
A tale of two localizations: coexistence of flat bands and Anderson localization in a
photonics-inspired amorphous system

Elizabeth J. Dresselhaus,1, ∗ Alexander Avdoshkin,1, 2, ∗ Zhetao Jia, Matteo Seclí,3 Boubacar Kanté,3, 4 and Joel E. Moore1, 4

1Department of Physics, University of California, Berkeley, California 94720, USA
2Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

3Department of Electrical Engineering and Computer Sciences,
University of California, Berkeley, California 94720, USA

4Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
(Dated: April 29, 2024)

Emerging experimental platforms use amorphousness, a constrained form of disorder, to tailor meta-material
properties. We study localization under this type of disorder in a class of 2𝐷 models generalizing recent ex-
periments on photonic systems. We explore two kinds of localization that emerge in these models: Anderson
localization by disorder, and the existence of compact, macroscopically degenerate localized states as in many
crystalline flat bands. We find localization properties to depend on the symmetry class within a family of amor-
phized kagomé tight-binding models, set by a tunable synthetic magnetic field. The flat-band-like degeneracy
innate to kagomé lattices survives under amorphousness without on-site disorder. This phenomenon arises from
the cooperation between the structure of the compact localized states and the geometry of the amorphous graph.
For particular values of the field, such states emerge in the amorphous system that were not present on the
kagomé lattice in the same field. For generic states, the standard paradigm of Anderson localization is found
to apply as expected for systems with particle-hole symmetry (class D), while a similar interpretation does not
extend to our results in the general unitary case (class A). The structure of amorphous graphs, which arise in
current photonics experiments, allows exact statements about flat-band-like states, including such states that only
exist in amorphous systems, and demonstrates how the qualitative behavior of a disordered system can be tuned
at fixed graph topology.

I. INTRODUCTION

Amorphous materials are defined by exhibiting local order
in the absence of long-range order. They have traditionally
been preferred in optical applications due to their isotropic
properties and robustness, while still maintaining the neces-
sary spectral gap [1]. More recently, engineered amorphous-
ness has also been used in photonic meta-materials for similar
reasons [2]. Conversely, in electronics, crystalline structures
are favored because of their higher electron mobility. This dif-
ference fundamentally arises from the distinct spectral prop-
erties of amorphous versus periodic systems that share similar
local structure. The primary variation lies in the eigenmodes,
whereas the permitted energy levels are relatively unaffected.

In this work, we study the structure of amorphous spectra
and corresponding wavefunctions to understand how amor-
phous systems behave in ways that are not typical for generic
disordered systems. The absence of translational invariance in
any disordered system poses a challenge: study of crystalline
solids is to a high degree aided by Bloch’s theorem which ex-
plains both the presence of band gaps and the extended nature
of the wave functions. Solid-state physics has traditionally
focused on perturbative disorder of a general form (typically,
random on-site potential or hopping terms), but with small am-
plitude (weak disorder) [3]. Amorphous disorder, in contrast,
is an example of strong disorder of a very special form that is
non-perturbative. It can be thought of as a discrete hopping
disorder that “rewires" the underlying connectivity graph of a
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system, but preserves the hopping amplitude. This property
along with the absence of periodicity makes theoretical studies
of amorphousness challenging.

We focus on an amorphous version of the kagomé lattice
with a spatially uniform hopping phase and corresponding flux
around closed loops of the underlying graph, analogous to a
synthetic magnetic field. This model is realizable in resonator-
array photonic devices [4] and has recently been studied by
the present authors in this context [5]. Additionally, it is
structurally similar to the commonly studied models giving an
approximate description of solids such as amorphous silicon
or silicon dioxide [6]. The model preserves local order: it is
defined on an hourglass graph, see Fig. 1, i.e., one composed
of corner-sharing triangles.

Rigorous results for amorphous systems are scarce, with the
notable exception of the demonstrated persistence of a spectral
gap in amorphous tetrahedral bonded semiconductors despite
disorder [7, 8]. The robustness of the gap to amorphous dis-
order is markedly different from the case of random on-site
disorder, where sharp crystalline bands broaden with increas-
ingly strong disorder until the material eventually becomes a
featureless insulator. In our work, we demonstrate and prove
new exact results about the persistence of macroscopically de-
generate states coming from compactly localized states in the
presence of amorphous disorder. In a slight misappropria-
tion of language, we refer to these persistent highly degenerate
energy levels as “flat bands” even though there is no Bril-
louin zone; they are flat bands as a function of external fluxes
through a torus [9]. Furthermore, quite remarkably, we show
that flat bands exist in amorphous systems that have no analog
in their crystalline counterparts. Flat bands are conducive to
the formation of correlated states, such as superconductivity
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[10], quantum spin liquids [11] and the fractional quantum hall
effect [12], and our model offers an interesting playground for
this exploration as well as novel thermodynamic and transport
features that accompany a spike in the density of states.

There are two standard pathways to the formation of flat
bands: compact localized states due to destructive interference
of hopping paths on a geometrically frustrated lattice, such as
the kagomé [13] or pyrochlore lattice [14], and the Landau-
level-like mechanism leading to topologically nontrivial flat
bands[15]. Both types of flat bands are generically destroyed
by on-site and other traditionally studied forms of disorder. In
the context of this work, we only encounter flat bands of the
first type, which arise from compactly localized states.

The mentioned decreased electron mobility in non-
crystalline materials comes from the localization of some
eigenmodes in the spectrum and it has also been observed
for our model [5]. This phenomena is known as Anderson
localization [16]. In the case of on-site disorder, a compre-
hensive paradigm has been established through application of
thoroughly developed analytic tools [17] and tests in numeri-
cal simulations [18]. In amorphous systems the fate of Ander-
son localization has been considered [19–23] but a systematic
study has not yet been undertaken. We begin to address this
issue in this work by considering a model of amorphousness
relevant to experiments in photonics. In particular, we find
that, in some symmetry classes, for our model even the quali-
tative features of localization seem distinct from the standard
paradigm.

