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Abstract

We consider n × n non-Hermitian random matrices with independent entries and a variance
profile, as well as an additive deterministic diagonal deformation. We show that the support
of the asymptotic eigenvalue distribution in the complex plane exactly coincides with the ε-
pseudospectrum in the consecutive limits n → ∞ and ε → 0. Furthermore, we provide a description
of this support in terms of a single real-valued function on the complex plane. As a level set of this
locally real analytic function, the spectral edge is a real analytic variety of dimension at most one.

1 Introduction
The empirical spectral distribution of a non-Hermitian random matrix typically converges to a non-
random probability distribution σ, the limiting spectral measure, on the complex plane as its dimension
tends to infinity. The most prominent instance of this phenomenon is the circular law, stating that
the eigenvalues of am appropriately normalised matrix X with centered i.i.d. entries converges to the
uniform distribution on the complex unit disk [25, 8] (see [47] for optimal moment conditions and [17]
for a review).

When a deterministic matrix A is added to X, the associated asymptotic distribution σ and its
support, the asymptotic spectrum, depend on A in a complicated manner [33]. This distribution
can be realised as the Brown measure [18, 27], which is a generalisation of the spectral measure to
non-normal operators, of an element in a W ∗-probability space with faithful, tracial state ⟨ · ⟩. In fact,
σ = σA+c is the Brown measure of the sum of an embedding of A into the W ∗-probability space and
a circular element c that is ∗-free from A. In this case, the asymptotic spectrum supp σA+c coincides
with the closure of S = {ζ ∈ C : ⟨(A−ζ)−1(A∗ −ζ)−1)⟩ > 1}. This observation goes back to [33] in the
random matrix setting, has been proven in the infinite dimensional situation in [16] for normal A and
extended to general A in [15, 49]. Subsequently, the regularity of σA+c has been analysed. The measure
is absolutely continuous with respect to the Lebesgue measure on C [10] and the density is strictly
positive and real analytic on S [49]. Moreover, the density typically possesses a jump discontinuity at
the edge of S [22].

Instead of adding A to the matrix X with i.i.d. entries we may also introduce more structure
into the randomness X = (xij)n

i,j=1. When the entries xij remain independent but admit differing
distributions with entry dependent variances sij := E|xij |2, the density σ is still supported on a
disk, radially symmetric and has a jump at the edge, but is in general not constant anymore on its
support [19, 3]. This remains true when the entries of X are correlated with a decaying correlation
structure [6]. In this work we consider a case in which a nontrivial structure of the randomness and
a deterministic deformation A are present. Our randomness X has independent entries with variance
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profile S = (sij)n
i,j=1 and A is diagonal. In particular, the matrix X + A considered in this work

belongs to the class of Kronecker matrices discussed in [5].
Non-normal random matrices and a detailed understanding of their spectra play an important

role in many applications, ranging from the stability analysis of food webs [2, 35, 29] and quantum
chaotic scattering [24] to investigating the transition to chaos in neuronal networks [44, 38]. A per-
sistent challenge in the analytic study of such matrices X is their spectral instability, i.e. the fact
that tiny changes in the matrix entries may lead to large deviations of the eigenvalues. To rem-
edy this issue the ε-pseudospectrum Specε(X) is introduced (see e.g. [48] for an overview), which is
stable under perturbations, monotonically increasing in ε > 0 and contains the spectrum, namely⋂

ε>0 Specε(X) = Spec(X). Especially for high dimensional X = Xn ∈ Cn×n the dependence of
Specε(Xn) on ε may be very unstably dependent on n (see e.g. [36, Section 11.6.3] for the exam-
ple of a shift operator). In particular, the eigenvalues may accumulate in a much smaller area than
Spec∞

0 := limε↓0 limn→∞ Specε(Xn). In the case of Töplitz matrices A with a very small added ran-
domness X for example, the spectrum concentrates on curves given by the image of the unit circle by
the Toeplitz symbol inside Spec∞

0 [26, 39, 9, 42].
In contrast, our main result shows that for matrices with independent entries and diagonal de-

formation the set Spec∞
0 coincides with the support of the limiting spectral measure σ, i.e., that the

spectrum occupies the entire ε-pseudospectrum in the consecutive limits n → ∞ and ε ↓ 0. Here we
assume that sij = 1

ns( i
n , j

n) and A = (a( i
n)δij)n

i,j=1 both have piecewise continuous limiting profiles
s : [0, 1]2 → R and a : [0, 1] → C to ensure the existence of the limit as n → ∞. In particular,
Spec∞

0 stably depends on the expectation profile a and the variance profile s. Furthermore, we show
that positivity of the variance profile implies that σ is given by a bounded probability density on the
complex plane, which is real analytic and strictly positive on an open domain S := {β < 0} ⊂ C
with boundary ∂S = {β = 0}, where β : C → R is a continuous function that is real analytic in a
neighbourhood of ∂S. From this we obtain that ∂S is a real analytic variety of dimension at most 1.
The density σ vanishes outside the closure of S and typically has a jump discontinuity at the spectral
edge ∂S, except at critical points of β, where it vanishes continuously.

These results about the measure σ have been shown in the case of constant variance profile s,
e.g. when the entries of X are i.i.d., and for general A in [49, 10, 22]. For constant s our choice of
β simplifies to β(ζ) = 1

n Tr|A − ζ|−2, which coincides with the analogous quantity in [49]. In this
situation, the study of properties of σ and its relationship to β rely on solving a ζ-dependent family
of two coupled scalar equations, called Dyson equation, for two positive functions v1, v2 : S → R
that vanish at the boundary ∂S. The Dyson equation is a self-consistent equation for the diagonal
resolvent entries of the Hermitization of X + A in the n → ∞ limit. In the random matrix setup, the
Hermitization idea goes back to [25]. See e.g. [11] for its use in the analysis of Brown measures. For
non-constant s, the Dyson equation is no longer finite-dimensional in the n → ∞ limit. Instead, with
profiles a and s, it becomes a system of two ζ-dependent equations of the form

1
v1(ζ) = Sv2(ζ) + |ζ − a|2

S∗v1(ζ) ,
1

v2(ζ) = S∗v1(ζ) + |ζ − a|2

Sv2(ζ) , (1.1)

for two positive functions v1, v2 : S → L∞[0, 1], where S, S∗ : L∞[0, 1] → L∞[0, 1] are defined through
(Sf)(x) :=

∫
s(x, y)f(y)dy and (S∗f)(x) :=

∫
s(y, x)f(y)dy. From v1 the probability density σ inside

S is derived through
σ(ζ) := −∂ζ

〈
v1(ζ)(a − ζ)

π S∗v1(ζ)

〉
, (1.2)

where ⟨u⟩ :=
∫

u(x)dx. Taking the derivative in (1.2) yields a quadratic form of a non-symmetric
operator. The main idea for the proof of positivity of σ in the bulk regime, i.e. on S, is to transform
the formula for σ into the quadratic form of a strictly positive operator. Near the spectral edge ∂S, the
behaviour of σ is governed by the quantity β from the definition of S. In fact, β(ζ) coincides locally
around the spectral edge with the isolated eigenvalue of the non-symmetric operator Bζ that is closest
to zero, where Bζ : L∞[0, 1] → L∞[0, 1] is defined through Bζf := |a − ζ|2 f − Sf . A consequence
that we derive from this insight is that the jump height of the edge discontinuity of σ at the spectral
edge is proportional to |∂ζβ|2. This requires a careful singular expansion of v1, v2 at the spectral edge,
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where the Dyson equation (1.1) is unstable. A signature of this instability is that Bζ is singular for
ζ ∈ ∂S and the main contributions to v1 and v2 near ∂S point into the singular eigendirections of Bζ .
Owing to the dependence of v1, v2 and β on s, treating non-constant s and a is a recurring challenge
for the analysis in both regimes.

2 Main results
In this section, we state our assumptions and the main results. In the following, we take n ∈ N and
write JnK for the discrete interval JnK = {1, . . . , n}.

A1 Independent, centered entries: The entries of X = (xij)i,j∈JnK are independent and centered, i.e.
{xij : i, j ∈ JnK} is a family of independent random variables and Exij = 0.

A2 Finite moments: All moments of the entries of
√

nX are finite, i.e. there is a sequence of positive
constants Cν such that

E |xij |ν ≤ Cν n−ν/2 , (2.1)

for all i, j ∈ JnK and ν ∈ N.

A3 Anticoncentration of entries: There is a constant b ∈ (0, 1) such that, for all i, j ∈ JnK,

P
(
b−1 ≥

√
n|xij − yij | ≥ b

)
≥ b,

where yij is an independent copy of xij .

A4 Block-continuous variance profile: For some K ∈ N, let I1, . . . , IK ⊂ [0, 1] be disjoint intervals
of positive length such that I1 ∪ . . . ∪ IK = [0, 1]. Let s : [0, 1]2 → (0, ∞) and a : [0, 1] → C be
functions such that s|Il×Ik

and a|Il
have continuous extensions to the closures Il × Ik and Il,

respectively, for all l, k ∈ JKK. Moreover, we suppose that there is a constant c > 0 such that

inf
x,y∈[0,1]

s(x, y) ≥ c. (2.2)

The constants in the assumptions A1 – A4 are model parameters and independent of n and,
therefore, the respective estimates are uniform in n.

The next proposition shows that the empirical spectral measure of non-Hermitian random matrices
with independent entries, a variance profile and a diagonal expectation has a deterministic limit as
the matrix size tends to infinity. We state and prove this result here, as we did not find it explicitly
stated in the literature, although the tools leading to it and closely related results are well-known
in the community. The independence of the limit from the entry distributions was shown in [47,
Appendix C] and [32, Theorem 1.3]. When X is a Ginibre matrix, the convergence of the empirical
spectral measure was proved in [43, Theorem 6] and for an X with i.i.d. entries, in [47, Theorem 1.17].

Proposition 2.1 (Convergence of empirical spectral distribution). Let the functions s : [0, 1]2 →
(0, ∞) and a : [0, 1] → C satisfy A4. For any n ∈ N, we set An := (aij)n

i,j=1 ∈ Cn×n with aij :=
a
(

i
n

)
δij. Let (Xn)n∈N be a sequence of random matrices such that, for each n ∈ N the random matrix

Xn ∈ Cn×n with Xn = (xij)i,j∈JnK satisfies A1, A2 and A3 as well as E|xij |2 = 1
ns
(

i
n , j

n

)
for all

i, j ∈ JnK.
Then there exists a unique probability measure σ on C such that the empirical spectral distribution

1
n

∑
ζ∈Spec(Xn+An) δζ converges to σ weakly in probability as n → ∞, i.e. for every bounded, continuous

function f : C → C and ε > 0, we have

lim
n→∞

P
(∣∣∣∣ 1n ∑

ζ∈Spec(Xn+An)
f(ζ) −

∫
C

f(ζ)σ(dζ)
∣∣∣∣ > ε

)
= 0.

Here the sum
∑

ζ∈Spec(Xn+An) is over all eigenvalues of Xn + An, counted with multiplicity.
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The proof of Proposition 2.1 is presented in Section 7.1 below.

Remark 2.2. Under the stronger assumptions of Lipschitz-continuity of a and s in Theorem 2.4 below,
Proposition 2.1 can be strengthened to a local law. That is, f in Proposition 2.1 can be replaced by
fζ0(ζ) := n2αf(nα(ζ − ζ0)) for α ∈ (0, 1/2) and ζ0 ∈ S, where S denotes the spectral bulk introduced
in (2.8) below. Moreover, ε can be chosen to tend to zero, when n tends to infinity, i.e. ε ≡ εn =
n−1+2α+o(1).

The condition A3 is used to control the smallest singular value of X + A − ζ for ζ ∈ C through
the results from [34, 32], where we omit the index n from our notation in X = Xn and A = An. For
all other aspects of our proofs, the weaker condition n−1 ≲ mini,j∈JnK E|xij |2 is sufficient, which is
explicitly listed above as (2.2).

Definition 2.3. The probability measure σ from Proposition 2.1 is called limiting spectral measure
associated with s and a.

The next theorem states that the pseudospectrum of the n × n-matrix X + A is asymptotically
given by the support of the measure σ from Proposition 2.1 which coincides with the spectrum of
X + A by Proposition 2.1 in the limit n → ∞. We first introduce the pseudospectrum of a matrix.
For any ε > 0, the ε-pseudospectrum of a matrix R ∈ Cn×n is defined as the set

Specε(R) := {ζ ∈ C : ∥(R − ζ)−1∥ ≥ ε−1}. (2.3)

Note that Specε(R) is monotonically increasing in ε and Spec(R) = ∩ε>0 Specε(R).
Furthermore, for a sequence (Ωn)n∈N of sets we use the customary definitions

lim inf
n→∞

Ωn :=
⋃

N∈N

⋂
n≥N

Ωn, lim sup
n→∞

Ωn :=
⋂

N∈N

⋃
n≥N

Ωn.

Theorem 2.4 (Spectrum occupies pseudospectrum). Let s : [0, 1]2 → (0, ∞), a : [0, 1] → C and
(Ik)k∈JKK be as in A4. Suppose that s|Il×Ik

and a|Il
are Lipschitz-continuous functions for all l,

k ∈ JKK. Let Xn and An be as in Proposition 2.1. Then there exists a monotonically increasing
family (Spec∞

ε (s, a))ε>0 of deterministic subsets of C such that, almost surely1,

lim sup
n→∞

Specε(Xn + An) ⊂ Spec∞
ε (s, a) ⊂ lim inf

n→∞
Specε+δ(Xn + An) (2.4)

hold for all ε, δ > 0. Moreover, this family is right continuous, i.e. ∩δ>0 Spec∞
ε+δ(s, a) = Spec∞

ε (s, a)
and the limiting spectral measure σ from Proposition 2.1 satisfies⋂

ε>0
Spec∞

ε (s, a) = supp σ. (2.5)

The proof of Theorem 2.4 is given in Section 7.2 below. We note that the sets (Spec∞
ε (s, a))ε>0 are

monotonically increasing in ε. In particular, Theorem 2.4 implies that Spec(Xn + An) is eventually
almost surely contained in a neighbourhood of supp σ.

We now state additional properties of the limiting spectral measure σ and provide a characterisation
of supp σ in terms of a and s. The measure σ itself will later also be given by a formula that only
depends on a and s (cf. (6.3)). In the following, we write L∞[0, 1] for the space of essentially bounded
functions on [0, 1], up to changes of zero measure, when this interval is equipped with the Lebesgue
measure. We denote by S the integral operator on L∞[0, 1] with kernel s, i.e.

S : L∞[0, 1] → L∞[0, 1] , (Sf)(x) :=
∫ 1

0
s(x, y)f(y)dy

For u ∈ L∞[0, 1], let Du : L∞[0, 1] → L∞[0, 1] be the operator Duf := uf induced by multiplication
with u. Using these definitions, for some bounded and measurable function a : [0, 1] → C and ζ ∈ C,
we introduce the operator B ≡ Bζ on L∞[0, 1] given by

Bζ := D|ζ−a|2 − S. (2.6)
1We assume that all Xn for n ∈ N are realised on the same probability space.
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Since B maps real-valued functions to real-valued functions, we obtain a function β : C → R defined
through

β(ζ) := inf
f>0

sup
g>0

⟨f , Bζg⟩
⟨f , g⟩

(2.7)

for ζ ∈ C, where the infimum and supremum are taken over bounded functions f, g : [0, 1] → (0, ∞)
and

⟨f , g⟩ :=
∫ 1

0
f(x)g(x)dx

is the scalar product on L2[0, 1]. The definition of β is motivated by the Birkhoff-Varga formula for
the spectral radius of a matrix with positive entries [14]. In terms of β we define the set

S := {ζ ∈ C : β(ζ) < 0} , (2.8)

whose closure coincides with supp σ, as stated in the proposition below. We will see in Proposi-
tion 5.15 (i) that β is a continuous function and therefore S is an open set.

Proposition 2.5 (Properties of the limiting spectral measure σ). Let s : [0, 1]2 → (0, ∞), a : [0, 1] → C
and (Ik)k∈JKK be as in A4. Suppose that s|Il×Ik

and a|Il
are Lipschitz-continuous functions for all l,

k ∈ JKK. Then the following holds.

(i) With respect to the Lebesgue measure d2ζ, the measure σ from Proposition 2.1 has a bounded
density on C, which we also denote by σ, i.e. σ(dζ) = σ(ζ)d2ζ.

(ii) On S, the density ζ 7→ σ(ζ) is strictly positive and real analytic.

(iii) supp σ = S and this set is bounded. Furthermore {a(x) : x ∈ [0, 1]} ⊂ S.

(iv) ∂S is a real analytic variety of real dimension at most 1.

(v) There exists a unique continuous extension σ : S → [0, ∞) of the density σ|S to S such that
σ(ζ) = g(ζ)|∂ζβ(ζ)|2 for all ζ ∈ ∂S, where g : ∂S → (0, ∞) is a strictly positive function that
can be extended to a real analytic function on a neighbourhood of ∂S.

Proposition 2.5 is a special case of Proposition 6.1 from Section 6, where we used that by Remark 4.2
Assumption A4 implies Assumption A6 below.

We now give a brief overview about previous results covering (parts of) Proposition 2.5 for a
subclass of the models we analysed. Throughout the following, c is a circular element and a is an
element that is ∗-free from c. For some examplary choice of a, the Brown measure of a+c was computed
in [13, Section 5]. In [16, Theorem 1.4], a formula for the support of the Brown measure of a+ c, when
a is a normal operator with a Gaussian spectral density, and its absolute continuity with a smooth
density was shown. For general a, the formula for the support was derived in [15, Proposition 1.2]
under an additional assumption. When a = a∗, [31, Theorems 3.13 and 3.14] provided an explicit
open set such that the support of the Brown measure of a + c coincides with the closure of the open
set and the Brown measure has a strictly positive density on the open set as well as proved a sharp
upper bound on the density. Apart from the sharp upper bound, these results were obtained in [49,
Theorems 4.2 and 4.6] for general a, where the absence of atoms of the Brown measure and the real
analyticity of the density were also established. Then [10, Theorem 7.10] proved for general a that the
Brown measure is absolutely continuous with respect to the Lebesgue measure on C, i.e. excluding
a singular continuous part in the Brown measure, as well as the sharp upper bound on the density.
In this setup, the edge behaviour of the Brown measure density was studied in [22, Theorem 2.9]
showing a jump discontinuity or a quadratic growth for the density. In particular, [49, Theorems 4.2
and 4.6] and [10, Theorem 7.10] cover Proposition 2.5 (i) – (iii) when s is constant. In this case,
[22, Theorem 2.9 and Remark 2.10] yield (iv) and (v). We note that some of the works listed above
considered generalisations of circular elements such as elliptic elements in addition. Similar statements
about the Brown measure of related models can for example be found in [12, 21, 28].
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Remark 2.6 (Necessity of Lipschitz-continuity). The Lipschitz-continuity assumption on a and s
in Proposition 2.5 is needed to ensure that the image of a remains in a positive distance from the
boundary ∂S of the spectrum as stated in Proposition 2.5 (iii). For a counterexample, where the
Lipschitz-continuity of a is violated and ∂S ∩ {a(x) : x ∈ [0, 1]} ≠ ∅ we refer to [22, Proposition 3.1
(iv)].

