃, X, k∞) = X ln−δ+λ − θπlλ

∞ =

ln−δ+λ−1
∏

j=0

(

X − ζj
ln−δ+λΠ̃

)

.

Thus

N∞ Π̃ =

ln−δ+λ−1
∏

j=0

(

ζj
ln−δ+λΠ̃

)

= (−1)l
n−δ+λ

ln−δ+λ−1
∏

j=0

(

− ζj
ln−δ+λΠ̃

)

= (−1)l
n−δ+λ(− θπlλ

∞

)

= (−1)l
n−δ+λ+1θπlλ

∞.

Now we consider a generic element of Y ∈ K∗
∞:

Y = Π̃sΛw, with s ∈ Z, Λ ∈ Fqlλ , and w ∈ U
(1)
K∞

.

Then

N∞ Π̃s =
(

N∞ Π̃
)s

= (−1)(l
n−δ+λ+1)sθsπlλs

∞ ,

N∞ Λ = NK0,∞|k∞

(

NK∞|K0,∞
Λ
)

= NK0,∞|k∞
(Λll

n−δ

) =
(

NK0,∞|k∞
Λ
)ln−δ

,

N∞ w = v ∈ U (1)
∞ .

It follows that

φP∞(Y ) = φ∞(N∞(Y )) = φ∞
(

(−1)(l
n−δ+λ+1)sθsπlλs

∞ (NK0,∞|k∞
Λ)l

n−δ

v
)

= (−1)(l
n−δ+λ+1)sθs

(

NK0,∞|k∞
Λ
)ln−δ

= (−θ)s
[

(−1)l
λ(

NK0,∞|k∞
Λ
)]ln−δ

.

Therefore Y ∈ kerφP∞ ⇐⇒ there exists Λ ∈ Fqlλ such that

(−θ)s
[

(−1)l
λ(

NK0,∞|k∞
Λ
)]ln−δ

= 1.

Now, NK0,∞|k∞
Fqlλ = Fq , thus N∞ F∗

qlλ
=

(

F∗
q

)ln−δ

and Λ ∈ Fqlλ . Hence −θs ∈
(F∗

q)
ln−δ

.

5.3.4. Case n = 1. This case was considered in [4].
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5.3.5. Case n ≥ 2. . We now assume that n > 1. We always have that, since
θ /∈ (F∗

q)
l, then −θ /∈ (F∗

q)
l because n ≥ 2 and therefore −1 ∈ (F∗

q)
l (see Remark

5.1). Hence −θs ∈ (F∗
q)

ln−δ ⇐⇒ ln−δ|s. That is kerφP∞ = {Y = Π̃sΛw | ln−δ|s}.

Because deg Y = deg
(

Π̃sΛw
)

= deg Π̃ · vP∞(Y ) = lλ · s, it follows that

min{κ ∈ N | there exists ~̃α ∈ B and deg ~̃α = κ} = ln−δ+λ,

and that the field of constants of KH+ is Fqln−δ+λ .

We have that lλ = [Fq

(

lδ
√
γ
)

: Fq], so that, from Theorem 3.5, we obtain

γ ∈ (F∗
q)

lδ−λ \ (F∗
q)

lδ−λ+1

. (5.3)

On the other hand, the field of constants of KgeE is Fq

(

ln
√
ε
)

and [Fq

(

ln
√
ε
)

:
Fq] = lν . Again, from Theorem 3.5, we obtain that

ε ∈ (F∗
q)

ln−ν \ (F∗
q)

ln−ν+1

.

We have u = ν − λ ≥ 1 so that ν ≥ λ + 1 and n − ν ≤ n − 1. Therefore
(−1)degD = ±1 ∈ (F∗

q)
ln−ν

. Hence γ = (−1)degDε ∈ (F∗
q)

ln−ν

. It follows from (5.3)
that n− ν ≤ δ − λ and n− δ ≤ ν − λ.

Thus, e∞(K|k) = ln−δ|lν−λ = lu = |H|. Since |H||e∞(K|k) = e∞(E|k), lu|ln−δ.
Therefore, ν − λ ≤ n − δ, so that ν − λ = n − δ and ν = n − δ + λ. In particular,
|H| = lu = ln−δ = e∞(K|k).