The rest of the work is organized as follows. In Sec. II
we introduce the model, defined on a kagomé lattice, and ex-
plain how we construct amorphous structures that are locally
identical to kagomé lattices. In Sec. III we explain why flat
bands exist in some members of this family of model Hamilto-
nians and show how not only do these flat bands persist in the
presence of amorphous disorder, there are in fact model Hamil-
tonians on amorphous structures that host flat bands which are
absent in their periodic counterparts. We then turn to examin-
ing localization in the dispersive bands of our model. In Sec.
IV we introduce a method to compute the effective localiza-
tion length of eigenstates and adapt the method of energy level
spacing distribution analysis to our amorphous systems. In
Sec. IV A and IV B we compare the localization properties of
model systems tuned to be in two different symmetry classes.

We discuss differences and challenges that this comparison
raises to the conventional symmetry classification of localiza-
tion in disordered systems.

II. MODEL

The model we consider is motivated by experiments in pho-
tonic metamaterials [4]. The experimental platform consists
of a 2𝐷 array of photonic resonators, where nearest neigh-
bors are coupled to each other through two sets of waveguides.
When the arm lengths of the waveguides within each pair dif-
fer, photon dynamics in the system are described by a magnetic
tight-binding Hamiltonian [4] (in first quantization):

𝐻0 =
∑︁
Δ𝑖

𝑒𝑖𝜙 ( |𝑖1⟩⟨𝑖2 | + |𝑖2⟩⟨𝑖3 | + |𝑖3⟩⟨𝑖1 |) + ℎ.𝑐., (1)

where Δ𝑖 is the 𝑖th triangle of the kagomé lattice. Sites
are ordered 𝑖1, 𝑖2, 𝑖3 as a counterclockwise path around each
triangle. The effective magnetic field globally averages to zero
but does not vanish locally for 𝜙 ≠ 0.

We can access three different Altland-Zirnbauer (AZ) sym-
metry classes [24] simply by tuning the hopping phase 𝜙. At
generic 𝜙 the system possesses neither chiral nor particle-hole
nor time reversal symmetry (AZ symmetry class A). Time
reversal symmetry is preserved only when 𝜙 = 0, 𝜋 (AZ sym-
metry class AI). When 𝜙 = 𝜋/2, the Hamiltonian has particle
hole symmetry under complex conjugation 𝐻∗

0 = −𝐻0 and
falls into AZ class D.

We will first consider the model of Eq. (1) on a (periodic)
kagomé lattice. In the amorphous case, we define the model on
graphs created by kagomization (explained in the next section)
and refer to the analogous entities as amorphous systems. We
note that this model is experimentally relevant at finite system
size - photonic systems in experiments can have size 𝐿 ∼ 100,
where 𝐿 denotes the number of resonators per row.

A. Amorphous Model

We adapt the amorphous graphs we used in [5]: these graphs
resemble kagomé lattices locally in that every vertex has co-
ordination number 𝑧 = 4 and is the center of a pair of corner-
sharing triangles, however the graphs lack long range order
and contain faces other than triangles and hexagons. Some
experimental realizations of photonics systems, including the
experiments in our previous work, require equal bond length
between all connected sites. We relax this restriction in or-
der to have a simple process of generating graphs that will be
easily reproducible.

Beginning with an uncorrelated set of 𝐿2
0 points in an 𝐿0×𝐿0

region we use kagomization [25] to generate a graph with
the short range order defined above but no long range order.
This process can be consistently done for any system size 𝐿0
which is necessary for extrapolating the results to the thermo-
dynamic limit, see as in Sec. IV. The kagomization procedure
is explained in Fig. 1: we first construct a Voronoi diagram
from the uncorrelated set of points, and then generate triangles
around each Voronoi vertex by connecting the midpoints of all
Voronoi edges emanating from the vertex. These triangles
form a kagomized graph with 𝑆 ∼ 6𝐿2

0 sites. We define the
system size as 𝐿 =

√
𝑆. To implement this graph with periodic

boundary conditions, we perform the same procedure for a
random point set on a two-dimensional torus.

Kagomizations of Voroni graphs consist of corner-sharing
triangles: this makes them a special type of hourglass graph.
Some properties of these emerging hourglass graphs can be
conveniently understood by considering the corresponding De-
launay triangulation, the dual graph of the Voronoi graph.
Triangulation graphs are in one-to-one correspondence with
hourglass graphs. At the same time, not all triangulations can
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FIG. 1. Kagomization starts with a random, uncorrelated set of
points (grey). Next, we generate the Voronoi diagram for this point
set (orange) and then connect the midpoints on each edge to the
neighboring edge midpoints to form the corresponding kagomized
graph (black).

be realized as Delaunay triangulation graphs [26] and thus
not all hourglass graphs will be generated by the procedure
described in the previous paragraphs.

Any hourglass graph can be generated by a series of local up-
dates to graph connectivity starting from the kagomé lattice.
The local updates consist in restructuring a pair of adjacent
triangles which correspond to diagonal flips [27] of the dual
triangulation. The ability to construct an arbitrary graph in
this way follows from the proven analogous result for triangu-
lation graphs [28, 29]. Thus, considering all hourglass graphs
gives the intriguing possibility to introduce amorphousness in
a perturbative way. The simulation results in the next section
pertain to hourglass graphs from kagomization, however, the
exact results and arguments apply to any hourglass graph.

To write the model of Eq. (1) on a amorphous graph, we
must be careful to only define hoppings around triangles that
belonged to the original kagomé lattice. We refer to triangles of
an amorphous graph that belonged to the original kagomé lat-
tice as primitive triangles, and any cycles on the graph formed
by connected primitive triangles as secondary polygons. On
the kagomé lattice, all secondary polygons are hexagons,
whereas on amorphous kagomized graphs, secondary poly-
gons consist of 𝑁-sided polygons where 𝑁 = 3, 4, 5, 6, · · · .
Writing our model on secondary triangles will give incorrect
hopping terms. Thus, we define Eq. 1 on an amorphous
graph by summing over all primitive triangles Δ𝑖 of the graph.
Numerically, this distinction is accomplished by writing the
Hamiltonian from hoppings around the Voronoi vertices that
give rise to a given kagomized graph.

III. COMPACTLY LOCALIZED FLAT BAND STATES IN
AMORPHOUS MODEL

The model on a kagomé lattice gives rise to three energy
bands in momentum space, which are gapped or ungapped
depending on the choice of 𝜙. A single flat band is present
when 𝜙 = ℓ𝜋/6 for integer ℓ. The degeneracy is at most 𝑆/3+1,
where 𝑆/3 corresponds to the number of secondary hexagons
in the graph.

