arXiv:2404.17573v1 [math.PR] 26 Apr 2024

Spectrum occupies pseudospectrum for random matrices
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Abstract

We consider n x n non-Hermitian random matrices with independent entries and a variance
profile, as well as an additive deterministic diagonal deformation. We show that the support
of the asymptotic eigenvalue distribution in the complex plane exactly coincides with the e-
pseudospectrum in the consecutive limits n — oo and € — 0. Furthermore, we provide a description
of this support in terms of a single real-valued function on the complex plane. As a level set of this
locally real analytic function, the spectral edge is a real analytic variety of dimension at most one.

1 Introduction

The empirical spectral distribution of a non-Hermitian random matrix typically converges to a non-
random probability distribution o, the limiting spectral measure, on the complex plane as its dimension
tends to infinity. The most prominent instance of this phenomenon is the circular law, stating that
the eigenvalues of am appropriately normalised matrix X with centered i.i.d. entries converges to the
uniform distribution on the complex unit disk [25] 8] (see [47] for optimal moment conditions and [17]
for a review).

When a deterministic matrix A is added to X, the associated asymptotic distribution o and its
support, the asymptotic spectrum, depend on A in a complicated manner [33]. This distribution
can be realised as the Brown measure [I8], 27], which is a generalisation of the spectral measure to
non-normal operators, of an element in a W*-probability space with faithful, tracial state (-). In fact,
0 = 044 is the Brown measure of the sum of an embedding of A into the W*-probability space and
a circular element ¢ that is *-free from A. In this case, the asymptotic spectrum supp 44, coincides
with the closure of S = {¢ € C : {(A—¢)~1(A4*—{)~!)) > 1}. This observation goes back to [33] in the
random matrix setting, has been proven in the infinite dimensional situation in [I6] for normal A and
extended to general A in [I5,149]. Subsequently, the regularity of o 4. has been analysed. The measure
is absolutely continuous with respect to the Lebesgue measure on C [I0] and the density is strictly
positive and real analytic on S [49]. Moreover, the density typically possesses a jump discontinuity at
the edge of S [22].

Instead of adding A to the matrix X with i.i.d. entries we may also introduce more structure
into the randomness X = (;);';—;. When the entries z;; remain independent but admit differing
distributions with entry dependent variances s;; := E|xij|2, the density o is still supported on a
disk, radially symmetric and has a jump at the edge, but is in general not constant anymore on its
support [19, B]. This remains true when the entries of X are correlated with a decaying correlation
structure [6]. In this work we consider a case in which a nontrivial structure of the randomness and
a deterministic deformation A are present. Our randomness X has independent entries with variance
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profile S = (si;);';=; and A is diagonal. In particular, the matrix X + A considered in this work
belongs to the class of Kronecker matrices discussed in [5].

Non-normal random matrices and a detailed understanding of their spectra play an important
role in many applications, ranging from the stability analysis of food webs [2, B35, 29] and quantum
chaotic scattering [24] to investigating the transition to chaos in neuronal networks [44], [38]. A per-
sistent challenge in the analytic study of such matrices X is their spectral instability, i.e. the fact
that tiny changes in the matrix entries may lead to large deviations of the eigenvalues. To rem-
edy this issue the e-pseudospectrum Spec,(X) is introduced (see e.g. [48] for an overview), which is
stable under perturbations, monotonically increasing in € > 0 and contains the spectrum, namely
Ne>0 Spec.(X) = Spec(X). Especially for high dimensional X = X,, € C"*" the dependence of
Spec.(Xy) on € may be very unstably dependent on n (see e.g. [36, Section 11.6.3] for the exam-
ple of a shift operator). In particular, the eigenvalues may accumulate in a much smaller area than
Specy® := lim, g lim, o Spec.(X,,). In the case of Toplitz matrices A with a very small added ran-
domness X for example, the spectrum concentrates on curves given by the image of the unit circle by
the Toeplitz symbol inside Specg® [26, 39, 9], 42].

In contrast, our main result shows that for matrices with independent entries and diagonal de-
formation the set Specg® coincides with the support of the limiting spectral measure o, i.e., that the
spectrum occupies the entire e-pseudospectrum in the consecutive limits n — oo and € | 0. Here we
assume that s;; = Ls(L, %) and A = (a(%)éij)zjzl both have piecewise continuous limiting profiles
s :[0,1]> - R and a : [0,1] — C to ensure the existence of the limit as n — oo. In particular,
Specy® stably depends on the expectation profile @ and the variance profile s. Furthermore, we show
that positivity of the variance profile implies that o is given by a bounded probability density on the
complex plane, which is real analytic and strictly positive on an open domain S := {5 < 0} C C
with boundary 9S = {8 = 0}, where 8 : C — R is a continuous function that is real analytic in a
neighbourhood of dS. From this we obtain that 0S is a real analytic variety of dimension at most 1.
The density o vanishes outside the closure of S and typically has a jump discontinuity at the spectral
edge JS, except at critical points of 3, where it vanishes continuously.

These results about the measure ¢ have been shown in the case of constant variance profile s,
e.g. when the entries of X are i.i.d., and for general A in [49, 10, 22]. For constant s our choice of
B simplifies to 3(¢) = 2 Tr|A — (|72, which coincides with the analogous quantity in [49]. In this
situation, the study of properties of o and its relationship to g rely on solving a (-dependent family
of two coupled scalar equations, called Dyson equation, for two positive functions vi,v9 : S — R
that vanish at the boundary dS. The Dyson equation is a self-consistent equation for the diagonal
resolvent entries of the Hermitization of X + A in the n — oo limit. In the random matrix setup, the
Hermitization idea goes back to [25]. See e.g. [I1] for its use in the analysis of Brown measures. For
non-constant s, the Dyson equation is no longer finite-dimensional in the n — oo limit. Instead, with
profiles a and s, it becomes a system of two (-dependent equations of the form

i ¢~ ap PN
= Sv + , = S*v + ,
n© PO wo Y s
for two positive functions vy, vy : S — L]0, 1], where S, S* : L*°[0,1] — L*°[0, 1] are defined through

(Sf)(z):= [s(z,y)f(y)dy and (S*f)(x) := [ s(y,x)f(y)dy. From v; the probability density o inside
S is derived through

(1.1)

o m -2 0y

where (u) := [w(z)dxz. Taking the derivative in yields a quadratic form of a non-symmetric
operator. The main idea for the proof of positivity of o in the bulk regime, i.e. on S, is to transform
the formula for ¢ into the quadratic form of a strictly positive operator. Near the spectral edge JS, the
behaviour of ¢ is governed by the quantity § from the definition of S. In fact, 5({) coincides locally
around the spectral edge with the isolated eigenvalue of the non-symmetric operator B, that is closest
to zero, where By : L*®[0,1] — L*[0,1] is defined through B¢f := |a — (|*f — Sf. A consequence
that we derive from this insight is that the jump height of the edge discontinuity of ¢ at the spectral
edge is proportional to |03 |2. This requires a careful singular expansion of vy, v at the spectral edge,

(1.2)



where the Dyson equation is unstable. A signature of this instability is that B is singular for
¢ € OS and the main contributions to v; and vz near dS point into the singular eigendirections of Be.
Owing to the dependence of v1, v and S on s, treating non-constant s and «a is a recurring challenge
for the analysis in both regimes.

2 Main results

In this section, we state our assumptions and the main results. In the following, we take n € N and
write [n] for the discrete interval [n] = {1,...,n}.

A1 Independent, centered entries: The entries of X = (xij)i,jeﬂnﬂ are independent and centered, i.e.
{z;j: 4,5 € [n]} is a family of independent random variables and Ez;; = 0.

A2 Finite moments: All moments of the entries of \/nX are finite, i.e. there is a sequence of positive
constants C,, such that

E|zi;[” < Cyn™/2, (2.1)
for all i,j € [n] and v € N.

A3 Anticoncentration of entries: There is a constant b € (0, 1) such that, for all 4,5 € [n],

P<b_1 > nlzij — yij| > b) > b,

where y;; is an independent copy of x;;.

A4 Block-continuous variance profile: For some K € N, let I, ..., Ix C [0,1] be disjoint intervals
of positive length such that I; U...U Ix = [0,1]. Let s: [0,1]? — (0,00) and a: [0,1] — C be
functions such that s|z,«7, and a| 1, have continuous extensions to the closures I, x I, and I,
respectively, for all [, k € [K]. Moreover, we suppose that there is a constant ¢ > 0 such that

inf ) > e 2.2
nf s(ey) > e (2.2)

The constants in the assumptions — are model parameters and independent of n and,
therefore, the respective estimates are uniform in n.

The next proposition shows that the empirical spectral measure of non-Hermitian random matrices
with independent entries, a variance profile and a diagonal expectation has a deterministic limit as
the matrix size tends to infinity. We state and prove this result here, as we did not find it explicitly
stated in the literature, although the tools leading to it and closely related results are well-known
in the community. The independence of the limit from the entry distributions was shown in [47,
Appendix C] and [32, Theorem 1.3]. When X is a Ginibre matrix, the convergence of the empirical
spectral measure was proved in [43], Theorem 6] and for an X with i.i.d. entries, in [47, Theorem 1.17].

Proposition 2.1 (Convergence of empirical spectral distribution). Let the functions s: [0,1]*> —
(0,00) and a: [0,1] — C satisfy . For any n € N, we set Ay, = (aij); ;=1 € CV" with a;; =
a( A)(S Let (Xp)nen be a sequence of random matrices such that, for each n € N the random matriz
Xy € CV" with Xy, = (%45); jen] satzsﬁes m and as well as Elz;j|> = Ls(L, ) for all
i,j € [n].

Then there exists a unique probability measure o on C such that the empirical spectral distribution
% ZCESpeC(Xn+An) d¢ converges to o weakly in probability as n — oo, i.e. for every bounded, continuous
function f: C — C and ¢ > 0, we have

e 5 s from]>2)-o

CGSpec(XnJrA

Here the sum ZCGSpeC(Xn+An) is over all eigenvalues of X, + Ay, counted with multiplicity.
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The [proof of Proposition [2.1] is presented in Section below.

Remark 2.2. Under the stronger assumptions of Lipschitz-continuity of a and s in Theorem[2.4) below,
Proposition can be strengthened to a local law. That is, f in Proposition can be replaced by
feo(Q) == n2*f(n*(¢ — (o)) for a € (0,1/2) and (o € S, where S denotes the spectral bulk introduced

in (2.8)) below. Moreover, € can be chosen to tend to zero, when n tends to infinity, i.e. € = &, =
—1+2a+o(1)
n .

The condition is used to control the smallest singular value of X + A — { for ( € C through
the results from [34) 32], where we omit the index n from our notation in X = X,, and A = A,,. For
all other aspects of our proofs, the weaker condition n=! < Min; je[n] E]xijP is sufficient, which is

explicitly listed above as (2.2)).

Definition 2.3. The probability measure o from Proposition 2.1 is called limiting spectral measure
associated with s and a.

The next theorem states that the pseudospectrum of the n x n-matrix X + A is asymptotically
given by the support of the measure o from Proposition [2.1] which coincides with the spectrum of
X + A by Proposition 2.I] in the limit n — oo. We first introduce the pseudospectrum of a matrix.
For any € > 0, the e-pseudospectrum of a matrix R € C"*" is defined as the set

Spec.(R) :={¢ € C: [(R- )| =71} (2.3)

Note that Spec,(R) is monotonically increasing in € and Spec(R) = N> Spec, (R).
Furthermore, for a sequence (€y,)nen of sets we use the customary definitions

lﬂg.}mn = U ﬂ Q,, livljis;pﬁn = ﬂ U Q.
NeNn>N NeNn>N

Theorem 2.4 (Spectrum occupies pseudospectrum). Let s: [0,1]2 — (0,00), a: [0,1] — C and
(Ik)ke[r] be as in . Suppose that s|i, x5, and a|r, are Lipschitz-continuous functions for all I,
k € [K]. Let X, and A, be as in Proposition . Then there exists a monotonically increasing
family (Spec2®(s,a))es0 of deterministic subsets of C such that, almost surelﬂ

lizn_)sgp Spec, (X, + Ay) C Spec®(s,a) C lim inf Spec,  5(Xn + Ay) (2.4)
hold for all €,6 > 0. Moreover, this family is right continuous, i.e. Ns>o Specs 5(s,a) = Spec®(s, a)
and the limiting spectral measure o from Proposition satisfies

ﬂ Spec°(s,a) = suppo. (2.5)
e>0

The [proof of Theorem [2.4]is given in Section [7.2] below. We note that the sets (Spec®(s, a))->0 are
monotonically increasing in . In particular, Theorem implies that Spec(X,, + A,) is eventually
almost surely contained in a neighbourhood of suppo.

We now state additional properties of the limiting spectral measure ¢ and provide a characterisation
of suppo in terms of a and s. The measure o itself will later also be given by a formula that only
depends on a and s (cf. ) In the following, we write L>°[0, 1] for the space of essentially bounded
functions on [0, 1], up to changes of zero measure, when this interval is equipped with the Lebesgue
measure. We denote by S the integral operator on L>°[0, 1] with kernel s, i.e.

S L0  L¥0,1], (89 = [ sl ()

For u € L*°|[0,1], let D,, : L*°[0,1] — L*|0, 1] be the operator D, f := uf induced by multiplication
with u. Using these definitions, for some bounded and measurable function a: [0,1] — C and ¢ € C,
we introduce the operator B = B¢ on L>[0, 1] given by

BC = D|C7a|2 — S (26)

'We assume that all X,, for n € N are realised on the same probability space.



Since B maps real-valued functions to real-valued functions, we obtain a function f: C — R defined
through

B(¢) := inf sup ——~ 2.7
(C) >0 g>% <fag> ( )
for ¢ € C, where the infimum and supremum are taken over bounded functions f,g: [0, 1] — (0, c0)

and

.9 = [ Falgta)de

is the scalar product on L?[0,1]. The definition of 3 is motivated by the Birkhoff-Varga formula for
the spectral radius of a matrix with positive entries [14]. In terms of 5 we define the set

S:={CeC:B() <0}, (2.8)

whose closure coincides with supp o, as stated in the proposition below. We will see in Proposi-
tion that [ is a continuous function and therefore S is an open set.

Proposition 2.5 (Properties of the limiting spectral measure o). Let s: [0,1]? — (0,00), a: [0,1] — C
and (Iy)e[x] be as in . Suppose that s|1,x1, and a|j, are Lipschitz-continuous functions for all [,
k € [K]. Then the following holds.

(i) With respect to the Lebesque measure d2C, the measure o from Proposition has a bounded
density on C, which we also denote by o, i.e. o(d¢) = o(¢)d%C.

(ii) On S, the density ¢ — o(C) is strictly positive and real analytic.
(iii) suppo =S and this set is bounded. Furthermore {a(x) :z € [0,1]} CS.
(iv) OS is a real analytic variety of real dimension at most 1.

(v) There exists a unique continuous extension o:S — [0,00) of the density ols to S such that
a(¢) = g(O)|0cB(C)? for all ¢ € DS, where g : S — (0,00) is a strictly positive function that
can be extended to a real analytic function on a neighbourhood of OS.

Proposition[2.5]is a special case of Proposition[6.1]from Section[6] where we used that by Remark[4.2]
Assumption implies Assumption [A6] below.