Remark 2.7 (Special cases for S). In the case when the entries of the random matrix Xn are inde-
pendent and identically distributed, i.e. when s = t is a constant and E|xij |2 = t

n , we recover from
(2.8) the well-known formula [33, 47]

S =
{

ζ ∈ C :
∫ 1

0

dx

|a(x) − ζ|2
>

1
t

}
. (2.9)

If a = 0 then S = {ζ ∈ C : |ζ|2 < ϱ(S)}, where S denotes the spectral radius of S. This generalises the
corresponding result from [3, 20] to an infinite dimensional setup.

Remark 2.8 (Special behaviours of ∂S). We note that the boundary ∂S can have isolated points, i.e.
its real dimension can locally be zero (see e.g. [22, Example 3.1 (d)]). Moreover, β can have critical
points on the boundary ∂S, i.e. there can be ζ ∈ ∂S such that ∂ζβ(ζ) = 0 as shown in Example 3.1
below. Even infinitely many critical points of β can occur in ∂S, see Example 3.2. In particular, these
examples reveal that a rich class of singularities of σ can occur at the spectral edge ∂S.

2.1 Notations

We now introduce some notations used throughout. We write JnK ..= {1, . . . , n} for n ∈ N. For
r > 0, we denote by Dr

..= {z ∈ C : |z| < r} the disk of radius r around the origin in C and by
dist(x, A) := inf{|x − y| : y ∈ A} the Euclidean distance of a point x ∈ C from a set A ⊂ C.

We use the convention that c and C denote generic constants that may depend on the model
parameters, but are otherwise uniform in all other parameters, e.g. n, ζ, etc.. For two real scalars f
and g we write f ≲ g and g ≳ f if f ≤ Cg for such a constant C > 0. In case f ≲ g and f ≳ g both
hold, we write f ∼ g. If the constant C depends on a parameter δ that is not a model parameter,
we write ≲δ, ≳δ and ∼δ, respectively. The notation for inequality up to constant is also used for
self-adjoint matrices/operators f and g, where f ≤ Cg is interpreted in the sense of quadratic forms.
For complex f and g ≥ 0 we write f = O(g) in case |f | ≲ g. Analogously f = Oδ(g) expresses the
fact |f | ≲δ g.

3 Examples
In this section, we present a couple of examples highlighting certain special behaviours of ∂S.

Example 3.1 (Critical points of ∂S). Let s ≡ t := 2
3(20 − 7

√
7) be constant on [0, 1]2, δ = (−17 +

7
√

7)/8 and

a : [0, 1] → C, x 7→


1 if x ∈ [0, 1/(2 + δ)),
−1 if x ∈ [1/(2 + δ), 2/(2 + δ)),
i if x ∈ [2/(2 + δ), 1].

We recall that if s ≡ t then β(ζ) = 1
t −

∫ 1
0

dx
|a(x)−ζ|2 by (2.9) and

S =
{

ζ ∈ C : 1
|1 − ζ|2

+ 1
|1 + ζ|2

+ δ

|ζ − i|2 >
2 + δ

t

}
.

We set y0 = (
√

7 − 2)/3 and note that β(iy0) = 0, i.e. iy0 ∈ ∂S and, moreover, β(iy0 + x + iy) =
(c1x2 + c2y3)(1 + o(1)) for small enough x, y ∈ R. Here, c1 and c2 are two positive constants and
o(1) is meant for x → 0 and y → 0. The boundary of S and sampled eigenvalues of the corresponding
(Gaussian) random matrix model are drawn in Figure 1 (a).
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(a) Example 3.1 (b) Example 3.2

Figure 1: The solid lines in subfigures (a) and (b) show the boundary of S from Examples 3.1 and
3.2, respectively. In addition, the black dots show the sampled eigenvalues of X + A, where X is
an n × n matrix with i.i.d. N(0, 1) standard real normal distributed entries, n = 10000 and A =
(diag(a(i/n))δij)n

i,j=1 is a diagonal matrix and a is chosen as in Examples 3.1 and 3.2, respectively.

We refer to [5, Example 2.6 and Figure 1] for more examples in the spirit of Example 3.1.

Example 3.2 (Infinitely many critical points of ∂S). Let s ≡ 1 be constant on [0, 1]2 and

a : [0, 1] → C, x 7→
{√

2e4πix if x ∈ [0, 1/2],
0 if x ∈ (1/2, 1].

A short computation starting from (2.9) reveals that

S =
{
ζ ∈ C : 0 ≤ |ζ|2 < 1 or 1 < |ζ|2 < (3 +

√
5)/2

}
.

Thus, since ∂D1 ∩S = ∅ while points on both sides of ∂D1 belong to S, we conclude from the analyticity
of β that ∂ζβ(ζ) = ∂ζ̄β(ζ) = 0 for all ζ ∈ ∂D1. Hence, there are infinitely many critical points of β on
∂S. The boundary of S and sampled eigenvalues of an approximating random matrix model are shown
in Figure 1 (b).

Furthermore, using (4.2) and (6.3), we find that

σ(ζ) = 1
π

(
1 − 2

2 + x + x
(2x−1)3

(
1 + 1

x2

))
1(ζ ∈ S),

where x ∈ (0, ∞) is the unique positive solution of 1
x + 1√

1+4x+x2−8|z|2+3
= 2.

4 General setup and Dyson equation

In this section, we generalise the setup from the previous section in order to study an analogue of σ
when a and s are defined on a probability space X and on X2 instead of [0, 1] and [0, 1]2, respectively.
Thus, let (X, A, µ) be a probability space, which represents the labels of the main quantities, e.g. a
etc. We denote by B = L∞(X, A, µ) the measurable essentially bounded functions on X up to measure
zero with respect to µ.
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Throughout the paper, we fix two measurable functions s : X × X → [0, ∞) and a : X → C with
a ∈ B. We also assume that

sup
x∈X

∫
X

s(x, y)µ(dy) < ∞, sup
y∈X

∫
X

s(x, y)µ(dx) < ∞.

Therefore, the two operators S : B → B and S∗ : B → B defined through

(Su)(x) =
∫
X

s(x, y)u(y)µ(dy), (S∗u)(x) =
∫
X

s(y, x)u(y)µ(dy) (4.1)

for all x ∈ X and u ∈ B are well-defined bounded linear operators.
We consider two coupled equations for functions in v1, v2 ∈ B with v1 > 0 and v2 > 0, namely

1
v1

= η + Sv2 + |ζ − a|2

η + S∗v1
, (4.2a)

1
v2

= η + S∗v1 + |ζ − a|2

η + Sv2
, (4.2b)

for all η > 0 and ζ ∈ C. Here, η and ζ are interpreted as the constant functions on X with the respective
value. The equation (4.2) is called the (vector) Dyson equation. First, we clarify the existence and
uniqueness of its solution.

Lemma 4.1 (Existence and uniqueness). For each η > 0 and ζ ∈ C, there are unique v1, v2 ∈ B such
that v1 > 0 and v2 > 0 and (4.2) holds.

In Appendix A.1, we present the proof of Lemma 4.1 by inferring it from [30] through a relation
of (4.2) to a matrix-valued version.

4.1 Assumptions

Throughout the paper, we will impose some of the following assumptions.

A5 Flatness of S: There is a constant C > 0 such that
1
C

≤ s(x, y) ≤ C

for all x, y ∈ X.

We define the function Γa,s : (0, ∞) → (0, ∞) through

Γa,s(τ) := ess inf
x∈X

∫
X

1
τ−1 + |a(x) − a(y)| + ds(x, y)µ(dy), (4.3)

where ds(x, y) := ess supq∈X(|s(x, q) − s(y, q)| + |s(q, x) − s(q, y)|). Note that Γa,s is strictly monoton-
ically increasing.

A6 Data regularity: The data a and s satisfy the regularity assumption

lim
τ→∞

Γa,s(τ) = ∞

Remark 4.2. In the case X = [0, 1] and µ the Lebesgue-measure on [0, 1], Assumption A4 implies
Assumption A6, since in this case |a(x) − a(y)| + ds(x, y) ≲ |x − y| for all x, y ∈ Ik and all k ∈ JKK.

As we will see in Lemma 5.3 below, A6 together with A5 and a ∈ B implies that v1 and v2 are
uniformly bounded in the B-norm on X. In addition to L∞, we introduce the usual Lp spaces on
(X, A, µ). We denote them by Lp := Lp(X, A, µ) and the corresponding norms by ∥·∥p. For functions
u ∈ L1 and u1, u2 ∈ L2, we define their average and scalar product as

⟨u⟩ :=
∫

u(x)µ(dx) , ⟨u1 , u2⟩ := ⟨u1u2⟩ ,

respectively. By normalisation of the probability measure µ on X we have ⟨1⟩ = 1.
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5 Solution of the Dyson Equation
In this section, we study various properties of the solution (v1, v2) of the Dyson equation (4.2). We
start with simple relations and bounds and obtain fine properties and expansions later.

From (4.2), we directly conclude

v2(η + S∗v1) = v1(η + Sv2) , (5.1)

which also implies
⟨v1⟩ = ⟨v2⟩ . (5.2)

Furthermore, we introduce y defined by

y := v1 (ā − ζ̄)
η + S∗v1

= v2 (ā − ζ̄)
η + Sv2

, (5.3)

where the second step is a consequence of (5.1). We conclude from (4.2) and (5.3) that

v1 ≤ η−1, v2 ≤ η−1, |y| ≤ |a − ζ|η−2 (5.4)

for all ζ ∈ C and η > 0. Furthermore, we have the identity

y = v1(ā − ζ̄)
η + S∗v1

= 1
a − ζ

(1 − v1(η + Sv2)) = 1
a − ζ

− v1v2
y

(5.5)

for any ζ ∈ C \ Spec(Da). Here, Spec(Da) denotes the spectrum of Da considered as multiplication
operator B → B, which coincides with the essential range of a.

Throughout the remainder of this section, we assume that s satisfies A5. This implies

S∗w ∼ Sw ∼ ⟨w⟩ (5.6)

for all w ∈ B with w ≥ 0.

5.1 Bounds on the solution

This subsection contains bounds on v1 and v2 under varying assumptions on s and a.

Bound in L2-norm: We start with the following bound with respect to the norm on L2.

Lemma 5.1. If s satisfies A5 then

⟨v2
1⟩ + ⟨v2

2⟩ + ⟨|y|2⟩ ≲ 1 (5.7)

uniformly for all ζ ∈ C and η > 0.

Proof. We multiply the first relation in (4.2a) by v2
1 and estimate v1 ≥ v2

1Sv2 ≳ v2
1⟨v2⟩ = v2

1⟨v1⟩ due
to (5.6) and (5.2). Averaging this estimate and using ⟨v1⟩ > 0 yields ⟨v2

1⟩ ≲ 1. The bound ⟨v2
2⟩ ≲ 1 is

proved analogously. From (5.3), we conclude

|y|2 = v2
1|a − ζ|2

(η + S∗v1)2 ≤ v2
1|a − ζ|2

(η + S∗v1)2 + v2
1(η + Sv2)
η + S∗v1

= v1
η + S∗v1

, (5.8)

where we used (4.2) in the last step. Hence, (5.6) implies

⟨|y|2⟩ ≲ ⟨v1⟩
η + ⟨v1⟩

≤ 1.

Corollary 5.2. Let a ∈ B and s satisfy A5. Then

η + ⟨vi⟩
1 + η2 + |ζ|2

≲ vi ≲
1

η + ⟨vi⟩
, i = 1, 2 .
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Proof. We only consider the case i = 1. The case i = 2 follows analogously. For the lower bound, we
start from (4.2) and get

v1 = η + S∗v1
(η + S∗v1)(η + Sv2) + |ζ − a|2

≳
η + ⟨v1⟩

η2 + ⟨v1⟩2 + |ζ|2 + ∥a∥2
∞

≳
η + ⟨v1⟩

1 + η2 + |ζ|2
,

using ⟨v1⟩ = ⟨v2⟩ by (5.2), (5.7) and (5.6). For the upper bound, (4.2), ⟨v1⟩ = ⟨v2⟩ and (5.6) imply

v1 ≤ 1
η + Sv2

∼ 1
η + ⟨v1⟩

.

Bound in supremum norm: Under stronger assumptions on s and a, we can also get a bound on
vi in the L∞-norm. Let Γa,s be as defined in (4.3).

Lemma 5.3. Let a ∈ B, s satisfy A5 and r > 0. Then there is a constant C > 0 with C ∼r 1 such
that C < limτ→∞ Γa,s(τ) implies

max{∥v1∥∞, ∥v2∥∞} ≤ Γ−1
a,s(C)

uniformly for ζ ∈ Dr and η > 0.

Proof. From (4.2), we obtain

1
v1(y) ≤ 1

v1(x) +
∣∣∣∣ 1
v1(x) − 1

v1(y)

∣∣∣∣
≤ 1

v1(x) + |(Sv2)(x) − (Sv2)(y)| +
∣∣∣∣ |ζ − a(x)|2
η + (S∗v1)(x) − |ζ − a(y)|2

η + (S∗v1)(y)

∣∣∣∣
≲r

1
v1(x) + ds(x, y)⟨v1⟩ + |a(x) − a(y)|

⟨v1⟩
+ ds(x, y)

⟨v1⟩

≲
1

⟨v1⟩

( 1
v1(x) + |a(x) − a(y)| + ds(x, y)

)
,

where in the third inequality we used ∥a∥∞ ≲ 1 as a ∈ B and ⟨v1⟩ + ⟨v2⟩ ≲ 1 by Lemma 5.1, as
well as (5.6) and (5.2). We take the inverse on both sides and integrate in y with respect to µ to get
Γa,s(v1(x)) ≲r 1 for almost all x ∈ X. Together with the analogous calculation with the roles of v1
and v2 interchanged, we obtain Γa,s(max{∥v1∥∞, ∥v2∥∞}) ≤ C for some C ∼r 1. Thus, the statement
of the lemma follows from the monotonicity of Γa,s.

Corollary 5.4. Let a ∈ B. If s and a satisfy A5 and A6 then

∥v1∥∞ + ∥v2∥∞ ≲ 1

uniformly for all ζ ∈ C and η > 0.

Proof. Owing to Lemma 5.3, (5.4) and a ∈ B, it remains to consider the case η ≤ 1 and |ζ| ≥ ∥a∥∞ +1.
In this case, we conclude from (4.2a) that 1

v1
≥ |ζ−a|2

η+S∗v1
≳ 1 as S∗v1 ≲ ⟨v1⟩ ≲ 1 by (5.6) and

Lemma 5.1. Since v1 > 0, we conclude ∥v1∥∞ ≲ 1. The analogous argument for v2 completes the
proof of Corollary 5.4.

Remark 5.5. Let X = [0, 1] and µ be the Lebesgue measure on [0, 1]. Let I1, . . . , IK be disjoint
intervals in [0, 1] such that I1 ∪ . . . ∪ IK = [0, 1]. If s : [0, 1] × [0, 1] → [0, ∞), a : [0, 1] → C are such
that s|Il×Ik

and a|Il
are Lipschitz-continuous for every l, k ∈ JKK then A6 is satisfied and a ∈ B. In

particular, if s satisfies A5 in addition then v1 and v2 are bounded in ∥·∥∞ uniformly on C × (0, ∞)
by Corollary 5.4. In this case A5 and A6 all hold.
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Scaling relations

Lemma 5.6. Let a ∈ B and s satisfy A5 and A6. Then

v1 ∼ ⟨v1⟩ = ⟨v2⟩ ∼ v2, |y| ≲ 1

uniformly for all ζ ∈ C and η > 0. Moreover, for any sufficiently small positive constant c ∼ 1 the
inequalities η + ⟨v1(ζ, η)⟩ ≤ c and |ζ| ≤ 1/c imply |ζ − a| ∼ 1 and |y| ∼ 1.

Before going into the proof of Lemma 5.6, we remark that if a ∈ B and s satisfies A5 then

∥v1(ζ, η) − (1 + η)−1∥ ≲ (1 + |ζ|)η−2 (5.9)

uniformly for η > 0 and ζ ∈ C. Indeed, for η ∈ (0, 1], (5.9) is a trivial consequence of (5.4). For η ≥ 1,
(5.9) follows by inverting (4.2a), subtracting (1 + η)−1 on both sides and estimating the right-hand
side using (5.6) and Lemma 5.1.

Proof. We first prove that v1 ∼ ⟨v1⟩ = ⟨v2⟩ ∼ v2. As s satisfies A5, equation (4.2), v1, v2 > 0 and
(5.6) imply

v1 ∼ v2 . (5.10)

Hence, it suffices to show v1 ∼ ⟨v1⟩ due to (5.2).
From (5.9), we conclude that v1 ∼ (1 + η)−1 and ⟨v1⟩ ∼ (1 + η)−1 uniformly for η ≳ 1 and |ζ| ≲ 1.

This proves Lemma 5.6 in that regime. If, on the other hand, |ζ| ≥ ∥a∥∞ +1 then |ζ −a| ∼ |ζ|. Hence,
for such ζ, we conclude from (4.2a) and (5.6) that

1
v1

∼ η + ⟨v2⟩ + |ζ|2

η + ⟨v1⟩
.

As the right-hand side is a constant function on X, we obtain v1 ∼ ⟨v1⟩ if |ζ| ≥ ∥a∥∞ + 1.
Hence, it remains to consider |ζ| ≲ 1 and η ≲ 1. In particular, |ζ − a| ≲ 1 as a ∈ B. Thus, (4.2a),

(5.6) and (5.2) imply
η + ⟨v1⟩ ∼ v1((η + ⟨v1⟩)2 + |ζ − a|2). (5.11)

Together with Lemma 5.1, this yields η + ⟨v1⟩ ≲ v1. We conclude v1 ≳ ⟨v1⟩ and v1 ≳ η as well as
⟨v1⟩ ≳ η. If |ζ − a| ≥ c for any c ∼ 1 then v1 ≲ η + ⟨v1⟩ ∼ ⟨v1⟩ by (5.11). Therefore we conclude
v1 ∼ ⟨v1⟩ if |ζ − a| ≥ c. What remains is the case |ζ − a| ≤ c and η ≤ c for some constant c ∼ 1.
As v1 ≲ 1 by A6 and Lemma 5.3, we conclude from (5.11) that 1 ≳ η + ⟨v1⟩ or 1 ≳ |ζ−a|2

η+⟨v1⟩ . In the
second case, (5.11) implies ⟨v1⟩ ≲ η + ⟨v1⟩ ∼ v1(|ζ − a|4 + |ζ − a|2). Using |ζ − a| ≤ c, choosing c ∼ 1
sufficiently small and averaging ⟨v1⟩ ≲ v1(|ζ − a|4 + |ζ − a|2) yield a contradiction as ⟨v1⟩ > 0. Hence,
⟨v1⟩ ≳ 1 and, thus, ⟨v1⟩ ∼ 1 by Lemma 5.1 as well as 1 ≳ v1 by (5.11) as η ≤ c for some small enough
c ∼ 1. Since v1 ≲ 1 by Lemma 5.3, this completes the proof of v1 ∼ ⟨v1⟩ uniformly for ζ ∈ C and
η > 0.