It follows that the field of constants of EgeK = EgexK is Fq

(

ln
√
ε
)

= Fqlν =
Fqln−δ+λ . In short, the field of constants of both, KH+ and EgeK , is Fqln−δ+λ =

Fqlu+λ .

Thus EgeK ⊆ KH+ and EgeK ⊆ Kgex ⊆ EgexK = EgeK . Therefore EgexK ⊆
KH+ . Since Kgex ⊆ EgexK , we finally obtain that Kgex = EgexK .

Theorem 5.16. In the especial case of Theorem 5.11, we obtain Kgex = EgexK . �

Corollary 5.17. For any cyclic Kummer extension k
(

ln
√
γD

)

of k, we have Kgex =
EgexK . �

5.4. Semi-Kummer case: lρ|q − 1, ρ ≥ 1 and ln ∤ q − 1. Recall that we only need
to consider the case (EH

ge)gex 6= Egex, or, equivalently, there exists a finite prime Pj

ramified in Egex/E
H
ge, and therefore Egex = Ege (see Proposition 4.4 ). The prime

p∞ is fully ramified in Egex/E
H
ge.

Lemma 5.18. We have that f∞(K|k) = degK p∞.

Proof. Since the extensionK/k is geometric, and degk p∞ = 1, we have f∞(K|k) =
f∞(K|k) degk p∞ = degK p∞. �

We use the following notation. Let |H| := lu = f∞(EK|K). Since H is a quotient
of I , it follows that lu|lρ since |I| = e∞(Egex|k)|qdegK p∞ − 1 = q − 1. In particular
u ≤ ρ.



16 J.C. HERNANDEZ AND G. VILLA

Set lλ := degK p∞ = f∞(K|k). We have

E EK

E ∩K

①①
①①
①①
①①
①

K

k

f∞(EK|E) = f∞(EK|k)
= f∞(EK|K)f∞(K|k)
= |H| · degK p∞ = lu+λ.

Since eP (K|k) = eP (E|k) for all P ∈ R+
T ∪ {∞}, from Abhyankar’s Lemma we

obtain that eP (EK|E) = 1 for all P ∈ R+
T ∪ {∞}, that is, EK/E is an unramified

extension. We will show that it is an extension of constants.
It is easy to see that [K : k] = [E : k]. We have, on the one hand

[K : E ∩K] =
[K : k]

[E ∩K : k]
=

[E : k]

[E ∩K : k]
= [E : E ∩K].

On the other hand

[EK : E] = [K : E ∩K] and [EK : K] = [E : E ∩K].

Therefore

[EK : K] = [EK : E] = [E : E ∩K] = [K : E ∩K].

Because EK/E and EK/K are unramified extensions,

eP (E|E ∩K) = eP (K|E ∩K) for all P ∈ R+
T ∪ {∞}.

We have that EgeK/Kge = EH
geK is an extension of constants of degree |H| =

lu = [EgeK : Kge] ([2, Theorem 2.2]). We also have that the field of constants
of Kge is FqdegK p∞ . Hence, the field of constants of EgeK = EgexK is Fqψ where

ψ = degK p∞ · |H| = lλ+u = f∞(EK|k).
Let see that the field of constants of EK is also Fqψ = Fqlλ+u , the same of EgeK .

Since K/k is tamely ramified, the conductor of constants ([2, Theorem 3.1]) is
the minimum η such thatK ⊆ k(ΛN )η . In the notation of Theorem 3.1 and Remark
3.2 of [2], we have that η = td where t = f∞(K|k) = f∞(K|J) = degK p∞ = lλ,
d = f∞(EK|K) = f∞(EgeK|Kge) = |H| = lu, and J = K∩ nk(ΛN ) = K∩k(ΛN ) =
K ∩E. Therefore

η = lλ · lu = lλ+u = ψ.

Furthermore, in the same Theorem 3.1 of [2], we have

η = [K : J ] = [K : K ∩E](= [E : K ∩E] = [EK : E] = [EK : K]).
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We have, see [5]

E EK

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤

✤ (EK)η = Eη = Kη

K

tt
tt
tt
tt
tt

⑤⑤⑤⑤⑤⑤⑤⑤

E ∩K (E ∩K)η

k = kη ∩ E kσ kη

If EK ∩ kη = kσ ⊆ kη , then K ⊆ EK = kσE ⊆ kσk(ΛN ) = k(ΛN )σ . Since η is
the minimum, it follows that η = σ, and EK = (EK)η = Eη = Kη. Therefore, the
field of constants of EK is Fqψ = Fqlλ+u .

