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Abstract

The past years have seen a surge in quantum algorithms for compu-
tational fluid dynamics (CFD). These algorithms have in common that
whilst promising a speed-up in the performance of the algorithm, no spe-
cific method of measurement has been suggested. This means that while
the algorithms presented in the literature may be promising methods for
creating the quantum state that represents the final flow field, an effi-
cient measurement strategy is not available. This paper marks the first
quantum method proposed to efficiently calculate quantities of interest
(QoIs) from a state vector representing the flow field. In particular, we
propose a method to calculate the force acting on an object immersed
in the fluid using a quantum version of the momentum exchange method
(MEM) that is commonly used in lattice Boltzmann methods to determine
the drag and lift coefficients. In order to achieve this we furthermore give a
scheme that implements bounce back boundary conditions on a quantum
computer, as those are the boundary conditions the momentum exchange
method is designed for.

1 Introduction

Computational fluid dynamics is one of the most frequently applied scientific
endeavours, accounting for a large amount of the computational power used
every day. As the power of classical computers grows, the demand in precision
and scale for computational fluid dynamics increases similarly.
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Quantum computers promise a novel compute technology with an expo-
nential computational power in the amount of qubits, leading to the natural
questions of whether and how this novel method of computation can be used
to simulate interesting problems of computational fluid dynamics (CFD). The
question of a potential use for quantum computers in CFD was first researched
by Yepez and his co-workers in the early 1990s, during quantum computing’s
first boom [Yep98; Yep01; YB01; Yep02; Pra+03]. These papers describe a
quantum distributed computing approach in which each grid point is described
by six qubits, and the collision step at each grid point can be calculated on a
separate machine. This has as a benefit that only small stable quantum com-
puters are required and the collision step can be implemented on a quantum
computer, making use of its inherently probabilistic nature. The downside of
this approach is that streaming then needs to be done classically implying that
complete measurement of the system and reinitialization are required in each
time step. On top of that 6N qubits, where N is the number of grid points,
are required. As the number of qubits grows linearly with the size of the grid,
since the grid is typically very large for CFD problems and the number of qubits
currently available is very low, this poses a significant problem.

After the initial QCFD research by Yepez et al. the field of Quantum Boltz-
mann methods became stagnant for over a decade. Whilst other QCFD ap-
proaches came to the forefront, quantum Boltzmann methods were largely for-
gotten until the more recent boom in 2019 starting with the paper by Todorova
and Steijl. Most recent are the methods presented in [TS20; Bud20; Bud21;
MVS22; SM24; Ste23; Suc+23a; SS23], that all have their strengths and weak-
nesses. The methods described in [TS20; Bud20; SM24] include detailed quan-
tum primitives for streaming and specular reflection but do not yet include a
collision step. The methods described in [Bud21; SS23] include a quantum prim-
itive for collision using the linear combination of unitaries approach [CW12], as
such measurement and reinitialization are required in each time step. Due to the
high computational cost of such a ‘stop-and-go’ strategy caused by the difficulty
of initialization and measurement errors, such techniques loose their practical
advantage. The methods presented in [Suc+23a; Suc+23b; SS23] make use of
Carleman linearization of the lattice Boltzmann equation as presented in [IS22].
The methods of [Suc+23a; Suc+23b] stand out as they are geared towards quan-
tum simulation rather than the more general quantum computation paradigm.

What all these methods have in common is that after completing the final
time step, a quantum state has been created that represents the entire flow
field as a probability density distribution, e.g., encoded in the quantum state’s
amplitudes. So far, however, no efficient measurement strategies for this quan-
tum state representing the flow field have been suggested. This implies that
the current methods require the exponentially expensive reading out of the full
quantum state to extract the entire flow field and post-process it on a classical
computer afterwards. Consequently, any and all quantum advantages that were
gained during the computation are lost. This paper marks the first that offers
a quantum observable for the efficient reading out of the force vector acting on
an object for the quantum Boltzmann method.
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We first introduce the Lattice Boltzmann method in Section 2. In Section
3 we introduce the so-called Momentum Exchange Method (MEM) that can
be used in combination with the Lattice Boltzmann method and bounce back
boundary conditions to calculate the force acting on an object immersed in the
fluid. Subsequently, in Section 4 we provide the reader with the basic ideas of
the Quantum Lattice Boltzmann method (QLBM) and its encoding. Using this
we introduce bounce back boundary conditions for QLBM in Section 5 and ulti-
mately in Section 6 we introduce the Quantum Momentum Exchange Method.
Finally Section 7 is dedicated to explaining how the QMEM can be efficiently
implemented in practice and Section 6.1 gives insight into the computational
costs.