We now give a brief overview about previous results covering (parts of) Proposition for a
subclass of the models we analysed. Throughout the following, ¢ is a circular element and a is an
element that is *-free from c¢. For some examplary choice of a, the Brown measure of a+¢ was computed
in [I3], Section 5]. In [16, Theorem 1.4], a formula for the support of the Brown measure of a+ ¢, when
a is a normal operator with a Gaussian spectral density, and its absolute continuity with a smooth
density was shown. For general a, the formula for the support was derived in [15, Proposition 1.2]
under an additional assumption. When a = a*, [3I, Theorems 3.13 and 3.14] provided an explicit
open set such that the support of the Brown measure of a + ¢ coincides with the closure of the open
set and the Brown measure has a strictly positive density on the open set as well as proved a sharp
upper bound on the density. Apart from the sharp upper bound, these results were obtained in [49]
Theorems 4.2 and 4.6] for general a, where the absence of atoms of the Brown measure and the real
analyticity of the density were also established. Then [I0, Theorem 7.10] proved for general a that the
Brown measure is absolutely continuous with respect to the Lebesgue measure on C, i.e. excluding
a singular continuous part in the Brown measure, as well as the sharp upper bound on the density.
In this setup, the edge behaviour of the Brown measure density was studied in [22, Theorem 2.9]
showing a jump discontinuity or a quadratic growth for the density. In particular, [49, Theorems 4.2
and 4.6] and [I0, Theorem 7.10] cover Proposition - when s is constant. In this case,
[22, Theorem 2.9 and Remark 2.10] yield and We note that some of the works listed above
considered generalisations of circular elements such as elliptic elements in addition. Similar statements
about the Brown measure of related models can for example be found in [12], 211 28§].



Remark 2.6 (Necessity of Lipschitz-continuity). The Lipschitz-continuity assumption on a and s
in Proposition is needed to ensure that the image of a remains in a positive distance from the
boundary OS of the spectrum as stated in Proposition . For a counterexample, where the
Lipschitz-continuity of a is violated and 0S N {a(x) : x € [0,1]} # 0 we refer to [22, Proposition 3.1
(iv)].

Remark 2.7 (Special cases for S). In the case when the entries of the random matriz X,, are inde-

pendent and identically distributed, i.e. when s =t is a constant and E\:cij\Q = %, we recover from

(12.8) the well-known formula [35, [17]

{ge«: / <|2 1}. (2.9)

Ifa=0thenS={C€C:|¢> < o(S)}, where S denotes the spectral radius of S. This generalises the
corresponding result from [3, [20] to an infinite dimensional setup.

Remark 2.8 (Special behaviours of 9S). We note that the boundary 0S can have isolated points, i.e.
its real dimension can locally be zero (see e.g. [22, Example 3.1 (d)]). Moreover, B can have critical
points on the boundary 0S, i.e. there can be ¢ € OS such that 0:5(¢) = 0 as shown in Example
below. Even infinitely many critical points of B can occur in 8S, see Example[3.2. In particular, these
examples reveal that a rich class of singularities of o can occur at the spectral edge OS.

2.1 Notations

We now introduce some notations used throughout. We write [n] = {1,...,n} for n € N. For
r > 0, we denote by D, := {z € C: |z| < r} the disk of radius r around the origin in C and by
dist(x, A) := inf{|z — y|: y € A} the Euclidean distance of a point x € C from a set A C C.

We use the convention that ¢ and C' denote generic constants that may depend on the model
parameters, but are otherwise uniform in all other parameters, e.g. n, ¢, etc.. For two real scalars f
and g we write f < gand g 2 f if f < Cg for such a constant C' > 0. In case f < g and f 2 g both
hold, we write f ~ g. If the constant C depends on a parameter ¢ that is not a model parameter,
we write <y, =5 and ~g, respectively. The notation for inequality up to constant is also used for
self-adjoint matrices/operators f and g, where f < Clg is interpreted in the sense of quadratic forms.
For complex f and g > 0 we write f = O(g) in case |f| < g. Analogously f = Os(g) expresses the
fact [f] <s g-

3 Examples

In this section, we present a couple of examples highlighting certain special behaviours of JS.

Example 3.1 (Critical points of 0S). Let s =t := %(20 — 7V7) be constant on [0,1]%, § = (=17 +
7V7)/8 and
1 ifzel0,1/(2+50)),
a: [0,1] — C, z—q -1 ifxe[l/(2+46),2/(2+9)),
i if x €[2/(2+9),1].

We recall that if s =t then B( fo ‘a 2) (\2 by (2.9 . and
1 1 o 2496
S:{CEC: + + — > }
1=¢P  [1+¢P (¢l t

We set yo = (V7 — 2)/3 and note that B(iyo) = 0, i.e. iyo € OS and, moreover, B(iyo + = + iy) =
(c122 + coy®)(1 + o(1)) for small enough =, y € R. Here, c¢1 and ca are two positive constants and
o(1) is meant for x — 0 and y — 0. The boundary of S and sampled eigenvalues of the corresponding
(Gaussian) random matriz model are drawn in Figure (@
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Figure 1: The solid lines in subfigures and (]EI) show the boundary of S from Examples and
respectively. In addition, the black dots show the sampled eigenvalues of X + A, where X is
an n x n matrix with i.i.d. N(0,1) standard real normal distributed entries, n = 10000 and A =
(diag(a(i/n))di;)i ;=1 is a diagonal matrix and a is chosen as in Examples and respectively.

We refer to [5, Example 2.6 and Figure 1] for more examples in the spirit of Example

Example 3.2 (Infinitely many critical points of S). Let s = 1 be constant on [0,1]? and

V2etmiTif € [0,1/2],

a: [0,1] — C, x .
0 if v e (1/2,1].

A short computation starting from (2.9)) reveals that
S={¢eC:0<|¢P<1lorl<|¢(?*<(3+V5)/2).

Thus, since 0D NS = () while points on both sides of 0Dy belong to S, we conclude from the analyticity
of B that 0¢3(¢) = 855(0 =0 for all € 0D1. Hence, there are infinitely many critical points of 5 on
0S. The boundary of S and sampled eigenvalues of an approrimating random matriz model are shown
in Figure[1] (#)).

Furthermore, using and , we find that

U(C):W<1—W<1+;>)1(CES)7

1 )
\/1+4x+ac2 —8|2]2+3

where x € (0,00) is the unique positive solution of% +

4 General setup and Dyson equation

In this section, we generalise the setup from the previous section in order to study an analogue of o
when a and s are defined on a probability space X and on X? instead of [0, 1] and [0, 1]?, respectively.
Thus, let (X,.A, ;) be a probability space, which represents the labels of the main quantities, e.g. a
etc. We denote by B = L (X, A, 1) the measurable essentially bounded functions on X up to measure
zero with respect to u.



Throughout the paper, we fix two measurable functions s: X x X — [0,00) and a: X — C with
a € B. We also assume that

sup [ s(a,y)p(dy) < o, sup [ s(a y)p(d) < oo.
zexX JX yexX JX

Therefore, the two operators S: B — B and S*: B — B defined through

wwm:Amemww <9ww:4wwwwmw (4.1)

for all x € X and u € B are well-defined bounded linear operators.
We consider two coupled equations for functions in v1,v9 € B with v; > 0 and v9 > 0, namely

i ¢~ af?

—=p+Svp+ > 4.2a

U1 " 2 n + S*v; ( )
¢ —al?

— =9+ S + , 4.2b

V9 " ! 1N+ Svg ( )

for alln > 0 and ¢ € C. Here, n and ( are interpreted as the constant functions on X with the respective
value. The equation (4.2) is called the (vector) Dyson equation. First, we clarify the existence and
uniqueness of its solution.

Lemma 4.1 (Existence and uniqueness). For each n > 0 and ¢ € C, there are unique vy, vo € B such
that v1 > 0 and vo > 0 and (4.2)) holds.

In Appendix , we present the proof of Lemma by inferring it from [30] through a relation
of (4.2) to a matrix-valued version.
4.1 Assumptions

Throughout the paper, we will impose some of the following assumptions.

A5 Flatness of S: There is a constant C' > 0 such that

1

c <s(xz,y) <C

for all z, y € X.
We define the function ', s: (0, 00) — (0, 00) through

1
Tus := essinf
#(7) vex Jy 71+ la(z) — a(y)| + ds(z,y

)u(dy), (4.3)

where ds(x,y) := esssup,ex(|s(z,q) — s(y,q)| + |s(q,7) — s(q,y)|). Note that I'y s is strictly monoton-
ically increasing.

A6 Data reqularity: The data a and s satisfy the regularity assumption

lim Iy s(7) = 00
T—>00

Remark 4.2. In the case X = [0,1] and p the Lebesgue-measure on [0,1], Assumption implies
Assumption[A6], since in this case |a(z) — a(y)| + ds(z,y) S |z —y| for allz, y € Iy and all k € [K].

As we will see in Lemma below, [A6] together with and a € B implies that v; and vy are
uniformly bounded in the B-norm on X. In addition to L°°, we introduce the usual LP spaces on
(%, A, ). We denote them by LP := LP(X, A, 1) and the corresponding norms by || -||,. For functions
u € L' and uq, ug € L?, we define their average and scalar product as

(u) = /u(m)u(dx), (uy ,ug) := (Uyusg) ,

respectively. By normalisation of the probability measure p on X we have (1) = 1.



5 Solution of the Dyson Equation

In this section, we study various properties of the solution (v1,v2) of the Dyson equation (4.2]). We
start with simple relations and bounds and obtain fine properties and expansions later.
From (4.2)), we directly conclude

vo(n + S*v1) = vi(n + Sva), (5.1)

which also implies
(v1) = (v2). (52)
Furthermore, we introduce y defined by
vi(@a—=¢) wv(a—J{

= = , 5.3
Y ?7+S*’U1 n+ S ( )

where the second step is a consequence of (5.1]). We conclude from (4.2]) and (5.3) that
v <y wm<nh fyl<la—(n7? (5.4)
for all ( € C and n > 0. Furthermore, we have the identity

_w@-¢ _ 1 _ 1 uw
_77+S*vl_a—C(1 vl(TH—SW))_a—C ] (5.5)

for any ¢ € C\ Spec(D,). Here, Spec(D,) denotes the spectrum of D, considered as multiplication
operator B — B, which coincides with the essential range of a.
Throughout the remainder of this section, we assume that s satisfies This implies

S*w ~ Sw ~ (w) (5.6)

for all w € B with w > 0.

5.1 Bounds on the solution

This subsection contains bounds on v; and vo under varying assumptions on s and a.

Bound in L?-norm: We start with the following bound with respect to the norm on L?2.
Lemma 5.1. If s satisfies [A5] then

(o) + (03) + (ly*) S 1 (5.7)
uniformly for all { € C and n > 0.

Proof. We multiply the first relation in (4.2a]) by v? and estimate vy > v?Svy > v} ({va) = v¥(v;) due
to (5.6) and (5.2). Averaging this estimate and using (v1) > 0 yields (v?) < 1. The bound (v3) <1 is
proved analogously. From (5.3]), we conclude

gp= Hla=CP _ efla—CP o+ 5w w 5.9
(n+ S*v1)?2 = (n+ S*v1)? n+ S*uy n+ S*vy’
where we used (4.2)) in the last step. Hence, (5.6]) implies
(i) s 4 <1, .

U CI A
Corollary 5.2. Let a € B and s satisfy[A5. Then

nt+w) oo 1

— LV <y, , i=1,2.
L2+ ¢~ "™ n+ (v)
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Proof. We only consider the case ¢ = 1. The case ¢ = 2 follows analogously. For the lower bound, we
start from (4.2)) and get

n+ 5" > n+ (v1) -+ {v)
(1 + 5 1) (1 + Svz) +[C = a2 ™ 9% + (o) + [¢[2 + [lallZe ™ L+n% [

using (v1) = (v2) by (5.2), (5.7) and (5.6). For the upper bound, (4.2)), (v1) = (v2) and (5.6) imply

1 1
V1 S ~ . OJ
n+ Sve  n+ (v1)

V1 =

Bound in supremum norm: Under stronger assumptions on s and a, we can also get a bound on
v; in the L>-norm. Let I'y s be as defined in (4.3).

Lemma 5.3. Let a € B, s satisfy[A5 and r > 0. Then there is a constant C > 0 with C' ~, 1 such
that C < lim;_,o0 Ty s(7) implies

max{|[v1]]os, [[v2]loc} < Tg5(C)
uniformly for ¢ € D, and n > 0.

Proof. From (4.2)), we obtain

1 < 1 n 1 _ 1 '
vi(y) ~ vi(z)  Jui(z)  vi(y)
e C—a@P  IC—al)?
S o T 15R@) = ERWI T e T s e @)
| a(@) — ay)| | dulz,y)
r Ul(ZE) + dS(SC,y)<U1> + <U1> + <U1>

1 1
S 7 (5 + 0@ — o) + ),

where in the third inequality we used ||a||ooc < 1 as a € B and (v1) + (v2) < 1 by Lemma as
well as and . We take the inverse on both sides and integrate in y with respect to u to get
Lo s(vi(x)) Sp 1 for almost all # € X. Together with the analogous calculation with the roles of v;
and v interchanged, we obtain I'g s(max{||v1|co, |2||cc }) < C for some C ~, 1. Thus, the statement
of the lemma follows from the monotonicity of I' s. O

Corollary 5.4. Let a € B. If s and a satisfy[A5] and[A6] then
[01]loc + [lvalloc S 1
uniformly for all ( € C and n > 0.

Proof. Owing to Lemmal5.3] (5.4) and a € B, it remains to consider the case n < 1 and [¢| > ||allsc +1.

. 2
In this case, we conclude from (4.2al) that % > n‘isilvl 2 1las S*v; < (v1) <1 by (5.6) and
Lemma Since v; > 0, we conclude ||vi]jc < 1. The analogous argument for vs completes the

~

proof of Corollary O
Remark 5.5. Let X = [0,1] and pu be the Lebesgue measure on [0,1]. Let I, ..., Ik be disjoint

intervals in [0,1] such that I U...UIx =[0,1]. If s: [0,1] x [0,1] — [0,00), a: [0,1] — C are such
that s|;x1, and aly, are Lipschitz-continuous for every l, k € [K] then[A6] is satisfied and a € B. In
particular, if s satisfies in addition then vi and ve are bounded in ||-||cc uniformly on C x (0, 00)
by Corollary[5.4 In this case[A 5] and[A6] all hold.

10



Scaling relations

Lemma 5.6. Let a € B and s satisfy[A5 and[A6l Then
v (u) = (v2) ~vz, o Jy[ ST

uniformly for all { € C and n > 0. Moreover, for any sufficiently small positive constant ¢ ~ 1 the
inequalities n + (v1(¢,n)) < c and |¢| < 1/c imply | —a| ~ 1 and |y| ~ 1.

Before going into the proof of Lemma [5.6, we remark that if a € B and s satisfies then

lor(Com) = @+ H S L+ [¢)n? (5.9)

uniformly for > 0 and ¢ € C. Indeed, for n € (0,1], (5.9) is a trivial consequence of (5.4). For n > 1,
(5.9) follows by inverting (4.2a)), subtracting (1 +7)~! on both sides and estimating the right-hand

side using (/5.6)) and Lemma

Proof. We first prove that vy ~ (v) = (va) ~ v2. As s satisfies equation (4.2)), v1, v2 > 0 and

(p-6) imply
V1~ VY. (510)

Hence, it suffices to show v1 ~ (v1) due to (5.2)).
From (5.9)), we conclude that v; ~ (14 n)~! and (v1) ~ (1+7)~! uniformly for > 1 and [¢| < 1.
This proves Lemma [5.6]in that regime. If, on the other hand, || > |[a|ls + 1 then |¢ —a| ~ |¢|. Hence,

for such ¢, we conclude from (4.2al) and (5.6) that
1 ¢?

