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NeuroNet: A Novel Hybrid Self-Supervised
Learning Framework for Sleep Stage

Classification Using Single-Channel EEG
Cheol-Hui Lee, Hakseung Kim, Hyun-jee Han, Min-Kyung Jung, Byung C. Yoon and Dong-Joo Kim

Abstract—The classification of sleep stages is a pivotal aspect of diagnosing sleep disorders and evaluating sleep quality. However,
the conventional manual scoring process, conducted by clinicians, is time-consuming and prone to human bias. Recent advancements
in deep learning have substantially propelled the automation of sleep stage classification. Nevertheless, challenges persist, including
the need for large datasets with labels and the inherent biases in human-generated annotations. This paper introduces NeuroNet, a
self-supervised learning (SSL) framework designed to effectively harness unlabeled single-channel sleep electroencephalogram (EEG)
signals by integrating contrastive learning tasks and masked prediction tasks. NeuroNet demonstrates superior performance over
existing SSL methodologies through extensive experimentation conducted across three polysomnography (PSG) datasets. Additionally,
this study proposes a Mamba-based temporal context module to capture the relationships among diverse EEG epochs. Combining
NeuroNet with the Mamba-based temporal context module has demonstrated the capability to achieve, or even surpass, the
performance of the latest supervised learning methodologies, even with a limited amount of labeled data. This study is expected to
establish a new benchmark in sleep stage classification, promising to guide future research and applications in the field of sleep
analysis. The source code is available at https://github.com/dlcjfgmlnasa/NeuroNet

Index Terms—self-supervised learning, electroencephalogram (EEG), polysomnography, automatic sleep staging
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1 INTRODUCTION

S LEEP constitutes a fundamental determinant of human
health and lifespan, serving as a cornerstone in alleviat-

ing both mental and physical stress encountered during rou-
tine activities, while also contributing to the maintenance of
physiological homeostasis [1]. However, many individuals
suffer from sleep disorders [2], and polysomnography (PSG)
is commonly employed to assess sleep quality as a part of
their treatment. PSG entails a measurement of various phys-
iological signals during sleep, including electroencephalo-
gram (EEG), electromyography, and electrocardiogram [3],
[4] that require a laborious process of manually analyzing
the data and classifying sleep stages by sleep experts.

Given these contexts, research into automatic sleep stage
classification is advancing, with studies exclusively utilizing
single channel EEG gaining particular attention due to their
user convenience. The majority of these studies are based on
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Fig. 1. Performance of Sleep-EDFX across various self-supervised
learning and supervised learning.

supervised learning methodologies and have demonstrated
acceptable performance enhancements through the utiliza-
tion of the latest deep learning algorithms. Nonetheless,
the implementation of such methodologies in real-world
settings can pose several challenges. Firstly, the necessity
for an extensive amount of labeled data may render its
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acquisition impractical. Secondly, the reliability of labels is
compromised by low inter-rater agreement rates observed
in sleep stage evaluation [5]. Lastly, a model trained on data
annotated by a single evaluator is prone to bias towards
the opinions and interpretations of that evaluator, thereby
posing a substantial risk to its generalizability.

Self-supervised learning (SSL) [6] has emerged as a
promising methodology for extracting meaningful represen-
tations from unlabeled data. SSL comprises two principal
paradigms: masked prediction tasks, which aim to learn
the intrinsic feature information of the data, and contrastive
learning, which trains models to distinguish between sim-
ilar and dissimilar pairs of data points. Serving as a pre-
training method, SSL trains models using pseudo-labels
derived from the inherent features or similarities present
in the data. Models pre-trained via SSL can subsequently be
fine-tuned even using a small amount of labeled data. This
approach not only enables the effective utilization of large
volumes of unlabeled data but also mitigates the issues of
reduced generalization resulting from inaccurate or biased
labels.

The attributes of SSL render it suitable for applications
in sleep EEG, where data acquisition is straightforward
yet labeling proves challenging. Despite its potential, SSL
research in sleep EEG remains relatively limited. A review
of existing studies reveals that the majority of studies rely
on contrastive learning tasks [7], [8], [9]. These studies have
successfully learned representations of EEG, yet their effec-
tiveness significantly depends on the backbone network’s
performance and on EEG data augmentation techniques [8],
[9]. Although masked prediction tasks are not yet prevalent
in sleep EEG research, their straightforward architecture,
along with the capability to learn rich representations, has
garnered popularity in other disciplines, such as computer
vision. Nonetheless, they are perceived as less effective at
learning discriminative representations, potentially leading
to diminished performance in the downstream tasks [10],
[11].

This study proposes a model, NeuroNet, a pioneering
SSL framework that effectively integrates the capacity to
discern inherent information within the dataset via masked
prediction tasks with the discriminative representation ca-
pabilities afforded by contrastive learning tasks. Addition-
ally, a deep learning methodology known as Mamba [12]
is employed in this study, based on the selective state
space model as an alternative to Long Short-Term Memory
(LSTM) or multi-head attention, which are the conventional
components of the temporal context module (TCM) utilized
for integrating information across various time-zone EEG
epochs.

To the best of our knowledge, the proposed methodology
represents an innovative approach yet to be explored within
the domain of EEG artificial intelligence research. Our find-
ings underscore the superior performance of NeuroNet over
existing SSL methodologies. Furthermore, this study un-
veils that upon fine-tuning, the model leveraging pretrained
NeuroNet in conjunction with Mamba [12] outperforms the
latest supervised learning technique trained on extensive
labeled datasets even when utilizing only a limited amount
of labeled datasets.

2 RELATED WORKS

2.1 Sleep Stage Classification

In recent years, research on deep learning-based sleep stage
classification has been prolific. Notably, H. Phan et al. have
proposed several models for sleep stage classification, as
evidenced by several studies [13], [14], [15], which involve
the conversion of EEG, electrooculography, and electromyo-
graphy signals into time-frequency images for utilization
as inputs to the models. Specifically, Multi-task CNN [13]
employs a convolutional neural network (CNN) architec-
ture incorporating two convolutional layers and two max-
pooling layers. SeqSleepNet [14] adopts a Seq2Seq architec-
ture, employing bidirectional long short-term memory (bi-
LSTM). Similarly, XSleepNet [15] adheres to the Seq2Seq
model structure similar to SeqSleepNet [14]; however, it dis-
tinctively integrates raw EEG signals as an additional input,
setting it apart from Multi-task CNN [13] and SeqSleepNet
[14]. XSleepNet [15] implements a strategic approach that
dynamically adjusts the learning rate, increasing it during
periods of effective generalization and decreasing it to pre-
vent overfitting when necessary.

For the sake of user convenience, there are studies that
opt to utilize solely single-channel EEG. Both DeepSleepNet
[16] and IITNet [17] extract representation vectors from EEG
signals using CNNs and learn temporal context informa-
tion through bi-LSTM. While DeepSleepNet [16] focuses on
temporal context between inter-epochs, IITNet [17] compre-
hensively considers temporal context within and between
epochs. Recently, multi-head attention has emerged as a
primary alternative to Recurrent Neural Network (RNN)-
based models for capturing temporal dependencies swiftly
and efficiently. Notable amongst those is AttnSleep [18]
which is capable of extracting low-frequency and high-
frequency features of EEG through multi-resolution CNNs,
while adaptive feature recalibration enhances the quality of
extracted features by modeling interdependencies between
features. Subsequently, multi-head attention is employed
to capture temporal dependencies among features. Sleep-
ExpertNet [19] extracts representation vectors of EEG via
spectral-temporal CNN after signal extraction from dis-
parate frequency bands. This is followed by the implemen-
tation of a model combining multi-head attention with bi-
LSTM is utilized to learn long- and short-term temporal
context information.