From v1 ∼ ⟨v1⟩ and (5.8), we conclude |y| ≲ 1 uniformly for ζ ∈ C and η > 0. Owing to (5.11) and
v1 ∼ ⟨v1⟩, we have η+⟨v1⟩ ∼ ⟨v1⟩(η+⟨v1⟩)2+⟨v1⟩|ζ−a|2. As η+⟨v1⟩ ≤ c, by choosing c ∼ 1 sufficiently
small, we can incorporate ⟨v1⟩(η + ⟨v1⟩)2 into the left-hand side and obtain ⟨v1⟩ ≲ |ζ − a|2⟨v1⟩. Hence,
1 ≲ |ζ − a| as ⟨v1⟩ > 0. The bound |y| ∼ 1 follows from (5.5). This proves the additional statement
and completes the proof of Lemma 5.6.

5.2 Relation to Matrix Dyson equation

Let (v1, v2) be a solution of (4.2). We now relate (v1, v2) to a solution M ∈ B2×2 of a matrix equation.
To that end, we define y as in (5.3) and set

M :=
(

iv1 y
y iv2

)
∈ B2×2. (5.12)
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Then Im M := 1
2i(M − M∗) is positive definite and inverting the 2 × 2 matrix M explicitly shows that

M satisfies the Matrix Dyson Equation (MDE)

−M−1 =
(

iη ζ − a
ζ − a iη

)
+ Σ[M ]. (5.13)

Here, Σ: B2×2 → B2×2 is defined through

Σ
[(

r11 r12
r21 r22

)]
=
(

Sr22 0
0 S∗r11

)
(5.14)

for all r11, r12, r21, r22 ∈ B.
On the other hand, if M ∈ B2×2 with Im M positive definite is a solution of (5.13) then it is easy

to see that denoting the diagonal elements of M by iv1 and iv2 yields a solution of (4.2).

Matrix Dyson equation with general spectral parameter and measure ρζ More generally,
we consider the MDE, where the spectral parameter iη is replaced by w ∈ C with Im w > 0, i.e.

−M(ζ, w)−1 =
(

w ζ − a
ζ − a w

)
+ Σ[M(ζ, w)] (5.15)

for ζ ∈ C. Then (5.15) has a unique solution M(ζ, w) ∈ B2×2 under the constraint that Im M(ζ, w) :=
1
2i(M(ζ, w) − M(ζ, w)∗) is positive definite for Im w > 0 [30].

By [4, Proposition 2.1 and Definition 2.2], the map w 7→ ⟨M(ζ, w)⟩ is the Stieltjes transform of a
probability measure on R, where we introduced the short hand notation

⟨R⟩ := 1
2(⟨r11⟩ + ⟨r22⟩) , R =

(
r11 r12
r21 r22

)
∈ B2×2 .

Definition 5.7. We denote by ρζ the unique probability measure on R whose Stieltjes transform is
given by w 7→ ⟨M(ζ, w)⟩. Through ρζ we define

Sε := {ζ ∈ C : dist(0, supp ρζ) ≤ ε} (5.16)

for any ε ≥ 0.

In the setup of Theorem 2.4, in particular, µ is the Lebesgue measure on X = [0, 1], the measure ρζ

from Definition 5.7 is the asymptotic symmetrized empirical singular value distribution of Xn +An −ζ
for any ζ ∈ C, see [5, Theorem 2.7]. In this case the set Spec∞

ε (s, a) from Theorem 2.4 is identified
in (7.11) below with Sε from (5.16), which is the n → ∞ limit of the ε-pseudospectrum (2.3) for
R = X + A.

Remark 5.8. The sets Sε defined in (5.16) are monotonously nondecreasing in ε ≥ 0, i.e. Sε1 ⊂ Sε2

if ε1 ≤ ε2. Moreover, they are bounded, in fact, Sε ⊂ {ζ ∈ C : |ζ| ≤ ε + ∥a∥∞ + 2(∥S∥∞)1/2} for all
ε ≥ 0 as a consequence of [4, Proposition 2.1]. Here, ∥S∥∞ denotes the operator norm of S viewed as
an operator from B to B.

5.3 A relation between the derivatives of M

In this subsection, we consider derivatives of M , the solution of (5.13), with respect to η and ζ and
establish a useful relation between these in the next lemma.

Lemma 5.9. Let a ∈ B and s : X × X → [0, ∞) be bounded measurable functions. Then

⟨∂ηM21(ζ, iη)⟩ = 2i⟨∂ζM(ζ, iη)⟩, ⟨∂ηM12(ζ, iη)⟩ = 2i⟨∂ζ̄M(ζ, iη)⟩ (5.17)

for every ζ ∈ C and η > 0, where we decomposed

M(ζ, iη) =
(

M11(ζ, iη) M12(ζ, iη)
M21(ζ, iη) M22(ζ, iη)

)
.

12



We note that the condition supx,y∈X s(x, y) < ∞ implies that the operators S and S∗ from (4.1)
can be extended to operators L2 → L∞.

Before proving Lemma 5.9, we prove the differentiability of M with respect to η, ζ and ζ̄. Let L
be the stability operator of (5.13), defined as

L : B2×2 → B2×2, R 7→ L[R] := M−1RM−1 − Σ[R]. (5.18)

This operator is invertible for any ζ ∈ C and η > 0 due to Lemma A.1 below. Therefore, the implicit
function theorem applied to (5.13) and simple computations show that

∂ζM = L−1[E12], ∂ζ̄M = L−1[E21], ∂ηM = iL−1[E+] (5.19)

for all η > 0 and ζ ∈ C, where we used the notations E12, E21 and E+ for the elements of B2×2 defined
through

E12 :=
(

0 1
0 0

)
, E21 :=

(
0 0
1 0

)
, E+ :=

(
1 0
0 1

)
. (5.20)

Proof of Lemma 5.9. As ⟨∂ηM21⟩ = ⟨E∗
21∂ηM⟩, we get from (5.19) that

⟨∂ηM21⟩ = 2i⟨E∗
21L−1[E+]⟩ = 2i⟨E21 , L−1[E+]⟩. (5.21)

Since ⟨∂ηM12⟩ = ⟨E∗
12∂ηM⟩, there is an analogous statement for ⟨∂ηM12⟩.

We start from the first relation in (5.19), use (L[R])∗ = L∗[R∗], the invertibility of L∗ and E∗
12 = E21

to obtain
⟨∂ζM⟩ = ⟨(L−1[E12])∗ , E+⟩ = ⟨(L∗)−1[E∗

12] , E+⟩ = ⟨E21 , L−1[E+]⟩. (5.22)

Therefore, combining (5.21) and (5.22) proves the first identity in (5.17). The second one follows
analogously.

5.4 Stability of Dyson equation and analyticity of its solution

In this section we show how the solution v1, v2 of (4.2) can be extended to η = 0. If we stay away from
the deterministic analog of the ε-pseudospectrum, then the solution is extended to η = 0 by setting
vi = 0 by the following lemma.

Lemma 5.10. Let ε > 0. Let ζ ∈ (C \ Sε) ∩D1/ε. Then vi(ζ, η) ∼ε η for all η ∈ (0, 1] and i = 1, 2. In
particular, vi is continuously extended to ζ ∈ C \ S0 and η = 0 by setting vi(ζ, 0) := 0.

Proof. From (4.2a), we conclude v1(|ζ − a|2 + (η + Sv2)(η + S∗v1)) = η + S∗v1 ≥ η. Thus, |ζ| ≤ ε−1,
a ∈ B, η ≤ 1, (5.6) and Lemma 5.1 imply v1 ≳ε η for all η ∈ (0, 1]. Similarly, v2 ≳ε η for all η ∈ (0, 1].
On the other hand, as ζ ∈ C \ Sε, the statement (v) of [4, Lemma D.1] holds for τ = 0. Hence, [4,
Lemma D.1 (i)] implies max{v1(ζ, η), v2(ζ, η)} ≤ ∥Im m(iη)∥ ≲ η for all η ∈ (0, c] for some sufficiently
small c ∼ε 1. If η ∈ (c, 1] then the upper bound in Corollary 5.2 yields vi ≲ η−1 ∼ η for all η ∈ (c, 1].
This completes the proof.

The next proposition states that if ⟨v1⟩ = ⟨v2⟩ remains bounded away from zero as η ↓ 0, then the
solution has an analytic extension to η = 0.

Proposition 5.11 (Analyticity in the bulk). Let s satisfy A5 and ζ ∈ C with lim supη↓0⟨v1(ζ, η)⟩ > 0.
Then v1, v2 : C× (0, ∞) → (0, ∞) has an extension to a neighbourhood of (ζ, 0) in C×R which is real
analytic in all variables.

To prove this proposition, we show that the Dyson equation (4.2) is stable even for η = 0. However,
the equation does not have a unique solution on B2

+ for η = 0 without the additional constraint ⟨v1⟩ =
⟨v2⟩. Therefore, we have to reformulate the equation to incorporate this constraint. Proposition 5.11
is proved at the end of this subsection.

We recall that B+ := {w ∈ B : w > 0} and set

e− = (1, −1) ∈ B2 := B ⊕ B , e⊥
− := {h = (h1, h2) ∈ B2 : ⟨h1⟩ = ⟨h2⟩}.
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For η > 0 and ζ ∈ C, we define J ≡ Jζ,η : e⊥
− ∩ B2

+ → e⊥
−, (w1, w2) 7→ (J1(w1, w2), J2(w1, w2)) through

J1(w1, w2) := (η + Sw2)
(

w1 − η + S∗w1
(η + S∗w1)(η + Sw2) + |a − ζ|2

)
,

J2(w1, w2) := (η + S∗w1)
(

w2 − η + Sw2
(η + S∗w1)(η + Sw2) + |a − ζ|2

)
.

Then (4.2) takes the form J(v) = 0 with v = (v1, v2) ∈ B2
+.

On B2, we introduce a average and a scalar product defined through〈(
x1
x2

)〉
:= 1

2
(
⟨x1⟩ + ⟨x2⟩

)
,

〈(
x1
x2

)
,

(
y1
y2

)〉
:= 1

2
(
⟨x1y1⟩ + ⟨x2y2⟩

)
(5.23)

for x1, x2, y1, y2 ∈ B. For x ∈ B2, we write ∥x∥2 :=
√

⟨x, x⟩.
For the rest of this section we will assume that s satisfies A5. Until the proof of Proposition 5.11,

we fix ζ ∈ C such that lim supη↓0⟨v1(ζ, η)⟩ ≥ δ for some δ > 0. Under these conditions, J remains
well defined on e⊥

− ∩ B2
+ even for η = 0 and we set J0 := Jζ,η=0. We now pick candidates for v1(ζ, 0)

and v2(ζ, 0) by choosing weakly convergent subsequences in the limit η ↓ 0. By Lemma 5.1, there are
v0 ∈ (L2)2 := L2 ⊕ L2 and a monotonically decreasing sequence ηn ↓ 0 in (0, 1] such that vn = v(ζ, ηn)
is weakly convergent to v0 in (L2)2, i.e. for any h ∈ (L2)2, ⟨h, vn − v0⟩ → 0 in the limit n → ∞. We
recall that L2 = L2(X, A, µ).

Lemma 5.12. Then v0 ∈ B2
+ ∩ e⊥

− and δ ≲ v0 ≲ 1
δ . Furthermore, v0 satisfies (4.2) for η = 0, i.e.

J0(v0) = 0.

For the following arguments, we introduce the operators So and Sd on B2 defined through

So :=
(

0 S
S∗ 0

)
, Sd :=

(
S∗ 0
0 S

)
. (5.24)

Owing to the upper bound in A5, So and Sd can be extended naturally to operators on (L2)2.

Proof. Since vn → v0 weakly and ⟨e−vn⟩ = 0, we conclude v0 ⊥ e−. Furthermore, for any h ∈ B2
+

we get ⟨hv0⟩ = limn→∞⟨hvn⟩ ≳ δ⟨h⟩ because of Corollary 5.2 and lim supn→∞⟨vn⟩ ≥ δ. From this we
conclude v0 ≳ δ. Similarly, Corollary 5.2 implies v0 ≲ 1

δ and thus v0 ∈ B2
+.

The natural extensions of S and S∗ to operators on L2 are Hilbert-Schmidt operators because
s ∈ L2(X × X, µ ⊗ µ) due to the upper bound in A5. In particular, S and S∗ are compact operators
on L2 and, thus, Sovn → Sov0 and Sdvn → Sdv0 in (L2)2. The bounds δ ≲ vn ≲ δ−1 then imply that
Jζ,ηn(vn) → J0(v0) weakly in (L2)2. Consequently, J0(v0) = 0.

For the formulation of the next lemma, we note that ∥T∥∞ denotes the operator norm of an
operator T : B2 → B2 and, analogously, ∥T∥2 is the operator norm if T : (L2)2 → (L2)2.

Lemma 5.13. Let v0 be a weak limit of a sequence vn = v(ζ, ηn) as above. Then

∥(∇J0|w=v0)−1∥2 + ∥(∇J0|w=v0)−1∥∞ ≲δ 1.

Proof of Lemma 5.13. Within this proof we will make use of some results from [3]. Therefore we
introduce notations that match the ones from [3], namely

τ := (|ζ − a|2, |ζ − a|2) (5.25)

and recall the definitions of So and Sd from (5.24). In [3] the setup a = 0 was treated and therefore
τ = |ζ|2 was constant. Here τ = (τ1, τ2) ∈ B+ ⊕ B+ satisfies τ1 = τ2, which ensures that the necessary
computations from [3] remain applicable. Using the notations (5.24) and (5.25), we write J in the
form

J(w) = (η + Sow)
(

w − 1
η + Sow + τ

η+Sdw

)
.
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Now we take the directional derivative ∇hJ of J in the direction h ∈ B2 with h ⊥ e−, i.e. ⟨he−⟩ = 0,
and evaluate at the solution v = (v1, v2). Thus, we find

∇hJ |w=v = (η + Sov)
(

h + v2Soh − v2τ

(η + Sdv)2 Sdh

)
= (η + Sov)Lh , (5.26)

where we used J(v) = 0 and introduced the linear operator L ≡ Lζ,η(v) : B2 → B2 as

Lh := h + v2Soh − v2τ

(η + Sdv)2 Sdh (5.27)

to guarantee the last equality. We now restrict our analysis to η = 0 and use the following lemma
that provides a resolvent estimate for L0 = Lζ,0(v0), the operator evaluated on the weak limit v0.

Lemma 5.14. There is ε∗ ∼δ 1 such that for any ε ∈ (0, ε∗) we have the bound

sup
{

∥(L0 − ω)−1∥# : ω ̸∈ Dε ∪ ((1 + D1+ε) \ D2ε)
}
≲δ,ε 1 (5.28)

for # = 2, ∞. Here, Dε contains the single isolated eigenvalue 0 of L0 with corresponding right and
left eigenvectors v− := e−v0 and Sov−, i.e.

Dε ∩ Spec(L0) = {0} , ker L2
0 = Span(v−) , L0v− = 0 , L∗

0Sov− = 0 .

Here, L∗
0 is the adjoint of L with respect to the L2-scalar product introduced in (5.23).

The proof of Lemma 5.14 follows a strategy similar to the one used to prove stability of the
Dyson equation in [3], where the case a = 0 was treated. For completeness we present the proof in
Appendix A.2 below. Using Lemma 5.14 we now show that

∥L−1
0 |(Sov−)⊥∥# ≲δ 1 , # = 2, ∞ , (5.29)

from which the claim of Lemma 5.13 immediately follows due to (5.26), A5 and v0 ≳ δ. To see
(5.29), we will apply [6, Lemma 4.6] to CL0 for some appropriately large positive constant C ∼δ 1.
The lemma was formulated for X = {1, . . . , d} with the normalized counting measure, i.e. B = Cd.
However, its proof is uniform in the underlying dimension d and it therefore translates to the current
general setup. We now check the assumptions of the [6, Lemma 4.6]. Note that L0 maps e⊥

− to (Sov−)⊥.
By Lemma 5.14 the right and left eigenvectors of L0 corresponding to the eigenvalue 0 are v− and
Sov−, respectively. Moreover, ⟨v− , e−⟩ ≳δ 1 as v0 ≳ δ, |⟨e− , w⟩| ≤ ∥w∥# and that ∥L0w∥# ≳δ ∥w∥#
for any w ⊥ Sov− due to Lemma 5.14. By [6, Lemma 4.6] we get ∥L0w∥# ≳δ ∥w∥# for any w ⊥ e−.
Thus, (5.29) is shown.

Now we use the stability at η = 0 to finish the proof of the main result of this subsection.

Proof of Proposition 5.11. Let ζ0 ∈ C be such that lim supη↓0⟨v1(ζ0, η)⟩ > 0. Let ηn ↓ 0 such that
vn = v(ζ0, ηn) is weakly convergent in (L2)2. This is possible, because the family v(ζ0, η) with η ∈ (0, 1]
is bounded in (L2)2 due to Lemma 5.1. By Lemma 5.12 the weak limit v0 = limn→∞ vn satisfies the
Dyson equation, Jζ,0(v0) = 0, and by Lemma 5.13 the Dyson equation is stable at v = v0 and η = 0.
By the implicit function theorem we find a real analytic function ṽ, defined on a neighbourhood U of
(ζ0, 0) in C×R, such that ṽ(ζ, η) solves (4.2) and ṽ(ζ0, 0) = v0. Since v0 ≳ δ according to Lemma 5.12,
ṽ(ζ, η) > 0 on U if the neighbourhood U is chosen sufficiently small. By uniqueness of the solution to
the Dyson equation we conclude ṽ(ζ, η) = v(ζ, η) for all (ζ, η) ∈ U .
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5.5 Characterisation of S

Throughout this section we assume that a ∈ B and s satisfies A5 and A6. To generalize (2.6), (2.7)
and (2.8) to the setup introduced in Section 4, we define an operator Bζ : B → B, a function β : C → R
and a subset S ⊂ C through

β(ζ) := inf
x∈B+

sup
y∈B+

⟨x, Bζ y⟩
⟨x, y⟩

, Bζ := D|a−ζ|2 − S , S := {ζ ∈ C : β(ζ) < 0} . (5.30)

We also set
ρζ(0) := 1

π
lim
η↓0

⟨v1(ζ, η)⟩ . (5.31)

This limit exists, because either lim supη→0⟨v1(ζ, η)⟩ > 0, in which case v1 can be analytically extended
to η = 0 by Proposition 5.11, or lim supη→0⟨v1(ζ, η)⟩ = 0 in which case the limit equals zero as well.
As explained after Definition 5.7 we can interpret ρζ(0) as the asymptotic singular value density of
X + A − ζ at zero in case (X, µ) = ([0, 1], dx).