Proposition 5.19. The field of constants of either EgeK or EK is Fqlλ+u , where lλ =

degK p∞ and lu = |H|. �

Furthermore, [Eη : E] = η = ψ = lλ+u = [K : J ] = [K : E ∩K] = [E : E ∩K] =
[EK : K] = [EK : E].

E

η

η

EK = Eη = Kη

η

E ∩K η K

EK

lu H

η=lλ+uEHK

lλ

K

We have that EK/E is an extension of constants of degree η, and the same is true
is for the extension EK/K . The field of constants of EHK is Fqlλ , that is, the same

of the field Kge = EH
geK .

Let P∞ be a prime above p∞ and denote K∞ := KP∞ , k∞ := kp∞ . Let
ep∞(K|k) = lτ |q − 1, that is, lτ |lρ and τ ≤ ρ. We have

[K∞ : k∞] = e∞(K|k)f∞(K|k) = lτ · lλ = lτ+λ.

Let k∞ ⊆ F ⊆ K∞ be the inertia field ofK∞/k∞, that is, F := K
I∞(K∞/k∞)
∞ and

[F : k∞] = lλ. We have that F/k∞ is unramified.
For each local field, there exists a unique unramified extension of each degree

(see [9, Teorema 17.3.37]). Therefore F = k∞Fqlλ , that is, F/k∞ is an “extension of

constants” of degree lλ. More precisely,

OP∞/P∞
∼= Fqlλ and F ∗ = 〈πF 〉 × F∗

qlλ
× U

(1)
F ,

where πF = π∞ = 1/T is a prime element of F ∗.
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K∞

F = k∞Fqlλ

k∞

Let K∗
∞ = 〈Π̃〉 × F∗

qlλ
× U

(1)
K∞

where Π̃ is a prime element of K∗
∞. Now, (see [9,

Teorema 17.3.14]) we have

1 = vK∞(Π̃) =
e∞(K|k)
[K∞ : k∞]

vk∞(NK∞/k∞
(Π̃)) =

1

f∞(K|k)vk∞(NK∞/k∞
(Π̃)).

Hence vk∞(NK∞/k∞
(Π̃)) = lλ.

We have

K∞

e∞=lτ

F

f∞=lλ

k∞

e∞ = lτ |lρ and lρ|q−1. Therefore the lτ -th primitive
the unity ζlτ belongs to F . Since H ⊆ I∞(Egex/k),
we also have u ≤ τ .

It follows that K∞/F is a Kummer extension, say K∞ = F ( l
τ√
Y ) for some

Y ∈ F ∗ = 〈π∞〉 × F∗
qlλ

× U
(1)
F .

Let Y = πs
∞Λw, with s ∈ Z, Λ ∈ F∗

qlλ
, and w ∈ U

(1)
F . Since gcd(l, p) = 1, we have

U
(1)
F = (U

(1)
F )l

τ

. We write s = αlτ + r, with 0 ≤ r < lτ . Then, if wlτ

0 = w, we have

K∞ = F
(

lτ
√

παlτ+r
∞ Λwlτ

0

)

= F
(

lτ
√

πr
∞Λ

)

.

Let r = lbr0, with 0 ≤ b < τ and gcd(l, r0) = 1. Set F1 := F
( lb
√

πlbr0
∞ Λ

)

= F
(

lb
√
Λ
)

.
Thus F1/F is unramified, F ⊆ F1 ⊆ K∞ and K∞/F is totally ramified. It follows
that F1 = F and that b = 0, that is, gcd(r, l) = 1.

Therefore K∞ = F
(

lτ
√
π∞θ

)

for some θ ∈ F∗
qlλ

. Set φ := lτ
√
π∞θ. Then φl

τ

=

π∞θ. Hence

lτvK∞(φ) = vK∞(φl
τ

) = vK∞(π∞θ) = vK∞(π∞) = e(K∞|F )v∞(π∞) = lτ · 1.

It follows that vK∞(φ) = 1. Therefore we may take φ = Π̃ as a prime element of F .