2.2 Self-Supervised Learning

SSL, a framework designed to extract highly semantic pat-
terns directly from data without relying on labels, oper-
ates through a two-stage pipeline. In the initial stage, it
learns generated pseudo-labels via arbitrarily defined tasks.
Subsequently, in the second stage, supervised learning is
conducted using data with a limited number of labels. For
this reason, SSL can be characterized as an intermediate
approach between unsupervised and supervised learning
methodologies. Currently, SSL research primarily revolves
around two principal paradigms: contrastive learning tasks
and masked prediction tasks.



JOURNAL OF LATEX CLASS FILES 3

2.2.1 Contrastive Learning Task
The objective of the contrastive learning task is to elu-
cidate the interrelationship among multiple samples, em-
ploying various methodologies (e.g., negative samples, self-
distillation, clustering, and feature decorrelation, etc.). Neg-
ative sampling aims to minimize the distance between pos-
itive pairs in the latent space while increasing the distance
between negative pairs [20], [21]. To achieve this, a large
number of contrastive pairs are required, and methods like
MOCO [20] and SimCLR [21] utilize memory banks and
large batch sizes, respectively. Self-distillation trains online
networks to predict the output values of target networks,
thereby obviating reliance on negative samples [22], [23].
BYOL [22] and SimSiam [23], both based on self-distillation,
present analogous structures. Nonetheless, BYOL [22] in-
volves updating the encoder used in the target network with
a momentum encoder during training. In contrast, SimSiam
[23] does not use a momentum encoder but employs stop-
gradient techniques instead. SwAV [24], a prominent ex-
ample of clustering, trains representation vectors generated
from identical samples to forecast the same prototype class.
Feature decorrelation aims to learn decorrelated features
[25], [26]. Barlow Twins [25] computes the cross-correlation
matrix between outputs of identical networks and trains it
to align as closely as feasible with an identity matrix.

2.2.2 Masked Prediction Task
The masked prediction task is a method where parts of an
data sample are masked and then restored to learn represen-
tations. Examining SSL methodologies based on the masked
prediction task, MAE [27] employs a ViT-based asymmet-
ric autoencoder structure. Through the implementation of
masking, MAE [27] selectively transforms a segment of
the input image into a latent vector via the encoder and
then trains the decoder to reconstruct the original image.
To minimize spatial redundancy, a substantial proportion
of masking (75% or higher) is applied, leading to notable
enhancements in generalization performance. BEiT [28] ini-
tiates pre-training with a vector quantized-variational au-
toencoder, subsequently employing it as a tokenizer. It
further segments the image into patches and leverages a
subset of the masked patches as input for the ViT-based
encoder, training it to predict the originally masked content
based on the tokenizer. SimMIM [29] adopts a comparable
structure to BEiT [28], yet it opts for pixel regression tasks
over intricate methodologies like tokenization or clustering.
Data2Vec [30] utilizes a teacher network trained on original
data and a student network trained on masked data to create
representation vectors. The student networks are trained to
predict the representation vectors of the target network.

2.2.3 Hybrid Approach: Contrastive Learning Task +
Masked Prediction Task
Recent research has initiated discussions on the combination
of contrastive learning tasks and masked prediction tasks.
CMAE [11] employs a masked autoencoder structure in the
online branch and conducts the task of reconstructing the
original image. The target branch employs a momentum-
updated encoder and receives the entire image to conduct
contrastive learning in tandem with the online branch.

This model incorporates pixel shifting as a form of data
augmentation. CAN [10] also combines contrastive learning
and masked autoencoder structures similar to CMAE [11].
Noteworthy is its incorporation of noise prediction, which
distinguishes it and enhances its capacity to acquire more
refined representations.

2.3 Self-Supervised Learning for Sleep Staging
BENDR [31] integrates a CNN-based module for EEG signal
learning alongside a Transformer-based module for learning
temporal context between signals. In BENDR [31], out-
put vectors extracted through the CNN and Transformer
modules are defined as positive pairs if they are from the
same time point, and as negative pairs if they originate
from distinct time points. Subsequently, training of these
pairs is conducted utilizing InfoNCE loss. ContraWR [32]
opts for triplet loss over the conventional InfoNCE loss for
contrastive learning. This strategy enables minimization of
the distance between positive pairs as well as simultane-
ous increases in the gap between negative pairs. Negative
samples for each sample are substituted with the average
value, termed the world representation vector. CoSleep [33]
adopts a multi-view SSL approach to concurrently learn
signals and spectrogram images. It incorporates a module
comprising a queue and a momentum encoder to secure a
multitude of negative pairs, with the goal of augmenting
representation performance. TS-TCC [8] focuses on tem-
poral representation learning via a temporal contrasting
module using weak and strong augmentations applied EEG
signals. It maximizes the similarity between contexts orig-
inating from the same sample while minimizing the simi-
larity between contexts of different samples. MAEEG [34]
engages in representation learning for 6-channel sleep EEG
using a masked autoencoder. Fine-tuned MAEEG presents
enhanced performance in sleep stage classification even
with limited labels provided. mulEEG [9] adopts the same
augmentation approach as TS-TCC and has a multi-view
SSL structure. It employs EEG signals and spectrograms
transformed from EEG signals as input data, implementing
diverse loss functions to effectively learn complementary
information from multiple views.

3 METHODOLOGY

In this section, we introduce NeuroNet and the Mamba-
based TCM. Figure 2 illustrates the detailed framework of
NeuroNet. NeuroNet is an SSL framework designed to learn
EEG signals, consisting of a total of five training stages.
TCM is utilized to effectively capture time-series features or
relational information between multiple EEG epochs, akin
to a sleep expert. The TCM learns by decoding the intricate
temporal patterns inherent within EEG signal, taking the
output vector from the pretrained NeuroNet encoder as its
input.

3.1 NeuroNet: Contrastive Masked Autoencoder for
EEG
3.1.1 Data Preprocessing
Prior to training the model, the EEG signals were bandpass
filtered between 1 and 50 Hz and then resampled at a
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Fig. 2. Overview of the NeuroNet framework architecture.

frequency of 100 Hz. Following this preprocessing, a slid-
ing window methodology was applied to each EEG epoch
signal. The sliding window is a technique that involves
moving a fixed-size frame at regular intervals across the
data, facilitating the analysis which is effectively utilized
in identifying specific patterns or events embedded within.
The signals extracted through the sliding window served as
the input data for the frame network.

3.1.2 Frame Network
The frame network is designed based on a multiscale 1d
ResNet [35], specifically tailored for time series classification
tasks. This model comprises an initial shared convolution
and three parallel feature extractors. The shared convolu-
tion includes a 1d convolution layer, batch normalization,
and a max pooling layer. Each feature extractor consists
of three convolution blocks, with each block including a
convolution layer, batch normalization, and an Exponential
Linear Unit (ELU) activation function. Following the final
block, residual connections and average pooling are applied.
Notably, each feature extractor differs by employing 1d
convolution layers with varying kernel sizes, which are 3,
5, and 7 respectively. The feature vectors extracted from dis-
tinct feature extractors are concatenated and subsequently
processed through two fully connected layers to produce the
final vector {zim}Mm=1, where M represents the total number
of frames, and i is the frame index.