— ~ 4 (v2) + .
v (v2) n+ (v1)

As the right-hand side is a constant function on X, we obtain vy ~ (v1) if || > ||a||s + 1.
Hence, it remains to consider |(| < 1 and n < 1. In particular, |( —a| < 1 as a € B. Thus, (4.2a)),

(5.6) and (5.2)) imply
n+ (v1) ~vi((n+ (01))* + ¢ — af?). (5.11)
Together with Lemma this yields n + (v1) < v1. We conclude v1 2 (v1) and v 2 n as well as

(v1) 2 n. If | —a| > ¢ for any ¢ ~ 1 then v; < n+ (v1) ~ (v1) by (5.11). Therefore we conclude
vy ~ (v1) if | — a|] > ¢. What remains is the case | — a| < ¢ and < ¢ for some constant ¢ ~ 1.

Asv; <1 byand Lemma we conclude from (5.11)) that 1 =2 n+ (v1) or 1 > L{&ZS In the

second case, (5.11)) implies (v1) < 0+ (v1) ~ v1(|¢ — al* + |¢ — a|?). Using |¢ — a| < ¢, choosing ¢ ~ 1
sufficiently small and averaging (v1) < v1(|¢ — a|* +|¢ — a|?) yield a contradiction as (v1) > 0. Hence,
(v1) 2 1 and, thus, (v1) ~ 1 by Lemma as well as 1 2 vy by as n < ¢ for some small enough
¢ ~ 1. Since v; < 1 by Lemma this completes the proof of vy ~ (v1) uniformly for ¢ € C and
n > 0.

From vy ~ (v1) and (5.8)), we conclude |y| < 1 uniformly for ¢ € C and 1 > 0. Owing to and
vy ~ (v1), we have n+(v1) ~ (v1)(n+(v1))2+(v1)|¢ —al®. Asn+(v1) < ¢, by choosing ¢ ~ 1 sufficiently
small, we can incorporate (v1)(n+ (v1))? into the left-hand side and obtain (v1) < |¢ —a|?(v1). Hence,
1 < |¢ —al as (v1) > 0. The bound |y| ~ 1 follows from (5.5)). This proves the additional statement
and completes the proof of Lemma [5.6] O

5.2 Relation to Matrix Dyson equation

Let (v1,vs) be a solution of (4.2). We now relate (v, v2) to a solution M € B**2 of a matrix equation.
To that end, we define y as in ([5.3)) and set

M= (“;1 ,y> e B, (5.12)

ivg
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Then Im M := %(M — M™) is positive definite and inverting the 2 x 2 matrix M explicitly shows that
M satisfies the Matriz Dyson Equation (MDE)

M= (gii?a C;ﬁ) +3[M]. (5.13)

Here, ¥: B?*? — B?*2 is defined through

11 T12 Sro2 0
5 _ 5.14
|: <T21 7’22) :| ( 0 S*"f’H) ( )
for all 711, r12, 721, 122 € B.

On the other hand, if M € B?*? with Im M positive definite is a solution of (5.13) then it is easy
to see that denoting the diagonal elements of M by iv; and ivy yields a solution of (4.2)).

Matrix Dyson equation with general spectral parameter and measure p; More generally,
we consider the MDE, where the spectral parameter in is replaced by w € C with Imw > 0, i.e.

w

(—a

for ¢ € C. Then has a unique solution M (¢, w) € B?*? under the constraint that Im M ((, w) :=
5 (M (¢, w) — M (¢, w)*) is positive definite for Imw > 0 [30].

By [4, Proposition 2.1 and Definition 2.2], the map w +— (M ({,w)) is the Stieltjes transform of a
probability measure on R, where we introduced the short hand notation

—M(Cw) = ( C;“) + S[M (¢, w)] (5.15)

(R) == %((Tn) + (r22)), R= < e ) e B2*?,

21 722

Definition 5.7. We denote by p; the unique probability measure on R whose Stieltjes transform is
giwen by w — (M(¢,w)). Through p; we define

Se :={¢ € C: dist(0,supp p¢) < €} (5.16)

for any e > 0.

In the setup of Theorem in particular, p is the Lebesgue measure on X = [0, 1], the measure p¢
from Definition is the asymptotic symmetrized empirical singular value distribution of X, + A, —(
for any ¢ € C, see [, Theorem 2.7]. In this case the set SpecZ®(s,a) from Theorem is identified
in below with S; from , which is the n — oo limit of the e-pseudospectrum for
R=X+ A

Remark 5.8. The sets S defined in are monotonously nondecreasing in € > 0, i.e. S;; C Sg,
if e1 < e9. Moreover, they are bounded, in fact, S C {¢ € C: [¢| < € + ||alloo + 2(||Sloo)'/?} for all
€ >0 as a consequence of [{|, Proposition 2.1]. Here, ||S||oc denotes the operator norm of S viewed as
an operator from B to B.

5.3 A relation between the derivatives of M

In this subsection, we consider derivatives of M, the solution of ({5.13]), with respect to n and ¢ and
establish a useful relation between these in the next lemma.

Lemma 5.9. Let a € B and s: X x X — [0,00) be bounded measurable functions. Then

(O Mo (G, 1)) = 21{0cM (G, in)), {9y Mi2(C,in)) = 21{0e M (C, in)) (5.17)

for every ¢ € C and n > 0, where we decomposed

[ Maa(Cin)  Mia(C,in)
MG im) = <M21(C7i77) Mzz(Caiﬁ)>'
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We note that the condition sup, ,cx s(x,y) < oo implies that the operators S and S* from (4.1)
can be extended to operators L? — L.

Before proving Lemma we prove the differentiability of M with respect to n, ¢ and (. Let £
be the stability operator of , defined as

L:B>? 5 B2 R L[R]:= M'RM~! — $[R]. (5.18)

This operator is invertible for any ¢ € C and 1 > 0 due to Lemma below. Therefore, the implicit
function theorem applied to (b.13) and simple computations show that

OM =LV Ew),  0M=L'En], 9,M=il"'[E] (5.19)

for all n > 0 and ¢ € C, where we used the notations Eja, Fo; and E for the elements of B2*? defined

through
0 1 0 0 10
be(0 ) () () o

Proof of Lemma[5.9 As (0yMa1) = (E3,0,M), we get from (5.19)) that
(0 Mot} = 28BS L[]y = 2i{Bay , £V [B ). (5.21)

Since (0, Mi2) = (E{,0,M), there is an analogous statement for (0, M;2).
We start from the first relation in (5.19)), use (L[R])* = L*[R*], the invertibility of £* and Efy = Ea
to obtain

(OcM) = (L7 [Br2))", By) = (L) [Eo], Bx) = (Bar, L7HEL)). (5.22)
Therefore, combining (5.21)) and (5.22]) proves the first identity in (5.17). The second one follows
analogously. O

5.4 Stability of Dyson equation and analyticity of its solution

In this section we show how the solution vy, vy of (4.2]) can be extended to n = 0. If we stay away from
the deterministic analog of the e-pseudospectrum, then the solution is extended to n = 0 by setting
v; = 0 by the following lemma.

Lemma 5.10. Let ¢ > 0. Let ( € (C\S:)NDy,.. Then vi(¢,n) ~e n for alln € (0,1] andi = 1,2. In
particular, v; is continuously extended to ( € C\ Sy and n = 0 by setting v;(¢,0) := 0.

Proof. From ((4.2a]), we conclude v1(|¢ — al?> + (7 + Sva2)(n + S*v1)) = 5+ S*vy > n. Thus, |¢| <e !,
aeB,n<l, and Lemma [5.1] imply vy >. n for all n € (0,1]. Similarly, vy 2. n for all 5 € (0, 1].
On the other hand, as ( € C\ S;, the statement (v) of [4, Lemma D.1] holds for 7 = 0. Hence, [4,
Lemma D.1 (i)] implies max{vi({,n),v2(¢,n)} < || Imm(in)|| < n for all n € (0, ¢] for some sufficiently
small ¢ ~ 1. If n € (¢, 1] then the upper bound in Corollary yields v; <n~t ~n for all 5 € (c, 1].
This completes the proof. ]

The next proposition states that if (v1) = (v2) remains bounded away from zero as i | 0, then the
solution has an analytic extension to n = 0.

Proposition 5.11 (Analyticity in the bulk). Let s satisfy and ¢ € C with limsup,, o(v1(¢, 7)) > 0.
Then v1,vs : C x (0,00) — (0,00) has an extension to a neighbourhood of (¢,0) in C x R which is real
analytic in all variables.

To prove this proposition, we show that the Dyson equation is stable even for n = 0. However,
the equation does not have a unique solution on B% for = 0 without the additional constraint (v() =
(va). Therefore, we have to reformulate the equation to incorporate this constraint. Proposition
is proved at the end of this subsection.

We recall that By := {w € B:w > 0} and set

e.=1,-1)eB:=BaB, et:={h=(h,hy) e B?: (h1)=(ho)}.
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For n >0 and ¢ € C, we define J = J¢,,: e N B2 — e, (wi, w2) = (J1 (w1, w2), J2(w1,ws)) through

1+ S w; )
J = S —
1(wr, w2) = (n+ w2)<w1 (n 4 S*w1)(n + Sws) + la — ¢[2)’
i n + Sws >
J: = S — :
2(w1,w2) = (n+ w1)<w2 (n 4+ S*w1)(n + Sws) + |a — |2

Then ([4.2) takes the form J(v) = 0 with v = (v1,v2) € B2.
On B2, we introduce a average and a scalar product defined through

< @;) > = %(<x1> + (x2)), <<2> : <§;>> = %((lel) + (Tay2)) (5.23)

for z1, T, Y1, y2 € B. For x € B2, we write ||z2 := \/(x, z).

For the rest of this section we will assume that s satisfies Until the proof of Proposition [5.11
we fix ¢ € C such that limsup,o(v1(¢,;n)) > & for some 6 > 0. Under these conditions, J remains
well defined on et N B2 even for = 0 and we set Jy := J¢,—o. We now pick candidates for v1(¢,0)
and v2(¢,0) by choosing weakly convergent subsequences in the limit 1 | 0. By Lemma there are
vg € (L?)? := L? ® L? and a monotonically decreasing sequence 7,, | 0 in (0, 1] such that v, = v({,n7,)
is weakly convergent to vg in (L?)2, i.e. for any h € (L?)?, (h,v, —v9) — 0 in the limit n — co. We
recall that L? = L2(X, A, p1).

Lemma 5.12. Then vy € Bi Net and § < vy < %. Furthermore, vy satisfies (4.2)) for n = 0, i.e.
Jo(vo) = 0.

For the following arguments, we introduce the operators S, and Sy on B? defined through

0 S S* 0
s (85) s (5 ). 52

Owing to the upper bound in S, and S; can be extended naturally to operators on (L?)2.

Proof. Since v, — vg weakly and (e_v,) = 0, we conclude vy L e_. Furthermore, for any h € B'%_
we get (hvg) = limy, o0 (hvy,) 2 0(h) because of Corollary 5.2/ and lim sup,,_,.(v,) > 0. From this we
conclude vg 2 4. Similarly, Corollary implies vy < % and thus vy € Bi.

The natural extensions of S and S* to operators on L? are Hilbert-Schmidt operators because
s € L?(X x X, 4 ® p) due to the upper bound in In particular, S and S* are compact operators
on L? and, thus, S,v, — Sovg and Sgv, — Syvg in (L?)2. The bounds 6§ < v, < 6! then imply that

~

Jenn (0n) = Jo(vo) weakly in (L?)?. Consequently, Jo(vg) = 0. O

For the formulation of the next lemma, we note that |7« denotes the operator norm of an
operator T': B2 — B2 and, analogously, ||T||2 is the operator norm if T: (L?)? — (L?)2.

Lemma 5.13. Let vy be a weak limit of a sequence vy, = v((,n,) as above. Then
10V Joluw=v0) " l2 + 1V Jouw=v0) " lloc S5 1.

Proof of Lemma[5.13 Within this proof we will make use of some results from [3]. Therefore we
introduce notations that match the ones from [3], namely

7= (¢ —al% ¢~ af) (5.25)

and recall the definitions of S, and Sy from (5.24). In [3] the setup a = 0 was treated and therefore
7 = |¢|? was constant. Here 7 = (11, 72) € By @ B, satisfies 71 = 79, which ensures that the necessary
computations from [3] remain applicable. Using the notations ([5.24]) and ([5.25]), we write J in the

form
1

77+So’ll)+n+gvdw>‘

T(w) = (n+ Sow) (1w -
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Now we take the directional derivative V},.J of .J in the direction h € B? with h L e_, i.e. (he_) =0,
and evaluate at the solution v = (v, v2). Thus, we find

U2T

Vid |lw=o = (1 + Sov) (h +v2S,h — 2 S’dh> = (n+ Syv)Lh, (5.26)

(77 + Sqv

where we used J(v) = 0 and introduced the linear operator L = L¢,(v): B2 — B? as

’U27'

Lh:=h+v*S;h — ——S.h 5.27
+v°S (U+de)25d ( )

to guarantee the last equality. We now restrict our analysis to n = 0 and use the following lemma
that provides a resolvent estimate for Lo = L¢ g(vp), the operator evaluated on the weak limit vg.

Lemma 5.14. There is e, ~5 1 such that for any e € (0,e,) we have the bound

sup{ [[(Lo — ) !l : w & D U (14 Dipe) \ Dae) } s 1 (5.28)

for # = 2,00. Here, D. contains the single isolated eigenvalue 0 of Lo with corresponding right and
left eigenvectors v— 1= e_vg and Syv_, i.e.

D. N Spec(Lg) = {0}, ker L3 = Span(v_), Lov_ =0, LySo,v— = 0.

Here, L} is the adjoint of L with respect to the L?-scalar product introduced in (5.23)).

The [proof of Lemma [5.14] follows a strategy similar to the one used to prove stability of the
Dyson equation in [3], where the case a = 0 was treated. For completeness we present the proof in
Appendix below. Using Lemma we now show that

1o ooy Nl Ss 1, # = 2,00, (5.29)

from which the claim of Lemma immediately follows due to , and vg 2 6. To see
, we will apply [6, Lemma 4.6] to C Ly for some appropriately large positive constant C' ~j 1.
The lemma was formulated for X = {1,...,d} with the normalized counting measure, i.e. B = C.
However, its proof is uniform in the underlying dimension d and it therefore translates to the current
general setup. We now check the assumptions of the [6, Lemma 4.6]. Note that Lo maps e~ to (Syv_)*.
By Lemma the right and left eigenvectors of Ly corresponding to the eigenvalue 0 are v_ and
Sov_, respectively. Moreover, (v_,e_) 25 1 as vg 2 0, [(e—,w)| < ||w||x and that ||Low| 4 Zs ||wl4
for any w L S,v_ due to Lemma [5.14 By [6, Lemma 4.6] we get ||Lowl||s 25 [|[w]|x for any w L e_.