2 The Lattice Boltzmann Method

The lattice Boltzmann method (LBM) is one of multiple widely-used computa-
tional approaches to model the behaviour of fluid flow with the aid of computers.
It is based on the Boltzmann equation which can be written

∂f

∂t
+ u · ∇f = Ω(f) , (1)

where f(x,u, t) is the distribution function of the particle density ρ, over space
x, with velocity u, at time t. Here, Ω represents the collision term. We further-
more assume that no external force is present.

Since the actual collision term is relatively expensive to implement, in prac-
tise typically the BGK collision term is used [BGK54]

Ω (f) = − 1

−τ
(f − feq) , (2)

where τ is the relaxation time and feq is the equilibrium function.
The Boltzmann equation can be discretized in both time, physical and ve-

locity space leading to the lattice Boltzmann method. In the lattice Boltzmann
method a time step can be denoted as

fi (x+ ciδt, t+ δt) = fi (x, t)−
δt

τ
(fi (x, t)− feqi (x, t)) , (3)

where subscript i denotes the velocity direction.
What sets the Boltzmann method apart from other CFD approaches is that

a single time step can be split into two consecutive parts, the so-called streaming
and collision steps.

Writing the state of the system after collision as f⋆i (x, t) we can get

f⋆i (x, t) = fi (x, t)−
δt

τ
(fi (x, t)− feqi (x, t)) , (4)

for the collision step. Subsequently the streaming step is written as

fi (x+ ciδt, t+ δt) = f⋆i (x, t) . (5)
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Figure 1: Four examples of different types of DdQq possible. Figure 1a portrays
the D1Q2 setting and Figure 1b portrays the D1Q3 setting (where a stationary
particle can be included). Figure 1c portrays the D2Q5 setting and Figure 1d
shows the D2Q9 setting.

This ability to split the equation into two separate physically motivated steps
leads to the Boltzmann method being implemented by performing collision and
streaming separately and consecutively.

A popular way of classifying different combinations of dimensions and num-
ber of possible velocities is the so-called DdQq scheme. Here, d denotes the
number of space dimensions considered and q the number of distinct velocities.
In Figure 1 we give four examples of different combinations of DdQq possible.
In this paper we are only considering the D1Q3, D2Q9 and D3Q27 cases.

We furthermore write ei to represent the vector in the direction i ∈ Q =
{0, 1, . . . , q−1} of the DdQq scheme. For example, in the D2Q9 system we have

ei =


(0, 0) for i = 0

(1, 0), (0, 1), (−1, 0), (0,−1) for i = 1, 2, 3, 4

(1, 0), (0, 1), (−1, 0), (0,−1) for i = 5, 6, 7, 8.

(6)

Therefore 2 qubits are necessary to represent the speed in each dimension, as
the three options ‘positive’, ‘negative’ and ‘standing still’ need to be encoded.
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3 Momentum Exchange Method

The momentum exchange method was proposed by Ladd [Lad93] to determine
the force acting on an object in order to calculate the drag and lift coefficients
of an obstacle equipped with bounce back boundary conditions when the flow
field is modelled by the Boltzmann method. Bounce back boundary conditions
differ from the more intuitive specular reflection boundary conditions in that,
upon contact with an object, the particle’s velocity is reversed entirely instead
of just the velocity normal to the object; see Figure 2. Bounce back boundary
conditions are often used in combination with the Lattice Boltzmann method
[Krü+17]. In Section 5 we give an in-depth explanation of bounce back boundary
conditions as well as how to implement them in our QLBM scheme. In this paper
we adopt the momentum exchange method as described in [Krü+17]. Then the
force exerted on the object by the particles can be expressed as

F =
∑
i∈Q

(eifi(xf , t)− eīfī(xf , t)) . (7)

In the above expression xf refers to a point in the fluid space adjacent to the
obstacle and ī represents the velocity of the particles after particles with velocity
i have impinged on the object. This expression assumes that there is no fluid
inside the object and as such only takes the momentum exchange outside of the
object into account. Since we are using bounce back boundary conditions we
have eī := −ei and fi(xf , t) = fī(xf , t) by definition, therefore we can rewrite
Equation (7) to

F =
∑
i∈Q

2eifi(xf , t). (8)

As force is composed of magnitude and direction it is expressed by a d dimen-
sional vector with subscript j denoting its j-th dimensional component, i.e.