3.1.3 Masked Prediction Task
The structure of the MAE has been utilized for the masked
prediction task. Figure 2 illustrates that the input data
{zim}Mm=1 undergoes two separate masked prediction tasks
independently. This architecture encompasses an encoder
responsible for mapping the input to latent representations
and a decoder that reconstructs the original signal from the
latent representations. The encoder operates exclusively on
the observed portion of the signal, without any mask tokens,

while the decoder reconstructs the entire signal from the
latent representation and mask tokens.

(Masking) Given the vector {zim}Mm=1 extracted through
the frame network, a small subset of frames is randomly
sampled for training, while the remainder are masked. This

subset is denoted as {zim}M̃m=1, where M̃ represents the
frame numbers of the sampled subset. Generally, as the
masking ratio increases, the amount of information available
to the model decreases, which raises the difficulty of the
reconstruction task. This enables models to understand the
underlying patterns of the data and allows for a more
generalized representation of the input data.

(Encoder) The encoder within NeuroNet is charged with
the pivotal task of encoding the vector extracted via the
frame layer into tokens and subsequently mapping them to
the latent space. In NeuroNet, a standard Transformer stack
serves as the encoder. The multi-head attention mechanism
of the Transformer excels in efficiency capturing temporal
information and correlations among frames. The encoder re-
ceives as input a vector obtained by concatenating the class

token and {zim}M̃m=1, and then applying ‘linear projection
+ positional encoding’. Through the Transformer stack, it

produces a new vector {hi
m}M̃+1

m=1 . The class token assumes
a crucial role in extracting semantic information from the
data, thereby proving instrumental in contrastive learning
tasks and predictions.

(Decoder) The decoder receives the vectors {hi
m}M̃m=1

extracted by the encoder, excluding the class token, and the
masked vectors as inputs. Similar to the encoder, it applies
linear projection and positional encoding to the input vec-
tors. The masked vectors serve to represent vectors that
were excluded during the masking phase, encapsulating
the information omitted from the input data. In alignment
with the asymmetric nature of the MAE, a tiny standard
Transformer-based decoder is utilized. However, the de-
coder is not engaged after the SSL phase.
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(Reconstruction Target) To predict the values of the
masked vectors, the output vector generated by the decoder
is passed through a fully connected layer to be reconstructed
to the same size as the vector {zim}Mm=1extracted through
the frame layer. Through this process, NeuroNet is able to
derive the reconstruction vector {rim}Mm=1 , and the loss
is calculated using the mean square error, but only for the
masked vectors. The formula for the loss function is as
follows:

Lrec =
1

N
(
M − M̃

) N∑
i=1

M−M̃∑
m=1

(zi
m − ri

m)
2 (1)

Here, M and N represent the total number of data points
and the batch size, respectively. As shown in Figure 2, since
NeuroNet performs two independent masked prediction
tasks using a single encoder and decoder, two separate
losses (e.g., Lrec1, Lrec2) are ultimately derived.

3.1.4 Contrastive Learning Task
The objective of the contrastive learning task is to learn valu-
able representations by maximizing the similarity amongst
identical instances while concurrently minimizing the sim-
ilarity between disparate instances. In NeuroNet, the NT-
Xent loss [36] is leveraged, which trains the model to
converge positive pairs closer together and simultaneously
drive negative pairs further apart within each mini-batch.

In Figure 2, random sampling results in two distinct
subsets that are fed into the encoder. From this process,
vectors hi and hj representing different views are derived
through the class token. After mapping hi and hj through
the projection layer to a new latent space, the normalized
ci, cj are obtained. If the batch size is N , then ci and cj
are each generated in sets of N . Consequently, each sample
can generate 1 positive pair and 2 (N − 1) negative pairs.
Thus, by iterating from k = 1 to k = 2N , and avoiding
references to the same sample for both k and i, the formula
is as follows:

Lcontra =
1

2N

N∑
k=1

[l (2k − 1, 2k) + l (2k, 2k − 1)] (2)

l(i, j) = −log
exp(sim (ci, cj) /τ)∑2N

k=1 1[k ̸=i]exp(sim (ci, ck) /τ)
(3)

Here, τ > 0 represents the temperature, a hyperparameter,
with a default setting of τ = 0.5. The term sim denotes
cosine similarity.

3.1.5 The Combined Loss Function
NeuroNet aims to learn more superior representations by
combining the masked prediction task, which learns the
semantic information of EEG signals, with the contrastive
learning task, which learns the relationships between EEG
signals. The formula is as follows:

Ltotal =
1

2
(Lrec1 + Lrec2) + αLcontra (4)

Here, α is the hyperparameter that balances the two types
of loss mentioned above.

3.2 Mamba-based Temporal Context Modules
In the landscape of sequence modelling, previous models
such as LSTM and multi-head attention have been situated
within a trade-off between effectiveness and efficiency. Re-
cently, Mamba [12], a structured state space sequence model
featuring a selective mechanism and scan module, has
emerged as a powerful tool in long sequence modeling. The
selective mechanism employs input-dependent parameters,
unlike space state models that utilize constant transition pa-
rameters. This adaptive strategy enhances overall general-
ization and performance by selectively focusing on relevant
information while disregarding noisy or extraneous data.
Complementing this, the scan module is deployed across
each window of the input sequence, adeptly capturing
intricate patterns and dependencies spanning multiple time
steps. Additionally, a hardware-aware algorithm facilitates
linear expansion of sequence length, thereby optimizing and
improving computational efficiency and resource utiliza-
tion.

According to the American Academy of Sleep Medicine
(AASM) [37], when classifying sleep stages, not only the
local features occurring in a single-epoch EEG (e.g., K-
complex, sleep spindle, etc.) are considered, but also the
relationships between adjacent EEG epochs are comprehen-
sively considered to determine the stage of sleep. In this
study, a Mamba-based TCM was developed to efficiently
capture the temporal characteristics and correlations among
multiple EEG epochs. Concretely, sleep stages are classified
by a Mamba-based TCM that receives class tokens derived
through an encoder from multiple EEG epochs. This process
can be formula expressed as follows:

Sleep Stage = Mamba({Cls Tokenn}Nn=1) (5)

Cls Token = Encoder(EEG Epoch) (6)

Here, N represents the number of EEG epochs input simul-
taneously, which is N is 20.

4 EXPERIMENTS

4.1 Dataset Description
In this study, three PSG datasets were utilized.

4.1.1 Sleep-EDF Expanded Dataset
This study utilized the Sleep-EDF expanded dataset (Sleep-
EDFX) [38], which is divided into two subsets: SC and ST.
The SC subset contains PSG recordings from 153 healthy
individuals aged 25 to 101, designed to explore the effects
of age on sleep patterns. On the other hand, the ST subset
comprises PSG recordings from 44 individuals aged 18 to
79, specifically curated to examine the impact of temazepam
on sleep. The PSG configuration includes two bipolar EEG
channels (Fpz-Cz and Pz-Oz), a horizontal EOG channel,
and a submental chin EMG channel. Sleep stages were
classified every 30 seconds by sleep experts into one of eight
categories: {’W’, ’N1’, ’N2’, ’N3’, ’N4’, ’REM’, ’M’, and ’?’}.
In this research, only the SC subset was utilized, selecting
the Fpz-Cz EEG signal with a sampling rate of 100 Hz.
Additionally, in alignment with the AASM standard, out
of the 8 classes, N3 and N4 were merged into N3, and the
classes ’M’ and ’?’ were omitted.
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TABLE 1
Experimental settings and dataset statistics.