The amorphous graph does not consist of only primitive
triangles and hexagons. However, as in the kagomé lattice,
every graph edge is a side of a triangle, and every vertex
of the graph is tetravalent. Based on these observations, we
show in App. A that flat band states always occur at energy
𝐸 𝑓 𝑙 = 2 cos(3𝜙 + 𝜋). Below we describe in detail the structure
of flat band states in amorphous systems for 𝜙 = 0, and outline
how this analysis can be generalized to 𝜙 = ℓ𝜋/6. Additionally,
we find that for other commensurate values of 𝜙 flat bands are
only present in amorphous systems, not their kagomé lattice
counterparts.

A. Robustness of flat bands to amorphousness in absence of
field

In the kagomé lattice at 𝜙 = 0, the local value (non-
normalized) of a given flat band state

��𝜓 𝑓 𝑙

〉
alternates as ±1

around a single hexagon and vanishes elsewhere, see Fig. 2
(a). When the Hamiltonian acts on

��𝜓 𝑓 𝑙

〉
, destructive interfer-

ence on each site neighboring the hexagon prevents this state
from dispersing outside of the hexagon. This flat band state
has degeneracy 𝑆/3 + 1.

We conjecture and prove in App. A that a spanning set of
all flat band states on an amorphous graph for 𝜙 = 0 is given
by two types of states. Type-I are defined by the following
conditions:

1. The state resides on a closed loop of even length.

2. This loop incorporates an even number of vertices of
each primitive triangle, which is equivalent to the loop
being non-intersecting

3. The state has (un-normalized) amplitudes ±1 which al-
ternate along the loop.

An example of a Type-I flat band state localized around a
pentagon-septagon pair is shown in Fig. 2(b). Note that the
wavefunction on the central site of this loop vanishes and that
the action of the Hamiltonian on this state leads to destructive
interference on this central site and all sites immediately neigh-
boring the combined polygon. Type-I states can also reside on
non-contractible loops of the torus.

Type-II states consist of pairs of non-adjacent odd-length
secondary polygons that satisfy the following conditions:

1. The state resides on a combination of two non-adjacent
closed loops connected by a path
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2. The state has (un-normalized) amplitudes ±1 which al-
ternate around the loops, but necessarily leaves two ad-
jacent sites with the same sign, giving each loop a net
sign

3. The connecting path must start at the third vertex of the
primitive triangle that contains two adjacent sites with
the same sign on one polygon, and end at the analogous
vertex of the other polygon. The state on this path has
(un-normalized) alternating amplitudes ±2

We refer to the connecting path as a “Dirac string" in analogy
to electromagnetism where a Dirac string connects two mag-
netic monopoles. The Dirac string is necessary for a Type-II
state to be an eigenstate of Eqn. 1 on an amorphous graph.
In fact, the Dirac strings appear exclusively in flat band states
on amorphous graphs of our model system! An example of a
Type-II state is shown in Fig. 3.

Numerical investigations find that the span of the set of
Type-I and Type-II flat band states is exactly one third of the
number of sites 𝑆 in the graph. We also prove this result
rigorously in App. A.

B. Robustness of flat bands to amorphousness at non-zero field

For 𝜙 = ℓ
6𝜋, where ℓ is an integer, we similarly observe the

persistence of a macroscopically degenerate levels (flat bands)
in numerical simulations of amorphous systems.

Analogous to the previous subsection, one can construct a
macroscopic number of flat band states that generalize the flat
band states localized on hexagons on the kagomé lattice. We
see that some flat band states reside on combinations of multi-
ple polygons in these amorphous graphs. To define these states,
we employ a 𝜙-dependent integer 𝑝, whose ℓ-dependence is
explained in App. A, for example 𝜙 = 𝜋/6, 𝜋/3, 𝜋/2 corre-
sponds to 𝑝 = 3, 6, 1. To extend the conditions for Type-I flat
band states to general 𝑝, we add 𝑝-dependence to conditions
1, 3 : (1) flat band states must reside on loops whose length is
divisible by 𝑝 (𝑝 = 1 implies any loop is valid) (3) the ampli-
tudes are the 𝑝-th roots of unity, taken sequentially around the
unit circle in the complex plane. For 𝜙 ≠ 0 it is also important
to note that graphs become directed, and all loops that host flat
band states must respect the orientation of the edges.

Remarkably, for 𝑝 = 1, 2, 6 which correspond to 𝜙 =

𝜋/2, 0, 𝜋/3, we see that the fraction of all eigenstates that are
in the flat band remains 1/3 even on the amorphous graphs.
In general we do not expect this to be the case. For example
in Table I we see that for 𝜙 = 𝜋/6, the fraction of flat band
states never exceeds 1/16 in our simulations. Additionally, we
observe that this fraction varies appreciably from realization
to realization for most values of 𝜙, see Table I. The reasoning
for why this does not occur for 𝑝 = 2 was explained in the
previous subsection; the case 𝜙 = 𝜋/2 (𝑝 = 1) can also be
easily understood. The flat band state in this case does not
alternate ±1 around a polygon but is in fact uniform. This
simple structure of the flat band states ensures compatibility
with all secondary polygons in the graph: every secondary 𝑛-
gon in an amorphous system supports a uniform localized flat

FIG. 2. Figures on left side represent a flat band state at 𝜙 = 0;
figures on right side represent a flat band state at 𝜙 = 𝜋/2. (a)
Flat band eigenstate alternates between +1 (blue circles) and −1 (red
circles) around the hexagon and is zero-valued outside. (b) Flat
band eigenstate of an amorphous kagomized system wraps around
a pentagon-septagon combination such that the state’s sign can still
alternate between circumferential sites. (c) At 𝜙 = 𝜋/2 the flat band
state has the same phase at every site surrounding a hexagon. (d)
Since the state’s sign is constant around a polygon, the pictured flat
band state localized around a pentagon in an amorphous kagomized
system is an eigenstate for 𝜙 = 𝜋/2.

FIG. 3. Example of a flat band state at 𝜙 = 0 that combines two non-
adjacent polygons of odd length. The flat band eigenstate alternates
between +1 (blue circles) and −1 (red circles), but leaves a net sign
around each pentagon. While the compact localized state around each
pentagon individually could not be an eigenstate, a “Dirac string" of
+2 (blue heart) and −2 (red heart) connects the pentagons resulting
in a flat band eigenstate.

band state surrounding it, see Fig. 2d. We believe an analysis
similar to the previous subsection can be performed in these
cases except that one would need to consider directed graphs.
We leave this for future work.