EXTENDED GENUS FIELDS OF ABELIAN EXTENSIONS OF RATIONAL FUNCTION FIELDS 19

Now we consider E∞ = k∞
(

lτ
√
π∞µ

)

for some µ ∈ F∗
q . We have

E∞
η=lλ+u

lu

lτ

(EK)∞ = E∞K∞

lu

E∞ ∩K∞
lλ+u

lτ−u

K∞

k∞

lτ+λ

✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐

Because Egex ⊆ k(ΛN ) is cyclotomic, the field of constants of EH+ is also Fq.
As before, ϑ := lτ

√
π∞µ is a prime element of E∞. We have

X lτ − π∞µ =

lτ−1
∏

i=0

(

X − ζilτϑ
)

.

Hence

lτ−1
∏

i=0

(

− ζilτϑ
)

= (−1)l
τ
lτ−1
∏

i=0

(

ζilτϑ
)

= (−1)l
τ

NE∞/k∞
ϑ = −π∞µ.

Thus

NE∞/k∞
ϑ = (−1)l

τ+1µπ∞.

Since the field of constants of EH+ is Fq , then, from Theorem 4.6, there exists an
element of degree 1 in E∗

∞ satisfying

φE∞(X) = φ∞(NE∞/k∞
(X)) = 1.

Set X = ϑsαw with s ∈ Z, α ∈ F∗
q , w ∈ U

(1)
E∞

. Since degX = deg π∞v∞(X) =

1 · s = s, it follows that s = 1. Furthermore NE∞/k∞
(w) ∈ U

(1)
∞ =

(

U
(1)
∞

)lτ

and

NE∞/k∞
(α) = αlτ . Therefore

1 = φE∞(X) = φ∞(NE∞/k∞
(X)) = φ∞

(

(

(−1)l
τ+1µπ∞

)

αlτul
τ
)

= (−1)l
τ+1µαlτ ,

where u ∈ U
(1)
∞ . Therefore −µ = (−α)−lτ ∈

(

F∗
q

)lτ

and since τ < n, it follows that

−1 ∈
(

F∗
q

)lτ

. Thus µ ∈
(

F∗
q

)lτ

and E∞ = k∞
(

lτ
√
π∞µ

)

= k∞
(

lτ
√
π∞

)

.
We obtain

E∞K∞ = K∞k∞
(

lτ
√
π∞

)

= F
(

lτ
√

π∞θ, l
τ√
π∞

)

= F
(

lτ
√

π∞θ,
lτ
√
θ
)

= K∞

(

lτ
√
θ
)

.

The field of the constants of EK is Fqlλ+u , therefore [Fqlλ
(

lτ
√
θ
)

: Fqlλ ] = lu.

From Theorem 3.5 we have that θ ∈
(

F∗
qlλ

)lτ−u \
(

F∗
qlλ

)lτ−u+1

.

In short, K∞ = F
(

lτ
√
π∞θ

)

with θ ∈
(

F∗
qlλ

)lτ−u \
(

F∗
qlλ

)lτ−u+1

, F = k∞Fqlλ , and

Π̃ = lτ
√
θπ∞.
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The irreducible polynomial of Π̃ over F isX lτ−θπ∞ ∈ F [X ]. ThenX lτ−θπ∞ =
∏lτ−1

j=0 (X − ζjlτ Π̃) and

NK∞/F Π̃ =
lτ−1
∏

j=0

ζjlτ Π̃ = (−1)l
τ
lτ−1
∏

j=0

(−ζjlτ Π̃) = (−1)l
τ

(−θππ∞) = (−1)l
τ+1θπ∞,

NK∞/k∞
Π̃ = NF/k∞

(NK∞/F Π̃) = NF/k∞
((−1)l

τ+1θπ∞)

= (−1)(l
τ+1)lλ(NF/k∞

θ)πlλ

∞.

Now NF/k∞
F∗
qlλ

= F∗
q . Therefore, NF/k∞

θ ∈
(

F∗
q

)lτ−u \
(

F∗
q

)lτ−u+1

.

Let’s see the norm of an arbitrary element X of K∗
∞. Let X = Π̃sΛω with s ∈ Z,

Λ ∈ F∗
qlλ

, and ω ∈ U
(1)
K∞

. Then

NK∞/k∞
ω = ω0 ∈ U (1)

∞ ,

NK∞/k∞
Π̃s = (−1)(l

τ+1)lλsξsπlλs
∞ with ξ = NF/k∞

θ ∈
(

F∗
q

)lτ−u \
(

F∗
q

)lτ−u+1

,

NK∞/k∞
Λ = NF/k∞

(NK∞/F Λ) = NF/k∞
Λlτ = (NF/k∞

Λ)l
τ

,

and NK∞/k∞
F∗
qlλ

= (F∗
q)

lτ .