Dataset No. of
subjects

EEG
Channel

Evaluation
Scheme

Held-out
Validation Set

Sampling
Rate

Class Distribution
Wake N1 N2 N3 REM # Total

Sleep-EDFX 153 Fpz-Cz 5-fold CV 15 subjects 100 Hz
66822

(34.78%)
21522

(11.20%)
69132

(35.99%)
8793

(4.58%)
25835

(13.45%)
192104

SHHS 329 C4-A1 5-fold CV 40 subjects 125 Hz
59129

(17.51%)
10304

(3.05%)
142125

(42.09%)
60153

(17.81%)
65953

(19.53%)
337664

ISRUC-Sleep 100 C4-A1 10-fold CV 10 subjects 200 Hz
22142

(24.55%)
9140

(10.13%)
30499

(33.82%)
16115

(17.87%)
12291

(13.63%)
90187

* CV: Cross Validation

4.1.2 Sleep Heart Health Study

The Sleep Heart Health Study (SHHS) [39], [40] is a com-
prehensive multi-center cohort study designed to investi-
gate various cardiovascular and other outcomes associated
with sleep-disordered breathing. It consists of two subsets:
SHHS1, SHHS2. Each subset within the PSG includes two
bipolar EEG channels (C4-A1, C3-A2), one EKG channel,
two EOG channels, as well as two lower limb EMG chan-
nels, snoring detection, pulse oximeters, and a body posi-
tion sensor. Sleep experts labeled the recordings every 30
seconds into one of eight categories: {’W’, ’N1’, ’N2’, ’N3’,
’N4’, ’REM’, ’Movement’, and ’Unknown’}. In this study,
329 participants from the SHHS1 subset, considered to have
regular sleep patterns (Apnea Hypopnea or AHI index less
than 5) [41], were selected. The C4-A1 EEG signal with a
sampling rate of 125 Hz was chosen. Following the AASM
standard, the classes N3 and N4 were merged into N3, and
’Movement’ and ’Unknown’ were omitted.

4.1.3 ISRUC Sleep Dataset

The ISRUC-Sleep dataset [42] consists of 3 subsets and was
collected to study both healthy subjects and those taking
sleep medication. The first subset comprises data from 100
participants, each with only one PSG recorded. The second
subset includes data from 8 participants, each with two PSG
sessions. The third subset comprises data from 10 healthy
participants, each with only one PSG recorded. This subset
proves particularly useful for conducting comparative anal-
yses between healthy participants and individuals afflicted
with sleep disorders. In this dataset, two sleep experts
labeled each 30-second interval with one of the five classes
{‘W’, ‘N1’, ‘N2’, ‘N3’, ‘REM’}. This study utilized the C4-
A1 EEG signal from the first subset, sampled at a rate of 200
Hz, and employed the labeling provided by the first sleep
expert.

4.2 Other State-of-the-Art Methodologies

Among various studies focusing on sleep stage classification
and SSL methods, several with methodologies of significant
influence (i.e., a high number of citations) and available
published source code were selected and implemented.
Such selection underscores the preference for methodolo-
gies with high reproducibility, which have been validated
by numerous researchers in the field. The selected recent
methodologies can be categorized into contrastive learning-
based SSL, masked prediction task-based SSL, SSL for sleep
staging, and supervised learning for sleep staging.

Firstly, for the contrastive learning-based SSL method-
ology, SimCLR [21], BYOL [22], SimSiam [23], SwAV [24],
and Barlow Twins [25] were selected. The performance
of this methodology shows variability depending on the
types of data augmentation employed and the structure
of the backbone network. Therefore, various experiments
were conducted to identify the optimal approach for inte-
grating EEG into contrastive learning-based SSL (detailed
explanations are provided in Appendix C). For the masked
prediction task-based SSL methodology, MAE [27], SimMIM
[29], and Data2Vec [30] were chosen. In contrast to the
former methodologies, these methodologies do not involve
the data augmentation process, and the backbone network
remains fixed as ViT, thus making additional experimental
procedures unnecessary. Raw EEG signals were transformed
into short-time Fourier transform images and used as input
data. For SSL for sleep staging, BENDR [31], ContraWR [32],
TS-TCC [8], and mulEEG [9] were selected, while for super-
vised learning for sleep staging, DeepSleepNet [16], IITNet
[17], U-Sleep [43], AttnSleep [18], and SleepExpertNet [19]
were chosen.

4.3 Experimental Setting

4.3.1 Evaluation Scheme
The performance of the model was assessed via subject
group k-fold cross-validation, as outlined [8], [9], [33]. In de-
tail, the construction of SSL-based methodologies involves
dividing the dataset into three distinct groups: train, val-
idation, and test datasets. The train dataset is utilized for
SSL training and proceeds without labels. Subsequently, the
validation dataset is utilized for linear evaluation and fine-
tuning, leveraging a limited amount of labeled data. The
test dataset is employed for comprehensive evaluation. In
contrast, methodologies based on supervised learning are
divided into train and test datasets, which are utilized for
training and evaluation purposes.

Additionally, this study employed three evaluation sce-
narios to compare the proposed model with another ap-
proach. For evaluation, it is necessary to attach a classifier
network to the backbone network trained via SSL and then
proceed with training using a few labeled data. This process
is referred to as a downstream task. A detailed description
of each evaluation protocol is as follows:

• (Evaluation Scenario 1, linear evaluation using
single-epoch EEG) The parameters of the backbone
network are fixed, and then only the classifier net-
work is trained. This method enables the evaluation
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of which SSL methodologies can effectively represent
EEG features.

• (Evaluation Scenario 2, fine-tuning using multi-
epoch EEG) The performance of the final model,
which integrates the backbone network with TCM,
referred to as NeuroNet+TCM, is evaluated. In this
configuration, the backbone network is fixed, except
for the last Transformer layer. This method not only
facilitates additional training of the data’s nonlinear
features but also ensures enhanced performance due
to the use of multi-epoch EEG. This evaluation sce-
nario is utilized for comparison between the Neu-
roNet+TCM and supervised learning models.

• (Evaluation Scenario 3, cross-dataset evaluation)
The performance of the proposed models (NeuroNet
and NeuroNet+TCM) is evaluated using datasets
that are different from the ones utilized for training.
The aim is to determine whether these proposed
models achieve outcomes comparable to or surpass-
ing those achieved by supervised learning. For this,
z-normalization was applied to the input signals
to align the distributions of datasets. Additionally,
models trained on each fold were combined using
a soft-voting ensemble. This process was similarly
applied to supervised learning models.

The impact of trainable parameter size on performance
was examined using two models that share identical ar-
chitecture yet have varying numbers of parameters. These
models are designated as NeuroNet-B and NeuroNet-T,
with NeuroNet-B possessing a greater number of model
parameters than NeuroNet-T. Appendix A lists the hyper-
parameter values used in each evaluation scenario. These
hyperparameter values were derived based on the results of
ablation experiments.