In the following we will denote by λPF(T ) the spectral radius of a compact and positivity preserving
operator T , i.e. λPF(T ) is the Perron-Frobenius eigenvalue of T . In particular the operators S and S∗

are compact as mentioned in the proof of Lemma 5.12 and therefore so are DxSDy and DxS∗Dy for
x, y ∈ B. We use this fact in the statement of the following proposition.

Proposition 5.15. The following relations between β, S, Sε and ρζ apply.

(i) The function C ∋ ζ 7→ β(ζ) is continuous and satisfies limζ→∞ β(ζ) = +∞. In particular, S is
bounded.

(ii) The spectrum of Da lies inside S, i.e.

Spec(Da) ⊂ S . (5.32)

(iii) The sign of β satisfies

sign(β(ζ)) = sign
(
1 − λPF

(
SD−2

|a−ζ|

))
, ζ ∈ C . (5.33)

(iv) For any ζ ∈ C with β(ζ) > 0 the operator Bζ is invertible. Furthermore, all such ζ are charac-
terised by

{ζ ∈ C : β(ζ) > 0} = {ζ ∈ C : dist(0, supp ρζ) > 0} = C \ S0 . (5.34)

(v) The set S is characterised by having a positive singular value density at the origin, i.e.

S = {ζ ∈ C : ρζ(0) > 0} . (5.35)

Proof. Proof of (i): The continuity of ζ 7→ β(ζ) = β with B = Bζ is a consequence of the bound∣∣∣∣ inf
x∈B+

sup
y∈B+

⟨x, (B + Dw)y⟩
⟨x, y⟩

− β

∣∣∣∣ ≤ sup
x∈B+

sup
y∈B+

⟨x, D|w|y⟩
⟨x, y⟩

≤ ∥w∥∞

for any real valued w ∈ B. The statement β(ζ) → +∞ as ζ → ∞ is obvious.
Before we start with the proof of other individual statements of the proposition, we show that S

can be classified in terms of the Perron-Frobenius eigenvalue of SD−2
|a−ζ| in the sense that

S = {ζ ∈ C : λ(ζ) > 1} , (5.36)

where we introduced λ : C → [0, ∞] as the limit of a strictly increasing sequence via

λ(ζ) := lim
ε↓0

λε(ζ) , λε(ζ) := λPF
(
S(ε + D|a−ζ|2)−1).
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To show (5.36) let ε ∈ (0, 1), D := D|ζ−a|2 , λε = λε(ζ) and C > 0 such that 1 + |ζ − a|2 ≤ C. For
ζ ∈ C with β(ζ) ≥ 0 we get

β + ε ≤ C inf
x∈B+

sup
y∈B+

⟨x, (ε + B)y⟩
⟨x, (ε + D)y⟩

= C

(
1 − sup

x∈B+

inf
y∈B+

⟨x, S(ε + D)−1y⟩
⟨x, y⟩

)
= C

(
1 − λε

)
,

where we used ε + |ζ − a|2 ≤ C in the first inequality, and conclude

β ≤ C(1 − λ) if β ≥ 0 . (5.37)

For ζ ∈ C with β(ζ) < 0 we use

−β − ε = sup
x∈B+

inf
y∈B+

−⟨x, (ε + B)y⟩
⟨x, y⟩

for sufficiently small ε > 0 and find analogously that

β ≥ C
(
1 − λ

)
if β < 0 . (5.38)

From (5.37) and (5.38) we conclude (5.36).
We also show that

Spec(Da) ⊂ {ζ ∈ C : β(ζ) ≤ 0}. (5.39)

We will improve this to (5.32) below. Let ζ ∈ Spec(Da). Then ess inf|ζ − a| = 0. Thus, for any ε > 0
we find x ∈ B \ {0} with x ≥ 0 such that |ζ − a|2x ≤ εx. In the definition of β from (5.30) we can
take the supremum over all x ∈ B+, Thus, we get

β ≤ ε − inf
y∈B+

⟨x, Sy⟩
⟨x, y⟩

≤ ε .

Since ε > 0 was arbitrarily small, we conclude β ≤ 0.
Proof of (iv): Let ζ ∈ C such that β(ζ) = β > 0. Then (5.37) implies λPF(SD−1) < 1 with D =

D|ζ−a|2 . Here, D is invertible because ess inf|ζ −a| > 0 due to (5.39). In particular, B = (1−SD−1)D
is invertible.

Now we show dist(0, supp ρζ) > 0 to see one inclusion in the characterisation (5.34). The Dyson
equation in the matrix representation, (5.15) is solved by

M0 :=
(

0 (a − ζ)−1

(a − ζ)−1 0

)
(5.40)

at w = 0. Furthermore, the associated stability operator (cf. (5.18))

L0 : B2×2 → B2×2, R 7→ M−1
0 RM−1

0 − ΣR =
(

|a − ζ|2r22 − Sr22 (a − ζ)2r21
(a − ζ)2r12 |a − ζ|2r11 − S∗r11

)
(5.41)

is invertible because Bζ is invertible and ess inf|a − ζ| > 0. Therefore (5.15) can be uniquely solved
for sufficiently small w as an analytic function w 7→ M(ζ, w) with M(ζ, 0) = M0 and we get

L0[∂wM(ζ, w)|w=0] = 1 and ∂ηM(ζ, iη)|η=0 = iL−1
0 [1]

In particular, Im M(ζ, iη) is positive definite for sufficiently small η > 0 because L−1
0 is positivity

preserving, as can be seen from a Neumann series expansion using that λPF(SD−1) < 1. Therefore
M(ζ, iη) is the unique solution of (5.15) with m11(ζ, iη) = iv1(ζ, η) and m22(ζ, iη) = iv2(ζ, η). Since
m11|η=0 = m22|η=0 = 0 we conclude that ρζ(0) = ⟨v1(ζ, 0)⟩ = 0. The invertibility of L0 also implies
analyticity of M(ζ, w) in w in a small neighbourhood of zero. Thus, ρζ([−ε, ε]) = 0 for ε > 0 sufficiently
small and dist(0, supp ρζ) > 0.
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To see the other inclusion in (5.34), let ζ ∈ C be such that dist(0, supp ρζ) ≥ δ for some δ > 0.
From [4, Lemma D.1 (iv)] we know that M = M(ζ, iη) is locally a real analytic function of η with an
expansion M = M0 + iη M1 + O(η2), where M0 = M∗

0 . Taking the imaginary part of (5.15) at w = iη,
dividing both sides by η shows that

(M∗)−1KηM−1 = 1 + Σ[Kη] , (5.42)

where Kη = 1
η Im M = Re M1 +O(η). In particular, K0 := limη↓0 Kη exists and since Im M(ζ, iη) ∼δ η

by Lemma 5.10 we get K0 ∼δ 1. Evaluating (5.42) at η = 0 yields

M0(ΣK0)M0 = K0 − 1 . (5.43)

Taking the scalar product of (5.43) with the left Perron-Frobenius eigenvector of R 7→ M0(ΣR)M0 and
using K0 ∼δ 1 we see that λPF(R 7→ M0(ΣR)M0) < 1. This is equivalent to λ := λPF(SD−1) < 1 with
D := D|a−ζ|2 . Now let u ∈ B+ be the Perron-Frobenius eigenvector of SD−1. Since ε := ess inf|a−ζ| >
0 we get with y0 := D−1u that

(D − S)y0 = (1 − λ)Dy0 > 0 .

Thus,
β = inf

x>0
sup
y>0

⟨x, By⟩
⟨x, y⟩

≥ inf
x>0

⟨x, By0⟩
⟨x, y0⟩

≥ (1 − λ)ε2 > 0 .

This finishes the proof of (5.34), i.e. of (iv).
Proof of (iii): We have now collected enough information to improve (5.36) to (5.33). Indeed, by

(5.37) and (5.38) it remains to show that λ < 1 implies β > 0. Due to (5.36) we already know β ≥ 0
in case λ < 1. Now let β = 0 and λ ≤ 1. Then we show that λ = 1. Indeed by the characterisation
(5.34) we have 0 ∈ supp ρζ . Now we consider the identity

Bζv2 = η − v2(η + S∗v1)(η + Sv2)

which follows from (4.2b). For some ε > 0 we add εv2 to both sides and apply the inverse of ε+D with
D = D|a−ζ|2 . Then we take the scalar product with the right Perron-Frobenius eigenvector xε ∈ B+ of
S∗(ε+D)−1 corresponding to its Perron-Frobenius eigenvalue λε > 0. Note that the Perron-Frobenius
eigenvalues of S∗(ε + D)−1, (ε + D)−1S and S(ε + D)−1 all coincide. Thus we get

(1 − λε)⟨xεv2⟩ = η⟨(ε + D)−1xε⟩ − ⟨xε(ε + D)−1(v2(η + S∗v1)(η + Sv2) − εv2)⟩ . (5.44)

From [4, Corollary D.2] and ⟨vi⟩ ∼ vi by Lemma 5.6 we see that η/⟨vi⟩ → 0 for η ↓ 0. Thus, dividing
(5.44) by ⟨v2⟩, taking the limit η ↓ 0 and using (5.6) reveals

(1 − λε)⟨xε⟩ ∼ (1 − λε)⟨xεk⟩ = ε⟨xε(ε + D)−1k⟩ ∼ ε⟨xε(ε + D)−1S1⟩ = ε⟨S∗(ε + D)−1xε⟩ = ελε⟨xε⟩ ,

where k := lim supη↓0
v2

⟨v2⟩ ∼ 1. Letting ε ↓ 0 shows λ = 1. Thus, (5.33) is proven.
Proof of (v): By (5.34) we know that ρζ(0) > 0 implies β(ζ) ≤ 0. Thus, it suffices to show that

for ζ ∈ C with β(ζ) ≤ 0 we get β(ζ) = 0 if and only if ρζ(0) = 0. Now let β = β(ζ) ≤ 0. As above,
we consider the identity (5.44). First, suppose ρζ(0) > 0, i.e. we can analytically extend v to η = 0
by Proposition 5.11 and have v|η=0 > 0. Then in the limit η ↓ 0 we find

(λε − 1)⟨xεv2⟩ = ⟨xε(ε + D)−1(v2(S∗v1Sv2 − ε))⟩

Using v2 ∼ ⟨v2⟩ ∼ ρζ(0) for small enough ε > 0 the right hand side satisfies

⟨xε(ε + D)−1(v2(S∗v1Sv2 − ε))⟩ ∼ ρζ(0)3⟨xε(ε + D)−1S1⟩ ∼ λερζ(0)3⟨xε⟩.

Since ⟨xεv2⟩ ∼ ρζ(0)⟨xε⟩ we infer λε − 1 ∼ λε ρζ(0)2. Thus, λ > 1 and by (5.33) therefore β < 0.
Conversely, let v|η=0 = 0. Then we know from Lemma 5.6 that δ := ess inf|a − ζ| > 0. Since

β(ζ) ≤ 0 the characterisation (5.34) implies 0 ∈ supp ρζ and by (5.33) we have λ ≥ 1. Since η/⟨v⟩ → 0
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for η ↓ 0 by [4, Corollary D.2] we get, dividing (5.44) by ⟨v2⟩ and taking the limit η ↓ 0, the scaling
behaviour

1 − λε ∼ ελε .

This implies λε ≤ 1, thus λ = 1, and completes the proof of (v).
Proof of (ii): Let ζ ∈ Spec(Da). By (5.39) we know β(ζ) ≤ 0. Suppose β(ζ) = 0. Then (5.35)

would imply ρζ(0) = 0. However, this contradicts ζ ∈ Spec(Da) because of Lemma 5.6. This finishes
the proof of the proposition.

5.6 Expansion of v1 and v2 at the spectral edge

In this section we expand the solution v1, v2 of (4.2) around any edge point ζ0 ∈ C. We will see later
in Proposition 6.1 that points in the boundary of the support of the Brown measure σ, a probability
measure in the complex plane associated with our data a and s and defined in that proposition, satisfy
β(ζ0) = 0. Therefore we consider in this section a fixed ζ0 ∈ C with β(ζ0) = 0. The expansion of v1, v2
around ζ0 is based on analytic perturbation theory for β. Throughout this section we will always
assume |ζ − ζ0| + η ≤ c for some sufficiently small positive constant c ∼ 1, i.e. we assume that (ζ, η)
lies within a small neighbourhood of (ζ0, 0). We will see in Corollary 5.18 below that the function
ζ 7→ β(ζ), used to define S in (5.30), coincides locally around ζ0 with the isolated non-degenerate
eigenvalue of Bζ closest to zero. We assume A5 and A6 throughout the remainder of this section.

To shorten notation, we denote vi = vi(ζ, η). The identities

Bζ v2 = η − v2(η + S∗v1)(η + Sv2), B∗
ζ v1 = η − v1(η + S∗v1)(η + Sv2), (5.45)

which follow from (4.2a) and (4.2b), respectively, are used to expand v1 and v2 in a neighbourhood
of ζ0. We denote by b = bζ ∈ B+ and ℓ = ℓζ ∈ B+ the right and left eigenvectors of B = Bζ ,
corresponding to the eigenvalue β = β(ζ) with normalisation ⟨b⟩ = ⟨ℓ⟩ = 1, i.e.

Bb = β b, B∗ℓ = βℓ . (5.46)

The existence and uniqueness of b and ℓ is a consequence of analytic perturbation theory and Lemma 5.17
below. This lemma also implies that ζ 7→ bζ and ζ 7→ ℓζ are real analytic functions. The main result
of this section is the following proposition.

Proposition 5.16. Let s and a satisfy A5 and A6. Furthermore, let ζ0 ∈ C such that β(ζ0) = 0.
Then there is an open neighbourhood U ⊂ C × R2 of (ζ0, 0, 0), an open neighbourhood V ⊂ C × R of
(ζ0, 0) and real analytic functions w̃1, w̃2 : U → B such that

v1(ζ, η) = ϑ(ζ, η)ℓζ + w̃i(ζ, η, ϑ(ζ, η)) , v2(ζ, η) = ϑ(ζ, η)bζ + w̃i(ζ, η, ϑ(ζ, η))

for (ζ, η) ∈ V and η > 0. Furthermore, ϑ = ϑ(ζ, η) satisfies

ϑ3〈ℓb(S∗ℓ)(Sb)
〉

+ βϑ⟨ℓb⟩ − η = g(ζ, η, ϑ) , (5.47)

for all (ζ, η) ∈ V where ℓ = ℓζ , b = bζ , β = β(ζ) and g : U → R is a real analytic function, such that

g(ζ, η, x) = O(|ηx|2 + |x|5) , (ζ, η, x) ∈ U .

The proof of Proposition 5.16 is the content of the remainder of this section and will be summarised
at its end. We remark that as a solution to the cubic equation (5.47) the quantity ϑ and with it v1, v2
are not analytic at ζ = ζ0 and η = 0.

The following lemma collects spectral properties of Bζ0 . These properties yield corresponding
properties of Bζ for sufficiently small |ζ − ζ0|, using analytic perturbation theory. We will use this
idea throughout the remainder of this section after the statement of Lemma 5.17.
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Lemma 5.17 (Properties of B). Let ζ0 ∈ C with β(ζ0) = 0 and B0 := Bζ0. Then there is a constant
ε > 0 with ε ∼ 1 such that

sup
{

∥(B0 − ω)−1∥# + ∥(B∗
0 − ω)−1∥# : ω ∈ D2ε \ Dε

}
≲ 1 (5.48)

for # = 2, ∞. Here Dε contains a single isolated non-degenerate eigenvalue 0 of B0, i.e,

Dε ∩ Spec(B0) = {0} , dim kerB2
0 = 1 . (5.49)

Moreover, the right and left eigenvectors, b0 ∈ B+ and ℓ0 ∈ B+, corresponding to this eigenvalue with
normalisation ⟨b0⟩ = ⟨ℓ0⟩ = 1 satisfy the bounds ℓ0 ∼ b0 ∼ 1. Furthermore, if

P0 := ⟨ℓ0 · ⟩
⟨ℓ0b0⟩

b0 , Q0 := 1 − P0

denote the associated spectral projections then

∥B−1
0 Q0∥# + ∥(B∗

0)−1Q∗
0∥# ≲ 1 . (5.50)

Proof. Here we present the proofs of the bounds (5.48) and (5.50) for B0. The corresponding bounds
for B∗

0 follow analogously. From Proposition 5.15 (ii) and since S is bounded we know that |a−ζ0| ∼ 1.
Thus, b0 is the right eigenvector of D−1S with eigenvalue 1 and ℓ0 is the right eigenvector of D−1S∗

with eigenvalue 1, where D := D|a−ζ0|2 . In particular, b0, ℓ0 ∈ B+ by the Krein-Rutman theorem
and the geometric multiplicity of the eigenvalue 0 of B0 is 1. Furthermore, the non-degeneracy of the
eigenvalue 0 is a consequence of b0, ℓ0 ∈ B+. Indeed, suppose we had dim kerB2 > 1. Then there
would be a generalised eigenvector x with Bx = b0 and ⟨ℓ0b0⟩ = ⟨ℓ0B0x⟩ = 0 which contradicts ℓ0 > 0
and b0 > 0. This proves (5.49), which together with (5.48) implies (5.50). The relation b0 ∼ ℓ0 ∼ 1 is
a direct consequence of |a − ζ0| ∼ 1 and (5.6).

We are left with proving (5.48). Instead of controlling the resolvent of B0, it suffices to bound the
inverse of 1 − SD−1 − ωD−1 because

1
B0 − ω

= 1
D

( 1
1 − SD−1 − ωD−1 Q̃ω + 1

1 − SD−1 − ωD−1 P̃ω

)
, (5.51)

where P̃ω and Q̃ω := 1 − P̃ω are the analytic spectral projections associated with SD−1 − ωD−1 such
that

P̃0 = ⟨ℓ0 · ⟩
⟨ℓ0Db0⟩

Db0 .

Analytic perturbation theory can be applied to SD−1 because of Lemma B.2, which shows that the
resolvent of the operator SD−1 is bounded in annulus around its isolated eigenvalue 1. Consequently,
the first summand in (5.51) is bounded for sufficiently small |ω|. The second summand admits the
expansion

1
1 − SD−1 − ωD−1 P̃ω = 1

β̃(ω)
P̃ω , β̃(ω) = −ω

⟨ℓ0b0⟩
⟨ℓ0Db0⟩

+ O(|ω|2)

by standard analytic perturbation formulas, see e.g. [4, Lemma C.1]. Therefore the second summand
is bounded for ω ∈ C \ Dε for sufficiently small ε.