Thus, (5.29) is shown. O

Now we use the stability at n = 0 to finish the proof of the main result of this subsection.

Proof of Proposition[5.11, Let (o € C be such that limsup,o(v1(¢o,n)) > 0. Let n, | 0 such that
vn = v({o, Mn) is weakly convergent in (L?)2. This is possible, because the family v(¢o, ) with n € (0, 1]
is bounded in (LZ)2 due to Lemma By Lemma the weak limit vg = lim,,—oo v, satisfies the
Dyson equation, J¢o(vg) = 0, and by Lemma the Dyson equation is stable at v = vy and n = 0.
By the implicit function theorem we find a real analytic function v, defined on a neighbourhood U of
(€0, 0) in C xR, such that v(¢,n) solves and 0({p, 0) = vo. Since vy 2> § according to Lemma [5.12]
v(¢,m) > 0 on U if the neighbourhood U is chosen sufficiently small. By uniqueness of the solution to
the Dyson equation we conclude v(¢,n) = v(¢,n) for all (¢,n) € U. O
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5.5 Characterisation of S

Throughout this section we assume that a € B and s satisfies and To generalize (2.6, (2.7)
and (12.8]) to the setup introduced in Section we define an operator B¢ : B — B, a function 3: C — R
and a subset S C C through

B(C) = inf sup DY)

Jnf s SemaTs Be=Dage= 8, Si={CeC:HO <0 (5.30)

We also set 1
p¢(0) := —lim(v1 (¢, 7)) - (5.31)
T nd0

This limit exists, because either lim sup,_,o(v1(¢,7)) > 0, in which case v; can be analytically extended
to n = 0 by Proposition or limsup,,_,o(v1(¢,7)) = 0 in which case the limit equals zero as well.
As explained after Definition we can interpret p¢(0) as the asymptotic singular value density of
X + A — ¢ at zero in case (X, ) = ([0,1],dz).

In the following we will denote by App(T") the spectral radius of a compact and positivity preserving
operator T, i.e. App(7T’) is the Perron-Frobenius eigenvalue of T'. In particular the operators S and S*
are compact as mentioned in the proof of Lemma and therefore so are D,SD, and D,S*D, for
x,y € B. We use this fact in the statement of the following proposition.

Proposition 5.15. The following relations between 3, S, S; and p¢ apply.

1) The function C > ( — B(() is continuous and satisfies limy_,o B(() = +00. In particular, S is
¢
bounded.

(ii) The spectrum of D, lies inside S, i.e.
Spec(Dg) CS. (5.32)
(iii) The sign of 5 satisfies

sign(8(C)) = sign(1 - e (SD,% ),  C€C. (5.33)

(iv) For any ¢ € C with B(¢) > 0 the operator B¢ is invertible. Furthermore, all such ¢ are charac-
terised by

{CeC:p(¢) >0} ={¢ €C:dist(0,supppc) >0} =C\ Sp. (5.34)
(v) The set'S is characterised by having a positive singular value density at the origin, i.e.
S={¢eC:p:(0)>0}. (5.35)
Proof. Proof of The continuity of ( — B(¢) =  with B = B¢ is a consequence of the bound

B+ Dy, s D
inf sup (z,(B+ Du)y) — Bl < sup sup M

< |
z€By yeB, (z,y) z€BL yEB, (z,y) Oo

for any real valued w € B. The statement 3({) — +oc as ( — oo is obvious.
Before we start with the proof of other individual statements of the proposition, we show that S
can be classified in terms of the Perron-Frobenius eigenvalue of SD|;27 (| in the sense that

S={CeC:\{() >1}, (5.36)
where we introduced A : C — [0, c0] as the limit of a strictly increasing sequence via

MO = HmAC), A0 = Apr(S(e + Dio—p) ).
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To show (5.36)) let € € (0,1), D := Dj¢c_qp2, A = Ac(¢) and C' > 0 such that 1+ |¢ — al? < C. For
¢ € C with B(¢) > 0 we get

B D)~ !
B+e<C inf sup {z, e+ B)y) = C(l— sup inf (z,5(+ D) y>) =C(1-X\),
v€By yep, (T,(e + D)y) zeBy YEB+ (z,y)
where we used € + |¢ — a|?> < C in the first inequality, and conclude
B <C(1—=N) if 3>0. (5.37)
For ¢ € C with 8(¢) < 0 we use
— B
—f —e= sup inf —{z.(e+ Bly)
veBy YEB (x,y)
for sufficiently small € > 0 and find analogously that
B>C(1-))  ifB<0. (5.38)
From ([5.37)) and (/5.38) we conclude (5.36)).
We also show that
Spec(D,) C {¢ € C: 5(¢) < 0}. (5.39)

We will improve this to (5.32) below. Let ¢ € Spec(Dg). Then essinf|¢ — a| = 0. Thus, for any ¢ > 0
we find z € B\ {0} with > 0 such that | — a|?z < ex. In the definition of 3 from (5.30) we can
take the supremum over all = € B, Thus, we get

<e.
yeBt <$,y> N

Since € > 0 was arbitrarily small, we conclude 8 < 0.

Proof of [(iv)} Let ¢ € C such that 3(¢) = 8 > 0. Then implies App(SD~1) < 1 with D =
Dj¢_q2- Here, D is invertible because essinf|¢ —a| > 0 due to (5-39). In particular, B = (1—SD~')D
is invertible.

Now we show dist(0,supp p¢) > 0 to see one inclusion in the characterisation . The Dyson
equation in the matrix representation, is solved by

— 0 (a—Q7!
My = ( (a0 0 ) (5.40)

at w = 0. Furthermore, the associated stability operator (cf. (5.18))

— (|rog — St (a—¢)%r
Lo: B2 5 B2 Rivs M'RM;! — SR = @ — ¢|7ra 22 21 5.41
" ° 0 (a—{)%ri2 la —¢Prin — S*rn (5.41)
is invertible because B¢ is invertible and essinf|a — ¢| > 0. Therefore (5.15) can be uniquely solved
for sufficiently small w as an analytic function w — M ({,w) with M(¢,0) = My and we get

Lo[0wM (¢, w)lw—o] =1 and  8,M(C,in)ly—o = Ly [1]

In particular, Im M((,in) is positive definite for sufficiently small n > 0 because L Lis positivity

preserving, as can be seen from a Neumann series expansion using that App(SD~!) < 1. Therefore
M(¢,in) is the unique solution of with m11(¢,in) = ivi(¢,n) and mea((,in) = iva({,n). Since
mi1|p=0 = Ma2|y—0 = 0 we conclude that p¢(0) = (v1(¢,0)) = 0. The invertibility of Ly also implies
analyticity of M (¢, w) in w in a small neighbourhood of zero. Thus, p¢([—¢,€]) = 0 for € > 0 sufficiently
small and dist(0,supp p¢) > 0.
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To see the other inclusion in , let ¢ € C be such that dist(0,supp pc) > 6 for some 6 > 0.
From [4, Lemma D.1 (iv)] we know that M = M ((,in) is locally a real analytic function of 7 with an
expansion M = My +inM; + O(n?), where My = M. Taking the imaginary part of at w = in,
dividing both sides by n shows that

(M* T K,M ' =1+3%[K,], (5.42)

where K, = 1 Im M = Re M1+ O(n). In particular, K := lim, o K, exists and since Im M (¢, in) ~s
by Lemma we get Ko ~; 1. Evaluating (5.42)) at n = 0 yields

My(SKo)My = Ko —1. (5.43)

Taking the scalar product of with the left Perron-Frobenius eigenvector of R — My(XR)Mj, and
using Ko ~s 1 we see that App(R +— Mo(XR)My) < 1. This is equivalent to A := App(SD™!) < 1 with
D := D,,_¢2. Now let u € B, be the Perron-Frobenius eigenvector of SD~!. Since ¢ := essinf|la—(| >
0 we get with 3o := D~ that

(D — S)yo = (1= \)Dyo > 0.

Thus,
B = inf sup L,By) > inf L,By@
z>0 y>0 <{E ) y> >0 <x ) y0>

This finishes the proof of (5.34), i.e. of
Proof of t We have now collected enough information to improve (5.36)) to (5.33)). Indeed, by

(5.37) and (5.38) it remains to show that A < 1 implies 8 > 0. Due to (5.36) we already know 5 > 0
in case A < 1. Now let 8 = 0 and A < 1. Then we show that A = 1. Indeed by the characterisation
(5.34) we have 0 € supp p¢. Now we consider the identity

>(1-XNe?>0.

Bcvg =n-— U2(77 + S*Ul)(n + S’Ug)

which follows from . For some € > 0 we add evs to both sides and apply the inverse of e+ D with
D = Dy,_¢p2. Then we take the scalar product with the right Perron-Frobenius eigenvector z. € By of
S*(e+ D)~ corresponding to its Perron-Frobenius eigenvalue A > 0. Note that the Perron-Frobenius
eigenvalues of S*(¢ + D)%, (¢ 4+ D)~1S and S(e + D)~ ! all coincide. Thus we get

(1= Ae)(zeva) = n{(e + D) ae) — (xe(e + D)~ (va(n + S*v1)(n + Svg) — eva)) . (5.44)

From [4, Corollary D.2] and (v;) ~ v; by Lemma [5.6{ we see that n/(v;) — 0 for n | 0. Thus, dividing
(5.44) by (ve), taking the limit n | 0 and using (/5.6]) reveals

(1= A) (@) ~ (1 — M) {zek) = ezo(e + D)Lk ~ elzo(e + D)LS1) = e(S* (e + D) Las) = eXelas)

where k := limsup, z—; ~ 1. Letting € | 0 shows A = 1. Thus, is proven.

Proof of By we know that pc(0) > 0 implies 5(¢) < 0. Thus, it suffices to show that
for ¢ € C with 5(¢) < 0 we get 5(¢) = 0 if and only if pc(0) = 0. Now let 8 = B(¢) < 0. As above,
we consider the identity (5.44). First, suppose pc(0) > 0, i.e. we can analytically extend v to 7 = 0
by Proposition and have v|,—g > 0. Then in the limit n | 0 we find

(e — 1)(2eve) = (z-(c + D) (v2(S*v1 S — €)))
Using vy ~ (v2) ~ p¢(0) for small enough e > 0 the right hand side satisfies
(z(e + D) Hva(S* 01 Svg — €))) ~ pC(O)g(gca(s +D)7181) ~ Agpc(0)3<x5>.

Since (z.v2) ~ pc(0)(x:) we infer Ac — 1 ~ Az p¢(0)%. Thus, A > 1 and by (5.33)) therefore 3 < 0.
Conversely, let v|,—o = 0. Then we know from Lemma that ¢ := essinfla — (| > 0. Since
B(¢) < 0 the characterisation ([5.34)) implies 0 € supp p¢ and by (5.33)) we have A > 1. Since n/(v) — 0
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for n | 0 by [4, Corollary D.2] we get, dividing (5.44) by (v2) and taking the limit 7 | 0, the scaling
behaviour
11— ~e).

This implies A. < 1, thus A = 1, and completes the proof of

Proof of [(ii)} Let ¢ € Spec(D,). By we know 3(¢) < 0. Suppose 3(¢) = 0. Then
would imply p¢(0) = 0. However, this contradicts ¢ € Spec(D,) because of Lemma This finishes
the proof of the proposition. O

5.6 Expansion of v; and v, at the spectral edge

In this section we expand the solution vy, vo of around any edge point (o € C. We will see later
in Proposition that points in the boundary of the support of the Brown measure o, a probability
measure in the complex plane associated with our data a and s and defined in that proposition, satisfy
B(¢p) = 0. Therefore we consider in this section a fixed (o € C with 5(¢p) = 0. The expansion of vy, vo
around (y is based on analytic perturbation theory for S. Throughout this section we will always
assume |¢ — (o| + 1 < ¢ for some sufficiently small positive constant ¢ ~ 1, i.e. we assume that (¢,n)
lies within a small neighbourhood of ({p,0). We will see in Corollary below that the function
¢ — B(C), used to define S in , coincides locally around (p with the isolated non-degenerate
eigenvalue of B¢ closest to zero. We assume and @ throughout the remainder of this section.
To shorten notation, we denote v; = v;({,n). The identities

Bevg =1 —va(n + S*v1)(n + Sve), BZ‘vl =n—vi(n+ S*v1)(n+ Sva), (5.45)

which follow from (4.2al) and (4.2b]), respectively, are used to expand v; and v2 in a neighbourhood
of (p. We denote by b = b € By and £ = {; € B the right and left eigenvectors of B = B,
corresponding to the eigenvalue § = 5(¢) with normalisation (b) = (¢) =1, i.e.

Bb=Bb, B'=pL. (5.46)

The existence and uniqueness of b and £ is a consequence of analytic perturbation theory and Lemmal5.17]
below. This lemma also implies that ¢ + b; and ¢ + £ are real analytic functions. The main result
of this section is the following proposition.

Proposition 5.16. Let s and a satisfy and . Furthermore, let (o € C such that B((p) = 0.
Then there is an open neighbourhood U C C x R? of ({o,0,0), an open neighbourhood V.C C x R of
(€0, 0) and real analytic functions wy,wy: U — B such that

Ul(<7 77) - 79((7 77)54 + 1171((7 m, 19(4-7 "7)) ) 1)2((7 77) - 79((7 77)b< + @z(Cv m, 79({7 77))

for (¢,n) € V and n > 0. Furthermore, ¥ = 9¥({,n) satisfies
I (Lb(S0)(Sb)) + BI(Lb) —n = g(¢,m, V), (5.47)
for all ({,n) € V where £ ={¢, b="0b¢, = () and g: U — R is a real analytic function, such that
9(¢,m.x) = O(lnal* +1a”),  (¢m2) €U.

The proof of Proposition [5.16|is the content of the remainder of this section and will be summarised
at its end. We remark that as a solution to the cubic equation the quantity 9 and with it vy, v9
are not analytic at ( = (p and n = 0.

The following lemma collects spectral properties of B¢,. These properties yield corresponding
properties of B, for sufficiently small | — (|, using analytic perturbation theory. We will use this
idea throughout the remainder of this section after the statement of Lemma
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Lemma 5.17 (Properties of B). Let (g € C with (¢p) =0 and By := B¢,. Then there is a constant
€ > 0 with € ~ 1 such that

sup{[|(Bo — )l + (B — )4 s w € Do \ D} £1 (5.48)
for # = 2,00. Here D, contains a single isolated non-degenerate eigenvalue 0 of By, i.e,
D. N Spec(By) = {0}, dimkerB2 = 1. (5.49)

Moreover, the right and left eigenvectors, by € By and ¢y € By, corresponding to this eigenvalue with
normalisation (by) = (€o) = 1 satisfy the bounds £y ~ by ~ 1. Furthermore, if

{lo-)
Py = b =1-— P,
CEaRTANLE Qo 0
denote the associated spectral projections then
1B Qoll + 11(B5) "' Qll# < 1. (5.50)

Proof. Here we present the proofs of the bounds and for By. The corresponding bounds
for By follow analogously. From Proposition and since S is bounded we know that [a—(o| ~ 1.
Thus, by is the right eigenvector of D~1S with eigenvalue 1 and £y is the right eigenvector of D~15*
with eigenvalue 1, where D := Dj,_ 2. In particular, by,lp € By by the Krein-Rutman theorem
and the geometric multiplicity of the eigenvalue 0 of By is 1. Furthermore, the non-degeneracy of the
eigenvalue 0 is a consequence of by, fy € By. Indeed, suppose we had dimkerB? > 1. Then there
would be a generalised eigenvector x with Bz = by and (¢ybg) = (¢o Box) = 0 which contradicts £y > 0
and bg > 0. This proves , which together with implies . The relation by ~ £y ~ 1 is
a direct consequence of [a — (| ~ 1 and (5.6).