4.3.2 Evaluation Metric

For overall performance measurement, overall accuracy
(ACC) and macro-F1 score (MF1) were utilized, while per-
class F1 score (F1) was used for measuring performance by
class. Here, MF1 is a useful metric for evaluating model
performance on imbalanced datasets. ACC and MF1 can be
calculated if true positives (TP), false positives (FP), true
negatives (TN), and false negatives (FN) for each class are
provided. The formulas are as follows:

ACC =

∑K
i=1 TPi

M
(7)

MF1 =
1

K

K∑
i=1

2× Precisioni ×Recalli
Precisioni +Recalli

(8)

Here, for each class, Precisioni and Recalli are calcu-
lated as Precisioni = TP i/(TP i + FP i) and Recalli =
TP i/(TP i + FN i), respectively, where M is the total num-
ber of samples, and K is the number of classes. In this
context, K represents the 5 stages of sleep (Wake, N1, N2,
N3, and REM).

5 RESULTS

5.1 Comparison with State-of-the-Art Methodologies
5.1.1 Evaluation Scenario 1: Linear Evaluation using
Single-epoch EEG
NeuroNet-B demonstrated superior performance across
three PSG datasets compared to other SSL methodologies
(Table 2) in learning representations of EEG signals. Partic-
ularly for the SHHS, both class-specific and overall perfor-
mances were outstanding. For the ISRUC-Sleep, it exhibited
exceptional performance across all metrics except for the
REM class. Even though the performance of NeuroNet-
T exhibited a slight decrease in comparison to NeuroNet-
B, it nonetheless showcased a noteworthy degree of effi-
cacy. In the Sleep-EDFX, NeuroNet-T’s performance in the
Wake class was notably superior, and its overall accuracy
was the highest, excluding NeuroNet-B. For the ISRUC-
Sleep, NeuroNet-T exhibited higher overall performance
compared to other SSL methodologies.

5.1.2 Evaluation Scenario 2: Fine-tuning using Multi-epoch
EEG
On closer examination, when compared to the latest su-
pervised learning methodologies, NeuroNet-B+TCM shows
the highest performance across all metrics for the Sleep-
EDFX (Table 3). In the SHHS, it also displays the highest
performance in all classes except for the Wake and REM.
The notable encouragement arises from the fact that su-
pervised learning models harness an extensive array of
labeled datasets. For the ISRUC-Sleep, it was observed
that NeuroNet-B+TCM falls short in overall performance
compared to U-Sleep [43]. However, it still exhibits the
highest performance in the N1 and N3 classes compared
to other methodologies. Similar to evaluation scenario 1,
NeuroNet-T shows lower performance than NeuroNet-B.
Nonetheless, NeuroNet-T+TCM showcases performance on
par with that of supervised learning methodologies. Specif-
ically, in the N1 class, it shows the highest performance
excluding NeuroNet-B+TCM. Additionally, in the SHHS,
it is noted that NeuroNet-T+TCM, excluding NeuroNet-
B+TCM, achieves the highest MF1.

5.1.3 Evaluation Scenario 3: Cross-Dataset Evaluation
Table 4 presents the results of comparing the proposed
models with the two most outstanding models among su-
pervised learning methodologies (i.e., U-Sleep [43], Sleep-
ExpertNet [19]). Upon closer inspection, it is observed that
the proposed models demonstrate superior performance
compared to existing supervised learning models. Despite
utilizing only single-epoch EEG, NeuroNet exhibits better
performance than supervised learning, and NeuroNet+TCM
achieves remarkable performance by employing multiple
EEG epochs and TCM. Notably, the results for models
trained on SHHS (i.e., B→ A, B → C) are outstanding,
attributed to the larger dataset size of SHHS compared to
other datasets. However, the performance of models trained
on ISRUC-Sleep and evaluated on Sleep-EDFX (i.e., C → A)
is superior in supervised learning methodologies. Nonethe-
less, excluding C → A, the proposed models outperform in
all other aspects. It was shown that there are no noticeable
performance gaps attributable to differences in model size.



JOURNAL OF LATEX CLASS FILES 8

TABLE 2
Comparison with other methodologies about linear evaluation using single-epoch EEG.

Sleep-EDFX SHHS ISRUC-Sleep
Per-Class F1 Overall Per-Class F1 Overall Per-Class F1 Overall

W N1 N2 N3 REM ACC MF1 W N1 N2 N3 REM ACC MF1 W N1 N2 N3 REM ACC MF1
SimCLR 85.95 32.25 79.44 68.65 53.59 71.49 63.98 83.61 23.14 80.64 82.75 71.92 77.75 68.41 82.24 39.41 69.38 78.43 68.31 70.98 67.55
BYOL 87.08 33.40 78.32 64.49 55.12 71.82 63.68 83.20 19.50 81.71 84.52 71.32 78.51 68.05 82.30 40.62 70.42 77.48 67.76 71.22 67.72
SwAV 85.11 32.49 78.92 62.68 54.44 71.98 62.73 81.88 21.80 80.10 82.17 71.93 77.21 67.58 80.22 38.50 68.00 75.60 66.15 68.91 65.69

SimSiam 85.55 29.30 78.92 63.62 46.89 71.34 60.85 84.77 21.06 81.59 83.56 73.09 79.23 68.81 81.55 38.05 68.74 76.13 66.05 69.68 66.10
Barlow Twins 87.85 29.20 81.84 69.69 57.33 75.13 65.18 84.36 23.84 81.69 83.82 74.13 79.27 69.57 83.84 40.02 71.24 78.65 68.68 72.23 68.49

MAE 81.23 27.39 76.72 60.99 46.91 68.31 58.65 85.28 18.38 83.95 84.90 75.86 81.08 69.67 81.94 36.41 74.01 83.69 58.42 71.49 66.89
SimMIM 83.68 26.69 75.73 51.32 44.32 69.94 56.35 84.94 22.38 83.14 85.11 75.25 80.45 70.16 82.05 35.75 74.43 84.13 58.79 71.64 67.03
Data2Vec 83.39 28.54 75.41 56.54 50.82 69.78 58.94 78.07 16.65 79.08 81.02 71.24 76.18 65.21 82.22 36.59 73.42 83.09 60.83 71.71 67.23
BENDR 72.15 28.28 67.83 50.94 32.50 57.42 50.34 52.34 08.41 72.72 78.37 54.78 65.08 53.32 52.75 13.83 72.18 78.28 55.69 64.78 54.55

ContraWR 88.40 34.35 81.67 68.81 62.78 75.79 67.20 85.78 25.51 84.20 85.79 77.53 81.65 71.76 84.09 40.23 73.26 82.55 71.18 74.07 70.26
TS-TCC 73.28 21.15 66.01 41.39 37.33 61.45 47.83 70.05 17.68 75.33 73.23 62.00 70.43 59.66 80.91 32.06 70.13 80.27 64.17 70.17 65.51
mulEEG 89.09 36.52 80.69 69.62 59.66 74.92 67.12 83.67 21.41 83.06 85.82 74.16 79.94 69.62 80.87 36.69 71.25 82.56 65.77 71.58 67.43

NeuroNet-T 89.90 30.21 81.51 71.39 59.51 76.26 66.50 83.97 13.95 83.30 85.45 73.75 80.45 68.09 84.51 39.40 76.15 84.68 67.63 75.12 70.47
NeuroNet-B 89.17 36.24 81.74 69.97 63.82 76.74 68.19 88.27 30.76 86.20 87.56 79.41 84.13 74.44 85.08 42.11 76.84 85.74 71.04 76.47 72.16

TABLE 3
Comparision between supervised learning-based methodologies and NeuroNet+TCM.