C. Flat bands unique to amorphous systems

On the kagomé lattice, secondary hexagons cannot sup-
port localized eigenstates when 𝑝 does not divide 6. How-
ever, amorphous graphs contain secondary polygons of various
sizes, e.g. pentagons and septagons. Localized states around
these polygons become possible through appropriately tuning
𝜙 to 𝜙 = ℓ𝜋/𝑝 − 𝜋/2 for integer ℓ. This result can be derived
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𝜙 kagomé lattice amorphous system

0 S/3 + 1 S/3
𝜋/6 S/3 ≤ S/16
𝜋/3 S/3 + 1 S/3
𝜋/2 S/3 ≲ S/3
3𝜋/8 0 ≤ S/16
3𝜋/4 0 ≤ S/8

11𝜋/10 0 ≤ S/6

TABLE I. Numerical results (from 50 simulations of amorphous
systems with 𝑆 = 48) of flat band degeneracy for a subset of values
of 𝜙 that give flat bands. Simulation results are shown for when the
underlying graph of the system is a kagomé lattice or amorphous
graph. Note that the number of flat band states can depend on the
realization of amorphous disorder, in which case we provide an upper
bound.

FIG. 4. Example of a case where a flat band exists in the amorphous
system but not in the kagomé lattice system. For 𝜙 = 11𝜋/10, a
flat band emerges in the amorphous system in the gap of the kagomé
lattice. This flat band contains .086 of the total states of the system,
unlike the 1/3 typically observed in flat bands in these systems. We
hypothesize that these flat band states are hosted on pentagons.

from the results of App. A. We conjecture that at these values
of 𝜙, flat bands that were not present in the kagomé lattice will
appear in amorphous systems! In Fig. 4, we illustrate it for
the case 𝜙 = 11𝜋/10, corresponding to 𝑝 = 5 (states localized
around pentagons).

We note that these flat bands are expected to be topologically
trivial. In 2𝐷, it has been proven that topologically nontrivial
flat bands can only exist if hopping is non-local[30], which
is not the case in our model. Though the proof was done for
periodic systems, we expect a similar result would apply in our
case due to the local nature of most states in the flat band.

FIG. 5. Example of a localized state on an amorphous analog of the
Lieb lattice. In the Lieb lattice, states can exist both at vertices of
the graph as well as at midpoints of the graph edges, denoted by 𝑋

in the figure. Blue (red) 𝑋 denote non-normalized state amplitude
+1(−1) whereas white circles at the vertices and black 𝑋s denote no
state amplitude.

D. Other lattices

Besides the kagomé lattice, there are multiple other lattices
that can support flat bands [31]. We expect that the fate of
flat bands in the amorphous versions of these lattices will be
similar to what we described for the kagomé case. As an
illustration in Fig. 5, we show how localized states can persist
in the amorphous version of the Lieb lattice. Other lattices
that we believe will host flat band states in the amorphous
form include the star lattice and dice lattice.

We will now focus on the dispersive bands of our model
which, in the amorphous case, exhibit a distinct type of local-
ized states that we refer to as Anderson-like localized states.

IV. ANDERSON-LIKE LOCALIZATION IN AMORPHOUS
SYSTEMS

In a previous work including the authors of this study [5],
we observed localization in the dispersive bands of amorphous
systems in class D. The localization of states was dependent
on their eigenenergy, with energy regions in the band tails
giving rise to localized states. In this work, we confirm this
observation by adapting two methods previously used to study
localization: effective localization-length spectra and nearest
energy level spacings. We then compare our results in class D
(Sec. IV A) to class A, accessed by tuning 𝜙 (Sec. IV B).

We refer to the localization we observe as “Anderson-like"
to distinguish it from true Anderson localization. Anderson
localization is defined by states whose magnitude decays from
a well-defined center as |𝜓 |2 ∼ 𝑒−𝑟/𝜉 where 𝑟 is the dis-
tance from the center and 𝜉 is the localization length [32]. In
Anderson-like localized states, the state can be localized about
multiple centers, but still decays rapidly away from each cen-
ter. Anderson-like localized states were previously observed in
amorphous systems hosted on Voronoi graphs [19]. To detect
localization of a state 𝜓, we calculate its inverse participation
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ratio 𝐼2 (IPR), defined as

𝐼2 =

𝑆∑︁
𝑖=1

|𝜓𝑖 |4 (2)

Where 𝑆 is the number of sites on the graph and 𝜓 is nor-
malized. We define an effective localization length 𝜉 = 1√

𝐼2
.

While inequivalent to the true localization length 𝜉, best ap-
proximated using the smallest quasi-1d Lyapunov exponent
[33], the effective localization length is well suited to describ-
ing localization in amorphous systems for systems sufficiently
small to be efficiently diagonalized.

We also analyze nearest-level spacings distributions. The
set of nearest level spacings Δ𝐸 for a system is defined as the
absolute difference between all nearest neighbors in an ordered
set of the system’s eigenenergies. To define a distribution of the
spacings, spacings are first normalized by the mean spacing
to define 𝑠 = Δ𝐸/< Δ𝐸 >. In the limit of infinite system
size, nearest-level spacings distributions in Anderson model
disordered systems have been shown to fit either a Poisson law,
𝑃𝑃 (𝑠) = 1/𝛿𝑒−(𝑠/𝛿 ) , or the Wigner surmise for the orthogonal
class (𝛽 = 1), 𝑃𝑂 (𝑠) = 𝜋

2𝛿 𝑠𝑒
−(𝜋/4𝑠2 ) or a hybrid function, [34].

These three cases correspond to systems with only localized
states, only delocalized (metallic) states, and systems at the
metal-insulator transition.

In the 2𝐷 Anderson model all eigenstates of a system are
localized for arbitrarily small onsite disorder strength [3]. For
large onsite disorder the 3𝐷 Anderson model also becomes
insulating at all energies, however for sufficiently small onsite
disorder, energy eigenstates at low energies are delocalized and
energy eigenstates at higher energies are localized, separated
by a mobility edge [35]. We observe that amorphous systems
qualitatively resemble the 3𝐷 Anderson model with weak dis-
order: the states can be either localized and/or delocalized,
depending on which energy we probe.