Therefore

NK∞/k∞
X = (−1)(l

τ+1)lλsξsπlλs
∞

(

NF/k∞
Λ
)lτ

ω0,

and

φK∞(X) = φ∞(NK∞/k∞
(X)) = (−1)(l

τ+1)lλsξs
(

NF/k∞
Λ
)lτ

=
(

(−1)l
λ

ξ
)s[

(−1)l
λs(NF/k∞

Λ)
]lτ

.

Now

X ∈ kerφK∞ ⇐⇒
(

(−1)l
λ

ξ
)s[

(−1)l
λs(NF/k∞

Λ)
]lτ

= 1.

In other words,

X ∈ kerφK∞ ⇐⇒ there exists Λ ∈ F∗
qlλ

such that
(

NF/k∞
Λ
)lτ

=
(

± ξ−1
)s

.

Since lρ|q − 1 with ρ ≥ 1 and ln ∤ q − 1, we have n ≥ 2. Thus −1 ∈ (F∗
q)

lτ−u+1

.

Therefore ξs ∈ (F∗
q)

lτ . Since ξ ∈
(

F∗
q

)lτ−u \
(

F∗
q

)lτ−u+1

, it follows that lu|s and lu is
the minimum positive integer with this property. For such X , we have

degK∞
X = degK∞

P∞vK∞(X) = lλ · lu = lλ+u.

Therefore, the field of constants of KH+ is Flλ+u , the same of EgexK .
We have obtained our first main result

Theorem 5.20. Let K/k be a geometric cyclic extension of degree ln with l a prime num-
ber and n ≥ 1. Then, if E is given by (2.1), we have

Kgex = EgexK. �
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6. GENERAL FINITE ABELIAN EXTENSIONS

The main key to obtain the extended genus field of a finite abelian extension, is
the following:

Lemma 6.1. Let E1 and E2 be two finite cyclotomic extensions of k and let E = E1E2.
Then Egex = (E1)gex(E2)gex.

Proof. See [2, Proposition 6.3]. �

As a consequence we obtain our final main result.

Theorem 6.2. Let K/k be any geometric finite abelian extension. Then if E is given in
(2.1), we have that

Kgex = EgexK.

Proof. Let K = K1 · · ·Ks where each Kj/k is a cyclic extension of prime power
degree. Let E = E1 · · ·Es with each Ej be given in (2.1). Then, from Lemma 6.1,
we obtain

Egex = (E1)gex · · · (Es)gex.

Therefore, from Theorem 5.20, it follows that

Kgex ⊆ EgexK = (E1)gexK1 · · · (Es)gexKs = (K1)gex · · · (Ks)gex ⊆ Kgex.

Hence Kgex = EgexK . �

We obtain some consequences from Theorem 6.2. We consider K/k a geometric
abelian finite extension. We have Kgex = EgexK and Kge = EH

geK . Let K ⊆
nk(ΛN )m, M = Lnkm and E = MK ∩ k(ΛN ). For any finite abelian extension
L/J and any prime p of J , we denote by e∗p(L|J) to the tame ramification index

of the prime p in the extension L/J , namely, if ep(L|J) = pβα with gcd(α, p) = 1,
then e∗p(L|J) = α. The set of tame ramification indexes is multiplicative.

Lemma 6.3. We have e∞(E|k) = e∗∞(K|k).
Proof. First note that if k ⊆ J ⊆ M then e∗∞(M|J) = e∗∞(J |k) = 1. Now we
consider

K
e∗∞=1

KM

K ∩M e∗∞=1 M
Since e∗∞(KM|K)|e∗∞(M|K ∩ M), it follows that e∗∞(KM|K) = e∗∞(M|K ∩

M) = 1. Therefore e∗∞(K|K ∩M) = e∗∞(KM|M).
We have

E KM

②②
②②
②②
②②

K

✈✈
✈✈
✈✈
✈✈
✈

❦❦❦
❦❦❦

❦❦❦
❦❦❦

❦❦❦
❦❦❦

❦

k K ∩M M

e∞(KM|k) = e∞(KM|M)e∞(M|k)
= e∞(KM|E)e∞(E|k).
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It follows

e∗∞(KM|k) = e∗∞(KM|M) = e∗∞(K|K ∩M) = e∗∞(E|k) = e∞(E|k).