EEG
Epoch

Sleep-EDFX SHHS ISRUC-Sleep
Per-Class F1 Overall Per-Class F1 Overall Per-Class F1 Overall

W N1 N2 N3 REM ACC MF1 W N1 N2 N3 REM ACC MF1 W N1 N2 N3 REM ACC MF1
DeepSleepNet 25 90.84 35.56 81.42 68.59 68.02 77.49 68.89 83.84 18.87 83.55 84.67 76.80 81.02 69.55 81.55 38.25 68.90 81.17 62.17 69.84 66.41

IITNet 10 92.59 45.77 83.61 63.65 80.90 81.48 73.30 89.32 47.38 85.57 80.96 87.58 84.74 78.16 84.60 40.51 78.39 85.27 79.15 77.89 73.59
U-Sleep 35 92.71 47.72 84.65 65.23 82.44 82.42 74.55 89.56 48.08 86.53 81.76 88.82 85.59 78.95 86.34 44.16 79.07 85.38 81.48 78.89 75.29

AttnSleep 1 91.49 40.44 83.84 72.28 72.18 79.68 72.05 87.28 28.13 83.83 85.39 77.72 81.98 72.47 84.54 42.41 75.81 83.45 69.92 75.72 71.23
SleepExpertNet 20 92.80 52.75 85.92 73.40 80.93 83.13 77.16 90.84 40.71 86.60 84.04 87.94 85.94 78.03 72.59 14.25 66.61 72.69 58.05 64.89 56.84

NeuroNet-T+TCM 20 92.27 53.01 85.19 75.23 77.13 82.67 76.57 86.44 50.17 85.97 85.97 83.99 84.62 78.51 83.75 44.73 77.50 86.61 72.04 76.79 72.93
NeuroNet-B+TCM 20 93.15 58.80 87.21 76.97 83.00 85.24 79.82 89.05 55.29 88.09 86.48 87.25 86.88 81.23 84.50 46.09 77.25 86.86 72.57 77.05 73.45

TABLE 4
Cross-dataset evaluation experiment applied to different PSG datasets.

EEG
Epoch

A → B A → C B → A B → C C → A C → B Average
ACC MF1 ACC MF1 ACC MF1 ACC MF1 ACC MF1 ACC MF1 ACC MF1

U-Sleep 35 56.50 46.22 56.71 49.73 71.39 59.09 70.08 64.72 59.38 45.62 60.08 54.36 62.36 45.00
SleepExpertNet 20 58.63 48.65 58.46 51.93 70.75 59.21 71.19 65.75 58.15 47.22 67.41 60.77 64.10 55.59

NeuroNet-T 1 66.94 52.83 61.17 52.71 79.44 69.57 73.50 63.28 50.18 42.21 74.85 64.81 67.68 57.56
NeuroNet-B 1 66.68 52.83 61.06 53.19 79.80 70.40 74.21 63.98 50.20 42.14 75.83 65.57 67.93 58.01

NeuroNet-T+TCM 20 73.82 63.20 66.93 57.92 84.93 78.32 82.09 75.29 51.74 44.18 83.01 75.66 73.75 65.76
NeuroNet-B+TCM 20 73.86 64.12 65.29 56.32 85.12 79.98 83.95 76.59 50.93 42.03 82.86 75.59 73.67 65.77
*A: Sleep-EDFX, B: SHHS, C: ISRUC-Sleep

In conclusion, it has been confirmed that the proposed mod-
els showcase superior generalization performance when
compared with supervised learning methodologies, effec-
tively operating on datasets extending beyond the scope of
their training dataset.

5.2 Ablation Experiments

An ablation experiment was conducted to derive the opti-
mal settings information for the proposed model. Across all
experiments, NeuroNet-B served as the base backbone, with
Sleep-EDFX serving as the reference dataset. In light of the
results obtained from these experiments, hyperparameters
were established.

5.2.1 Evaluation Scenario 1: Linear Evaluation using
Single-epoch EEG

(Frame Design) The performance is evaluated based on
various frame designs. Looking at Table 5, it indicates a

trend where decreasing the frame size and overlap step
generally leads to performance enhancements, but they
significantly increase the training speed. Specifically, the
configuration with a frame size of 3 and an overlap step of
0.375 achieves the highest performance, exhibiting an ACC
of 76.74% and a MF1 of 68.19%. Therefore, in this study,
the frame size and overlap step were fixed at 3 and 0.375,
respectively. Considering the impact on training speed, the
process of reducing these two values was omitted.

(Masking Ratio) At high masking ratio, NeuroNet
demonstrates excellent performance. Figure 3 illustrates the
configurations for analyzing the effects on two tasks. Neu-
roNet w/o masked prediction shows highest accuracy at
masking ratios of 70% to 75%, while NeuroNet w/o con-
trastive learning exhibits exceptional performance at ratios
of 75% to 90%. NeuroNet, applying both tasks, outperforms
single-task across all masking ratios, indicating their mu-
tual complementarity. NeuroNet achieves its highest perfor-
mance at a masking ratio of 75%.
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TABLE 5
Linear evaluation under different frame size and overlap size.

Frame Setting (sec) Performance Training Time
/ Epoch (min)Frame Size Overlap Step ACC MF1

3
0.375 76.74 68.19 20:33
0.75 76.52 67.98 10:35
1.5 76.49 67.62 05:46

4
0.5 76.36 67.26 15:36
1 76.32 67.33 07:47
2 76.42 67.14 04:19

5
0.625 76.28 67.07 11:34
1.25 76.65 67.38 06:13
2.5 76.07 67.00 03:35

6
0.75 76.12 67.01 09:43
1.5 76.11 66.59 05:08
3 75.95 66.46 02:59
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Fig. 3. Impact of different masking ratios on NeuroNet performance.

(Decoder Depth and Width) Upon reviewing the linear
evaluation under different decoder dimensions and decoder
depths (Table 6), NeuroNet tends to achieve superior perfor-
mance when using smaller decoders. This is attributed to the
characteristic of a smaller decoder, which requires a greater
amount of semantic information to successfully accomplish
the reconstruction task. Consequently, this necessitates the
encoder to generate representations imbued with richer
information, thereby enhancing the overall performance of
the model. However, it was observed that if the decoder
is too small, performing the reconstruction task becomes
excessively challenging, leading to degraded performance.
Therefore, NeuroNet achieves its highest performance when
the dimension and depth of the decoder are set to 256 and
3, respectively.

5.2.2 Evaluation Scenario 2: Fine-tuning using Multi-epoch
EEG

(Temporal Context Module) The optimal structure for
effectively analyzing temporal variations or correlations
among multiple EEG epochs was explored (Table 7). It was
observed that the Mamba-based structure outperforms the
widely used LSTM or multi-head attention-based structures
in previous studies. Furthermore, examining the perfor-
mance of Mamba based on the context length revealed that
the best performance is achieved when the context length is
20.