Corollary 5.18. Let ζ0 ∈ C with β(ζ0) = 0. Then 0 ∈ Spec(Bζ0), ess inf|a−ζ0| > 0 and λPF(SD−1
|a−ζ0|2) =

1. Furthermore, there is ε > 0 such that β(ζ) is an isolated non-degenerate eigenvalue of Bζ for all
ζ ∈ ζ0 + Dε. In particular Dε ∋ ζ 7→ β(ζ) is real analytic and has the expansion

β(ζ) = −2Re
[⟨ℓ0b0(a − ζ0)⟩

⟨ℓ0b0⟩
(ζ − ζ0)

]
+
(

1 − 2 Re
[⟨ℓ0(a − ζ0)B−1

0 Q0[b0(a − ζ0)]⟩
⟨ℓ0 b0⟩

])
|ζ − ζ0|2

− 2 Re
[⟨ℓ0(a − ζ0)B−1

0 Q0[b0(a − ζ0)]⟩
⟨ℓ0 b0⟩

(ζ − ζ0)2
]

+ O(|ζ − ζ0|3) ,

(5.52)

20



which implies the formulas

∂ζβ(ζ0) = −⟨ℓ0b0(a − ζ0)⟩
⟨ℓ0b0⟩

, ∂ζ∂ζβ(ζ0) = 1 − 2 Re
[⟨ℓ0(a − ζ0)B−1

0 Q0[b0(a − ζ0)]⟩
⟨ℓ0 b0⟩

]
(5.53)

for the derivatives of β at ζ = ζ0.

Proof. Let ζ0 ∈ C be such that β(ζ0) = 0. By Lemma 5.17 we have 0 ∈ Spec(Bζ0) and by Proposi-
tion 5.15 (ii) we get ess inf|a − ζ0| > 0. The fact that λPF(SD−1

|ζ0−a|2) = 1 was shown in (5.33).
Now we show that β(ζ) is an eigenvalue of Bζ for sufficiently small |ζ − ζ0|. Using analytic

perturbation theory, let b(ζ) and ℓ(ζ) be the right and left eigenvectors of Bζ corresponding to the
isolated non-degenerate eigenvalue β̃(ζ) with β̃(ζ0) = 0 that depends real analytically on ζ. As β̃(ζ0)
is a real isolated eigenvalue and Bζ0 as well as Bζ − Bζ0 are invariant under complex conjugation,
β̃(ζ), b(ζ) and ℓ(ζ) are also real. Since ℓ(ζ0) ∼ b(ζ0) ∼ 1 we have b(ζ), ℓ(ζ) ∈ B+ for sufficiently small
|ζ − ζ0|. Therefore

β̃(ζ) = inf
x>0

⟨x, Bζb(ζ)⟩
⟨x, b(ζ)⟩ ≤ β(ζ) ≤ sup

y>0

⟨ℓ(ζ) , Bζy⟩
⟨ℓ(ζ) , y⟩

= β̃(ζ) ,

which proves β̃ = β.
The expansion (5.52) is now a direct consequence of analytic perturbation theory, as we see e.g. by

using [4, Lemma C.1] with B = B0 + E and E = D|a−ζ|2 − D|a−ζ0|2 = D|ζ−ζ0|2−2Re ((a−ζ0)(ζ−ζ0)).

Due to analytic perturbation theory with ζ in a small neighbourhood of ζ0 and by Lemma 5.17 we
have b ∼ ℓ ∼ 1. We split v1 and v2 according to the spectral decompositions of B∗ and B, namely

v1 = ϑ1ℓ + ṽ1, v2 = ϑ2b + ṽ2 (5.54)

with the contributions ϑi = ϑi(ζ, η) to the eigendirections ℓ and b of B∗ and B as well as their
complements ṽi = ṽi(ζ, η) given as

ϑ1 := ⟨bv1⟩
⟨ℓb⟩

, ϑ2 := ⟨ℓv2⟩
⟨ℓb⟩

, ṽ1 := Q∗v1 , ṽ2 := Qv2 , Q := 1 − ⟨ℓ · ⟩
⟨ℓb⟩

b .

To quantify the error terms we introduce

α := ∥v1∥∞ + ∥v2∥∞ .

Projecting the identities (5.45) with Q and Q∗, respectively, leads to

Bζ ṽ2 = O(η + α3), B∗
ζ ṽ1 = O(η + α3) . (5.55)

Using ∥B−1Q∥∞ ≲ 1, a consequence of (5.50) and analytic perturbation theory , we find

∥ṽ1∥∞ + ∥ṽ2∥∞ = O(η + α3) . (5.56)

Because of ⟨v1⟩ = ⟨v2⟩, i.e. by (5.2), (5.54) and the normalisation ⟨b⟩ = ⟨ℓ⟩ = 1, (5.56) implies

ϑ1 = ϑ2 + O(η + α3) . (5.57)

Inserting the decomposition (5.54) into (5.45) and using (5.56), as well as (5.57), leads to

βϑ2b + Bṽ2 = η − ϑ3b(Sb)(S∗ℓ) + O(ηα2 + α5) ,

βϑ1ℓ + B∗ṽ1 = η − ϑ3ℓ(Sb)(S∗ℓ) + O(ηα2 + α5) ,

where we set ϑ := 1
2(ϑ1 + ϑ2). Now we average the first equation against ℓ and the second equation

against b, use ⟨b⟩ = ⟨ℓ⟩ = 1 and then take the arithmetic mean of the resulting equations to find

ϑ3〈ℓb(S∗ℓ)(Sb)
〉

+ βϑ⟨ℓb⟩ − η = O(ηα2 + α5) . (5.58)
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From this approximate cubic equation we conclude the scaling behaviours

α ∼ ϑ ∼
√

max{0, −β} + η

η2/3 + |β|
, ∥ṽ1∥∞ + ∥ṽ2∥∞ ∼ η + max{0, −β}3/2, (5.59)

in the regime of sufficiently small α, where we used ϑ ≥ 0 and ϑ > 0 for η > 0 to choose the correct
branch of the solution. The corresponding argument is summarised in Lemma B.1 in the appendix.

To apply this lemma we absorb the O(α5)-term on the right hand side of (5.58) into the cubic
term in ϑ on the left hand side, i.e. we write O(α5) = γ ϑ3 for some γ = O(α2), which we absorb
into the coefficient of the ϑ3-term. Such rewriting is possible since α = O(ϑ) in the regime where α is
sufficiently small. This holds because ϑ ≳ η and α = O(ϑ + η + α3) by (5.54), (5.57) and (5.56). Now
we see that α is indeed small for (ζ, η) in a neighbourhood of (ζ0, 0). Due to the characterisation of S
in (5.35) we have limη↓0 α|ζ=ζ0 = 0. With β(ζ0) = 0 and because α is a continuous function of η when
η > 0, the scaling (5.59) implies α|ζ=ζ0 ∼ η1/3. Since ζ 7→ β(ζ) is continuous by Proposition 5.15 (i)
and α is a continuous function of ζ for any η > 0 the behaviour (5.59) holds as long as η + |ζ − ζ0| is
sufficiently small.

We now summarise our insights by finishing the proof of Proposition 5.16.

Proof of Proposition 5.16. Following the computation leading to (5.55) we easily see that the right
hand side of these equations are real analytic functions of ϑ, η, ζ and ṽi. By the implicit function
theorem and the invertibility of B on the range of Q the ṽi are real analytic functions of ϑ, η and ζ.
Similarly, the right hand side of (5.58) is a real analytic function of ϑ, η and ζ. Together, we have
proved Proposition 5.16 with

ṽi(ζ, η) = w̃i(ϑ(ζ, η), η, ζ) .

6 Properties of the Brown measure σ

We now present our main result about the existence and properties of the measure σ in the general
setup introduced in Section 4. Here, we introduce the measure σ as a distributional derivative of the
function L defined through

L(ζ) :=
∫ ∞

0

(
⟨v1(ζ, η)⟩ − 1

1 + η

)
dη (6.1)

for each ζ ∈ C, where v1 is the solution of the Dyson equation (4.2). The existence of this integral in
the Lebesgue sense will be established in Lemma 6.5 below.

In the proof of Proposition 2.1 in Section 7.1 below, we relate this definition to the limiting measure
of the empirical spectral distribution. In particular, we refer to (7.2), (7.4) and Proposition 7.1 below.

Proposition 6.1 (Properties of σ, general setup). Let a ∈ B and s satisfy A5 and A6. If L : C → R
is defined as in (6.1) then the following holds.

(i) There is a unique probability measure on C such that∫
C

f(ζ)σ(dζ) = − 1
2π

∫
C

∆f(ζ)L(ζ)d2ζ (6.2)

for all f ∈ C2
0 (C), where d2ζ denotes the Lebesgue measure on C.

(ii) With respect to the Lebesgue measure, the measure σ from (6.2) has a bounded density on C,
which we also denote by σ, i.e. σ(dζ) = σ(ζ)d2ζ.

(iii) On S, the density ζ 7→ σ(ζ) is strictly positive and real analytic.

(iv) supp σ = S and this set is bounded. Furthermore Spec(Da) ⊂ S.

(v) ∂S is a real analytic variety of (real) dimension at most 1.

(vi) There exists a unique continuous extension σ : S → [0, ∞) of the density σ|S to S such that
σ(ζ) = g(ζ)|∂ζβ(ζ)|2 for all ζ ∈ ∂S, where g : ∂S → (0, ∞) is a strictly positive function that
can be extended to a real analytic function on a neighbourhood of ∂S.
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The proof of Proposition 6.1 is presented at the end of this section, Section 6. In the next
subsection, we first establish the existence of the measure σ via (6.2).

We recall that σ was called limiting spectral measure (cf. Definition 2.3) in the random matrix
setup of Section 2. In the present general setup, we rename σ according to the next definition. The
motivation for the naming of σ originates from the Brown measure of operators in von Neumann
algebras and is explained by Proposition D.1 in Appendix D.

Definition 6.2. We call the probability measure σ on C, defined by (6.2), the Brown measure associ-
ated with a and s.

6.1 Representation of the Brown measure σ

For the next result, we recall the definition of Sε from (5.16).

Proposition 6.3. Let a ∈ B and s satisfy A5 and let L be defined as in (6.1). Then there is a unique
probability measure σ on C such that (6.2) holds for all f ∈ C2

0 (C). Moreover, supp σ ⊂ S0. The
measure σ satisfies the identity

σ(ζ) = − lim
η↓0

1
π

∂ζ⟨y(ζ, η)⟩ (6.3)

in the sense of distributions, where y is the (2, 1) component of M from (5.12).

The main idea of the proof of Proposition 6.3 will be to show that −L is subharmonic and, therefore,
the distribution − 1

2π ∆L is induced by a measure. Before we present this proof, we establish a few
necessary ingredients. The next lemma will, in particular, imply that L is well-defined.

Lemma 6.4 (Integrating ⟨v1⟩ with respect to η). Let a ∈ B and s satisfy A5. Then, uniformly for
ζ ∈ C and η > 0, we have

0 ≤ ⟨v1(ζ, η)⟩ ≲ 1
1 + η

. (6.4)

Furthermore, uniformly for any T > 0 and ζ ∈ C, we have∫ T

0

∣∣∣∣⟨v1(ζ, η)⟩ − 1
1 + η

∣∣∣∣dη ≲ min
{

T,
√

1 + |ζ|
}

,

∫ ∞

T

∣∣∣∣⟨v1(ζ, η)⟩ − 1
1 + η

∣∣∣∣dη ≲
1 + |ζ|

T
. (6.5)

Proof. From (5.4) and Lemma 5.1, we immediately conclude (6.4). The bounds in (6.5) follow directly
from (6.4) and (5.9).

In the next lemma, we truncate the lower integration bound in the definition of L and, thus, obtain
Lε. It is an approximate version of L which is more regular in ζ and its derivative with respect to ζ
is given by ⟨y(ζ, ε)⟩/2.

Lemma 6.5 (Definition and derivatives of Lε). Let a ∈ B and s satisfy A5. Then the following holds.

(i) For each ε ≥ 0, the integral

Lε(ζ) :=
∫ ∞

ε

(
⟨v1(ζ, η)⟩ − 1

1 + η

)
dη (6.6)

exists in Lebesgue sense for every ζ ∈ C and the map C → R, ζ 7→ Lε(ζ) is continuous.

(ii) When ε ↓ 0 then Lε → L0 uniformly on C.

(iii) For each ε > 0, Lε is infinitely often continuously differentiable with respect to ζ and ζ̄ on C.

(iv) For each ε > 0, y(·, ε) is infinitely often continuously differentiable with respect to ζ and ζ̄ and,
for each ζ ∈ C,

∂ζLε(ζ) = 1
2⟨y(ζ, ε)⟩, ∂ζ̄Lε(ζ) = 1

2⟨y(ζ, ε)⟩. (6.7)
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Proof. The bounds in (6.5) imply that Lε(ζ) is well-defined for every ε ≥ 0 and every ζ ∈ C. Moreover,
ζ 7→ Lε(ζ) is continuous on C for every ε ≥ 0. The first bound in (6.5) implies that Lε → L0 uniformly
on C when ε ↓ 0. To prove the differentiability of Lε and y(·, ε), we conclude from (5.19) and the bound
(A.2) in Lemma A.1 that for some constant C ≡ Cζ > 0, ∥∂ζv1(ζ, iη)∥+∥∂ζ̄v1(ζ, iη)∥+∥∂ηv1(ζ, iη)∥ ≤
C max{η−C , η−2} for every η > 0 and every fixed ζ ∈ C. Therefore, Lε is differentiable with respect to
ζ and ζ̄ and we can take ∂ζ and ∂ζ̄ derivatives of Lε(ζ) by exchanging the derivative and the integral
in the definition of Lε(ζ). Hence, we conclude from (5.17) that ∂ζLε(ζ) = ⟨M21(ζ, iε)⟩/2 = ⟨y(ζ, iε)⟩/2
for all ζ ∈ C and ε > 0, which implies (6.7). Furthermore, note that L defined in (5.18) below is the
stability operator of the Matrix Dyson equation, (5.13). As it is invertible when η > 0 by Lemma A.1,
the implicit function theorem implies that y(·, ε) is infinitely often differentiable. Therefore, the same
holds of Lε due to (6.7), which completes the proof of Lemma 6.5.

Together with (6.7) in Lemma 6.5, the next proposition implies that −∆Lε ≥ 0.

Proposition 6.6. Let a ∈ B and s satisfy A5. Then −∂ζ̄⟨y(ζ, η)⟩ > 0 for all ζ ∈ C and η > 0.

The proof of Proposition 6.6 is presented in Section 6.2 below. We now have all ingredients for
the proof of Proposition 6.3.

Proof of Proposition 6.3. First, we show that −L is subharmonic since this implies the existence of
a measure σ on C such that (6.2) holds. We know from Lemma 6.5 (i) that L = L0 is a continuous
function on C. We now verify that −L satisfies the circle average inequality. Since Lε → L0 = L
uniformly on C for ε ↓ 0 and Lε is twice differentiable by Lemma 6.5, it suffices to show that −∆Lε ≥ 0
on C. The latter implies that −Lε satisfies the circle average inequality and consequently, −L satisfies
it as well. From (6.7) in Lemma 6.5 and Proposition 6.6, we conclude −∆ζLε = −4∂ζ̄∂ζLε ≥ 0 on C.
Therefore, −L is subharmonic on C and there exists a positive measure σ on C such that (6.2) holds.

Next, we prove that supp σ ⊂ S0. Owing to [4, Lemma D.1], Section 5.2 and (5.19), derivatives
of v1 and v2 with respect to ζ and ζ̄ are bounded locally uniformly for ζ ∈ C \ S0 and uniformly
for η ∈ (0, ∞). Therefore, C \ S0 is open and Proposition 5.15 (ii) and (iv) imply Spec(Da) ⊂ S0.
Moreover, L is twice continuously differentiable on C \ S0 and for any ζ ∈ C \ S0, the second identity
in (5.5), (6.7) with ε ↓ 0 and ∥v1(ζ, η)∥ + ∥v2(ζ, η)∥ → 0 for η ↓ 0 and such ζ imply

∂ζL(ζ) = 1
2

〈 1
a − ζ

〉
, ∂ζ̄L(ζ) = 1

2

〈 1
ā − ζ̄

〉
(6.8)

for all ζ ∈ C \ S0. In particular, ∆L = 4∂ζ∂ζ̄L = 0 on C \ S0 and, therefore, supp σ ⊂ S0 by (6.2).
What remains is to show that σ is a probability measure. The identities in (6.8) yield L(ζ) =

−⟨log|a − ζ|⟩ + C for ζ ∈ C \ S0, where C ∈ R is independent of ζ. (One can check that C = 0 with
some extra effort by expanding v1 for large |ζ| using (4.2).) Owing to Remark 5.8, it is possible to
choose φ ∼ 1 such that S0 is contained in Dφ. Note that φ can be chosen such that it depends only
on the upper bounds in A5 and any upper bound on ∥a∥∞. In particular, supp σ ⊂ Dφ. In order
to show that σ is a probability measure on C, we pick a rotationally symmetric function f ∈ C∞

0 (C)
such that ran f ⊂ [0, 1], f ≡ 1 on Dφ and f ≡ 0 on C \ D2φ. Thus, (6.2) and supp σ ⊂ Dφ imply

σ(C) =
∫
C

σ(dζ) = − 1
2π

∫
D3φ\Dφ

∆f(ζ)L(ζ)d2ζ = − 1
2π

∫
D3φ\Dφ

(∇f) · (∇⟨log|a − ·|⟩)d2ζ,

where in the second step we used Green’s first identity and that the boundary terms vanish as ∇f ≡ 0
on ∂D3φ ∪ ∂Dφ. We change to polar coordinates and obtain

− 1
2π

∫
D3φ\Dφ

(∇f) · (∇⟨log|a − ·|⟩) = − 1
2π

∫ 3φ

φ
∂rf(r)∂r

(∫ 2π

0
⟨log|a − reiθ|⟩dθ

)
rdr

= −
∫ 3φ

φ
∂rf(r)dr = f(φ) = 1,

where the second step follows from
∫ 2π

0 log|w − reiθ|dθ = 2π log r for all w ∈ Dr (see e.g. [40, Ex-
ample 5.7]). This shows that σ is a probability measure on C and, thus, completes the proof of
Proposition 6.3.
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6.2 Strict positivity in the bulk

In this subsection we show that the Brown measure has strictly positive density in the bulk, i.e. inside
S as defined in (5.30).

Proposition 6.7 (Strict positivity of Brown measure on S). Let a ∈ B and s satisfy A5 and A6.
Then the Brown measure σ is absolutely continuous with respect to the Lebesgue measure on C and on
S its density is strictly positive and real analytic.