Fj =

∑
i∈Q

2eifi(xf , t)


j

. (9)

4 Quantum Lattice Boltzmann Method

The quantum lattice Boltzmann method (QLBM) is, as the name suggest, the
quantum analog of the lattice Boltzmann method. Similar to the classical lat-
tice Boltzmann method the QLBM consists of the initialization of the problem,
methods for streaming and collision, an approach to impose boundary condi-
tions and, finally, a measurement procedure to extract application-specific QoIs.
This paper introduces an efficient measurement procedure that can be used in
combination with existing QLBMs. As such we abstain from presenting con-
crete methods for collision, streaming or state preparation. Instead we focus on
explaining a set-up for the measurement procedure, which can be used with any
QLBM method that uses a similar encoding scheme.
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As the measurement procedure in practice should be fitted to the quantum
state that it is used on we will present how the density function is encoded in
the quantum state for this method. The density function encoding presented
below is similar to the ones presented in [SM24; TS20; Bud20; Bud21], as such
the measurement procedure presented here can be used with those papers.

Flow field encoding Building on our previous work [SM24], the quantum
encoding of the discretized density function reads

|ana
. . . a1︸ ︷︷ ︸

ancillae

position︷ ︸︸ ︷
gng

. . . g1 vnv
. . . v1︸ ︷︷ ︸

velocity

⟩ , (10)

whereby the positional and velocity qubits are split into d groups, one for each
dimension. More specifically, zooming in on the positional qubits, we get

|gng . . . g1⟩ = |gdngd
. . . gd1g

d−1
ngd−1

. . . gd−1
1 . . . g1ng1

. . . g11⟩ , (11)

where gjngj
. . . gj1 encodes the j-th dimension of the location of grid points by

representing the binary value of the location.
Similarly if we write out the velocity qubits for the encoding explicitly we

get
|vnv . . . v1⟩ = |vdvddir . . . . . . v1v1dir⟩ , (12)

where vjdir expresses the direction (positive or negative) of the particle in dimen-
sion j and the vj qubits express whether a particle has a nonzero velocity in
dimension j. Notice that this order is different from the one presented in [SM24]
where the vdir qubits are grouped together, this is done simply to make the ob-
servable in Section 6.1 easier to visualize as a matrix. Another difference from
the setup presented in [SM24] is that here we are only considering the D1Q3,
D2Q9 and D3Q27 cases leading to exactly two velocity qubits per dimension.

The ancilla qubits are used for several different purposes throughout the
QLBM method. In this paper we will only highlight the labels and purposes
of the ancillae that are used in the quantum bounce back boundary conditions
implementation and the quantum momentum exchange method presented in
Sections 5 and 6, respectively. We identify the av,i ancilla qubits that indicate
whether in this time step the associated particles are streamed in dimension
i. Furthermore we make use of the ao which is the ancilla qubit that indi-
cates whether or not a particle is in an object and the bounce back boundary
conditions need to be applied.

5 Quantum bounce back boundary conditions

One of the most commonly used boundary conditions in practical LBM is the
bounce back boundary condition which amounts to fully reflecting the direction
of particles that get into contact with obstacles and resetting them to their
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Figure 2: Illustration of bounce back boundary conditions (top, in red and blue
arrows) versus specular reflection boundary conditions (bottom, in green and
magenta).

original position inside the flow domain [Sch08; Krü+17]. This is different from
the specular reflection boundary conditions that we adopted in our earlier work
[SM24], which reverses only the normal component of the velocity vector. Figure
2 illustrates the difference between the two types of boundary conditions.

The algorithm for implementing bounce back boundary conditions in a clas-
sical LBM can be summarized as follows. First, the particles that virtually
travelled into the obstacle have their velocity direction reversed in all dimen-
sions and subsequently these particles are placed outside of the obstacle. The
particles are placed in the correct position outside of the obstacle by moving
one point in the dimension(s) that they previously moved in.

For implementing the bounce back boundary condition as a quantum prim-
itive we require only one ancilla qubit ao to indicate whether a particle has
virtually moved into an object. The ancilla ao is initialized in the |0⟩ state and
flipped to |1⟩ when a particle has virtually travelled into one of the points inside
the obstacle. We check whether a particle has virtually travelled into the object
using the efficient object encoding method as described in Section 5.4 of [SM24].