We are left with proving . Instead of controlling the resolvent of By, it suffices to bound the
inverse of 1 — SD~! —wD~! because

1 1 1 ~ 1 -
-D F, 5.51
By —w D(l—SDl—leQerl—SDl—le w>’ (5:51)
where P, and @w :=1— P, are the analytic spectral projections associated with SD~! —wD~! such
that
Py = o) 0
(o Dbo)

Analytic perturbation theory can be applied to SD~! because of Lemma which shows that the
resolvent of the operator SD~! is bounded in annulus around its isolated eigenvalue 1. Consequently,
the first summand in (5.51)) is bounded for sufficiently small |w|. The second summand admits the
expansion
1 = I 5 3 {£obo)
P,==——P =—
1-SD-'—wD-1"¥ 5(&)) w? ﬁ(w) v <€0Db0>

+O(lwf?)

by standard analytic perturbation formulas, see e.g. |4, Lemma C.1]. Therefore the second summand
is bounded for w € C \ D, for sufficiently small e. O
Corollary 5.18. Let (y € C with (o) = 0. Then0 € Spec(By,), essinfla—(y| > 0 and /\pF(SD‘;iCO'Q) =
1. Furthermore, there is € > 0 such that $(C) is an isolated non-degenerate eigenvalue of B¢ for all
¢ € (o + De. In particular De 5 ¢ — B(C) is real analytic and has the expansion

_ _ope| tobola = Go)) 7 _ope| ol - 0)By ' Qolbo(a =)D~ 2
1 :
. QRG[W“ - CO)B& olto(a =l <0)2] +O(¢— G,
0 0>
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which implies the formulas

(Lobo(a — Co))
{(obo) 7

for the derivatives of B at ( = (p.

(€o(a = o) By ' Qo[bo(a — ¢o)]) (5.53)

aCB(CO) = - <€0 b0>

0:0z(Co) = 1 - 2Re

Proof. Let o € C be such that 3(¢p) = 0. By Lemma we have 0 € Spec(B,) and by Proposi-
tion‘5.15 We get essinfla — (| > 0. The fact that )\pF(SD‘E;_a'Q) = 1 was shown in ([5.33)).

Now we show that ((() is an eigenvalue of B¢ for sufficiently small | — (o|. Using analytic
perturbation theory, let b(¢) and ¢(¢) be the right and left eigenvectors of B¢ corresponding to the

isolated non-degenerate eigenvalue 5(¢) with 3(o) = 0 that depends real analytically on ¢. As 3((o)
is a real isolated eigenvalue and B¢, as well as B; — B¢, are invariant under complex conjugation,
B(¢), b(¢) and £(¢) are also real. Since £(¢y) ~ b(Co) ~ 1 we have b(¢), £(¢) € By for sufficiently small
|¢ — Co|- Therefore

sy o (2 B

50— (), Bey) _

< B(¢) < sup = B(0),

220 (x,b(Q)) — v>0 (€(C),y)

which proves B =p.
The expansion ([5.52)) is now a direct consequence of analytic perturbation theory, as we see e.g. by
using [4, Lemma C.1] with B = By + E and E = Dj,_¢j2 — Djg_¢2 = D\C—Co|2—2Re((a—Co)(C—Co))' O

Due to analytic perturbation theory with ¢ in a small neighbourhood of (y and by Lemma we
have b ~ ¢ ~ 1. We split v; and vy according to the spectral decompositions of B* and B, namely

v1 = il + vy, v9 = Uab + Vo (5.54)

with the contributions ¥; = 9;({,n) to the eigendirections ¢ and b of B* and B as well as their
complements v; = v;((,n) given as

= <<b£;)1>> , ¥g 1= <<€Z)2>> , 1 = Q%vy, o 1= Qua, Q:=1- iié);b.
To quantify the error terms we introduce
a:= [[v1]loo + [lv2lloo -
Projecting the identities with @ and Q*, respectively, leads to
By =0(n+a®),  Bft =0(n+a?). (5.55)

Using ||B7'Ql|oc < 1, a consequence of (5.50) and analytic perturbation theory , we find

[31llo0 + [Blloo = O + %) . (5.56)
Because of (v1) = (v2), i.e. by (5.2), (5.54) and the normalisation (b) = (¢) =1, (5.56) implies
V1 =09 + O(n + a?). (5.57)

Inserting the decomposition ((5.54)) into ([5.45) and using (5.56)), as well as ((5.57)), leads to
BVI2b + By = 1 — 93b(Sb)(S*0) + O(na® + o),
Bl + B*0y = n — 930(Sb)(S*0) + O(na® + a°),

where we set ¥ := %(191 + ¥2). Now we average the first equation against ¢ and the second equation
against b, use (b) = (¢) =1 and then take the arithmetic mean of the resulting equations to find

93 (b(S*0)(Sb)) + BI(Lb) —n = O(na® + a°). (5.58)
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From this approximate cubic equation we conclude the scaling behaviours

n ~ ~ 3/2
a~1Y e~ /max{0, -0} + ——, U100 + ||92]|co ~ 1 + max{0, -5}/, 5.59

in the regime of sufficiently small «, where we used ¥ > 0 and ¢ > 0 for n > 0 to choose the correct
branch of the solution. The corresponding argument is summarised in Lemma in the appendix.

To apply this lemma we absorb the O(a5)—term on the right hand side of into the cubic
term in ¥ on the left hand side, i.e. we write O(a®) = v¥? for some 'y = O(a2), which we absorb
into the coefficient of the ¥3-term. Such rewriting is possible smce a= ) in the reglme Where ais
sufficiently small. This holds because ¥ > 1 and o = O(9 + 1+ o?) by - and . Now
we see that « is indeed small for (¢,n) in a neighbourhood of ({y,0). Due to the characterlsatlon of S
in ((5.35)) we have hm77 iO ale=¢, = 0. With 5(¢p) = 0 and because « is a continuous function of 7 when
n > 0, the scaling (5.59)) implies a|c—¢, ~ n'/3. Since ¢ — B(C) is contmuous by Proposition “.
and « is a Continuous function of ¢ for any 1 > 0 the behaviour ) holds as long as n + [ — (o] is
sufficiently small.

We now summarise our insights by finishing the proof of Proposition [5.16

Proof of Proposition[5.16 Following the computation leading to (5.55)) we easily see that the right
hand side of these equations are real analytic functions of ¥, n, ¢ and v;. By the implicit function
theorem and the invertibility of B on the range of @ the v; are real analytic functions of 9,7 and (.
Similarly, the right hand side of is a real analytic function of ¥,n and (. Together, we have
proved Proposition with

vi(¢,n) = wi(I(¢,n),m, C) - O

6 Properties of the Brown measure o

We now present our main result about the existence and properties of the measure o in the general
setup introduced in Section [dl Here, we introduce the measure o as a distributional derivative of the
function L defined through

L(¢)= [~ (ta(cm) - 1in)dn (6.1)

for each ¢ € C, where v; is the solution of the Dyson equation (4.2)). The existence of this integral in
the Lebesgue sense will be established in Lemma [6.5] below.

In the proof of Proposition [2.1]in Section[7.I]below, we relate this definition to the limiting measure
of the empirical spectral distribution. In particular, we refer to , and Proposition below.

Proposition 6.1 (Properties of o, general setup). Let a € B and s satisfy and . IfL:C—R
is defined as in (6.1)) then the following holds.

(i) There is a unique probability measure on C such that

[ 1000 = 5 [ AL (62
C ™ JC

for all f € C3(C), where d%C denotes the Lebesque measure on C.

(ii) With respect to the Lebesgue measure, the measure o from (6.2) has a bounded density on C,
which we also denote by o, i.e. o(d¢) = o(¢)d?C.

(iii) On S, the density ¢ — o(C) is strictly positive and real analytic.
(iv) suppo =S and this set is bounded. Furthermore Spec(D,) C S.
(v) OS is a real analytic variety of (real) dimension at most 1.

(vi) There exists a unique continuous extension o:S — [0,00) of the density ols to S such that
a(¢) = g(C)|0cB(Q)|? for all ¢ € 8S, where g : IS — (0,00) is a strictly positive function that
can be extended to a real analytic function on a neighbourhood of 0S.
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The [proof of Proposition [6.1] is presented at the end of this section, Section [l In the next
subsection, we first establish the existence of the measure o via .

We recall that o was called limiting spectral measure (cf. Definition in the random matrix
setup of Section [2] In the present general setup, we rename ¢ according to the next definition. The
motivation for the naming of ¢ originates from the Brown measure of operators in von Neumann
algebras and is explained by Proposition in Appendix

Definition 6.2. We call the probability measure o on C, defined by (6.2), the Brown measure associ-
ated with a and s.

6.1 Representation of the Brown measure o

For the next result, we recall the definition of S, from (/5.16]).

Proposition 6.3. Let a € B and s satisfy and let L be defined as in (6.1). Then there is a unique
probability measure o on C such that (6.2)) holds for all f € C2(C). Moreover, suppo C So. The
measure o satisfies the identity

7(0) = =l ~0c(y(C. ) (6:3)

in the sense of distributions, where y is the (2,1) component of M from (5.12)).

The main idea of the[proof of Proposition[6.3|will be to show that — L is subharmonic and, therefore,
the distribution —%AL is induced by a measure. Before we present this proof, we establish a few
necessary ingredients. The next lemma will, in particular, imply that L is well-defined.

Lemma 6.4 (Integrating (vi) with respect to ). Let a € B and s satisfy[A5] Then, uniformly for
¢ € C andn >0, we have

0< , < —. 6.4
<@ S 57 (64)
Furthermore, uniformly for any T > 0 and ¢ € C, we have
T 1 o0 1 1+ (]
— ——|dp SminT,4/1 / ———|dn £ ——. .

Proof. From (5.4) and Lemma/[5.1] we immediately conclude (6.4)). The bounds in (6.5]) follow directly
from (6.4)) and (5.9). O

In the next lemma, we truncate the lower integration bound in the definition of L and, thus, obtain
L.. It is an approximate version of I which is more regular in ¢ and its derivative with respect to ¢

is given by (y(¢,¢€))/2.
Lemma 6.5 (Definition and derivatives of L.). Let a € B and s satisfy . Then the following holds.

(i) For each € > 0, the integral

%@%ZLWOMKWW—LLJ¢I (6.6)

exists in Lebesque sense for every ¢ € C and the map C — R, ¢ — L.({) is continuous.
(ii) When € | 0 then L. — Lo uniformly on C.
(iii) For each € >0, L. is infinitely often continuously differentiable with respect to ¢ and ¢ on C.

(iv) For each e >0, y(-, &) is infinitely often continuously differentiable with respect to ¢ and ¢ and,
for each ¢ € C,

0,1-(0) = 5 4(C. ). 0eLe(Q) = 3 (H(C.2). (67)
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Proof. The bounds in imply that L.(¢) is well-defined for every £ > 0 and every ¢ € C. Moreover,
¢ +— Lc(C) is continuous on C for every € > 0. The first bound in implies that L. — Lo uniformly
on C when € | 0. To prove the differentiability of L. and y(-, ), we conclude from and the bound
in Lemmathat for some constant C' = C¢ > 0, [|9cv1 (¢, in) ||+ 10zv1 (¢, in) [ + (|91 (¢ in) || <
Cmax{n~% n=2} for every n > 0 and every fixed ¢ € C. Therefore, L. is differentiable with respect to
¢ and ¢ and we can take O¢ and 05 derivatives of L.({) by exchanging the derivative and the integral
in the definition of L.(¢). Hence, we conclude from that O Le(¢) = (M21(¢,ie)) /2 = (y((, ie)) /2
for all ¢ € C and € > 0, which implies . Furthermore, note that £ defined in below is the
stability operator of the Matrix Dyson equation, . As it is invertible when n > 0 by Lemma
the implicit function theorem implies that y(-, ) is infinitely often differentiable. Therefore, the same
holds of L. due to , which completes the proof of Lemma O

Together with (6.7) in Lemma the next proposition implies that —AL. > 0.
Proposition 6.6. Let a € B and s satisfy . Then —85(y(g“, n)) >0 for all { € C and n > 0.

The [proof of Proposition [6.0] is presented in Section [6.2] below. We now have all ingredients for
the proof of Proposition [6.3

Proof of Proposition[6.3. First, we show that —L is subharmonic since this implies the existence of
a measure o on C such that holds. We know from Lemma that L = Ly is a continuous
function on C. We now verify that —L satisfies the circle average inequality. Since L. — Lo = L
uniformly on C for € | 0 and L. is twice differentiable by Lemma it suffices to show that —AL. >0
on C. The latter implies that — L. satisfies the circle average inequality and consequently, — L satisfies
it as well. From (6.7) in Lemma and Proposition we conclude —A¢L, = —4858<L5 >0 on C.
Therefore, —L is subharmonic on C and there exists a positive measure ¢ on C such that holds.

Next, we prove that suppo C Syp. Owing to [4, Lemma D.1], Section and , derivatives
of v; and ve with respect to ¢ and ¢ are bounded locally uniformly for ( € C\ Sy and uniformly
for n € (0,00). Therefore, C\ Sy is open and Proposition and imply Spec(D,) C Sp.
Moreover, L is twice continuously differentiable on C\ Sy and for any ¢ € C\ Sy, the second identity

in (5.5), (6.7) with e ] 0 and [vi(¢, )| + [lv2 (¢, n)| = 0 for 1 | 0 and such ¢ imply

1 1 1 1
oL = 5( 72 ) oL(0) = 5(7z) (63)
for all ¢ € C\ Sp. In particular, AL = 49.0;L = 0 on C\ Sy and, therefore, suppo C Sp by 6-2).
What remains is to show that ¢ is a probability measure. The identities in yield L(¢) =
—(logla — ¢|) + C for ¢ € C\ Sy, where C' € R is independent of ¢. (One can check that C = 0 with
some extra effort by expanding vy for large || using ) Owing to Remark it is possible to
choose ¢ ~ 1 such that Sy is contained in D,. Note that ¢ can be chosen such that it depends only
on the upper bounds in and any upper bound on |la|«. In particular, suppo C D,. In order
to show that o is a probability measure on C, we pick a rotationally symmetric function f € C§°(C)
such that ran f C [0,1], f =1 on D, and f =0 on C\ Dy,. Thus, and suppo C D, imply

_ _ b 2, _ _ 1 (Vilogla — M2
o(@) = [[oa) = —5- [ o, MOLO® = /| o V) (Vlogla — ),

Cor 27

where in the second step we used Green’s first identity and that the boundary terms vanish as Vf = 0
on 0Dz, U JD,. We change to polar coordinates and obtain

1 _ 1 3 2 y
_%/DW\DVJ(W).(v<1og\a_.\>) =y 0.0, ([ togla— re}a0 )ras
3

= [Tousar = i) =1,

where the second step follows from fozw loglw — rel?|d§ = 27 logr for all w € D, (see e.g. [40, Ex-
ample 5.7]). This shows that o is a probability measure on C and, thus, completes the proof of
Proposition [6.3} O
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6.2 Strict positivity in the bulk

In this subsection we show that the Brown measure has strictly positive density in the bulk, i.e. inside

S as defined in ((5.30)).