An important difference from the Anderson model is that,
for 𝜙 ≠ 0, systems break time reversal symmetry. Thus in our
analysis we use the Wigner surmise for the unitary class (class
A), 𝛽 = 2, 𝑃𝑊 (𝑠) = 32

𝜋2 𝑠
2𝑒−4𝑠2/𝜋 [36]. The Wigner surmise for

class D coincides with that of class A for states at sufficiently
high energy [37]. We define subsets of all eigenstates using
cutoff 𝜉/𝐿 < 1/3 to approximate which states are localized,
shown in Fig. 6, 8. We examine the largest system size only.
For each amorphous system of this size, we choose all energies
within a range 𝑅. Then we select energies 𝐸𝑖,𝑅 in this range
and find the nearest level spacingsΔ𝐸𝑖,𝑅 and normalize this set
by its mean. We then compute a histogram for the normalized
spacings Δ𝐸𝑖,𝑅. Using the same histogram bins, we repeat
this procedure for all realizations, then find the average value
and error bar for each bin. For each range 𝑅, we fit a Poisson
distribution and a Wigner distribution and then compute the
𝑝-value from the Kolmogorov-Smirnoff statistic 𝑝 for each fit.
A large value 𝑝 ∼ 1 indicates that the data is likely to have
come from this type of distribution whereas 𝑝 ∼ 0 indicates
that the data comes from a different distribution. Results of
these analyses are shown in Fig. 7, 9.

A. Anderson-like localization in class D

We start with a brief overview of the spectral properties of
the periodic (kagomé lattice) system in class D (𝜙 = 𝜋/2).
This system has three gapped energy bands in momentum
space: a flat band at 𝐸 = 0 sandwiched by two particle-
hole symmetric bands 𝐸±. We focus on the highest energy
band throughout all following analyses. The top band spans
𝐸 = (

√
3, 2

√
3) and has a Lifshitz transition at 𝐸 = 2. Due to

momentum space degeneracy, 𝐼2 (𝐸+) is multi-valued and 𝜉 (𝐸)
forms an envelope. This envelope is strongly centered around
𝜉 (𝐸) ∼ 𝑂 (1) for all energies, consistent with the delocalized
nature of these eigenstates that we expect because of translation
invariance.

Amorphous class D systems retain the gapped three-band
structure of their kagomé counterparts. The flat band is pro-
tected from amorphousness by particle-hole symmetry as well
as the arguments outlined in Sec. III. Numerically, we gener-
ate and diagonalize the Hamiltonian of amorphous systems of
size 𝐿0 ranging from 𝐿0 = 40 to 𝐿0 = 100 and calculate 𝐼2 for
all eigenstates. To focus on bulk properties, we apply periodic
boundary conditions in both directions for all calculations,
unlike in [5] where we used open boundary conditions.

The effective localization spectrum for a large class D amor-
phous system (𝐿0 = 100) is shown in Fig. 6. The density of
states of the bulk band extends into the bandgap of the kagomé
lattice but the amorphous disorder is not sufficiently strong to
close the gap. Most states in the amorphousness-induced tail,
with energies 𝐸 <

√
3, have suppressed effective localization

length. However, not all states with 𝜉 << 𝐿 are in the tails:
even in large systems, some states deep in the metallic (de-
localized) region of the bulk are relatively localized. In fact,
effective localization length 𝜉 can vary considerably between
states that are close in energy, forming an envelope structure
similar to that observed in the kagomé lattice. The enve-
lope structure complicates defining a mobility edge in these
systems. To approximate a mobility edge, we define energy
ranges such that the effective localization length probability
distribution can be split into two distinct regions, the “local-
ized" states, shown in blue in Fig. 6 and “delocalized" states
shown in red, with minimal overlap. All eigenstates outside
of these categories we categorize as “metal insulator transi-
tion" states (purple). Setting cutoff 𝜉/𝐿 < 1/3 for classifying
localized states coincides with this analysis.

Considering a single realization of amorphousness at experi-
mentally relevant sizes without scaling illustrates the complex-
ity of localization in these amorphous systems. Scaling-based
evidence for localization from amorphousness was previously
shown in [5] where we averaged 𝐼2 over multiple realizations
of amorphousness for various system sizes. We observed that
𝐼2 for eigenstates in the bulk band tails remains approximately
constant while increasing system size. While numerical data
for only a single system size is presented here, additional data
suggests that the approximate mobility edge location is inde-
pendent of system size for systems from 𝐿 = 20 to 𝐿 = 100.

The nearest-level-spacings of states assigned to the localized
energy range fit a Poisson law well. The spacings of states
assigned to the delocalized energy range do not come from a
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FIG. 6. Top: Scatter plot of the energy of every eigenstate in the
highest energy band of an 𝐿0 = 100 amorphous system and its effec-
tive localization length. States are separated into three energy ranges,
corresponding to localized (blue), metal-insulator-transition (purple)
and delocalized (red). Bottom: States classified as localized (red)
have nonzero probability 𝑃(𝜉/𝐿) for 𝜉/𝐿 < 1/3. The energy range
for delocalized states is set such that the delocalized states’ (red)
probabilities’ non-zero range has minimal overlap with the localized
states’ range. All states in-between are classified as metal insulator
transition states, whose distribution 𝑃(𝜉/𝐿) is shown in purple.

Poisson law distribution, nor do they fit the Wigner distribution
with a high degree of certainty. This inconclusivity is likely
due to the persistence of localized states deep in the metallic
phase, as shown in Fig. 6.