TABLE 6
Linear evaluation under different decoder dimensions and decoder

depths.

Decoder Performance Model Size
(MB)Dim Depth ACC MF1

192

1 76.05 66.83 123.96
2 76.21 67.34 125.74
3 76.23 67.24 127.52
4 76.32 67.35 129.30

256

1 76.05 66.83 125.62
2 76.51 67.40 128.78
3 76.74 68.19 131.94
4 75.94 66.56 135.10

512

1 76.03 66.65 136.20
2 76.02 67.17 148.81
3 76.02 66.48 161.42
4 75.84 66.52 174.03

TABLE 7
Comparison of modules and context lengths comprising temporal

context module.

Model Context
Length

Performance
ACC MF1

LSTM 20 80.65 74.67
Multi-Head Attention 20 81.56 75.27

LSTM + Multi-Head Attention 20 80.90 74.62
Mamba-based TCM (ours) 10 83.74 77.75
Mamba-based TCM (ours) 20 85.24 79.82
Mamba-based TCM (ours) 30 85.13 79.80

5.3 Hypnograms
Figure 4 depicts the predicted results (i.e., hypnograms)
for one subject from each of the three PSG datasets. The
top row represents the labels annotated by sleep experts,
the middle row corresponds to NeuroNet+TCM, and the
bottom row to NeuroNet alone. The difference between the
2 figures is that the former shows results for NeuroNet-B
and the latter for NeuroNet-T. In detail, it can be observed
that across all three PSG datasets, the application of TCM
yields results more closely aligned with those annotated by
sleep experts. This underscores the significance of effectively
incorporating temporal context information, thereby con-
tributing to performance improvement. Moreover, it is clear
that NeuroNet-B, despite its increased number of parame-
ters, generally tends to show higher accuracy compared to
NeuroNet-T.

6 DISCUSSIONS

NeuroNet is a novel SSL framework that effectively com-
bines the contrastive learning task with the masked pre-
diction task. This study demonstrates that greater accuracy
is achieved in NeuroNet performance when the contrastive
learning task and masked prediction task are combined. It
suggests that these two tasks mutually complement each
other and lead to improved stability and the acquisition
of higher-level representations. Consequently, NeuroNet
showcases superior performance in comparison to the re-
cent SSL methodologies (Table 2). Furthermore, it has been
observed that when subjected to fine-tuning with a sparse
number of labeled data, the NeuroNet+TCM configuration
not only contends with but surpasses the performance of
the latest supervised learning methodologies trained on
substantially larger labeled data (Table 3, 4).
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Fig. 4. The output hypnograms across five sleep stages. The first, second, and third columns correspond to #sc4031e0, #shhs1-204928, and
#subject-53 within Sleep-EDFX, SHHS, and ISRUC, respectively. (A) is manually scored by a sleep expert. (B) and (C) respectively represent
NeuroNet-B and NeuroNet-T. The first row for both (B) and (C) displays the results for NeuroNet+TCM, while the second row shows the results for
NeuroNet. The errors are marked by the red dots.

NeuroNet demonstrates exceptional performance and
offers the advantage of omitting contrived EEG data aug-
mentation for contrastive learning tasks. Generally, SSL
methodologies based on contrastive learning necessitate the
process of contrived data augmentation, posing a range of
inherent challenges. Firstly, unlike images, the application of
data augmentation to EEG signals risks diluting their intrin-
sic meaning. Secondly, selecting appropriate EEG data aug-
mentation could be challenging, with suboptimal choices of
data augmentation leading to ineffective SSL outcomes [8],
[21], [22]. Lastly, even when data augmentation is optimized
for a specific model or dataset, there is a possibility it may
not perform effectively with different models or datasets
[8], [9], [32]. NeuroNet inputs two subsets, randomly sam-
pled differently, into the encoder, resulting in output vec-
tors corresponding to different views, and then conducts
a contrastive learning task on these vectors. This approach
can be viewed as a challenge of determining whether the
partially obscured portions of the entire EEG signal are the
same or different. Compared to conventional methods, this
approach is much simpler and effectively resolves the issues
associated with contrived EEG data augmentation.

NeuroNet-B demonstrates higher performance com-
pared to NeuroNet-T in most cases, primarily due to the
relatively large scale of PSG datasets (Table 3, 4). The higher
number of parameters enables the capture of more intricate
and diverse patterns, thereby conferring an advantage in
augmenting performance. Despite this, NeuroNet-T demon-
strates superior performance over other SSL methodologies

on the Sleep-EDFX and ISRUC-Sleep datasets and is com-
petitive on the SHHS dataset. This suggests that although
NeuroNet-T has fewer parameters, it still effectively cap-
tures the characteristics of EEG signals. Given the inherent
challenges associated with EEG data acquisition, which of-
ten result in limited dataset capacity, leveraging NeuroNet-T
with its fewer parameters may be a pragmatic strategy for
optimal performance under such constraints.

The architecture of TCM, intricately designed to discern
the relationships between different EEG epochs and based
on the Mamba, emerged as a key driver for performance
improvement. The overall performance exhibited a notable
increase of approximately 4-5% upon Mamba-based TCM,
compared to the methodologies predominantly employed
in prior studies, such as LSTM or multi-head attention-
based methodologies (Table 7). Consequently, the model
combining NeuroNet and the Mamba-based TCM (= Neu-
roNet+TCM), despite being trained on a limited amount of
labeled data, demonstrated superior or comparable perfor-
mance to supervised learning-based sleep staging trained
on a vast amount of labeled data. This illustrates that
the combination of NeuroNet, which effectively represents
EEG features, and Mamba, specialized in intricate sequence
modeling, yields highly efficacious outcomes. In particular,
Mamba has addressed inefficiencies in long sequences and
also improved performance by allowing the parameters of
the SSM to be a function of the input.

Despite these advantages, there are still issues that need
to be addressed. Firstly, SSL methodologies are designed to
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leverage unlabeled data by learning representations without
explicit supervision. However, they do incorporate a small
amount of labeled data at some point in the model devel-
opment process. This means that the quality and accuracy
of the initial labels may affect the performance of SSL-
based methodologies. This can be particularly problematic
during fine-tuning, where the quality of labels directly in-
fluences the model’s ability to generalize from the learned
representations to specific downstream tasks. This issue is
especially pertinent in this study, which utilized public PSG
data, where the unreliability of labels can and likely will be
present. Therefore, future research will focus on conducting
studies on ”noisy label classification” optimized for sleep
EEG signals to solve the issue of label reliability. Simultane-
ously, we plan to employ a large number of highly skilled
sleep experts to select several support sets representing each
sleep stage and then supplement them through few-shot
or zero-shot learning to achieve accurate results without
further training. Secondly, NeuroNet has been found to
improve performance as the frame size and overlap size
decrease, but this comes with a significant increase in com-
puting cost (Table 5). This is because the core component
of NeuroNet, the Transformer, struggles with efficiently
processing samples with long sequences. Therefore, future
research is expected to explore replacing Transformer with
Mamba to achieve superior EEG representations along with
more efficient computation, which would improve inference
speed.