For the proof of Proposition 6.7 we compute the Brown measure through the formula (6.3), i.e.
the distributional identity πσ = −2 limη↓0 ∂ζ⟨E21 , M⟩. First we will see that the right hand side in
(6.3) is non-negative and is in fact positive when evaluated at η > 0, i.e. we prove Proposition 6.6.
After that we will see that under assumption A6 the right hand side can be continuously extended to
η = 0 away from ∂S and remains a bounded function of ζ, i.e. σ has a density.

Proof of Proposition 6.6. For η > 0 and ζ ∈ C, we start from the second identity in (5.19) and
compute

∂ζ⟨E21 , M⟩ =
〈
E21 , L−1E21

〉
=
〈
C∗

M E21 , E21
〉

+
〈
C∗

M E21 , (1 − ΣCM )−1ΣCM E21
〉

,

where CM R := MRM . With

ΣCM E21 =
(

iS(v2y) 0
0 iS∗(v1y)

)
, CM∗E21 =

(
−iv1y y2

−v1v2 −iv2y

)
,

and the action of ΣCM on diagonal matrices in B2×2 given by

ΣCM

(
r1 0
0 r2

)
=
(

S(|y|2r1 − v2
2r2) 0

0 S∗(−v2
1r1 + |y|2r2)

)

this simplifies to

−∂ζ⟨E21 , M⟩ = 1
2⟨v1v2⟩ +

〈(
v1y
v2y

)
, (1 − Y )−1

(
S(v2y)
S∗(v1y)

)〉
, (6.9)

where the scalar product on B2 is the one from (5.23) and Y : B2 → B2 is defined as

Y

(
r1
r2

)
=
(

S(|y|2r1 − v2
2r2)

S∗(−v2
1r1 + |y|2r2)

)
=
(

SD2
|y| −SD2

v2

−S∗D2
v1 S∗D2

|y|

)(
r1
r2

)
.

Now we introduce a symmetrisation of Y . For this purpose we define v̂ ∈ B via

v̂ :=
√

v1(η + Sv2) =
√

v2(η + S∗v1) , (6.10)

where the second identity is due to (5.1), and V, F, T ∈ B2×2 as

T :=
(

−v̂2 |a − ζ|2 v1v2
v̂2

|a − ζ|2 v1v2
v̂2 −v̂2

)
, V :=

(
v̂
v1

0
0 v̂

v2

)
, F := V −1SoV −1 (6.11)

analogous to [3, (3.27)]. Then V FTV −1 = Y and represented in terms of F and T the formula (6.9)
reads

−2∂ζ⟨E21 , M⟩ =
〈(

v̂ y
v̂ y

)
,

( 1
X

+ 2
1 − FT

F

)(
v̂ y
v̂ y

)〉
, (6.12)

where we introduced

X :=
(

D
(

v̂2

v1v2
|y|2

)
0

0 D
(

v̂2

v1v2
|y|2

) ) . (6.13)
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In particular, (6.9) is the quadratic form of a self-adjoint operator, evaluated on a vector in the
subspace of B2 with identical entries in the first and second component. With the orthogonal projection
onto this subspace represented by

E := 1
2

(
1 1
1 1

)
∈ B2×2 ,

we have TE = ET , XE = EX and

T = −1 + 2XE . (6.14)

The representation (6.14) of T holds because of

1 = v̂2 + v̂2

v1v2
|y|2 ,

which follows directly from (4.2), (5.3) and the definition of v̂ in (6.10).
Inserting (6.14) into (6.12), we see that proving positivity of the right hand side of (6.12) reduces

to proving that the operator

E

( 1
X

+ 2
1 + F − 2FXE

F

)
E = E

1√
X

(
1 + 2

1 + F̃ 1
X − 2F̃E

F̃

) 1√
X

E

= E
1√
X

(
1 − 2

1 + F̃ 1
X

F̃E

)−1 1√
X

E = E
1√
X

1
1 − K

1√
X

E

(6.15)

on B2 is positive definite on the image of E, where we introduced

F̃ :=
√

X F
√

X and K := E
2

1 + F̃ 1
X

F̃E = E
√

X
2F

1 + F

√
XE (6.16)

in the calculation and used E2 = E as well as EX = XE. Indeed, this is the case since

1 − K =
√

X

( 1
X

− 2F+
1 + F+

+ 2F−
1 − F−

)√
X ≥

√
X

(
1 − 2F+

1 + F+

)√
X > 0 , (6.17)

where we first split the self-adjoint operator F = F+ − F− into its positive and negative parts, as well
as used 0 < X ≤ 1 and ∥F∥ < 1 for the first inequality. The final inequality follows from 2F+

1+F+
< 1

because 0 ≤ F+ ≤ ∥F∥ < 1. This completes the proof of Proposition 6.6.

In the proof of Proposition 6.6 we have seen that the Brown measure admits the representation
(cf. (6.3), (6.12), (6.14), (6.13) and (6.15))

πσ = lim
η↓0

〈(
ey

√
v1v2

ey
√

v1v2

)
,

1
1 − K

(
ey

√
v1v2

ey
√

v1v2

)〉
(6.18)

in a distributional sense. Here, ey := y
|y| ∈ B and K is defined in (6.16).

Under the additional assumption A6 we get strict positivity of the density of the Brown measure
inside S.

Proof of Proposition 6.7. For the proof of analyticity of σ, we recall the definition of y from (5.3).
We conclude from Proposition 5.15 (v), (5.31) and Proposition 5.11 that S → C, ζ 7→ y(ζ, 0) is real
analytic. Therefore, (6.3) implies that σ is real analytic on S.

To prove a lower bound on σ, we use (6.18) and see that 1 − K remains bounded on the image
of E as η ↓ 0. Indeed by the identity in (6.17) the only contribution to K that may potentially be
unbounded is the one associated with F−. However, EF−E|η=0 ≤ 1 − ε for some ε > 0 because of the
spectral gap of F above −1 in Lemma A.2 and the fact that (v̂, −v̂), the eigenvector corresponding to
eigenvalue −1, is mapped to zero by E.
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6.3 Edge behaviour of the Brown measure

Here we show that σ can be continuously extended to the boundary of S and compute its boundary
values. Throughout this subsection we assume A5 and A6.

Proposition 6.8 (Boundary values of σ). There is a unique continuous extension of σ|S to S. This
extension satisfies

σ(ζ0) = 1
π

|⟨(a − ζ0)ℓ0b0⟩|2

⟨|a − ζ0|4ℓ2
0b2

0⟩
= ⟨ℓ0b0⟩2|∂ζ β(ζ0)|2

π⟨|a − ζ0|4ℓ2
0b2

0⟩
(6.19)

for any ζ0 ∈ ∂S, where ℓ0 := ℓ|ζ=ζ0 and b0 := b|ζ=ζ0.

Proof. We use the identity (6.3) to compute σ at some ζ in a neighbourhood of ζ0 in terms of y. We
expand y in terms of v1, v2 with the help of (5.5) and expand v1, v2 in terms of β.

For η = 0 equations (5.59) and (5.58) imply that either v = 0 for β ≥ 0 or

ϑ2〈ℓb(S∗ℓ)(Sb)
〉

+ β⟨ℓb⟩ = O(ϑ4) (6.20)

for β < 0, or equivalently for ζ ∈ S. Note that according to Proposition 5.16 the right hand side of
(6.20) is a real analytic function of ζ and ϑ. In particular, we can write ϑ = ϑ(ζ, 0) as

ϑ =
√

−β⟨ℓb⟩〈
ℓ2b2|a − ζ|4

〉 (1 + βh
(
ζ,
√

−β
))
1(ζ ∈ S) (6.21)

for some real analytic function h, where we used (5.46).
According to (6.21) the leading order behaviour of ϑ is determined by β, whose local expansion

is given in (5.52). To express y in terms of v1 and v2 we recall (5.5). From (5.5), (5.54), (5.56) and
(5.57), we obtain the expansion

y = 1
a − ζ

− (a − ζ)v1v2 + O(α4) = 1
a − ζ

− ϑ2(a − ζ)ℓb + O(α4 + ηα) .

By Proposition 5.16 and (6.21) it is easy to see that the error term is a real analytic function of ϑ and
ζ in the regime ζ ∈ S and for η = 0, i.e.

y|η=0 = 1
a − ζ

− ϑ2(a − ζ)ℓb
(
1 + ϑ2f(ζ, ϑ)

)
1(ζ ∈ S)

with a real analytic f . Now we differentiate with respect to ζ and use (6.21), in particular |∂ζϑ2| ≲ 1,
to get

∂ζy|η=0 = −(a − ζ)ℓb∂ζ ϑ2 + O(ϑ2) = (a − ζ)ℓb⟨ℓb⟩
⟨|a − ζ|4ℓ2 b2⟩

∂ζ β + O
(
|β|1/2) (6.22)

for ζ ∈ S. The right hand side can be continuously extended to S. Indeed, by the definition 5.30 of S
and the continuity of β from Proposition 5.15 (i) we have β(ζ0) = 0 for any ζ0 ∈ ∂S and thus (6.22)
holds for ζ ∈ S in a neighbourhood of such ζ0 and the error term vanishes as ζ → ζ0. Inserting the
formula (5.53) for ∂ζ β|ζ=ζ0 = ∂ζ β|ζ=ζ0 into (6.22) and using (6.3) shows the claim (6.19).

Lemma 6.9. Let ζ ∈ C such that β(ζ) = 0 and ∂ζβ(ζ) = 0. Then ∆β(ζ) < 0. In particular,

∂S = {ζ ∈ C : β(ζ) = 0}. (6.23)

Proof. Let ζ ∈ C with β(ζ) = 0 and ∂ζβ(ζ) = 0. From (5.53) we read off

⟨ℓb(a − ζ)⟩ = 0 , ∂ζ∂ζβ = 1 − 2 Re
[⟨ℓ(a − ζ)B−1b(a − ζ)⟩

⟨ℓb⟩

]
, (6.24)
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where we evaluated the expressions in (5.53) at ζ0 = ζ and omitted the projection Q0 in the formula
for ∂ζ∂ζβ since ⟨ℓb(a − ζ)⟩ = 0 implies Q0[b(a − ζ)] = b(a − ζ).

We write ∂ζ∂ζβ in terms of

K := D

( √
ℓ

|a − ζ|
√

b

)
SD

( √
b

|a − ζ|
√

ℓ

)
, x :=

√
ℓb

a − ζ

|a − ζ|

and arrive at

∂ζ∂ζβ = 1 − 2 Re
[⟨x(1 − K)−1x⟩

⟨|x|2⟩

]
= − 1

⟨|x|2⟩

〈 1
1 − K

x , (1 − K∗K) 1
1 − K

x

〉
.

Here we used that (1 − K)−1x is well-defined since x ⊥ k due to (6.24), where k := |a − ζ|
√

ℓb is the
right and left Perron-Frobenius eigenvector of K, i.e. (1 − K)k = 0 = (1 − K∗)k due to (5.46) with
β = 0. Furthermore, (1 − K∗K)k = 0 implies that k is the Perron-Frobenius eigenvector of K∗K
and thus 1 − K∗K is strictly positive definite on k⊥, implying ∆β < 0. Since β is real analytic in a
neighbourhood of ζ with β(ζ) = ∂ζβ(ζ) = 0 according to Corollary 5.18 and such ζ cannot be a local
minimum of β due to ∆β(ζ) < 0 we infer (6.23).

As a consequence of Lemma 6.9 the definition of S in (5.30) and Proposition 5.15 (iv) yields

S0 = S. (6.25)

We now have all ingredients to prove Proposition 6.1.

Proof of Proposition 6.1. Part (i) is Proposition 6.3. Items (ii) and (iii) are proved in Proposition 6.7.
For the proof of (iv), we conclude supp σ ⊂ S0 = S from Proposition 6.3 and (6.25). Moreover,
S ⊂ supp σ follows from (iii), which completes the proof of (iv). Note that ∂S is a real analytic variety
due to (6.23) and Corollary 5.18. The dimension of ∂S is at most one as ∆β(ζ) ̸= 0 if ∂ζβ(ζ) = 0 by
Lemma 6.9. This shows (v). Part (vi) follows from Proposition 6.8 and the fact that g is real analytic
by Corollary 5.18.

7 Proof of main results – Proposition 2.1 and Theorem 2.4
This section is devoted to the proofs of our main results, Proposition 2.1 and Theorem 2.4. They
are derived from the results in the previous sections as well as some inputs from [5, 34, 32]. The
underlying idea for both derivations is the Hermitization approach going back to Girko [25] which
allows to understand the eigenvalue density of X + A by understanding the spectra of the Hermitian
matrices (Hζ)ζ∈C defined through

Hζ :=
(

0 X + A − ζ
(X + A − ζ)∗ 0

)
. (7.1)

The usefulness of Hζ becomes apparent from the following properties. A complex number ζ ∈ C is
an eigenvalue of X + A if and only if Hζ has a nontrivial kernel. Furthermore, the spectrum of Hζ is
symmetric around zero and its non-negative eigenvalues coincide with the singular values of X +A− ζ
(with multiplicities).

7.1 Proof of Proposition 2.1

After this general explanation, we now focus on the proof of Proposition 2.1. To that end, we now
explain in detail how the empirical spectral distribution of X + A is expressed in terms of the family
(Hζ)ζ∈C.

First, as log| · | is the fundamental solution for the Laplace operator on C, we obtain

1
n

∑
ξ∈Spec(X+A)

f(ξ) = 1
2πn

∑
ξ∈Spec(X+A)

∫
C

∆f(ζ) log|ξ − ζ|d2ζ = 1
4πn

∫
C

∆f(ζ) log|det Hζ |d2ζ, (7.2)
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where the last step follows from

∑
ξ∈Spec(X+A)

log|ξ − ζ| = log|det(X + A − ζ)| = 1
2 log|det Hζ |. (7.3)

We can now express the log-determinant of Hζ as an integral of the normalised trace of the resolvent
G(ζ, iη) := (Hζ − iη)−1 of Hζ on the imaginary axis; this expression reads as

log|det Hζ | = −2n

∫ T

0
Im ⟨G(ζ, iη)⟩dη + log|det(Hζ − iT )| (7.4)

for any T > 0 (see [46] for an application of (7.4) in a similar context). Here and in the following, for
a K × K-matrix R ∈ CK×K , we denote by ⟨R⟩ = 1

K Tr R the normalized trace of R.
For the proof of Proposition 2.1, we follow the strategy of [6, proof of Theorem 2.3], which is

presented in [6, Section 3.2].
The next proposition, which follows directly from results in [5], shows that ⟨G(ζ, iη)⟩ is approx-

imately deterministic. Given (7.2) and (7.4), this explains the origin of the definition of σ via (6.2)
and (6.1).

In the next proposition and throughout this section, we use the following notion of high probability
events. We say that a sequence of events (Ωn)n∈N occurs with very high probability if for each ν ∈ N,
there is a constant Cν > 0 (i.e. Cν does not depend on n) such that P(Ωn) ≥ 1 − Cνn−ν for all n ∈ N.

Proposition 7.1 (Deterministic approximation of resolvent of Hζ , averaged version). Let X and
A = D(a) for some a = (ai)n

i=1 ∈ Cn satisfy A1, A2 and ∥a∥∞ = maxn
i=1|ai| ≲ 1. Let (v(n)

1 , v
(n)
2 ) be

the solution of (4.2) with X = JnK, µ the normalized counting measure on JnK as well as a and s with
s(i, j) := nE|xij |2 for i, j ∈ JnK interpreted as functions on JnK and JnK2, respectively. Let φ > 0 be
fixed. Then there are universal constants δ > 0 and P ∈ N such that

|⟨G(ζ, iη)⟩ − i⟨v(n)
1 (ζ, η)⟩| ≤ nP δ

(1 + η2)n

with very high probability uniformly for all n ∈ N, η ∈ [n−δ, ∞) and ζ ∈ Dφ.

Proof. The matrix X +A is a Kronecker matrix according to [5, Definition 2.1] with the choices L = 1,
ℓ = 1, α̃1 = 1, X1 = X, β1 = 0, Y1 = 0 and ãi = ai for all i ∈ JnK. In particular, the Hermitization Hζ

defined in (7.1) is also a Kronecker matrix. Moreover, Hζ satisfies the assumptions of [5, Lemma B.1
(ii)] due to A1, A2 and ∥a∥∞ ≲ 1. Since the Hermitized matrix Dyson equation from [5, eq.s (2.2)
– (2.6)] coincides with the matrix Dyson equation, (5.13), associated with (4.2) for (v(n)

1 , v
(n)
2 ) (see

Section 5.2 for more explanations), [5, eq. (B.5)] and [5, eq. (4.46)] imply Proposition 7.1.

To control the integral in (7.4), we need to ensure that the smallest singular value smin(X + A − ζ)
of X + A − ζ, i.e. the smallest, in modulus, eigenvalue of Hζ , is not too small. This is ensured by
the next proposition. It follows easily from the main results of [34] in the real case, and [32] in the
complex case.

Proposition 7.2 (Smallest singular value of X + A − ζ). Let X ∈ Cn×n satisfy A1, A2 for ν = 2
and all i, j ∈ JnK and A3. Then the following holds.

(i) For any constant K > 0, there are constants C > 0 and c > 0 such that

P
(

smin(X + A − ζ) ≤ εn−1) ≤ Cε + 2e−cn

for all ε ≥ 0, ζ ∈ DK and A ∈ Cn×n satisfying ∥A∥2
hs ≤ Kn.

(ii) Let K, A and ζ be as in (i). For any δ > 0, the event {smin(X + A − ζ) ≥ e−nδ } holds with very
high probability.
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Proof. We check the conditions of [32, Theorem 1.1] for An =
√

n(X + A − ζ). The assumptions of
Proposition 7.2 on A and ζ as well as A2 with ν = 2 imply E∥X +A−ζ∥2

hs ≲ n. The second condition
of [32, Theorem 1.1] is identical to A3. Therefore, Proposition 7.2 follows from [32, Theorem 1.1].

In addition to the control on the smallest singular value of X + A − ζ, we also need to bound the
number of its small singular values. This is the content of the next lemma, which follows simply from
Proposition 7.1 and an upper bound on |⟨M(ζ, iη)⟩|.

Lemma 7.3 (Number of small singular values of X + A − ζ). Let X satisfy A1 and A2 and let
A = D(a) for some a ∈ Cn with ∥a∥∞ ≲ 1. Let φ > 0 be fixed. Then there is a universal constant
δ > 0 such that

|Spec(Hζ) ∩ [−η, η]| ≲ nη

with very high probability uniformly for all η ∈ [n−δ, ∞) and ζ ∈ Dφ.

Proof. Proposition 7.1 and (6.4) imply that the trace of G(ζ, iη) is bounded by n with very high
probability. More precisely, |Tr G(ζ, iη)| ≲ n with very high probability uniformly for all η ∈ [n−δ, ∞)
and ζ ∈ Dφ. Hence, we set Ση := Spec(Hζ) ∩ [−η, η] and estimate

|Ση|
2η

≤
∑

λ∈Ση

η

λ2 + η2 ≤ Im Tr G(ζ, iη) ≲ n.