B. Anderson-like localization in Class A

In the following, we repeat the analysis of Sec. IV A for
a system of Eq. (1) for a system with broken particle hole
symmetry: in AZ class A. For subsequent calculations we set
𝜙 = 4𝜋/9, such that the bulk remains gapped, see Fig. 8. The
middle band has now broadened and the surrounding bands are
no longer particle-hole symmetric. The upper band, however,
retains qualitatively similar features to the class D case. In
class A, we also observe a completely delocalized state at
𝐸 = −.695, see Fig. 8. This completely delocalized state,

0 1 2 3 4
s = E/ < E >

0.0

0.2

0.4

0.6

0.8

1.0

1.2

P(
s)

Nearest level-spacing distribution for 
localized states E = (1.2, 1.67)

for amorphous system, = /2, L0 = 100

Poisson fit, p = 0.978
Wigner fit, p = 0.0681
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FIG. 7. Top: Nearest level-spacings distributions of states in the
localized energy range, averaged over 6 realizations of amorphous
systems of size 𝐿0 = 100. Error bars are in black for each bin. Best-
fits for a Poisson law distribution and Wigner distribution are shown
in orange and green, respectively. The distribution is likely to have
come from the same distribution as the Poisson law. Bottom: Nearest
level-spacings distributions of states in the delocalized energy range.
The distribution is unlikely to have come from the same distribution
as the Poisson law and likely to have come from the Wigner surmise.

with equal amplitude on each site, is an eigenstate of Eq. (1)
with energy 𝐸 = −4 cos 𝜙. We also observe this state in App.
B. The existence of this completely delocalized eigenstate is
a consequence of the local on-site Hamiltonian appearing the
same on every site of the system. This state did not appear in
the class D analysis because it occurs at the same energy as
the flat band states and can be written as a superposition of
flat band states. In Fig. 9 we repeat the level spacings analysis
of the previous section of subsets of this upper band and find
qualitatively similar results to the analysis in class D.

For context, we review current thinking about which prop-
erties are universal in generically disordered systems, using
class A systems as an example. This model can be mapped



8

2 0 2
E

0.0

0.2

0.4

0.6

0.8

1.0
/L

Full spectrum IPR, single realization
amorphous class A system, L0 = 120

FIG. 8. Scatter plot of the energy of every eigenstate of 𝐿0 = 120
amorphous system with 𝜙 = 4𝜋/9, symmetry class A. The highest
energy band localization is similar to highest energy band (and its
particle-hole-symmetric partner) in class D. However, the flat band
has broadened and the lowest band appears to have mostly localized
states, unlike in class D. A fully delocalized state with 𝜉/𝐿 = 1 exists
at 𝐸 = −4 cos(4𝜋/9).

to a 2𝐷 disordered Dirac fermion picture. A long-standing
conjecture suggested that the localization-delocalization tran-
sition of 2𝐷 disordered Dirac fermions is controlled by the
same fixed point as the integer quantum Hall transition of or-
dinary fermions[38]. In the integer quantum Hall transition, a
class A system, the localization length of states in a bulk band
diverges at the critical energy 𝐸𝑐 as 𝜉 ∼ |𝐸 −𝐸𝑐 |−𝜈 [39]. Thus
in class A disordered Dirac fermions, we expect states in the
bulk bands to be fully localized even for infinitesimally weak
disorder except for a single delocalized state in the center of
the bulk band. Numerical results have confirmed this fact for
onsite disorder in class A [40], even if it is not absolutely clear
that the exponent 𝜈 is the same between Dirac and quadratic
fermions in a magnetic field. We cannot interpret our results
for amorphous disorder in class A within this basic picture due
to the extended range of delocalized states shown in Fig. 9.
This suggests that the amorphous nature of the system may
require an expansion of the symmetry classification to include
new types of localization phenomena.

We stress that we cannot strictly rule out the possibility that
an extended range of delocalized states for amorphous class
A systems is a finite size effect. However, this observation
certainly calls for future work, both numerically and analyti-
cally, to determine whether amorphous disorder can be fit into
the AZ symmetry classification. We also note that the system
sizes we simulate are on the scale of experimental topological
photonics systems, thus even if delocalized states only appear
so as a result of finite size, they may be effectively metallic for
applications.
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FIG. 9. Top: Nearest level-spacings distributions of states in the
localized energy range, averaged over 43 realizations of amorphous
systems of size 𝐿0 = 120 with 𝜙 = 4𝜋/9. Error bars are in black for
each bin. Best-fits for a Poisson law distribution and Wigner distri-
bution are shown in orange and green, respectively. The distribution
was drawn from the same distribution as the Poisson law. Bottom:
Nearest level-spacings distributions of states in the delocalized en-
ergy range. The distribution was drawn from the same distribution as
the Wigner surmise.

V. CONCLUSION

In this work, we explored two types of localization in
an amorphous topological-photonics-inspired model: com-
pact localized states in flat bands and Anderson-like localized
states. This model can access different physics and symmetry
classes through tuning effective magnetic flux 𝜙.

We show that flat bands appearing in the kagomé lattice
model for 𝜙 = 𝑛𝜋/6, which are destroyed by onsite disorder,
persist in the presence of amorphous disorder. This work
opens up the study of features such as band-touching between
flat bands and dispersive bands [41] in amorphous systems. We
also show that partial flat bands occur in amorphous systems
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at some values of 𝜙 which are absent in their kagomé lattice
counterparts. In these flat bands unique to amorphous systems,
it is possible to tune the number of flat band states by modifying
the structure of the underlying graph, which may be useful for
some applications.

Beyond these localized flat band states, we also demonstrate
Anderson-like localization that is induced by amorphousness.
To study these localization properties, we use and adapt two
methods: inverse-participation-ratio (IPR) calculations and
energy-level-spacings analysis. We find that this type of lo-
calization occurs in the symmetry classes we would expect
from studies of onsite disordered systems, however, the ob-
served extent of the spectrum which is localized, particularly
in symmetry class A, differs from the Anderson paradigm of
localization.

For context for our results, we point out the work by
Puschmann who considered random 2𝐷 Voronoi Delaunay
lattices with out-of-plane uniform magnetic field (class A) and
found quantum Hall edge states with localized bulk modes.
This work also presents evidence that the critical properties
of this model agree with models in class A with only onsite
disorder [19]. Although this model is in class A, the implemen-
tation of amorphous disorder and magnetic field differed. This
might mean the implementation of amorphousness is crucial
for Anderson localization.

For additional context, one can also consider the Aubry-
André (AA) model, a 1D lattice with quasi-periodically mod-
ulated hoppings. Although universality predicts that all state
must localize for an arbitrary weak disorder in the relevant
symmetry class, in the AA model localization happens at a
finite value of the modulation amplitude. This result sug-
gests that in order to modify universality, disorder must be
constrained to an extreme degree (there are only two global
parameters in the case of the AA model, so arguably “disor-
der” is no longer even the right word). Here is an important
distinction between our observation of the modification of uni-
versality and the analogous case in the AA model: our example
exhibits refined universality in a model where the randomness
still has an extensive number of degrees of freedom.