APPENDIX A
TRAINING SETTINGS AND HYPERPARAMETERS

The training and evaluation of the model were conducted
on a computer equipped with an Intel I9-9980XE CPU at
3.00GHz, 128GB RAM, and an NVIDIA GPU 3090. Fur-
thermore, all data processing and algorithm development
was carried out using Python version 3.9, with the Pytorch
version 1.10 library being utilized. The detailed hyperpa-
rameters are described in Table A1. Evaluation scenario 3
shares the same hyperparameters as scenario 2, as it does
not involve an additional training process.

APPENDIX B
CONTRASTIVE LEARNING BASED SSL WITH
SINGLE-CHANNEL EEG
SSL methodologies based on contrastive learning, such as
SimCLR [21], BYOL [22], SwAV [24], SimSiam [23], Barlow
Twins [25], etc., have demonstrated remarkable performance
in the field of computer vision. However, compared to SSL
methodologies based on masked prediction tasks (e.g., MAE
[27], Data2Vec [30], etc.), their representation performance
can vary significantly across different scenarios, such as data
augmentation techniques and types of backbone networks.
Thus, in this research, the following steps were taken to
effectively apply contrastive learning-based SSL methodolo-
gies to single-channel EEG.

B.1 Data Augmentation
For effective training using contrastive learning-based SSL
methodologies, selecting appropriate data augmentations

TABLE A1
Hyperparameters for evaluation scenario for NeuroNet.

Scenario 1 Scenario 2
Self-Supervised Learning

epoch 50
batch size 1024
frame size 3

overlap step 0.75
encoder dim T: 512 / B: 768

encoder depth T: 4 / B: 4
encoder head 8
decoder dim T: 192 / B: 256

decoder depth T: 1 / B: 3
decoder head 8

projection hidden (1024, 512)
temperature scale 0.5

mask ratio ˜
optimizer AdamW

optimizer momentum (0.9, 0.999)
learning rate 2e-05

Downstream Task
epoch 300 100

batch size 512 128
optimizer AdamW AdamW

optimizer momentum (0.9, 0.999) (0.9, 0.999)
learning rate 1e-05 5e-03

temporal context length - 20
mamba d state - 16
mamba d conv - 4
mamba expand - 2

is crucial [21], [44]. Inspired by [7], [8], [44], this research
implemented five data augmentations optimized for single-
channel EEG. During training, two data augmentations
were randomly selected and applied to each data sample.
Detailed descriptions of each data augmentation follow.

• (Random Gaussian Noise) Adds Gaussian noise to
the original signal.

• (Random Crop) Randomly crops a portion of the
original signal and then interpolates it back to the
original signal size.

• (Random Bandpass Filtering) Selects a frequency
band at random and applies band-pass filtering to
the original signal.

• (Random Temporal Cutout) Randomly selects a seg-
ment of the original signal and replaces it with the
mean value of the original signal.

• (Random Permutation) Segments the signal ran-
domly, shuffles these segments in a random order,
and then merges them.

B.2 Backbone Network

To compare and analyze the performance of SSL methodolo-
gies based on different backbone networks, three backbone
networks were selected and implemented. Each selected
backbone network is a deep learning algorithm designed
to analyze sleep stages using single-epoch EEG as input.
Detailed descriptions are as follows:

• (DeepSleepNet [16]) Utilizes two CNNs with differ-
ent kernel sizes to extract low- and high-frequency
features. Each CNN comprises four convolution lay-
ers and two max pooling layers. For this study, the
bi-LSTM component of DeepSleepNet, typically used
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for processing single-epoch EEG, was omitted to
solely focus on input from a single epoch.

• (IITNet, intra-epoch version [17]) Designed to pro-
cess a single imbued EEG by dividing it into sub-
epochs at fixed intervals, which are then fed into a
ResNet to extract a representation vector. This vector
is subsequently used as the input for a bi-LSTM,
enabling the capture of temporal context.

• (STFT Encoder [9], [32]) This model is designed
to convert raw EEG signals into short-time Fourier
transform spectrograms, which are then fed into four
ResNet to facilitate the learning of sleep EEG signal
features. This model has been widely adopted as a
backbone model for SSL

B.3 Results
Table B2 presents the results of conducting 5-fold cross-
validation on the Sleep-EDFX and SHHS, and 10-fold cross-
validation on the ISRUC-Sleep dataset. Detailed exami-
nation reveals that the ’STFT Encoder’ demonstrated the
highest performance across all datasets, with the exception
of Sleep-EDFX. Compared to other SSL methodologies, the
Barlow Twins [25] method showed superior performance
overall.

APPENDIX C
NORMALIZED CONFUSION MATRICES

Appendix Figures 1 and 2 display the normalized confusion
matrices. The distinction lies in that Figure 2 presents re-
sults with the TCM, unlike Figure 1. Examination of both
figures reveals that the application of TCM contributes to
an overall enhancement in performance, with NeuroNet-B
demonstrating greater accuracy compared to NeuroNet-T.

(B)

True sleep stage

W

W

REM

REM

N1

N1

N2

N2

N3

N3

0.90 0.01 0.04 0.00 0.04

0.14 0.25 0.27 0.00 0.34

0.02 0.01 0.88 0.04 0.06

0.01 0.00 0.13 0.85 0.00

0.04 0.03 0.13 0.00 0.80

(C)

W

W

REM

REM

N1

N1

N2

N2

N3

N3
True sleep stage

0.88 0.06 0.04 0.00 0.02

0.19 0.38 0.26 0.01 0.17

0.05 0.06 0.77 0.05 0.06

0.01 0.00 0.15 0.84 0.01

0.06 0.07 0.12 0.01 0.73

W

W

REM

REM

N1

N1

N2

N2

N3

N3

Tr
ue

 s
le

ep
 s

ta
ge

True sleep stage

0.91 0.05 0.01 0.00 0.02

0.20 0.34 0.28 0.00 0.17

0.03 0.06 0.82 0.03 0.06

0.03 0.00 0.30 0.67 0.00

0.10 0.13 0.13 0.00 0.64

(A)

W

W

REM

REM

N1

N1

N2

N2

N3

N3

Tr
ue

 s
le

ep
 s

ta
ge

0.92 0.04 0.01 0.00 0.03

0.20 0.25 0.32 0.00 0.23

0.02 0.05 0.84 0.03 0.07

0.01 0.00 0.29 0.69 0.00

0.09 0.11 0.18 0.00 0.62

True sleep stage

(D)

W

W

REM

REM

N1

N1

N2

N2

N3

N3

0.88 0.01 0.05 0.01 0.06

0.19 0.09 0.26 0.00 0.45

0.04 0.00 0.84 0.04 0.08

0.02 0.00 0.16 0.82 0.00

0.07 0.02 0.15 0.00 0.76

True sleep stage

(E)

W

W

REM

REM

N1

N1

N2

N2

N3

N3

0.86 0.05 0.04 0.00 0.05

0.19 0.35 0.26 0.01 0.19

0.05 0.07 0.77 0.05 0.07

0.00 0.00 0.16 0.82 0.02

0.06 0.08 0.13 0.01 0.72

True sleep stage

(F)

Fig. 1. The confusion matrices for sleep stage classification from evalu-
ation scenario 1. The columns correspond to Sleep-EDFX, SHHS, and
ISRUC-Sleep, respectively. Moreover, the first row signifies NeuroNet-B,
and the second row depicts NeuroNet-T.
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