As a next step we flip the state of the vjdir qubits for all dimensions j con-
trolled on the state of the ao ancilla. By doing this we make sure that the
velocity direction is reversed in all dimensions after contact with an obstacle as

7



is required for bounce back boundary conditions. And subsequently the parti-
cles are moved by one position controlled on the ajv , vjdir and ao qubits to ensure
that the particles move one step in the correct direction in the dimension(s) that
they moved in when they moved into the obstacle and of course to ensure that
this only happens after the particles moved into the obstacle.

Finally the ao qubits need to be reset to |0⟩ before we can start the next
time step. As in our previous work [SM24] the blue and green encircled points
outside of the object constitute the trivial case in Figure 3. We reset the ao
qubits controlled on if we are in one of the blue (green) encircled points, the
direction of the x (y) velocity and the ancilla qubit indicating whether we moved
in the dimension in this time step a1v (a2v). Specifically we reset the ancilla qubit
ao if we are in a blue (green) encircled grid point outside the object and a1v = 1
(a2v = 1) and v1dir (v2dir) points away from the object. Using this logic the ao
qubits are reset to |0⟩ for each wall separately.

Resetting the ao qubit is a bit more difficult around the edges as indicated
with black and orange encircled points in Figure 3.

For the black encircled points outside the corner we need to reset the ancilla
qubit ao if and only if both v1dir and v2dir point in the direction away from the
object and a1v = a2v = 1 holds.

As for the orange encircled ‘side-edge’ grid point we first reset the ao ancilla
in the same way as for the blue (green) encircled points described above. Now
we only need to note that for the case described by the red arrow in Figure 3 we
have wrongly flipped the ao ancilla qubit and so we need to verify whether we
are in the ‘red arrow’ case by checking if v1dir and v2dir pointed in the direction
of the arrow and if a1v = a2v = 1 holds. If the particle is in a state where
a1v = a2v = 1 and v1dir and v

2
dir are such that the particle is in an red arrow case

the ao ancilla get flipped again, back to the original state of |0⟩.

6 Quantum momentum exchange method

In this section we explain how the momentum exchange method can be expressed
as an observable for the encoding described in Section 4. In order to do this we
will first change the density encoding of the quantum state into a rooted density
encoding. Using this rooted density encoding we can subsequently define the
observable that calculates the force using Equation (8) and finally we describe
how this method can be implemented as an executable quantum circuit.

Rooted density encoding Since the momentum exchange method is linear
in nature, whereas quantum observables are quadratic, it is advisable to change
from encoding the density function fi (x, t) in the quantum state |ψ⟩ to an
encoding of the square root of the density function

√
fi (x, t). Such a shift to

a rooted density encoding can be done without altering any subsequent circuits
in the methods [SM24; TS20].
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Figure 3: Illustration of all possible corner cases to be taken into account when
particles collide with an obstacle (black box) and the physically correct behavior
for a fail-safe implementation of boundary conditions.
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0 1 2 3

Figure 4: Example of the D1Q3 case with four grid points and one obstacle
located on the third grid point.

6.1 Momentum exchange method as an observable

We now derive the observable that calculates the force exerted on the object
using the momentum exchange method. As force is described using a vector,
we need to calculate the values of the vector for all d dimensions. Here we show
how to calculate this vector using 2d different observables, where each observable
calculates the value of the force vector in one spatial dimension, d ∈ {1, 2, 3},
and one velocity direction. This is done to make the resulting observable easier
to portray and explain, since all the observables can be expressed as diagonal
matrices they do commute and so they can all be measured in the same runs.

Considering the encoding described above, equation (8) can be evaluated
from the quantum state |ψ⟩ encoding

√
fi (x, t), by the diagonal observable

OOME to be specified below. The diagonal of the matrix expressing the observ-
able OOME is built up using BOME matrices, which are placed at grid points
in the fluid domain directly adjacent to the obstacle. All the other indices of
the matrix matrix expressing OOME will remain zero. An example of this is the
matrix

OOME =


. . . . . . . . . . . .
. . . BOME . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .

 , (13)

where the dots represent 4× 4 matrices with only 0 indices and BOME is a 4× 4
matrix that can be written as

BOME =


0 0 0 0
0 0 0 0
0 0 2 0
0 0 0 0

 . (14)

The example given in Equation (13) represents a 1-dimensional case with 4 grid
points and three possible speeds (one in the positive and one in the negative
x-direction as well as the zero speed) and the wall adjacent to the second grid

point as represented in Figure 6.1. Since BOME = B†
OME, both BOME and OOME

are Hermitian and therefore OOME constitutes a quantum observable. It can
easily be seen that any other distribution of BOME along the diagonal will also
lead to a quantum observable.
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For the D1Q3 case with four grid points described above we have the follow-
ing quantum state encoding

|ψ⟩ = 1√∑
x,i fi (x, t)

∑
x,i

√
fi (x, t) |g12g11v1v1dir⟩ , (15)

where g12g
1
1 represent the binary value of the location of the x-axis, |v1v1dir⟩ = 01

indicates streaming in the positive x-direction, |v1v1dir⟩ = 11 indicates streaming
in the negative x-direction and |v1v1dir⟩ = 01 as well as |v1v1dir⟩ = 00 indicates
that the particle is not streaming in the x-direction. Here and in the remainder
of this Section we do not take into account the ancilla qubits as they play no role
in the final density function and as such will not be part of the measurement
process.

With the above convention, the quantum state can be written as the coeffi-
cient vector relative to the computational basis as follows:

|ψ⟩ =
∑
x,v

αx,v |g12g11v1v1dir⟩ =
1√∑

x,i fi (x, t)



0√
f0(0, t)√
f1(0, t)√
f2(0, t)
0√

f0(1, t)√
f1(1, t)√
f2(1, t)
0√

f0(2, t)√
f1(2, t)√
f2(2, t)
0√

f0(3, t)√
f1(3, t)√
f2(3, t)



. (16)

Using expression (16) and some basic linear algebra it follows that

⟨ψ|OOME|ψ⟩ =
2f1 (1, t)∑
x,i fi (x, t)

. (17)

Since the value of
∑

x,i fi (x, t) is known when starting the algorithm we can
simply multiply Equation (17) by

∑
x,i fi (x, t) to find the value of the force we

wish to calculate as described in Equation (8), which can subsequently be used
to calculate the drag and lift coefficient [Lad93].

Extension to more dimensions This method can easily be extended to
more dimensions by noticing that the BOME matrix is of size 2nv × 2nv and
should consist of only one non-zero element. This non-zero element will always
be placed on the diagonal at the position of the basis state |vi⟩.
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Complexity Analysis The number of measurements required to determine
the force with an ϵ precision using our proposed approaches depends on multiple
factors. As long as the total number of grid points located inside and adjacent to
the boundary of the obstacle is polynomial in the total number of grid points, the
number of diagonal elements that are non-zero in the observable is polynomial
in the size of the grid. This means that the number of non-zero elements in the
observable is not exponentially small in the total size of the system. Therefore,
in this case, we wish to measure a subspace that is only polynomially small in
the total size of the system which is feasible without exponential overhead.

7 Practical implementation of the momentum
exchange method on a quantum computer

Realizing an observable on a real-world quantum computer amounts to imple-
menting a quantum circuit that translates the observable to measurements in
the computational Z-basis. We will now present the quantum circuit that trans-
lates the observable described in Subsection 6.1 for determining the force in one
dimension in one direction to measuring one qubit in the Z-basis, making the
process clear and easily implementable on a quantum device.

We will first describe how this operation can be applied by using an already
implemented circuit for the bounce back boundary condition and we will sub-
sequently show that this operation indeed transforms the described observable
to one that consists of a Z measurement on one qubit.

7.1 Implementation using ancilla qubits for bounce back
boundary conditions

We have implemented a method to measure the expectation value of the de-
scribed observable by measuring only one qubit. This is done using the imple-
mentation of the bounce back boundary conditions. In this implementation a
qubit ao gets flipped to indicate that a particle is inside an object. To deter-
mine the expectation value of the observable we will use these ancilla qubits
differently. We will from now on call this ao ancilla qubit that was used for
the bounce back boundary conditions ao,+ and we define a second ancilla qubit
ao,−. These ancilla qubits will be flipped if a force was exerted on the object
in a positive or negative direction, respectively. In order to do this we apply a
multi-controlled NOT operation controlled on the qubits to determine whether
we are in the object and the qubit indicating the direction of the particles in
the dimension to the ao,+ (ao,−) qubits.

By doing this we are extracting the relative density of particles that come
into contact with an obstacle in the positive and negative direction for the
considered dimension. Subsequently we measure the qubits ao,+ and ao,− and
subtract the expectation value of ao,− = 1 from ao,+ = 1. The resulting value
expresses the relative pressure in the positive / negative direction.

12



7.2 Proof of method

In this section we show that using the method described above, we indeed cal-
culate the force exerted on an object in one dimension as expressed in Equation
(8).