Proposition 6.7 (Strict positivity of Brown measure on S). Let a € B and s satisfy and .
Then the Brown measure o is absolutely continuous with respect to the Lebesque measure on C and on
S its density is strictly positive and real analytic.

For the proof of Proposition we compute the Brown measure through the formula , i.e.
the distributional identity 7o = —21lim, 0 ¢ (E21, M). First we will see that the right hand side in
is non-negative and is in fact positive when evaluated at n > 0, i.e. we prove Proposition
After that we will see that under assumption [A6]the right hand side can be continuously extended to
n = 0 away from S and remains a bounded function of (, i.e. ¢ has a density.

Proof of Proposition[6.6. For n > 0 and ¢ € C, we start from the second identity in (5.19) and
compute

07(Ea1, M) = <E21 , £_1E21> = <C}‘<\4E21 , E21> + <C}k\/[E21 , (1= ECM)_lszE21>a

where CpyR := M RM. With

. _ Ty _9
YXCynEo = 15(v29) . *0 | Cr+Eoy = ey )
0 iS*(v179) —V1v2  —1U2Y

and the action of ¥Cj; on diagonal matrices in B2*? given by
e A S(lyl*r1 — vira) 0
MU0 om )T 0 S*(—viry + yl*ra)
this simplifies to
1 01y 1 S(v2y) >
—0=(Fa1, M) = = 1-Y .
&C< 21 > 2<U1U2> + << ,02? ) ) ( ) S*(U1§) ) (6 9)
where the scalar product on B? is the one from (5.23) and Y': B2 — B2 is defined as
v (1) _ [ SUylPri—vira) \ _( SDy —=SDu, )\ ()
o S*(—v3ry + |y|*re) —S*D2 S*nyl ry)

Now we introduce a symmetrisation of Y. For this purpose we define v € B via

9= \Jui(n + Sva) = \Jua(n + 5*01), (6.10)

where the second identity is due to (5.1]), and V, F, T € B?*? as

52 _ 2v1v2 2
T::< Y o =" % ) v::<v1 0 ) F=V-1g,v! (6.11)

a—cPup o2 0o

analogous to [3, (3.27)]. Then VFTV~! =Y and represented in terms of F and T the formula
reads
vy 1 2 > vy >
D I F 2 , 12
Uy) <X+1—FT (vy) (6.12)

D(Z |yl 0
X = ( (’U1U2‘y’ ) ’02 5 > . (613)
0 D(;751vl%)

0By, M) = <(

where we introduced
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In particular, is the quadratic form of a self-adjoint operator, evaluated on a vector in the
subspace of B2 with identical entries in the first and second component. With the orthogonal projection

onto this subspace represented by
o 1 11 2X2
E__2<1 1)68 ,

we have TE = ET, XE = EX and
T=-14+2XFE. (6.14)

The representation (6.14)) of T" holds because of

A

1 =0 +7!y\2

which follows directly from (4.2)), (5.3) and the definition of ¥ in (6.10)).

Inserting ([6.14]) into (6.12)), we see that proving positivity of the right hand side of (6.12) reduces
to proving that the operator

1

1 2 1 2 ~
El—=+ F)E =F (1 + = = F) E
(X 1+ F—-2FXFE VX 1+F+—-2FE JVX (6.15)
6.15
1 2 - N1 11 1
=F (1 — — FE) —F=F—
VXU 14 Pl NS SRS S Vsl
on B? is positive definite on the image of E, where we introduced
- 2 ~ 2F
F=vXFvX and K:=F —FF =FEvX—VXE (6.16)
14+ F+ 1+ F

in the calculation and used E? = E as well as EX = X E. Indeed, this is the case since

1—K—\/Y()1(—12+F;+ 1_F>\F>\F(1—12F+ )f>o (6.17)

where we first split the self-adjoint operator F' = F, — F_ into its positive and negative parts as well
as used 0 < X <1 and ||F|| < 1 for the first inequality. The final inequality follows from 1 - F <1
because 0 < F'y < ||F|| < 1. This completes the proof of Proposition O

In the proof of Proposition [6.6] we have seen that the Brown measure admits the representation

(ct. 63), 612, §.13), ©.13) and (.15))
. €y\/U1V 1 €y\/U102
-1 Y 12 4 > 1
g r}ﬂ)l << €y4/V1V2 "1-K €y4/V1V2 (6 8)

in a distributional sense. Here, e, := 4 € B and K is defined in (6.16).
Under the additional assumption we get strict positivity of the density of the Brown measure
inside S.

Proof of Proposition[6.7. For the proof of analyticity of o, we recall the definition of y from .
We conclude from Proposition and Proposition that S — C, ¢ — y((,0) is real
analytic. Therefore, implies that o is real analytic on S.

To prove a lower bound on o, we use and see that 1 — K remains bounded on the image
of £ as n | 0. Indeed by the identity in (6.17) the only contribution to K that may potentially be
unbounded is the one associated with F_. However, EF_FE|,—o < 1 — ¢ for some € > 0 because of the
spectral gap of F' above —1 in Lemma and the fact that (0, —0), the eigenvector corresponding to
eigenvalue —1, is mapped to zero by E. O
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6.3 Edge behaviour of the Brown measure

Here we show that o can be continuously extended to the boundary of S and compute its boundary
values. Throughout this subsection we assume [A5] and [A6]

Proposition 6.8 (Boundary values of o). There is a unique continuous extension of ols to S. This
extension satisfies

[((a — Co)lobo)|®  (Lobo)?|0c B(Co)?

1
m (la—Col*'G5) (o — Col*€§b5)

(o) = (6.19)

for any (o € OS, where £y := L|c—¢, and by := b|¢c—¢,-

Proof. We use the identity (6.3)) to compute o at some ( in a neighbourhood of {y in terms of y. We
expand y in terms of vy, vy with the help of (5.5)) and expand v1, v in terms of f.

For nn = 0 equations (5.59) and (5.58|) imply that either v = 0 for 5 > 0 or
92(b(S*)(Sb)) + B {Lb) = O(I*) (6.20)

for 8 < 0, or equivalently for ¢ € S. Note that according to Proposition the right hand side of
(6.20) is a real analytic function of ¢ and ¢. In particular, we can write ¢ = ¢((,0) as

U= %(hLﬁh(C V=B))L(¢ €5) (6.21)
(C2b2a — ¢]*)
for some real analytic function h, where we used .
According to the leading order behaviour of ¥ is determined by 3, whose local expansion
is given in . To express y in terms of vy and ve we recall . From , , and
, we obtain the expansion

aig—(a—g)vlvg—l-O(aA‘):aiC

By Proposition and (6.21)) it is easy to see that the error term is a real analytic function of 9 and
¢ in the regime ¢ € S and for n =0, i.e.

—9%(a — )b+ O(a* +na).

y:

1 _
Yln=0 = a—¢ 9?(a — O)eb(1+ 9 f(¢,9))1(C €S)
with a real analytic f. Now we differentiate with respect to ¢ and use (6.21]), in particular ]62192| <1,
to get

%y’nzo = —mgb&cﬁ2 + 0(192) _ (CL - <)£b<€b>

—_— L 1/2
o= cpezpyy 28+ OUBIT) (6.22)

for ¢ € S. The right hand side can be continuously extended to S. Indeed, by the definition of S
and the continuity of 8 from Proposition we have ({p) = 0 for any (p € 9S and thus (6.22))
holds for ¢ € S in a neighbourhood of such (y and the error term vanishes as ( — (p. Inserting the

formula (5.53)) for 9z Blc=¢, = ¢ Bl¢=¢, into (6.22)) and using (6.3 shows the claim (6.19). O
Lemma 6.9. Let ( € C such that B(¢) = 0 and 0¢B(¢) = 0. Then AB(¢) < 0. In particular,

0S={¢eC:pB() =0} (6.23)
Proof. Let ¢ € C with $(¢) = 0 and 9:6(¢) = 0. From we read off
(tb(a—¢)) =0,  9d:B=1-2Re (tla =B "b(a = Q) (6.24)

(€b) ’
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where we evaluated the expressions in ([5.53)) at (o = ¢ and omitted the projection (¢ in the formula
for 9:9:8 since (¢b(a — ¢)) = 0 implies Qo[b(a — ()] = b(a — ().
We write 8<8Z6 in terms of

<=2 ) =V

and arrive at

_ Z(1-K)'z)] 1 1 . 1
84856—1—2Re[<|x|2>} __<|x|2><1—Kx’ (1-K K)l_Ka:>.

Here we used that (1 — K) ™'z is well-defined since z L k due to (6.24), where k := |a — ¢|V/¢b is the
right and left Perron-Frobenius eigenvector of K, i.e. (1 — K)k =0 = (1 — K*)k due to with
B = 0. Furthermore, (1 — K*K)k = 0 implies that k is the Perron-Frobenius eigenvector of K*K
and thus 1 — K*K is strictly positive definite on £+, implying AS < 0. Since 3 is real analytic in a
neighbourhood of ¢ with 5(¢) = 9:6(¢) = 0 according to Corollary and such ¢ cannot be a local

minimum of 8 due to AB(() < 0 we infer ((6.23)). O
As a consequence of Lemma the definition of S in ([5.30)) and Proposition [5.15) “m (iv)| yields
Sp =S. (6.25)

We now have all ingredients to prove Proposition

Proof of Proposztzon 0.1 Part|(i)|is Proposition ﬂ Items |(ii){and are proved in Proposition
For the proof of we conclude suppoc C So = S from Proposition and (| - Moreover

S C supp o follows from m which completes the proof of|(iv)| Note that 88 is a real analytic variety
due to ([6.23) and Corollary The dimension of S is at most one as AB(() # 0 if 9:8(¢) =0 by
Lemma This shows Part follows from Proposition and the fact that g is real analytic

by Corollary O

7 Proof of main results — Proposition and Theorem

This section is devoted to the proofs of our main results, Proposition [2.I] and Theorem 2.4 They
are derived from the results in the previous sections as well as some 1nputs from [5, B4, B2]. The
underlying idea for both derivations is the Hermitization approach going back to Girko [25] which
allows to understand the eigenvalue density of X + A by understanding the spectra of the Hermitian
matrices (H¢)cec defined through

B 0 X+A-¢
i (S ) @

The usefulness of H; becomes apparent from the following properties. A complex number ¢ € C is
an eigenvalue of X + A if and only if H: has a nontrivial kernel. Furthermore, the spectrum of H is
symmetric around zero and its non-negative eigenvalues coincide with the singular values of X + A —(
(with multiplicities).

7.1 Proof of Proposition

After this general explanation, we now focus on the proof of Proposition 2.1} To that end, we now
explain in detail how the empirical spectral distribution of X + A is expressed in terms of the family

(HC)CG(C-
First, as log| - | is the fundamental solution for the Laplace operator on C, we obtain
1 1 1
_ Y =5 L Ar©ogle —Clac = 1 [ AF(Q)logldet Hela%¢, (7.2
€€Spec(X+A) §€Spec(X+A) C
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where the last step follows from

1
> loglé —¢| =log|det(X + A —¢)| = 5 log|det Hl. (7.3)
£eSpec(X+A)

We can now express the log-determinant of H as an integral of the normalised trace of the resolvent
G(¢,in) == (H¢e —in)~! of H¢ on the imaginary axis; this expression reads as

T
log|det H¢| = —Qn/ Im (G(¢,in))dn + log|det(H; —iT)| (7.4)
0

for any T' > 0 (see [46] for an application of in a similar context). Here and in the following, for
a K x K-matrix R € CK*X we denote by (R) = # Tr R the normalized trace of R.

For the proof of Proposition we follow the strategy of [6l proof of Theorem 2.3], which is
presented in [6, Section 3.2].

The next proposition, which follows directly from results in [5], shows that (G((,in)) is approx-
imately deterministic. Given and , this explains the origin of the definition of ¢ via
and .

In the next proposition and throughout this section, we use the following notion of high probability
events. We say that a sequence of events (€2y,),en occurs with very high probability if for each v € N,
there is a constant C), > 0 (i.e. C\, does not depend on n) such that P(2,,) > 1— C,n~" for all n € N.

Proposition 7.1 (Deterministic approximation of resolvent of H, averaged version). Let X and

A = D(a) for some a = (a;), € C" satisfy and ||a|lco = max]4|a;| S 1. Let (vgn),vén)) be
the solution of with X = [n], p the normalized counting measure on [n] as well as a and s with
s(i,j) := nE|x;;|* for i, j € [n] interpreted as functions on [n] and [n]?, respectively. Let ¢ > 0 be
fixed. Then there are universal constants 6 > 0 and P € N such that

nP6

(GG i) =i )| =

with very high probability uniformly for alln € N, n € [n™°,00) and ¢ € Dy.

Proof. The matrix X + A is a Kronecker matrix according to [5, Definition 2.1] with the choices L = 1,
(=1,a01=1,X; =X, =0,Y1 =0and a; = q; for all i € [n]. In particular, the Hermitization H¢
defined in is also a Kronecker matrix. Moreover, H. satisfies the assumptions of [5, Lemma B.1
(ii)] due to and ||lal|oc < 1. Since the Hermitized matrix Dyson equation from [5], eq.s (2.2)

— (2.6)] coincides with the matrix Dyson equation, (5.13)), associated with (4.2]) for (Ugn),vén)) (see
Section for more explanations), [5, eq. (B.5)] and [5] eq. (4.46)] imply Proposition [7.1] O

To control the integral in , we need to ensure that the smallest singular value spin (X + A — ()
of X + A — (, i.e. the smallest, in modulus, eigenvalue of H¢, is not too small. This is ensured by
the next proposition. It follows easily from the main results of [34] in the real case, and [32] in the
complex case.

Proposition 7.2 (Smallest singular value of X + A — (). Let X € C™™"™ satisfy forv =2
and all i,j € [n] and[AS Then the following holds.

(i) For any constant K > 0, there are constants C > 0 and ¢ > 0 such that
P(smin(X + A—() <en™!) < Ce+ 2"
for alle >0, ¢ € Dk and A € C™ " satisfying | A2, < Kn.

(i) Let K, A and ¢ be as in . For any 6 > 0, the event {smin(X + A—() > e*”(s} holds with very
high probability.
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Proof. We check the conditions of [32, Theorem 1.1] for A, = \/n(X + A — ). The assumptions of
Proposition on A and ¢ as well aswith v =2 imply E[| X + A —(||Z, < n. The second condition

~

of [32, Theorem 1.1] is identical to[A3] Therefore, Proposition [7.2|follows from [32, Theorem 1.1]. [

In addition to the control on the smallest singular value of X + A — (, we also need to bound the
number of its small singular values. This is the content of the next lemma, which follows simply from
Proposition and an upper bound on [(M((,in))|.

Lemma 7.3 (Number of small singular values of X + A — (). Let X satisfy and and let
A = D(a) for some a € C" with ||a|lcc S 1. Let ¢ > 0 be fized. Then there is a universal constant
0 > 0 such that

|Spec(H¢) N [=n,n]| < nn

with very high probability uniformly for allm € [n™°,00) and ¢ € D,.