We apply the previous results, i.e. Proposition 7.1, Proposition 7.2 and Lemma 7.3, to the right-
hand side of (7.7) by discretizing the integral in ζ through the next lemma.

Lemma 7.4 (Monte Carlo Sampling). Let Ω ⊂ C be bounded and of positive Lebesgue measure. Let
µ be the normalised Lebesgue measure on Ω and F : Ω → C square-integrable with respect to µ. Let
m ∈ N and ξ1, . . . , ξm be independent random variables distributed according to µ. Then, for any
δ > 0, we have

P
(∣∣∣∣ 1

m

m∑
i=1

F (ξi) −
∫

Ω
Fdµ

∣∣∣∣ ≤ 1√
mδ

( ∫
Ω

∣∣∣F −
∫

Ω
Fdµ

∣∣∣2)1/2)
≥ 1 − δ.

Lemma 7.4 is a special case of [46, Lemma 36]. For the convenience of the reader, we present the
very short proof here.

Proof. Each of the i.i.d. random variables F (ξ1), . . . , F (ξm) has expectation
∫

Ω Fdµ and variance∫
Ω|F −

∫
Ω Fdµ|2dµ. Hence, Chebysheff’s inequality yields Lemma 7.4.

The final ingredient for the proof of Proposition 2.1 is the following remark which asserts that all
eigenvalues of X + A are contained in Sε defined in (5.16) with very high probability.

Remark 7.5 (No outlier eigenvalues of X + A). If X satisfies A1 and A2 and A = D(a) for some
a ∈ Cn with ∥a∥∞ ≲ 1 then, for every ε > 0 and δ ∈ (0, ε), all eigenvalues of X + A are contained in
Sε with very high probability, i.e. for each ν > 0, there is a constant C ≡ Cε,δ,ν > 0 such that

P
(

Spec(X + A) ⊂ Specε−δ(X + A) ⊂ Sε
)

≥ 1 − Cn−ν

for all n ∈ N. This follows directly from [5, Lemma 6.1]. Here, we used that X + A is a Kronecker
matrix according to [5, Definition 2.1] and that the Dyson equation (5.13) and [5, eq. (2.6)] coincide
as explained in the proof of Proposition 7.1.

We have now collected all ingredients for the proof of Proposition 2.1, which we present next.
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Proof of Proposition 2.1. Let (v(n)
1 , v

(n)
2 ) and σ(n) be defined2 as in Corollary C.2. Because of Corol-

lary C.2, it suffices to show that for each f ∈ Cb(C),

lim
n→∞

P
(∣∣∣∣ 1n ∑

ξ∈Spec(X+A)
f(ξ) −

∫
C

fdσ(n)
∣∣∣∣ > ε

)
= 0. (7.5)

The main part of the proof will be to show the existence of a constant δ > 0 such that∣∣∣∣ 1n ∑
ζ∈Spec X

f(ζ) −
∫
C

f(ζ)σ(n)(dζ)
∣∣∣∣ ≤ n−δ∥∆f∥L1 + n−10∥∆f∥L3 (7.6)

with very high probability uniformly for all f ∈ C2
0 (C) satisfying supp f ⊂ Dφ for any fixed constant

φ > 0.
We now explain how (7.6) implies (7.5), i.e. Proposition 2.1. If f ∈ C2

0 (C) then this is obvious.
Let f ∈ Cb(C) \ C2

0 (C). Owing to Remark 7.5, we know that Spec(X + A) ⊂ S1 with very high
probability. We note that S1 ⊂ Dφ for some φ ∼ 1 by Remark 5.8. By possibly increasing φ ∼ 1,
we also have supp σ(n) ⊂ Dφ due to Corollary C.2 (ii). Therefore, it suffices to consider f ∈ Cb(C)
with supp f ⊂ Dφ+1. Then we find fε ∈ C2

0 (C) such that ∥f − fε∥L∞ ≤ ε/2, supp fε ⊂ Dφ+1 and
∥∆fε∥L1 + ∥∆fε∥L3 ≲ε 1. Hence, approximating f by fε in (7.5) and using (7.6) for fε shows that
(7.6) implies (7.5).

It remains to show (7.6). We fix a constant φ > 0 and set Ω = Dφ. For any T > 0, we conclude
from (7.2), (7.4), Corollary C.2 (ii) and the second bound in (6.5) that

1
n

∑
ξ∈Spec(X+A)

f(ξ) −
∫
C

f(ζ)σ(n)(dζ) =
∫

Ω
F (ζ)d2ζ

|Ω|
+ O

(
T −1∥∆f∥L1), (7.7)

where

F (ζ) := |Ω|
π

(∆f(ζ))h(ζ), h(ζ) := 1
n

∑
ξ∈Spec(X+A)

log|ξ − ζ| +
∫ T

0

(
⟨v(n)

1 (ζ, η)⟩ − 1
1 + η

)
dη.

Note that h and, thus, F depend on the choice of T .
We now estimate

∫
Ω F (ζ)d2ζ

|Ω| by applying Lemma 7.4 to it. Since ζ 7→ log|ξ − ζ| lies in Lp(Ω) for
every p ∈ [1, ∞), the first bound in (6.5) implies that, for every p ∈ [1, ∞), ∥h∥Lp(Ω) ≲p 1 uniformly
for T > 0. Therefore, F ∈ L2(Ω) and Lemma 7.4 with δ = n−ν and m = nν−130 yields∣∣∣∣ ∫

Ω
F (ζ)d2ζ

|Ω|
− 1

m

m∑
i=1

F (ξi)
∣∣∣∣ ≤ n−10∥F∥L2 ≲ n−11∥∆f∥L3 (7.8)

with very high probability, where ξ1, . . . , ξm are independent random variables distributed according
to the normalized Lebesgue measure on Ω.

What remains for the proof of (7.6) is to bound 1
m

∑m
i=1 F (ξi). To that end, we set T = n100 and

show in the following that, for all small enough δ > 0,

|F (ζ)| ≤ n−δ|∆f(ζ)| (7.9)

with very high probability uniformly for all ζ ∈ Ω. We set η∗ := n−δ and introduce

h1(ζ) :=
∫ T

η∗

(
⟨v(n)

1 (ζ, η)⟩ − Im ⟨G(ζ, iη)⟩
)
dη, h2(ζ) := −

∫ η∗

0
Im ⟨G(ζ, iη)⟩dη

h3(ζ) := 1
4n

∑
λ∈Spec(Hζ)

log
(

1 + λ2

T 2

)
− log

(
1 + 1

T

)
, h4(ζ) :=

∫ η∗

0
⟨v(n)

1 (ζ, η)⟩dη.

2 We note that (v(n)
1 , v

(n)
2 ) from Corollary C.2 can be naturally identified with (v(n)

1 , v
(n)
2 ) from Proposition 7.1. In

particular, ⟨v(n)
1 ⟩ yields the same result for either definition and this is the only quantity derived from (v(n)

1 , v
(n)
2 ) that

plays a role in the following.
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Hence, owing to (7.3), (7.4) and
∫ T

0 (1 + η)−1dη = log(1 + T ), we obtain the decomposition h(ζ) =
h1(ζ) + h2(ζ) + h3(ζ) + h4(ζ).

Next, we estimate the terms h1, . . . , h4 individually. For h1, Proposition 7.1, a union bound and
a continuity argument in η imply |h1(ζ)| ≤ n−1+P δ+δ with very high probabilityfootnote 2. A simple
computation shows that

−h2(ζ) = 1
4n

∑
λ∈Spec(Hζ)

log
(

1 + η2
∗

λ2

)
≤ 1

4n

∑
λ∈Spec(Hζ)∩[−η

1/2
∗ ,η

1/2
∗ ]

log
(

1 + η2
∗

λ2

)
+ η∗,

where in the last step we used that log(1 + η2
∗λ−2) ≤ log(1 + η∗) ≤ η∗ if |λ| > η

1/2
∗ . To estimate the

remaining sum, we conclude from Proposition 7.2 and Lemma 7.3 that
1

4n

∑
λ∈Spec(Hζ)∩[−η

1/2
∗ ,η

1/2
∗ ]

log
(

1+η2
∗

λ2

)
≲

log η∗ + |log minλ∈Spec(Hζ)|λ||
n

|Spec(Hζ)∩[−η
1/2
∗ , η

1/2
∗ ]| ≲ nεη

1/2
∗

with very high probability for any ε > 0. Therefore, |h2(ζ)| ≲ n−δ/2+ε, which yields |h2(ζ)| ≤ n−δ by
shrinking δ. To estimate h3, we use log(1 + x) ≤ x and obtain

|h3(ζ)| ≤ 1
4nT 2 Tr(Hζ)2 + T −1 = 1

2nT 2

n∑
i,j=1

(xji + (āi − ζ̄)δji)(xij + (ai − ζ)δij) + T −1 ≲ T −1

since |xij | ≤ n−1/2+ε with very high probability due to Assumption A2 and |ai| + |ζ| ≲ 1 as ∥a∥∞ ≲ 1
and ζ ∈ Dφ. Since a(n) and s(n) from (C.1) satisfy ∥a(n)∥∞ ≲ 1 and A5 with the same constants as a
and s, Lemma 5.1 implies |h4(ζ)| ≲ η∗ uniformly for all n ∈ N. This completes the proof of (7.9).

The bound (7.9) implies
1
m

m∑
i=1

|F (ξi)| ≤ n−δ

m

m∑
i=1

|∆f(ξi)| ≤ n−δ∥∆f∥L1 + n−11∥∆f∥L2 (7.10)

with very high probability, where the second step follows from Lemma 7.4 with F = ∆f .
Finally, we combine (7.7), (7.8) and (7.10) and, thus, obtain (7.6), which completes the proof of

Proposition 2.1.

7.2 Proof of Theorem 2.4

We recall the definition of Sε from (5.16) and specialise to the case X = [0, 1] with µ the Lebesgue-
measure on [0, 1]. Then we set

Spec∞
ε (s, a) := Sε. (7.11)

With this definition, (2.5) follows from Proposition 6.1 (iv) and ∩ε>0 Spec∞
ε (s, a) = S0 = S due to

Remark 5.8 and (6.25).
Now we verify (2.4). First we see that for any ε, δ > 0 the inclusion

lim sup
n→∞

Specε(Xn + An) ⊂ Spec∞
ε+δ(s, a) = Sε+δ

holds almost surely by Remark 7.5 and the Borel-Cantelli lemma. Since ∩δ>0Sε+δ = Sε by definition
this shows the first inclusion in (2.4).

The second inclusion in (2.4) follows from

Sε ⊂ Specε+δ(Xn + An) = {ζ ∈ C : dist(0, Spec(Hζ)) ≤ ε + δ} (7.12)

eventually almost surely for any ε, δ > 0. Here Hζ is the Hermitisation of Xn + An from (7.1). To
prove (7.12) we see that the global law from [5, Theorem 2.7] holds almost surely when all random
matrices in the statement are realised on the same probability space. This can be seen easily from its
proof. Indeed, the global law is an immediate consequence of [5, (B.5)], which holds with very high
probability. Thus, the Borel-Cantelli lemma ensures almost sure convergence in

1
2n

Tr f(Hζ) →
∫
R

f(τ)ρζ(dτ)

for every compactly supported continuous function f .
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A Existence and uniqueness of solution to Dyson equation

A.1 Proof of Lemma 4.1

Owing to the identification of solutions to (4.2) and (5.13) in Section 5.2, we can now infer the
existence and uniqueness of the solution to (4.2) to the existence and uniqueness of the solution to
(5.13). Indeed, the latter is a very simple case of the general existence and uniqueness result [30,
Theorem 2.1]. This proves Lemma 4.1.

A.2 Stability operator of Matrix Dyson equation

Let M be the solution of (5.13). The stability operator of (5.13) is given by (5.18).

Lemma A.1. If a and s satisfy the assumptions of Lemma 5.9, then the following holds.

(i) For all η > 0 and ζ ∈ C, we have
∥M∥ ≤ η−1. (A.1)

(ii) For all η > 0 and ζ ∈ C, the stability operator L and its adjoint L∗ are invertible. Moreover,
for any constant K > 0, there is a constant C ≥ 2 such that

∥L−1∥2 + ∥L−1∥∞ ≤ C max{η−2, η−C} (A.2)

for all η > 0, a ∈ B and ζ ∈ C satisfying |ζ| + ∥a∥∞ ≤ K.

Proof. For a proof of (A.1), we refer to [1, eq. (4.1)], where the proof was carried out in the finite
dimensional setting. In our setting the proof follows the same argument. The invertibility of L and
its adjoint L∗ as well as the bound (A.2) are obtained by translating the proofs of [5, Lemmas 3.4 and
3.7] to the present setup using (A.1).

Proof of Lemma 5.14. We recall that ζ ∈ C is fixed such that lim supη↓0⟨v1(ζ, η)⟩ ≥ δ for some δ > 0
and that vn = v(ζ, ηn) → v0 weakly in (L2)2, where v0 ∼δ 1. First we use the identities

Lv− = −η
τ v2

(η + Sdv)2 , L∗(e−(η + Sov)) = ηe−

with v− = ve− and v = vn. In the limit η ↓ 0 we see L0v− = 0 and L∗
0Sov− = 0. Here we used that

v satisfies the Dyson equation. For the rest of this proof we drop the 0-index from our notation. We
introduce T , V , F : B2 → B2 as in (6.11), evaluated at v = v0 and η = 0. In terms of T, F and V we
obtain

L = V −1(1 − TF )V . (A.3)

We consider the natural extensions F : (L2)2 → (L2)2 and T : (L2)2 → (L2)2. These operators are self-
adjoint. We import results about their spectral properties from [3, Lemma 3.4, Lemma 3.6, (3.44) and
(3.45)]. The proofs of these properties translate immediately to the current setup, although originally
formulated for B = Cd, since they are uniform in the dimension d. Furthermore, the proofs from [3]
are not affected by the changed definition of τ = (τ1, τ2) from (5.25) since we still have τ1 = τ2.

Lemma A.2 (Spectral properties of F and T ). The Hermitian operator F : (L2)2 → (L2)2 satisfies
the following properties:

(i) F has non-degenerate isolated eigenvalues at ±1 and a spectral gap ε ∼δ 1, i.e.

Spec(F ) ⊂ {−1} ∪ [−1 + ε, 1 − ε] ∪ {1} .

(ii) The eigenvectors corresponding to the eigenvalues ±1 are

FV v = V v , FV v− = −V v− ,

where v = (v1, v2) and v− = (v1, −v2).
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The Hermitian operator T : (L2)2 → (L2)2 satisfies the following properties:

(iii) The spectrum is bounded away from 1 by a gap of size ε ∼δ 1, i.e.

Spec(T ) ⊂ [−1, 1 − ε] .

(iv) For x ∈ {(y, −y) : y ∈ B} we have Tx = −x.

We now prove Lemma 5.14 by tacitly using the properties of F and T from Lemma A.2. Since
f− := V v− ∈ {(y, −y) : y ∈ B} we see that F and T both leave the subspace (f−)⊥ invariant. Now,
using (A.3), we rewrite the resolvent of L as

1
L − ω

= V −1 1
1 − ω − TF

V .

The operator V and its inverse satisfy the bound ∥V ∥# + ∥V −1∥# ≲δ 1 for # = 2, ∞, where we used
δ ≲ v ≲ 1

δ from Lemma 5.12. Thus, it suffices to show (5.28) with L replaced by 1−TF . Furthermore,
we can restrict to the case # = 2, since [6, Lemma 4.5] is applicable because

∥TF∥∞ + ∥TF∥∞→2∥TF∥2→∞ ≲δ 1 .

Here, ∥TF∥∞→2 and ∥TF∥2→∞ denote the operator norms of TF viewed as operator B2 → (L2)2 and
(L2)2 → B2, respectively.

Since ∥TF∥2 ≤ 1 we have the bound ∥(1−TF −ω)−1∥2 ≲ε,δ 1 for any ω ̸∈ 1+D1+ε and any ε > 0.
Now we can decompose

1
1 − TF − ω

= (1 − P ) 1
1 − TF − ω

(1 − P ) − 1
ω

P , (A.4)

where P is the orthogonal projection onto the span of f−. Provided ε > 0 is chosen sufficiently small,
the first summand in (A.4) is bounded for ω ∈ D2ε. Indeed 1 − TF has a bounded inverse on f⊥

− by
applying a generalisation of [3, Lemma 3.7] from the finite dimensional case B = Cd to the general
setup here. The proof of [3, Lemma 3.7] is not affected by this generalisation. Finally, the second
summand in (A.4) is bounded on C \Dε. Altogether the bound (5.28) is proven. The non-degeneracy
of the eigenvector v− of L also follows from the decomposition (A.4).

B Auxiliary results
Lemma B.1. Let y > 0 be the unique solution to the equation y3 + βy = x for x > 0 and β ∈ R.
Then

y ∼
√

max{0, −β} + x

x2/3 + |β|
.

Proof. First we consider the case β ≥ 0. Then clearly

y ∼ x

x2/3 + |β|
.

Now let β < 0, then we must have y =
√

−β(1 + ε) for some ε > 0 since y2 + βy > 0. For this ε we
get the equation ε3 + 3ε2 + 2ε = x|β|−3/2 . Thus, we have the scaling

ε ∼ min
{

x

|β|3/2 ,
x1/3

|β|1/2

}
.

Therefore we conclude

y =
√

|β| + min
{

x

|β|
, x1/3

}
∼
√

|β| + x

x2/3 + |β|
,

which is the claim of the lemma.
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Lemma B.2. Let S : B → B be an integral operator as in (4.1) with a kernel s : X2 → (0, ∞) that
satisfies the bounds ε ≤ s(x, y) ≤ 1

ε for all x, y ∈ X and some constant ε > 0 and such that the spectral
radius of S is normalised to ϱ(S) = 1. Then there are constants δ, C > 0, depending only on ε, such
that

sup
{

∥(S − z)−1∥2 : z ̸∈ D1−δ(0) ∪ Dδ(1)
}

≤ C

and Spec(S) ∩ Dδ(1) = {1} is non-degenerate.

Proof. We follow line by line the arguments from the proof of [23, Lemma A.1], where the finite
dimensional case with |X| < ∞ and µ the counting measure is carried out.

C Discretizing the Dyson equation

In order to formulate the next lemma under the weakest assumptions, we first relax the condition A4
by avoiding the lower bound on s in the following assumption.

A7 Piecewise continuity of s and a: Let I1, . . . , IK ⊂ [0, 1] be disjoint intervals with some K ∈ N
such that I1 ∪ . . . ∪ IK = [0, 1]. Let s : [0, 1]2 → [0, ∞) and a : [0, 1] → C be functions such that
s|Il×Ik

and a|Il
have continuous extensions to Il × Ik and Il, respectively, for all l, k ∈ JKK.