We flip the ao,+ ancilla qubit in the case that particles have impinged on the
object and the particles have a positive velocity in the x-direction. Therefore,
after re-arranging some qubits, we can write(√

fv0 (x0, t) |
(
gng

. . . g1
)
0
(vnv

. . . v1)0⟩+ · · ·+√
fv1 (x1, t) |

(
gng

. . . g1
)
1
(vnv

. . . v1)1⟩
)
|0⟩ao,+

+(√
fv2 (x2, t) |

(
gng

. . . g1
)
2
(vnv

. . . v1)2⟩+ · · ·+√
fv3 (x3, t) |

(
gng . . . g1

)
3
(vnv . . . v1)3⟩

)
|1⟩ao,+

,

(18)

where for vi and xi the subscript is simply used to indicate that a specific
value for the location and velocity is considered and similarly for the qubits(
gng

. . . g1
)
i
(vnv

. . . v1)i the subscript is used to indicate the velocity and grid

point qubits are in a specific state. Here the states |
(
gng

. . . g1
)
0
(vnv

. . . v1)0⟩+
· · ·+|

(
gng . . . g1

)
1
(vnv . . . v1)1⟩ describe exactly the particles that do not impinge

on the object in the positive x-direction in the current time step, as the ao,+
qubit is in the |0⟩ state. Similarly the states |

(
gng

. . . g1
)
2
(vnv

. . . v1)2⟩ + · · · +
|
(
gng . . . g1

)
3
(vnv . . . v1)3⟩ represent the relative densities of the particles that

have impinged the object in the positive x-direction. From this we can conclude
that the total probability of finding |ao,+⟩ = |1⟩ upon measurement is equal to

fv2 (x2, , t) + · · ·+ fv3 (x3, t) , (19)

which is precisely equal to the relative density of particles hitting the object
with a positive velocity and which is precisely what we wish to measure.

8 Conclusion

In this paper we have presented a quantum approach to determine the force of
the flow field acting on an object immersed in the fluid via an efficient and eas-
ily implementable measurement procedure for the quantum lattice Boltzmann
method. To the best of our knowledge, this is the first time that efficient mea-
surement strategies are addressed in the QLBM literature. Previous works are
limited to reading out the entire flow field which cannot be realized efficiently
on a quantum computer, thereby destroying any quantum advantage.

Our approach represents the quantum analog of the momentum exchange
method and consists of a quantum primitive for implementing bounce back
boundary conditions at the end of each time step and an observable that can be
easily implemented as measurements in the computational basis to obtain the
forces exerted by the fluid on an internal object.
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[Krü+17] Timm Krüger et al. The lattice Boltzmann method. Springer, 2017.
url: https://link.springer.com/book/10.1007/978-3-319-
44649-3.

[Bud20] Ljubomir Budinski. “Quantum algorithm for the advection-diffusion
equation simulated with the lattice Boltzmann method”. In: Quan-
tum Information Processing 2021 (2020). url: https://link.
springer.com/article/10.1007/s11128-021-02996-3.

[TS20] B. N. Todorova and R. Steijl. “Quantum algorithm for the collision-
less Boltzmann equation”. In: Journal of Computational Physics,
409, 109347 (2020). doi: http://dx.doi.org/10.1016/j.jcp.
2020.109347.

[Bud21] Ljubomir Budinski. “Quantum algorithm for the Navier-Stokes equa-
tions by using the streamfunction-vorticity formulation and the lat-
tice Boltzmann method”. In: International Journal of Quantum in-
formation (2021). url: https://arxiv.org/abs/2103.03804.

[IS22] Wael Itani and Sauro Succi. “Analysis of Carleman Linearization
of Lattice Boltzmann”. In: Fluids 7.1 (2022). issn: 2311-5521. doi:
10.3390/fluids7010024. url: https://www.mdpi.com/2311-
5521/7/1/24.

[MVS22] Y. Moawad, W. Vanderbauwhede, and R. Steijl. “Investigating hard-
ware acceleration for simulation of CFD quantum circuits”. In:
Frontiers in Mechanical Engineering (2022). doi: 10.3389/fmech.
2022.925637. url: https://www.frontiersin.org/articles/
10.3389/fmech.2022.925637/full.

[SS23] Claudio Sanavio and Sauro Succi. “Lattice Boltzmann-Carleman
quantum algorithm and circuit for fluid flows at moderate Reynolds
number”. In: (2023). url: https://arxiv.org/pdf/2310.17973.
pdf.
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