Proof. Proposition and (6.4)) imply that the trace of G((,in) is bounded by n with very high
probability. More precisely, |Tr G(¢,in)| < n with very high probability uniformly for all € [n™%, 00)
and ¢ € D,. Hence, we set 3, := Spec(H¢) N [—n,n] and estimate

‘En| n .

— < E ——— <Im TrG(¢,in) S n. O
2 2 ) ~

s, N

We apply the previous results, i.e. Proposition [7.I Proposition [7.2] and Lemma [7.3] to the right-
hand side of ((7.7) by discretizing the integral in ( through the next lemma.

Lemma 7.4 (Monte Carlo Sampling). Let Q C C be bounded and of positive Lebesgue measure. Let
w1 be the normalised Lebesque measure on Q and F: Q — C square-integrable with respect to p. Let
m € N and &1, ..., &, be independent random variables distributed according to . Then, for any
0 > 0, we have

P(‘;iF(fi)—/Qqu’ < \/%(/Q‘F—/S)quffﬂ) > 1.

Lemma is a special case of [46, Lemma 36]. For the convenience of the reader, we present the
very short proof here.

Proof. Each of the ii.d. random variables F'(&1), ..., F(&y) has expectation [, Fdu and variance
JolF — Jo Fdu|?dp. Hence, Chebysheff’s inequality yields Lemma O

The final ingredient for the proof of Proposition [2.1]is the following remark which asserts that all
eigenvalues of X + A are contained in S; defined in ([5.16)) with very high probability.

Remark 7.5 (No outlier eigenvalues of X + A). If X satisfies and[AZ and A = D(a) for some
a € C" with ||a|lec <1 then, for every e >0 and § € (0,¢), all eigenvalues of X + A are contained in
Se with very high probability, i.e. for each v > 0, there is a constant C = C. 5, > 0 such that

P(Spec(X 4+ A) C Spec,_s(X +A)CS,) >1—-Cn"
for all n € N. This follows directly from [5, Lemma 6.1]. Here, we used that X + A is a Kronecker

matriz according to [, Definition 2.1] and that the Dyson equation (5.13)) and [3, eq. (2.6)] coincide
as explained in the [proof of Proposition|7.1].

We have now collected all ingredients for the proof of Proposition [2.1] which we present next.
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Proof of Proposition[2.1 Let ( (n) e )) and o™ be deﬁne as in Corollary Because of Corol-
lary [C.2] it suffices to show that for each f e Gy(C),

dmp(ls > g©- [ sa

" ceSpec(X+A)

> e) ~0. (7.5)

The main part of the proof will be to show the existence of a constant § > 0 such that
1 (n) =5 ~10
=Y 1© = [ e @) < n A+ 0 Af s (76)

n (eSpec X

with very high probability uniformly for all f € C3(C) satisfying supp f C D, for any fixed constant
@ > 0.

We now explain how implies , i.e. Proposition If f € CZ(C) then this is obvious.
Let f € Cy(C)\ C3(C). Owing to Remark we know that Spec(X + A) C S; with very high
probability. We note that S; C D, for some ¢ ~ 1 by Remark @ By possibly increasing ¢ ~ 1,
we also have supp o™ C D, due to Corollary Therefore, it suffices to consider f € Cy(C)
with supp f C Dy4+1. Then we find f. € C3(C) such that ||f — f:|jLe < &/2, supp f- C Dy41 and
A fellir + |Afellis <S¢ 1. Hence, approximating f by f. in and using for f. shows that
implies .

It remains to show (7.6). We fix a constant ¢ > 0 and set Q = ID,. For any 7' > 0, we conclude

from ((7.2)), (7.4]), Corollary and the second bound in (6.5 that

1
= F(Qe™(d¢) = | F(¢ O(T~ | AfllLr), (7.7)
" §€Spec(X+A / / ’Q| b
where
1€ 1 () 1
F(¢) == —(Af(C)h(C), h(¢) == — log[¢ — (] + (€,n) — ——)dn.
T geSpeEC(:X+A) / ( 1+ 77)

Note that h and, thus, F' depend on the choice of T.

We now estimate [, F(C)% by applying Lemma to it. Since ¢ — log|¢ — (| lies in LP(Q2) for
every p € [1,00), the first bound in implies that, for every p € [1,00), ||h|lLr(@) Sp 1 uniformly
for T > 0. Therefore, F € L?(Q2) and Lemma [7.4{ with § = n~" and m = n* 13 yields

d2< 1 _ -
W - ZZF &) <n OF e SnT AL (7.8)
with very high probability, where &1, ..., &, are independent random variables distributed according

to the normalized Lebesgue measure on ().
What remains for the proof of ([7.6) is to bound % S, F(&). To that end, we set T = n'% and
show in the following that, for all small enough § > 0,

IOl < n~’|AF(Q) (7.9)

with very high probability uniformly for all ¢ € Q. We set 7, := n~% and introduce

UES

M@= [ (€ m) ~ T (GG i) ) Q) = — [ I (GG impan

0

0= X te(140) we(144), m@= [Celicma

" \eSpec(He)

particular, (v <")> yields the same result for elther definition and this is the only quantity derived from (vi ), that

plays a role in the following.

2 We note that (v, v{") from Corollary can be naturally identified with (v{™,v{"™) from Proposition ﬂ In
)
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Hence, owing to , and fOT(l +n)~tdn = log(1 4+ T), we obtain the decomposition h(¢) =
h1(¢) + ha(Q) + hs(¢) + ha(C).

Next, we estimate the terms hy, ..., hy individually. For h;, Proposition [7.I] a union bound and
a continuity argument in n imply |h1(¢ )] < n~ 1P with very high probabilityfootnote I A simple
computation shows that

! Y 1 s
_hQ(C):Z Z log (1—1-)\2) SE Z log <1+/\2> + 14,

n
A€Spec(Hc) xeSpec(H)N[-n* ni/?)

where in the last step we used that log(1 + 72A72) < log(1 + n) < n if [A| > ni/Q. To estimate the
remaining sum, we conclude from Proposition [7.2] and Lemma [7.3] that

1 log 1y + |log min A
1 Z log( 2) < g1« + [log AGSpeC(H<)| | |SpeC(Hg)ﬂ[—77i/2,ni/2]| < neniﬂ
4n 12 172 A n

XeSpec(He)N[—n' " m’ 7]

with very high probability for any & > 0. Therefore, |hy(¢)| < n~%2+, which yields |ho(¢)| < n~° by
shrinking . To estimate hs, we use log(l + z) < z and obtain

[h3(Q)] <

Tr(Hc) + 71 2 T2 Z Tj; + 71' 7)511)(33@]' + (ai — C)(SU) + 71 5 71

i,j=1
since |x;;| < n~1/?¢ with very high probability due to Assumption |A2|and |a;| +[¢] < 1 as |ja]lee <
and ¢ € D,. Since a™ and s™ from (C.1)) satisfy [|a™ s < 1 and [A5|with the same constants as a
and s, Lemma implies [h4(¢)| S 7« uniformly for all n € N. This completes the proof of (7.9).
The bound ((7.9 implies

1
AnT?

=0

— Z!F (&) < —Z\Af &) <m0 Af I+ AF e (7.10)

with very high probablhty, where the second step follows from Lemma [7.4] with F = Af.

Finally, we combine (7.7, (7.8) and (7.10|) and, thus, obtain ([7.6|), which completes the proof of
Proposition 2.1} O

7.2 Proof of Theorem [2.4]

We recall the definition of S, from ([5.16) and specialise to the case X = [0, 1] with u the Lebesgue-
measure on [0, 1]. Then we set

Spec®(s,a) == S.. (7.11)
With this definition, (2.5 follows from Proposition and Nesg Spec®(s,a) = Sy = S due to

Remark and (6.25)).

Now we verify (2.4]). First we see that for any €, > 0 the inclusion
lim sup Spec, (X, + Ay,) C SpecZi 5(s,a) = Sc4s

n—oo

holds almost surely by Remark and the Borel-Cantelli lemma. Since Ng~0Sc1+5 = Se by definition
this shows the first inclusion in ([2.4)).
The second inclusion in (2.4]) follows from

Se C Spec, 5(Xy + Ay,) = {¢ € C: dist(0,Spec(H;)) < e + 6} (7.12)

eventually almost surely for any ¢,0 > 0. Here H; is the Hermitisation of X, + A, from . To
prove we see that the global law from [5, Theorem 2.7] holds almost surely when all random
matrices in the statement are realised on the same probability space. This can be seen easily from its
proof. Indeed, the global law is an immediate consequence of [3, (B.5)], which holds with very high
probability. Thus, the Borel-Cantelli lemma ensures almost sure convergence in

3 T A = [ 1(pe(an

for every compactly supported continuous function f. O
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A Existence and uniqueness of solution to Dyson equation

A.1 Proof of Lemma [4.1]

Owing to the identification of solutions to and in Section we can now infer the
existence and uniqueness of the solution to to the existence and uniqueness of the solution to
. Indeed, the latter is a very simple case of the general existence and uniqueness result [30,
Theorem 2.1]. This proves Lemma O

A.2 Stability operator of Matrix Dyson equation

Let M be the solution of (5.13]). The stability operator of ([5.13)) is given by (/5.18]).
Lemma A.1. If a and s satisfy the assumptions of Lemmal[5.9, then the following holds.

(i) For allm >0 and ¢ € C, we have
8] <. (A1)

(i) For allm > 0 and ¢ € C, the stability operator L and its adjoint L* are invertible. Moreover,
for any constant K > 0, there is a constant C > 2 such that

1£7 Iz + £ oo < Cmax{n=2,97¢} (A.2)

for alln >0, a € B and ¢ € C satisfying |¢| + ||a]|c < K.

Proof. For a proof of , we refer to [I, eq. (4.1)], where the proof was carried out in the finite
dimensional setting. In our setting the proof follows the same argument. The invertibility of £ and
its adjoint £* as well as the bound ED are obtained by translating the proofs of [5, Lemmas 3.4 and
3.7] to the present setup using @ . O

Proof of Lemma[5.14 We recall that ¢ € C is fixed such that limsup,o(v1(¢, 7)) > ¢ for some § >0
and that v, = v(¢,n,) — vo weakly in (L?)2, where vg ~s 1. First we use the identities

7'1)2

L. =—-n— L*(e_ W) = ne_
v Mt Sa) (e—(n+ Sov)) = ne

with v_ = ve_ and v = v,. In the limit n | 0 we see Lov— = 0 and LjS,v— = 0. Here we used that
v satisfies the Dyson equation. For the rest of this proof we drop the 0-index from our notation. We
introduce T, V, F : B> = B? as in , evaluated at v = vg and 7 = 0. In terms of T, F and V we
obtain

L=V '1-TF)V. (A.3)

We consider the natural extensions F: (L?)? — (L?)? and T': (L?)? — (L?)2. These operators are self-
adjoint. We import results about their spectral properties from [3, Lemma 3.4, Lemma 3.6, (3.44) and
(3.45)]. The proofs of these properties translate immediately to the current setup, although originally
formulated for B = C¢, since they are uniform in the dimension d. Furthermore, the proofs from [3]
are not affected by the changed definition of 7 = (71, 72) from since we still have 7 = 7.

Lemma A.2 (Spectral properties of F' and T). The Hermitian operator F: (L?)? — (L?)? satisfies
the following properties:

(i) F' has non-degenerate isolated eigenvalues at £1 and a spectral gap € ~s 1, i.e.

Spec(F) Cc {-1}U[-1+¢,1—¢]U{1}.

(i) The eigenvectors corresponding to the eigenvalues £1 are
FVv=Vu, FVo_ =—-Vu_,

where v = (v1,v2) and v— = (v, —v3).
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The Hermitian operator T: (L?)? — (L?)? satisfies the following properties:
(iii) The spectrum is bounded away from 1 by a gap of size € ~;5 1, i.e.

Spec(T) C [-1,1 —¢].

(iv) For x € {(y,—vy) : y € B} we have Tz = —x.

We now prove Lemma by tacitly using the properties of F' and T from Lemma Since
fo=Vv_ € {(y,~y) : y € B} we see that F and T both leave the subspace (f_)* invariant. Now,
using (A.3]), we rewrite the resolvent of L as

1 1

L—w_v 1—w—TFV'

The operator V' and its inverse satisfy the bound ||Vl + ||V !4 <5 1 for # = 2, 00, where we used
NS % from Lemma Thus, it suffices to show ((5.28|) with L replaced by 1 —TF'. Furthermore,
we can restrict to the case # = 2, since [6, Lemma 4.5] is applicable because

ITFllco + I TFlloos2l| TFll2500 S5 1-

Here, ||TF||so—s2 and ||TF||2_so0 denote the operator norms of TF viewed as operator B2 — (L?)? and
(L?)? — B2, respectively.

Since | TF||2 < 1 we have the bound |[(1—TF —w)~!|s S.5 1 for any w ¢ 1+ D14 and any € > 0.
Now we can decompose

1 1 1
- = 1-P)——(1-P)— —-P A4
1-TF —w ( )1—TF—w( ) w (A4)

where P is the orthogonal projection onto the span of f_. Provided € > 0 is chosen sufficiently small,
the first summand in is bounded for w € Dy.. Indeed 1 — TF has a bounded inverse on f* by
applying a generalisation of [3, Lemma 3.7] from the finite dimensional case B = C? to the general
setup here. The proof of [3 Lemma 3.7] is not affected by this generalisation. Finally, the second
summand in is bounded on C\ D.. Altogether the bound is proven. The non-degeneracy
of the eigenvector v_ of L also follows from the decomposition . O

B Auxiliary results

Lemma B.1. Let y > 0 be the unique solution to the equation y> + By = = for x > 0 and B € R.

Then .
~ /max{0, =B} + ———.
y maX{ b 6}+$2/3+‘/B|

Proof. First we consider the case 8 > 0. Then clearly

T

T

Now let 8 < 0, then we must have y = v/—B3(1 + ¢) for some ¢ > 0 since y? + By > 0. For this £ we
get the equation € + 3¢% 4 2¢ = x|ﬁ]‘3/2 . Thus, we have the scaling

) T $1/3
€~ mln{|m3/2, ‘5|1/2} .

Therefore we conclude

y=m+min{|g|,xl/3} N\/ﬁ—FM,

which is the claim of the lemma. O
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Lemma B.2. Let S: B — B be an integral operator as in (&.1)) with a kernel s : X2 — (0,00) that
satisfies the bounds e < s(x,y) < % forallx, y € X and some constant € > 0 and such that the spectral
radius of S is normalised to o(S) = 1. Then there are constants §,C > 0, depending only on €, such
that

sup {[[(S = )Moz 2 & D15(0) UDs(1)} < C
and Spec(S) N Ds(1) = {1} is non-degenerate.

Proof. We follow line by line the arguments from the proof of [23, Lemma A.1], where the finite
dimensional case with |X| < oo and p the counting measure is carried out. O

C Discretizing the Dyson equation

In order to formulate the next lemma under the weakest assumptions, we first relax the condition
by avoiding the lower bound on s in the following assumption.

AT Piecewise continuity of s and a: Let Iy, ..., Ix C [0,1] be disjoint intervals with some K € N
such that Iy U... U Ix = [0,1]. Let s: [0, 1] [0,00) and a: [0,1] — C be functions such that
sl %1, and aly, have continuous extensions to I; x Ij, and I;, respectively, for all I,k € [K].