Throughout this section, we write C+ := {w ∈ C : Im w > 0}. Let (v1, v2) be the solution of (4.2)
on X = [0, 1] and with µ the Lebesgue measure on [0, 1], M the unique solution of (5.15) and ρζ the
associated probability measure from Definition 5.7.

Lemma C.1. Let s and a satisfy A7. For n ∈ N, define the functions a(n) on [0, 1] and s(n) on [0, 1]2
through

a(n) :=
n∑

i=1
a

(
i

n

)
1[(i−1)/n,i/n), s(n) :=

n∑
i,j=1

1
n

s

(
i

n
,

j

n

)
1[(i−1)/n,i/n)×[(j−1)/n,j/n), (C.1)

where 1Ω denotes the indicator function of the set Ω. Let Σ(n) be defined analogously to (5.14) with s
replaced by s(n). If M (n) is the unique solution of (5.15) with a(n) and Σ(n) instead of a and Σ, δ > 0
is constant and ζ ∈ C is fixed, then

lim
n→∞

∥M (n)(ζ, w) − M(ζ, w)∥2 = 0

uniformly for all w ∈ C+ satisfying dist(w, supp ρζ) ≥ δ. Here, ∥R∥2 := ∥Tr(R∗R)∥1/2
1 /

√
2 for any

R ∈ B2×2, where Tr(R∗R) is considered as a function on [0, 1], and ∥f∥p is the Lp([0, 1], µ)-norm for
f : [0, 1] → C.

If (v(n)
1 , v

(n)
2 ) is the solution of (4.2) on [0, 1] with the Lebesgue measure µ and a and s replaced by

a(n) and s(n) from (C.1), then for any (fixed) ζ ∈ C and η > 0, we have

lim
n→∞

max
{
∥v

(n)
1 (ζ, η) − v1(ζ, η)∥2, ∥v

(n)
2 (ζ, η) − v2(ζ, η)∥2

}
= 0.

Throughout the remainder of this section, a operators appear that map B2×2 to B2×2. We write
∥ · ∥∗→# with ∗, # ∈ {2, ∞} for the operator norm if the definition space is equipped with the norm
∥ · ∥∗ and the target space with ∥ · ∥#. If ∗ = # then we simply write ∥ · ∥∗ for the corresponding
operator norm.

Proof. Owing to the explanations in Section 5.2, especially, (5.12), it suffices to show that ∥M (n)(ζ, w)−
M(ζ, w)∥2 → 0 if n → ∞.

Fix δ > 0 and ζ ∈ C. We introduce the matrices A ∈ B2×2 and A(n) ∈ B2×2 through

A :=
(

0 a
a 0

)
, A(n) :=

(
0 a(n)

a(n) 0

)
.
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For w ∈ C+ satisfying dist(w, supp ρζ) ≥ δ and t ≥ 0, we set M (n) = M (n)(ζ, w+it), M = M(ζ, w+it)
and L[R] := R − MΣ[R]M for all R ∈ B2×2. With ∆ := M (n) − M , a short computation starting
from (5.15) and the analogous relation with M (n), a(n) and Σ(n) yields

L[∆] = MΣ[∆]∆ + M(Σ(n) − Σ)[M (n)]M (n) + M(A − A(n))M (n). (C.2)

We now invert L and estimate the resulting relation in ∥ · ∥2. We collect a few auxiliary bounds. From
[5, eq.s (3.22), (3.11a), (3.11c)], we conclude the existence of a constant C1 > 0, depending only on
δ but independent of w and t, such that ∥L−1∥2 ≤ C1 for all w ∈ C+ with dist(w, supp ρζ) ≥ δ and
t ≥ 0. As ∥M(ζ, w)∥ ≤ (dist(w, supp ρζ))−1 by [5, eq. (3.11a)]3, we have ∥M∥ ≤ (max{δ, t})−1 and
∥M (n)∥ ≤ (max{δ, t})−1 for all t ≥ 0. Owing to [4, Lemma B.2(i)], the upper bound on s following from
its piecewise continuity implies that there is a constant C2 ≥ 1 such that ∥Σ∥2→∞ ≤ C2. Therefore,
there is a constant C > 0 depending only on δ but not on w or t such that

∥∆∥2 ≤ C(∥∆∥2
2 + Ψn), Ψn := ∥Σ(n) − Σ∥2 + ∥A − A(n)∥2 (C.3)

for all w ∈ C+ with dist(w, supp ρζ) ≥ δ and all t ≥ 0. Here, ∆ ≡ ∆(ζ, w + it).
Owing to A7, we get Ψn → 0 as n → ∞. Thus, we find n0 ∈ N such that 2ΨnC2 ≤ 1/4 for all

n ≥ n0. Fix w ∈ C+ with dist(w, supp ρζ) ≥ δ. We set t∗ := sup{t ≥ 0: ∥∆(ζ, w + it)∥2 ≥ 2CΨn}.
Since ∥M (n)∥ + ∥M∥ → 0 for t → ∞, we obtain t∗ < ∞. Next, we conclude t∗ = 0. Suppose
t∗ > 0. Hence, ∥∆(ζ, w + it∗)∥2 = 2CΨn by continuity. As 2ΨnC2 ≤ 1/4, we conclude from (C.3)
that ∥∆(ζ, w + it∗)∥2 ≤ 3CΨn/2 < 2CΨn = ∥∆(ζ, w + it∗)∥2. This contradiction implies t∗ = 0.
Note that this holds for any w ∈ C+ as long as dist(w, supp ρζ) ≥ δ and n ≥ n0. Thus, for n ≥ n0,
we obtain ∥M (n)(ζ, w) − M(ζ, w)∥2 = ∥∆(ζ, w)∥2 ≤ 2CΨn for all w ∈ C+ with dist(w, supp ρζ) ≥ δ,
which concludes the proof of Lemma C.1 as Ψn → 0 with n → ∞.

Corollary C.2. Let s and a satisfy A4 and (v(n)
1 , v

(n)
2 ) be as in Lemma C.1. Then the following holds.

(i) For each n ∈ N, replacing v1 by v
(n)
1 in (6.1) yields a well-defined continuous function L(n) : C →

R.

(ii) For each n ∈ N, there exists a probability measure σ(n) on C such that (6.2) holds with σ and
L replaced by σ(n) and L(n), respectively. Furthermore, there is φ ∼ 1 such that supp σ(n) ⊂ Dφ

for all n ∈ N.

(iii) Moreover, σ(n) converges to σ weakly as n tends to infinity.

Proof. Clearly, a(n) and s(n) from (C.1) satisfy ∥a(n)∥∞ ≲ 1 and A5 (with the same constants as a
and s). Hence, Lemma 6.5, Proposition 6.3 and Remark 5.8 imply the well-definedness of L(n) and the
existence of probability measures σ(n) satisfying (6.2) for L(n) as well as supp σ(n) ⊂ Dφ, respectively.

Since σ(n) for all n ∈ N and σ are probability measures on C, for the weak convergence it suffices
to show

∫
C fdσ(n) →

∫
C fdσ as n → ∞ for all f ∈ C2

0 (C). Fix f ∈ C2
0 (C). As a(n) and s(n) from (C.1)

satisfy ∥a(n)∥∞ ≲ 1 and A5 with the same constants as a and s, we conclude from Lemma 5.1 and
(5.9) that

∣∣∆f(ζ)
(
⟨v(n)

1 (ζ, η)⟩− 1
1+η

)∣∣ ≲ |∆f(ζ)|
1+η2 uniformly η > 0, ζ ∈ C and n ∈ N. That is the implicit

constant hidden by ≲ does not depend on η, ζ and n. Owing to the integrability of the right-hand
side with respect to ζ and η over C× (0, ∞), we obtain from (6.2), Fubini and dominated convergence
that∫

C
fdσ(n) =

∫
C

∫ ∞

0
∆f(ζ)

(
⟨v(n)

1 (ζ, η)⟩ − 1
1 + η

)
dη d2ζ

−→
∫
C

∫ ∞

0
∆f(ζ)

(
⟨v1(ζ, η)⟩ − 1

1 + η

)
dη d2ζ =

∫
C

fdσ

as n → ∞. This completes the proof of Corollary C.2.
3The proof in [5] is given in the finite dimensional setup; the proof in the setup of this article is identical.
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Corollary C.3. Let s and a satisfy A7 and let M (n) be as in Lemma C.1. Fix ζ ∈ C. Let ρ
(n)
ζ be the

self-consistent density of states associated with the Hermitization of An + Xn, i.e.

∫
R

ρ
(n)
ζ (dτ)
τ − w

= 1
2 Tr⟨M (n)(ζ, w)⟩ (C.4)

for all w ∈ C+. Here, Tr denotes the trace of 2 × 2 matrices in C2×2 and the average ⟨ · ⟩ is taken
entrywise. Then

(i) ρ
(n)
ζ → ρζ weakly as n → ∞.

(ii) lim supn→∞ supp ρ
(n)
ζ ⊂ supp ρζ .

Proof. Item (i) follows directly from the convergence of the Stieltjes transforms, i.e. for all w ∈ C+,
⟨Tr M (n)(ζ, w)⟩ → ⟨Tr M(ζ, w)⟩ as n → ∞, due to Lemma C.1.

For the proof of (ii), we fix δ > 0 and show that supp ρ
(n)
ζ ⊂ supp ρζ +(−δ, δ) for all sufficiently large

n. If τ ∈ R satisfies dist(τ, supp ρζ) ≥ δ then, by [4, Lemma D.1], M = M(ζ, τ) = limη↓0 M(ζ, τ + iη)
exits and is self-adjoint. Moreover, ∥L−1∥2 + ∥M∥ ≲δ 1 uniformly for η ≥ 0 and τ ∈ R with
dist(τ, supp ρζ) ≥ δ. We recall the definition L[R] = R − MΣ[R]M for R ∈ B2×2 from the proof
of Lemma C.1. As ∥M∥ ≲δ 1, Lemma C.1 implies ∥M (n)(ζ, τ + iη)∥2 ≲δ 1 uniformly for all η > 0,
τ ∈ R with dist(τ, supp ρζ) ≥ δ and all sufficiently large n. Arguing similarly as in the proof of
Lemma 5.3, we conclude ∥M (n)(ζ, τ + iη)∥ ≲δ 1 uniformly for η, τ and n as before. We set M (n) :=
M (n)(ζ, τ + iη) and L(n)[R] = R − M (n)Σ(n)[R]M (n) for R ∈ B2×2. For such η, τ and n, we obtain
∥(L(n))−1∥2 ≲δ 1 by perturbation theory from ∥M∥+∥M (n)∥+∥L−1∥2 ≲δ 1, ∥Σ(n)∥2→∞+∥Σ∥2→∞ ≲ 1
and ∥M (n) − M∥2 → 0 for n → ∞. Hence, by the implicit function theorem, for all sufficiently large
n, the function η 7→ M (n)(ζ, τ + iη) is continuous on [η0 − ε, η0 + ε] for some ε > 0 independent of
η0 > 0. In particular, we can extend M (n) continuously to η = 0 in a unique way.

Let τ ∈ R with dist(τ, supp ρζ) ≥ δ. For M = M(ζ, τ), we now consider the relation

L[∆] = 1
2
(
Kn(∆, Σ̃, Ã)+Kn(∆∗, Σ̃, Ã)∗) , Kn(∆) := MΣ[∆]∆+M Σ̃[M +∆](M +∆)+MÃ(M +∆) ,

with variables ∆ ∈ B2×2, Ã = Ã∗ ∈ B2×2, Σ̃ : B2×2 → B2×2 such that Σ̃[R]∗ = Σ̃[R∗] for all R ∈ B2×2.
Since ∥L−1∥2 ≲δ 1, by the implicit function theorem, this relation has a unique solution ∆ as long as
∥Σ̃∥2 and ∥Ã∥2 are sufficiently small, as L[0] = 0 and Kn(0, 0, 0) = 0. Moreover, this solution satisfies
∆ = ∆∗ as L[R]∗ = L[R∗] for all R ∈ B2×2 due to M∗ = M . Owing to (C.2) and M = M∗, we have
L[M (n) − M ] = (Kn(M (n) − M, Σ(n) − Σ, A − A(n)) + Kn((M (n) − M)∗, Σ(n) − Σ, A − A(n)))/2 with
M (n) = M (n)(ζ, τ). Hence, as ∥Σ(n) − Σ∥2 + ∥A − A(n)∥2 → 0 for n → ∞ by the proof of Lemma C.1,
we get ∆ = M (n) − M for all sufficiently large n and, therefore, M (n) = (M (n))∗ for such n. Since
this holds for any δ > 0 we conclude that Im M (n)(ζ, τ + ω) = 0 for sufficiently small |ω| with ω ∈ R.
Because of (C.4) this implies that τ ̸∈ supp ρ

(n)
ζ .

D Representation of σ as Brown measure
In Proposition D.1 of this appendix, we represent σ from Proposition 6.1 as the Brown measure of an
operator in a von Neumann algebra. This is the motivation behind Definition 6.2.

The definition of a Brown measure is given after the next proposition, which is formulated in the
language of operator-valued free probability4.

Proposition D.1 (Representation of σ as Brown measure). Let a ∈ B and s satisfy A5. Then there
is an operator-valued probability space (A, E, B) and an operator c ∈ A such that

• E : A → B is a positive conditional expectation.

• (A, ⟨E[ · ]⟩) is a tracial W ∗-probability space.
4For the necessary definitions in free probability, we refer to the recent monograph [36].
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• the Brown measure of a + c on (A, ⟨E(·)⟩) coincides with σ.

•
(

0 c
c∗ 0

)
is an operator-valued semi-circular element in the operator-valued probability space

(A2×2, id⊗E, B2×2), where we identified A2×2 = C2×2 ⊗A, whose covariance is given by Σ from
(5.14). In particular,

M(ζ, iη) = id ⊗ E

[(
−iη c + a − ζ

(c + a − ζ)∗ −iη

)−1 ]
(D.1)

satisfies the Matrix-Dyson equation, (5.13).

• E[cbc] = 0 for all b ∈ B.

Before we show Proposition D.1, we introduce the notion of a Brown measure. Let (A, τ) be a
tracial W ∗-probability space. The Brown measure is a generalisation of the spectral distribution of
normal operators to non-normal ones. Let a ∈ A. The Brown measure µa of a is the unique compactly
supported probability measure on C with∫

C
log|ζ − ξ|µa(dξ) = log D(a − ζ) (D.2)

for all ζ ∈ C. Here, D(a− ζ) denotes the Fuglede-Kadison determinant of a− ζ. The Fuglede-Kadison
determinant of an arbitrary b ∈ A is defined by

D(b) := lim
ε↓0

exp(τ(log(b∗b + ε)1/2)) ∈ [0, ∞).

Originally introduced in [18], the Brown measure was revived in [27]. An introduction to the Brown
measure and the Fuglede-Kadison determinant can be found in [36, Chapter 11].

Proof of Proposition D.1. As B is a commutative C∗-algebra, it is a standard result that S and S∗

are completely positive maps (see e.g. [37, Theorem 3.9 or Theorem 3.11]). Hence, Σ: B2×2 → B2×2

from (5.14) is also a completely positive map. From the constructions in [45, Sections 4.3 and 4.6], we
obtain a von Neumann algebra Â such that B2×2 ⊂ Â is a sub-von Neumann algebra with the same
unit as well as a positive conditional expectation Ê : Â → B2×2 and an operator-valued semicircular
element H = H∗ ∈ Â such that

Ê[HBH] = Σ[B] (D.3)

for all B ∈ B2×2. A concise summary of this construction is given in [41, Section 3.5]5.
We recall the definitions of E12 and E21 ∈ B2×2 from (5.20) and define E11 and E22 ∈ B2×2

analogously. Let
A := vN(E1iAEj1 : i, j = 1, 2 , A ∈ Â)

be the sub-von Neumann algebra of Â generated by E1iAEj1 for i, j = 1, 2 and A ∈ Â. Note that
E11 ∈ A is the unit of A. We introduce the map

Φ: A2×2 → Â ,

(
a b
c d

)
7→ E11aE11 + E11bE12 + E21cE11 + E21dE12,

which is clearly an injective ∗-algebra homomorphism. Surjectivity follows from

Φ
(

E11AE11 E11AE21
E12AE11 E12AE21

)
= E11AE11 + E11AE22 + E22AE11 + E22AE22 = A

as E11 + E22 is the unit of B2×2 ⊂ Â. Moreover, Φ maps the unit of A2×2 to the unit Â. Hence, Φ
is bijective, unital ∗-algebra homomorphism between unital C∗-algebras, which is consequently also

5We also refer to Lemma 8.2 and its proof in the first arXiv-version of [4], which can be found at arXiv:1804.07752v1.
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isometric. We define E : A → B through setting E[a] as the (1, 1)-entry of Ê[a] ∈ B2×2 for all a ∈ A.
Then E : A → B is a positive conditional expectation and, hence, (A, E, B) is an operator-valued
probability space. It follows that (A, ⟨E[ · ]⟩) is a tracial W ∗-probability space6.

Using Φ implicitly, we now identify H with an element in A2×2, i.e. we find a, b, c ∈ A satisfying
a = a∗ and b = b∗ such that

H =
(
a c
c∗ b

)
.

Moreover, by identifying A2×2 with C2×2 ⊗ A, we obtain

id ⊗ E

[(
a c
c∗ b

)(
r11 r12
r21 r22

)(
a c
c∗ b

)]
= Ê

[
H

(
r11 r12
r21 r22

)
H

]
=
(

S[r22] 0
0 S∗[r11]

)

for all r11, r12, r21, r22 ∈ B. This implies E[aa] = 0 and E[bb] = 0, hence, a = b = 0 as a = a∗ and
b = b∗. Moreover, E[cr21c] = 0 for all r21 ∈ B.

Owing to the standard relation between the covariance of an operator-valued semicircular element
and its R-transform, see e.g. [36, Theorem 11 of Chapter 9], we conclude that M(ζ, iη) as defined in
(D.1) satisfies (5.13).

Given the above construction, it remains to show that the Brown measure of a + c coincides
with σ. This proof proceeds analogously to [6, proof of Proposition 2.9]. We explain the necessary
replacements. First, analogously to [6, proof of (5.28)], we obtain

−L(ζ) = log D(a + c − ζ)

for all ζ ∈ C.
Proposition 6.3 and standard results from potential theory (cf. [7, Chapter 4.3]) imply∫

C
log|ζ − ξ|σ(dξ) = −L(ζ) + h(ζ)

for all ζ ∈ C and some harmonic function h : C → C. In the proof of Proposition 6.3, we showed that
L(ζ) = −⟨log|a − ζ|⟩ + C for all sufficiently large ζ ∈ C with some constant C ∈ R, independent of ζ.
An expansion of v1 starting from (4.2) for large |ζ| reveals that C = 0. Hence, h(ζ) → 0 for ζ → ∞
and, therefore, h ≡ 0 as it is harmonic.
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