The methods we use to study localization in amorphous
systems may also be applicable to studying newly-discovered
fractional states in amorphous Chern insulators [42] and amor-
phous chiral spin liquids [43]. We also emphasize that our
model system offers an approach to study introducing amor-
phousness perturbatively through combining local diagonal
flips in the dual graph of a system.

This work also has application to the study of phases and
universal behavior in two-dimensional disordered topological
superconductors in symmetry class D. Such superconductors
show metal-insulator transitions with onsite disorder [44] and
non-linear sigma model RG analysis predicts quasiparticle lo-
calization [45]. While a recent study claims that amorphous
Chern insulators in class D have non-universal critical behavior
[46], more research is needed to verify these claims. Here we
have proposed an alternate microscopic model, with the abil-
ity to tune the degree of amorphousness without destroying
local order. This will be a useful tool to further study metal-
insulator transitions in both topological superconductors and

in amorphous Chern insulators in class D.
This work raises a multitude of questions that need further

exploration, about (1) flat bands, (2) the fate of periodic band
structures when the underlying graph is made amorphous and
(3) Anderson-like localization in the thermodynamic limit. We
outline these areas for continued investigation below.

• What determines the degeneracy of a flat band? In App.
A we derive the degeneracy for 𝜙 = 0, 𝜋/2 for both
kagomé and amorphous systems. However, as seen in
Table I, numerical simulations show that other values
of 𝜙 have different flat band degeneracies for which our
derivation is not sufficient.

• Why do some bands of periodic band structures survive
while others do not when the underlying structure is
made amorphous? For example, in our model systems
we see that the class D three-band structure from the
periodic case is preserved (with tails extending into the
periodic system bandgap as in Fig. 6). However, for
𝜙 = 11𝜋/10 the density of states plots in Fig. 4 indi-
cate that the lowest energy band retains its qualitative
character, two additional bands (one flat) are created in
the bandgap, and the highest two energy bands blur to-
gether. Further work is needed to explain why (a) some
bands are minimally affected by the system becoming
amorphous and (b) this effect depends on 𝜙.

• How do we understand the envelope structure observed
in the effective localization spectrum in amorphous sys-
tems? The envelope does not appear to shrink with
increasing system size, unlike in numerical simulations
of onsite disorder. Furthermore, amorphous systems vi-
olate Mott’s argument: localized and delocalized states
can exist at arbitrarily close energy spacing. We hy-
pothesize that this is due to the discrete and constrained
nature of amorphous disorder. Extending Mott’s argu-
ment to amorphous systems is an interesting avenue for
further analytical and numerical exploration.

• How do we identify universality classes of amorphous
localization phase transitions? What aspects of amor-
phous disorder become relevant to such a classification?
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FIG. 10. A flat band state on a segment of an 𝑛-gon. The flat band state
is valued 𝑒𝑖𝛼 (pink circle), 𝑒𝑖𝛽 (orange circle), and 𝑒𝑖𝛾 (teal circle)
on sites inside the polygon, and vanishes outside the polygon (white
circles). The Hamiltonian, particularly the choice of 𝜙, determines
the relative phases of the state around the polygon, and the graph
geometry determines whether the system hosts a flat band eigenstate
at this value of 𝜙.

Appendix A: Flat Band calculations

1. Flat band structure

We can construct these flat band states for a Hamiltonian of
general phase by considering the action of the Hamiltonian on
a flat band state defined around a single section of an 𝑛−gon.
In Fig. 10 we define a basis such that even-indexed sites form a
polygon and odd sites are connected to the polygon. Note that
this construction applies to any polygon of 𝑛 ≥ 3. Based on
this diagram, we formulate an ansatz for a (non-normalized)
flat band state as |𝜓 𝑓 𝑙⟩ = 𝑒𝑖𝛼 |0⟩ + 𝑒𝑖𝛽 |2⟩ + 𝑒𝑖𝛾 |4⟩ + · · · where
the state vanishes on odd-index sites in the basis and exists
on even-indexed sites of the 𝑛−gon peripheral to this diagram.
Action of the Hamiltonian gives:

𝐻 |𝜓 𝑓 𝑙⟩ = (𝑒𝑖𝛼𝑒−𝑖𝜙 + 𝑒𝑖𝛽𝑒𝑖𝜙) |1⟩+
(𝑒𝑖𝛼𝑒𝑖𝜙 + 𝑒𝑖𝛾𝑒−𝑖𝜙) |2⟩ + (𝑒𝑖𝛾𝑒𝑖𝜙 + 𝑒𝑖𝛽𝑒−𝑖𝜙) |3⟩ + · · ·

For |𝜓 𝑓 𝑙⟩ to be an eigenstate:

Δ𝜙 = 𝛼 − 𝛽 = 𝛽 − 𝛾 mod 2𝜋 = 2𝜙 + 𝜋 mod 2𝜋 (A1)
𝑒𝑖𝛼𝑒𝑖𝜙 + 𝑒𝑖𝛾𝑒−𝑖𝜙 = 𝐸 𝑓 𝑙𝑒

𝑖𝛽 (A2)

Combining the above equations gives:

𝐸 𝑓 𝑙 = 2 cos (3𝜙 + 𝜋) (A3)

This analysis suggests that, in principle, a flat band state
could exist at any value of 𝜙 in our model systems. However,
the geometry of the underlying graphs of these systems restricts
the values of 𝜙 at which we see flat bands. States can only
be eigenstates of the Hamiltonian if they live on 𝑛-gons where
𝑛Δ𝜙 = 0 mod 2𝜋 and 𝜙 determines the value ofΔ𝜙 := 𝛼−𝛽 =

2𝜙 + 𝜋 mod 2𝜋. The integer 𝑝 used in the main text to find

loops on amorphous graphs that can host flat bands is found
by counting how many iterations of Δ𝜙 are required before the
phase returns to a multiple of 2𝜋.

Numerical diagonalization of kagomé systems reveals that
flat bands only exist when 𝜙 is a multiple of 𝜋/6. For the
kagomé lattice, hexagons are the only secondary polygons and
thus 6(2𝜙 + 𝜋) = 2𝜋𝑚 for 𝑚 ∈ Z . This condition indeed
gives that 𝜙 must be a multiple of 𝜋/6 to observe a flat band.
Note that flat band eigenstates never occur localized around the
primitive triangles of the kagomé lattice because this geometry
does not lead to destructive interference when the Hamiltonian
acts on such a state.