Throughout this section, we write C4 := {w € C: Imw > 0}. Let (v1,v2) be the solution of (4.2)
on X = [0,1] and with u the Lebesgue measure on [0,1], M the unique solution of (5.15) and p¢ the
associated probability measure from Definition [5.7}

Lemma C.1. Let s and a satisfy . Forn € N, define the functions a™ on [0,1] and s™ on [0,1]?
through

° 1 "1 /i g
1 .= 3" = ( )1 1) /m C.1

;a( ) (G-D/mifm)s S ]Z_l =5\~ 2 ) L=1)/maifm)x[G=1) /. /m) (C.1)
where 1o denotes the indicator function of the set Q. Let ©™ be defined analogously to (5.14) with s
replaced by s . If M) is the unique solution of (5.15) with a(™ and £ instead of a and %, § > 0
is constant and ¢ € C is fixed, then

Tim [MO)(¢,w) — M(Cw) = 0
uniformly for all w € C4 satisfying dist(w,supp pc) > 6. Here, ||R|]2 := ||Tr(R*R )||1/2/\/§ for any
R € B?*2, where Tr(R*R) is considered as a function on [0,1], and | f|, is the LP([0,1], u)-norm for
f:[0,1] — C.
If (v§n),v§n)) is the solution of (4.2]) on [0, 1] with the Lebesgue measure p and a and s replaced by

a™ and s™ from (C.1)), then for any (fized) ¢ € C and n > 0, we have

Tim max {[[o{" (¢, ) = v1(¢, )2, 1087 (C,m) = va(C, |2} = 0.

Throughout the remainder of this section, a operators appear that map B2*? to B2*2. We write
|| - ||« with *, # € {2,00} for the operator norm if the definition space is equipped with the norm
|||« and the target space with ||-|lx. If * = # then we simply write |- ||, for the corresponding
operator norm.

Proof. Owing to the explanations in Section especially, (5.12)), it suffices to show that || M) (¢, w)—
M(¢,w)|2 = 0 if n — oo.
Fix 6 > 0 and ¢ € C. We introduce the matrices A € B2%2 and A™ € B2*2 through

o 0 a (n)_ 0 (I(n)
am(00). e ().
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For w € Cy satisfying dist(w, supp p¢) > é and t > 0, we set M® = M®) (¢ w+it), M = M (¢, w+it)
and L[R] :== R — MX[R]M for all R € B>*2. With A := M — M, a short computation starting
from (5.15) and the analogous relation with M), (™ and £ yields

LIA] = MS[AJA + M(E™ — ) [M™IM™) + M (A — A™)M™), (C.2)

We now invert L and estimate the resulting relation in || - ||2. We collect a few auxiliary bounds. From
[5, eq.s (3.22), (3.11a), (3.11c)], we conclude the existence of a constant C; > 0, depending only on
& but independent of w and ¢, such that ||[L™![]2 < Cy for all w € Cy with dist(w, supp p¢) > 5 and
t>0. As [[M(¢,w)| < (dist(w,supp pc)) ™! by [, eq. (3.11a E|7 we have ||[M|| < (max{d,t})~! and
|M™)| < (max{s,t})~! for all t > 0. Owing to [4, Lemma B. 2( )], the upper bound on s following from
its piecewise continuity implies that there is a constant Co > 1 such that [|X]|2—,0c < Co. Therefore,
there is a constant C' > 0 depending only on § but not on w or ¢ such that

1Al < CUIAIR + W), W= S =S| + (|4 = AW, (C.3)

for all w € C with dist(w,supp p¢) > 6 and all t > 0. Here, A = A((,w + it).

Owing to we get ¥,, — 0 as n — oo. Thus, we find ng € N such that 2¥,,C? < 1/4 for all
n > ng. Fix w € C4 with dist(w,supp p¢) > 0. We set t, := sup{t > 0: [|A((,w +it)||2 > 2C¥,}.
Since |[M™)| + ||M|| — 0 for t — oo, we obtain t, < oo. Next, we conclude t, = 0. Suppose
t« > 0. Hence, [|A((,w + it.)|2 = 2C¥,, by continuity. As 2V, C’2 < 1/4, we conclude from
that ||A((,w + ity)|l2 < 3CV,/2 < 2CV,, = ||A(¢,w + its)|]2. This contradiction implies t, = O.
Note that this holds for any w € C4 as long as dist(w,supp p¢) > 0 and n > ng. Thus, for n > ny,
we obtain ||M ™) (¢, w) — M (¢, w)|2 = A, w)|2 < 2CT, for all w € C with dist(w,supp p¢) > 6,
which concludes the proof of Lemma as ¥,, — 0 with n — co. O

Corollary C.2. Let s and a satisfy and (vgn), vé”)) be as in Lemma . Then the following holds.

(i) For eachn € N, replacing v, by U1 n . ) yields a well-defined continuous function L™ : C —
R.

(i) For each n € N, there exists a probability measure o™ on C such that (6.2) holds with o and
L replaced by ¢™ and L™, respectively. Furthermore, there is o ~ 1 such that supp o™ C D,
for all n € N.

(iii) Moreover, o™ converges to o weakly as n tends to infinity.

Proof. Clearly, a™ and s from (C.1)) satisfy ||a™ || < 1 and (with the same constants as a
and s). Hence, Lemma Proposition and Remark imply the well-definedness of L™ and the

existence of probability measures o) satisfying for L™ as well as supp o™ C Dy, respectively.

Since o™ for all n € N and o are probability measures on C, for the weak convergence it suffices
to show [ fdo™ — [ fdo asn — oo for all f € C3(C). Fix f € C3(C). As a/™ and s™ from (C-1)
satisfy [|a(™ | < 1 and |A5| with the same constants as a and s, we conclude from Lemma |5.1{ and

(6-9) that [Af(¢) vln) (¢,m))y — lJlrn) < %ﬁ?l uniformly n > 0, ¢ € C and n € N. That is the 1mphc1t

constant hidden by < does not depend on 71, ¢ and n. Owing to the integrability of the right-hand
side with respect to ¢ and 1 over C x (0, 00), we obtain from ((6.2)), Fubini and dominated convergence
that

[t = [ [7 a0 (e - Jand¢
— [ [T aro (i - 1 Jandc = [ gao

as n — oo. This completes the proof of Corollary [C.2] O

3The proof in [5] is given in the finite dimensional setup; the proof in the setup of this article is identical.
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Corollary C.3. Let s and a satisfy and let M™ be as in Lemma|C.1. Fiz ¢ € C. Let pén) be the
self-consistent density of states associated with the Hermitization of A, + X,, i.e.
" (ar)
1
— S Te(M™ (C.4)
| = 3 T G w)

for all w € C,. Here, Tr denotes the trace of 2 x 2 matrices in C**? and the average (-) is taken
entrywise. Then

(i) pén) — p¢ weakly as n — oco.

(7) limsup,,_, .. supp pén) C supp p¢-

Proof. Item . follows directly from the convergence of the Stieltjes transforms, i.e. for all w € C,,
<TrM (C w)) = (Tr M(¢,w)) as n — oo, due to Lemma

For the proof of we fix § > 0 and show that supp pén) C supp p¢+(—9,0) for all sufficiently large
n. If 7 € R satisfies dist(7, supp p¢) > ¢ then, by [4, Lemma D.1], M = M((, 1) = lim, o M (¢, T +in)
exits and is self-adjoint. Moreover, |[L71|l2 + ||M] <5 1 uniformly for » > 0 and 7 € R with
dist(r, suppp > 5. We recall the definition L[R] = R — MX[R]M for R € B?*? from the proof
of Lemma As [|[M]| <5 1, Lemma implies [|[M ™ (¢, 7 + in)|2 <s 1 uniformly for all n > 0,
7 € R with dlst(T supp p¢) > ¢ and all sufficiently large n. Arguing similarly as in the proof of
Lemma [5 . we conclude ||[M™ (¢, 7+ in)|| <s 1 uniformly for 1, 7 and n as before. We set M) :=

”)(C 7 +in) and LW[R] = R — MMM [RIM™ for R € B?*2. For such n, 7 and n, we obtain
[(L™) =12 <5 1 by perturbation theory from || M ||+ || M™ ||+ L7 2 S5 1, 120 oo+ 15 ]l2500 S 1
and ||[M™) — M]|s — 0 for n — oo. Hence, by the implicit function theorem, for all sufficiently large
n, the function n — M (¢, + in) is continuous on [y — &,710 + €] for some € > 0 independent of
no > 0. In particular, we can extend M continuously to n = 0 in a unique way.

Let 7 € R with dist(7,supp p¢) > 6. For M = M((, ), we now consider the relation

1 -~ o~ -~ ~ ~ ~
LIA] = 5 (Kn(A, 5, A)+ Kn (A", 5, 4)7) - Kn(A) = MS[AJA+ME[M +A|(M+A)+MAM+4),
with variables A € B2X2, A = A* € B2X2 %: B2X2 5 B2X2 guch that 2[R]* = S[R*] for all R € B2%2,

Since [|[L™!||2 s 1, by the implicit function theorem, this relation has a unique solution A as long as
|Z]|2 and || A2 are sufficiently small, as L[0] = 0 and K, (0,0, 0) = 0. Moreover this solution satisfies
A = A* as L[R]* = L[R*] for all R € B?>*2 due to M* = M. Owing to and M = M*, we have
LIM®™ — M| = (K (M®™ — M, 2™ — 5 A — A™) 4 K, (M®™ — M)*, E ) ,A— Al ))/2 Wlth
M®™ =M™ (¢, 7). Hence, as | — S| + |4 — A™ |y — 0 for n — oo by the proof of Lemma
we get A = M™ — M for all sufficiently large n and, therefore, M™ = (M (”))* for such n. Since
this holds for any § > 0 we conclude that Im M (¢, 7 + w) = 0 for sufficiently small |w| with w € R.

Because of ((C.4)) this implies that 7 ¢ supp Pén)- -

D Representation of ¢ as Brown measure

In Proposition of this appendix, we represent ¢ from Proposition as the Brown measure of an
operator in a von Neumann algebra. This is the motivation behind Definition [6.2]

The definition of a Brown measure is given after the next proposition, which is formulated in the
language of operator-valued free probabilityﬁ

Proposition D.1 (Representation of o as Brown measure). Let a € B and s satisfy . Then there
is an operator-valued probability space (A, E,B) and an operator ¢ € A such that

e E: A— B is a positive conditional expectation.

o (A, (E[-])) is a tracial W*-probability space.

4For the necessary definitions in free probability, we refer to the recent monograph [36].
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e the Brown measure of a + ¢ on (A, (E(-))) coincides with .

0 ¢
¢ 0
(A2*2id® B, B**?), where we identified A>*? = C**2® A, whose covariance is given by ¥ from
(5.14)). In particular,

is an operator-valued semi-circular element in the operator-valued probability space

) 1
MG, in) = id® E[ <(c L o ‘ +_“in_ C) } (D.1)

satisfies the Matriz-Dyson equation, (5.13)).
o Elcbc] =0 forallb e B.

Before we show Proposition we introduce the notion of a Brown measure. Let (A, 7) be a
tracial W*-probability space. The Brown measure is a generalisation of the spectral distribution of
normal operators to non-normal ones. Let a € A. The Brown measure i, of a is the unique compactly
supported probability measure on C with

| 108I¢ = €lua(de) = log Da — ) (D.2)

for all ¢ € C. Here, D(a— () denotes the Fuglede-Kadison determinant of a — (. The Fuglede-Kadison
determinant of an arbitrary b € A is defined by

D(b) :== lgﬁ)lexp(T(log(b*b + &)%) € 10, ).

Originally introduced in [I§], the Brown measure was revived in [27]. An introduction to the Brown
measure and the Fuglede-Kadison determinant can be found in [36, Chapter 11].

Proof of Proposition[D.1 As B is a commutative C*-algebra, it is a standard result that S and S*
are completely positive maps (see e.g. [37, Theorem 3.9 or Theorem 3.11]). Hence, ¥: B?*2 — 32x2
from is also a completely positive map. From the constructions in [45], Sections 4.3 and 4.6], we
obtaln a von Neumann algebra A such that B2*2 - A is a sub-von Neumann algebra with the same
unit as well as a positive conditional expectation E: A — B2 and an operator-valued semicircular
element H = H* € A such that R

E[9B$] = X[B] (D.3)

for all B € B**2. A concise summary of this construction is given in [41} Section 3.5]E|.
We recall the definitions of Fj9 and E9y € B2*2 from and define Fy; and Fayy € B2X2
analogously. Let
A= VN(ElinEjll 1,j=1,2, A € ./ZD

be the sub-von Neumann algebra of A generated by Ey;AE;; for ¢, j = 1, 2 and A € A. Note that
FEq1 € A is the unit of A. We introduce the map

-~ b
o A2 A, ( S N ) — FiiaFk + E11bE12 4+ Eo1cE1 + E210E79,

which is clearly an injective *-algebra homomorphism. Surjectivity follows from

EnEn EnRAEy
d = E11UAFE1 + E11AE9g 4+ E9AE ] + EypRfEy =AU
( EpAEy  EipUEy 112211 11% 22 22211 2229
as Ej1 + Fas is the unit of B2%2 C A. Moreover, ® maps the unit of A2*? to the unit A. Hence, ®
is bijective, unital *-algebra homomorphism between unital C*-algebras, which is consequently also

®We also refer to Lemma 8.2 and its proof in the first arXiv-version of [4], which can be found at arXiv:1804.07752v1.
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isometric. We define E: A — B through setting E[a] as the (1,1)-entry of E[a] € B2*2 for all a € A.
Then E: A — B is a positive conditional expectation and, hence, (A, F,B) is an operator-valued
probability space. It follows that (A, (E[-])) is a tracial W*-probability spaceﬂ

Using ® implicitly, we now identify $) with an element in A42%2, i.e. we find a, b, ¢ € A satisfying
a=a* and b = b* such that

Moreover, by identifying A42*? with C?>*? @ A, we obtain

. a C 11 T12 a C A 11 T12 _ S[TQQ] 0

1d®E|: (C* b) (7“21 7”22) (C* b)} o E[f) (7“21 ?"22) f)] o ( 0 S*[TH]
for all r11, r12, 721, ro2 € B. This implies F[aa] = 0 and E[bb] = 0, hence, a = b =0 as a = a* and
b = b*. Moreover, E[croic] = 0 for all ro1 € B.

Owing to the standard relation between the covariance of an operator-valued semicircular element
and its R-transform, see e.g. [36, Theorem 11 of Chapter 9], we conclude that M((,in) as defined in

(D.1)) satisfies (5.13)).

Given the above construction, it remains to show that the Brown measure of a + ¢ coincides
with 0. This proof proceeds analogously to [6, proof of Proposition 2.9]. We explain the necessary
replacements. First, analogously to [6, proof of (5.28)], we obtain

—L(¢) =log D(a+¢— ()

for all ( € C.
Proposition and standard results from potential theory (cf. [7, Chapter 4.3]) imply

/(ClogK — ¢lo(dg) = —L(C) + h(C)

for all ¢ € C and some harmonic function A: C — C. In the [proof of Proposition [6.3] we showed that
L(¢) = —(log|a — ¢|) + C for all sufficiently large ¢ € C with some constant C' € R, independent of .
An expansion of v starting from for large |(| reveals that C' = 0. Hence, h({) — 0 for ( — oo
and, therefore, h = 0 as it is harmonic. O
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