Now

e∗∞(K|K ∩M) = e∗∞(K|K ∩M)e∗∞(K ∩M|k) = e∗∞(K|k) = e∞(E|k).

�

Theorem 6.4. We have [Kgex : Kge] = [Egex : E
H
ge] = [Egex : Ege] · |H|. In particular

[Kgex : Kge]|q − 1. It also holds

f∞(Kgex : Kge) = |H|, e∞(Kgex : Kge) = [Egex : Ege].

Furthermore, the field of constants of Kge is FqdegK p∞ , degK p∞ = f∞(K|k) and the
field of constants of both, Kgex and KH+ is Fq|H| degK p∞ and we have |H| degK p∞ =

f∞(EK|k).

Proof. We have

E EK

EH EHK

E ∩K K

Egex Kgex = EgexK

Ege EgeK

EH
ge Kge = EH

geK

It follows that [Kgex : Kge] = [Egex : E
H
ge]|q − 1.

Now, since EgeK/(EgeK)H = Kge is an extension of constants of degree |H|
([2, Theorem 2.2]), in fact, |H| = f∞(EgeK|Kge), we will see that the extension
Kgex/EgeK is totally ramified.

Egex

e∗∞=1

e∞=[Egex:Ege]

EgexK

Ege

e∗∞=1
EgeK

e∞=1
①①
①①
①①
①①

K

③③
③③
③③
③③
③

k

We have e∞(EgeK|k) = e∞(K|k). Hence e∗∞(EgeK|Ege) = 1. Similarly, we
obtain e∗∞(EgexK|Egex) = 1.

Therefore e∞(EgexK|EgeK) = e∞(Egex|Ege) = [Egex : Ege] and Kgex/EgeK is
totally ramified.

Since degk p∞ = 1 and K/k is geometric, we obtain that f∞(K|k) = degK p∞.
We know that the field of constants of Kge is FqdegK p∞ .
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Finally, EgeK/E
H
geK is an extension of constants of degree |H| = f∞(EK|K).

Hence, the field of constants of both, Kgex and KH+ , is FqdegK p∞·|H| = Fqf∞(EK|k) .
�
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[2] Barreto–Castañeda, Jonny Fernando; Montelongo–Vázquez, Carlos; Reyes–Morales Carlos
Daniel; Rzedowski–Calderón, Martha & Villa–Salvador, Gabriel Daniel, Genus fields of abelian
extensions of rational congruence function fields II, Rocky Mountain Journal of Mathematics, 48,
no. 7, 2099–2133 (2018).

[3] Clement, Rosario, The genus field of an algebraic function field, J. Number Theory 40, no. 3, 359–375
(1992).

[4] Hernandez–Bocanegra, Juan Carlos & Villa–Salvador, Gabriel, Genus Field and Extended Genus
Field of an Elementary Abelian Extension of Global Fields, Bull. Braz. Math. Soc. New Series, 54 (20)
(2023).

[5] Maldonado–Ramı́rez, Myriam; Rzedowski–Calderón, Martha & Villa–Salvador, Gabriel, Genus
Fields of Abelian Extensions of Congruence Rational Function Fields, Finite Fields Appl. 20, 40–54

(2013).
[6] Maldonado–Ramı́rez, Myriam; Rzedowski–Calderón, Martha & Villa–Salvador, Gabriel, Genus

Fields of Congruence Function Fields, Finite Fields Appl. 44, 56–75 (2017).
[7] Reyes–Morales, Carlos & Villa–Salvador, Gabriel Genus fields of Kummer l

n–cyclic extensions,
International Journal of Mathematics 32, No. 9. 1–21, paper 2150062 (2021).

[8] Ramı́rez–Ramı́rez, Elizabeth; Rzedowski-Calderón, Martha & Villa–Salvador, Gabriel, Genus
fields of global fields, Palestine Journal of Mathematics 9, no. 2, 999–1019 (2020).

[9] Rzedowski–Calderón, Martha & Villa–Salvador, Gabriel, Campos ciclotómicos numéricos y de fun-
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