An amorphous kagomized graph, however, contains sec-
ondary polygons with 𝑛 ≠ 6 in addition to hexagons. The
following condition determines the possible phases 𝜙 for ob-
serving flat bands in amorphous systems:

𝑛Δ𝜙 = 𝑛(2𝜙 + 𝜋) = 2𝜋𝑚 ∀𝑚 ∈ Z (A4)

This condition reproduces the flat bands seen in kagomé
systems and predicts values of 𝜙 that only show flat bands in
the amorphous case. An example of an amorphous-only flat
band is seen at 𝜙 = 11𝜋/10 for 𝑛 = 5, 𝑚 = 8, the flat band
shown in Fig. 4 in the main text.

2. Flat band degeneracy

In the previous section, we saw that flat band states are
intimately connected to cycles on directed, kagomized graphs.
The precise relation depends on the value of the flux 𝜙. Here
we will work out this relation for the case of 𝜙 = 0 where one
does not need to specify the direction on the graph (since the
magnetic field is absent).

First, let us establish some basic properties of kagomized
graphs. We consider a graph with 𝑆 sites. The number of
primitive triangles 𝑁Δ = 2

3𝑆, and, as a consequence, 𝑁Δ is
always divisible by 2 and 𝑆 is always divisible by 3. The
number of edges is 3𝑁Δ. Next, we would like to point out, that
secondary polygons are well defined only when we consider
graph’s embedding. In what follows, we will assume that the
graph is embedded on a torus, as has been the case for the
numerical simulations in this paper. Euler’s formula for the
torus topology reads:

𝑆 − 3𝑁Δ + (𝑁Δ + 𝑁𝑝𝑜𝑙𝑦) = 0, (A5)

where 𝑁𝑝𝑜𝑙𝑦 is the number of secondary polygons in the
graph. We conclude 𝑁𝑝𝑜𝑙𝑦 = 𝑆/3 (it would be 𝑁𝑝𝑜𝑙𝑦 = 𝑆/3−1
in the case of disk topology).

Lastly, if there are odd polygons in the graph, their number
is always even. This following from the fact that the total
number of edges in all polygons is given by 3𝑁Δ, and we have
already established that 𝑁Δ must be even.

From Table 1, we see that the flat band degeneracy never
exceeds 𝑆/3 + 1. This can be interpreted as the number of
independent cycles that contain an even number of vertices
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(i.e. 0 or 2) of each primitive triangle. For the most part
these cycles just come from secondary polygons, but we need
to account for topology. We note that on a torus, the sum
of cycles on all polygons vanishes, additionally, there are two
non-contractible cycles. Overall, Eq. A5 gives:

𝑆/3 − 1 + 2 = 𝑆/3 + 1. (A6)

The answer would be the same if we assumed disk topology.
We expect the flat band to derive from these cycles in some way.
In the rest of the section, we will perform this construction for
the case 𝜙 = 0.

The case of 𝜙 = 0: Recall, that the Hamiltonian Eq. 1
is given by a sum of terms supported on individual primitive
triangles, each of which we will refer to as a local Hamilto-
nian. Each term has form |1⟩⟨2| + |2⟩⟨3| + |3⟩⟨1| + ℎ.𝑐. with
eigenvalues 2,−1,−1. Each flat band state has energy −2 and
this is only achievable if the state lies in the −1 subspace of the
local Hamiltonian for each primitive triangle, since each site
is acted upon by exactly two terms.

The −1 subspace is spanned by states that have amplitudes
±1 on the sites of any edge in the primitive triangle. Requiring
that the amplitudes sum to zero on every primitive triangle
leads us to conclude that the space of flat bands is equivalent
to the space spanned by states supported on loops with the
amplitude alternating ±1 along the loop. We note that a loop
is permitted to go over the same edge multiple times, as occurs
on the edges of Dirac strings in Type-II states introduced in
Sec. III. Thus, a Type-II state is also considered a loop in this
construction.

Finally, we can compute the number of such states on a
kagomized graph with 𝑆 sites. If all secondary polygons are of
even length, then the total flat band subspace spanned by the
alternating states on each polygon plus the alternating states on
non-contractible loops (their length can always be made even
by making them use two edges of a triangle instead of one or
visa versa). This is the case for periodic kagomé lattice and the
number states coincides with Eq. (A6): 𝑆/3 + 1. In the case
when there are odd secondary polygons (they must come in
pairs), we built a flat band state by combining any pair polygons
pairwise if adjacent (Type-I states in Sec. III) or connecting
them with a Dirac string otherwise (Type-II states in Sec. III).
If there are 𝑀 odd secondary polygons, this procedure will
yield 𝑀 − 1 linearly independent flat band states, leading to
the degeneracy of 𝑆/3 confirmed by numerical simulations in
Table 1.

One might wonder if the Dirac strings are necessary and
whether one might be able to use only non-intersecting even
length loops that combine the odd secondary polygons. The
graph we present in Fig. 11 gives a counter example. There
are 8 flat band states: 6 come from independent even length
loops and 2 are these bridged Dirac string states. Due to the
pinched nature of the graph, it is impossible to connect the
secondary triangles from the different petals with a loop, and
one needs to use Type-II states.

FIG. 11. Top: Voronoi (dashed orange lines) diagram and kagomiza-
tion (black) of a pinched graph that necessarily hosts Type-II flat
band states. Bottom: Type-II flat band state on the kagomized graph.
Blue (red) circles represent un-normalized state amplitude +1(−1)
and blue (red) hearts denote the Dirac string that connects the two
disjoint secondary triangles, with amplitudes +2(−2).
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FIG. 12. Scatter plot of the energy of every eigenstate of an 𝐿0 = 100
system with 𝜙 = 0 and its effective localization length. At 𝐸 = −4 is
a completely delocalized state and at 𝐸 = 2 is the system flat band.

Appendix B: Localization in amorphous model in zero-field

In Supplemental Material Fig. 3, we analyze amorphous
systems with 𝜙 = 0, which belong to symmetry class AI. We
find that states tend to localize near the upper tail of the single
dispersive band. Near the fully delocalized state at 𝐸 = −4,
some states are also delocalized in character.
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