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Abstract: We consider an effective theory for a shift-symmetric, quadratically-coupled,

ultralight spin-0 field. The leading CP conserving interactions with Standard Model fields

in the effective theory arise at dimension 8. We discuss the renormalization group evolution

and positivity bounds on these operators, as well as their possible UV origins. Assuming

that the spin-0 field is associated with an ultralight dark matter candidate, we discuss

the effects of the dimension-8 operators on experiments searching for the oscillation of

fundamental constants and Lorentz violation. We find that the direct bounds on these two

effects are of similar strength but rather weak, corresponding to a UV cutoff scale of keV

order, as they are mediated by dimension-8 operators.
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1 Introduction

The possibility that dark matter (DM) consists of ultralight bosonic particles with sub-eV

mass has garnered increasing interest in recent times. The small mass of these particles re-

sults in a large occupation number, so that rather than behaving as discrete particles, these

particles exhibit collective behavior best described by classical waves. A spin-0 ultralight

field can generally lead to a viable model of DM via the misalignment mechanism [1–3].

The field ϕ can be CP-odd, such as the QCD axion [4–10] that was originally proposed to

address the strong CP problem, or axion-like particles predicted in other well motivated

models of spontaneous U(1) symmetry breaking (see for instance [11, 12]). Alternatively,

it could be CP-even, as exemplified by dilatons arising from the spontaneous breaking of
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a conformal sector, or otherwise a pseudo/scalar, ultralight DM (ULDM), hybrid with ill-

defined parity transformation, which arises in axion models with more than one source of

shift symmetry breaking [13, 14].

In any case, the specific UV origins of these particles are not our primary concern, as in

the present paper we leverage the framework of Effective Field Theory (EFT) to describe

their interactions at low energies systematically. Our EFT framework is characterized

by two symmetries, which require the invariance of the theory under (1) the shift ϕ →
ϕ + const.1 and (2) a Z2 transformation ϕ → −ϕ. The shift symmetry protects the DM

mass from large corrections and keeps it naturally small, and the Z2 symmetry implies that

ϕ couples quadratically to the Standard Model (SM) fields. In addition, we consider only

CP-even operators. In fact, in models where the SM fields are not charged under the U(1)

axionic symmetry, we expect generically that the leading interactions between the ULDM

and the SM would appear at quadratic order, without the need to impose a Z2 symmetry,

and on top of that one should add that almost all models of an axion-like particle are

expected to consist of quadratic coupling to the SM scalar operators [15].

Our EFT provides a consistent framework for describing Lorentz and in particular

Galilean violating backgrounds, which we shall refer to collectively as Lorentz violating

(LV). We shall demonstrate that it is comprised of two distinct types of effective operators

governing the interactions between the field ϕ and SM fields. One type possesses a scalar

structure, leading to the oscillation of fundamental constants such as the electron mass and

the fine structure constant, while the other exhibits a tensor structure, resulting in similar

signals in experiments searching for the aforementioned effects, and in addition the viola-

tion of the Lorentz symmetry (in particular the violation of spatial rotation symmetry).

Consequently, the EFT links two classes of experiments probing for these different effects,

which are usually considered to be unrelated. Such a theoretical link is timely, as experi-

ments searching for oscillations of fundamental constants by comparing the frequencies in

atomic clocks and cavities have undergone significant developments in recent years (see [16]

for a review of these experiments), as have experiments focusing on searches for LV effects

predicted in theories of quantum gravity (see [17] for a summary of the experiments and

results). Since the experiments we are concerned with (in particular the searches for LV)

focus on the Quantum Electrodynamics (QED) sector of the SM, in this work we will focus

on the operators built from the ϕ, electron and photon fields.

This paper is organized as follows. In section 2, we study the theoretical aspects of the

EFT. We first list all the relevant operators and then study the RG flow between them.

Additionally, we give an example of potential UV origin of these operators, and explore

the constraints imposed on the Wilson coefficients by positivity bounds. In section 3, we

demonstrate how these effective operators affect the aforementioned two types of experi-

ment and derive bounds on the Wilson coefficients. A brief discussion of indirect bounds

from astrophysical, cosmological and collider data is presented in section 4, and conclusions

are given in section 5.

1Note that this symmetry is softly broken by the mass term.
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2 EFT of ULDM with quadratic coupling to QED

In this section we study the EFT that describes the interaction between a real spin-0 field

ϕ and the QED sector of the SM. The scalar is assumed to be a singlet under the SM gauge

group. As already described, we also assume that the theory is invariant under CP, shift

symmetry, and a Z2, ϕ→ −ϕ.

2.1 Effective operators

The EFT is organized as an expansion in 1/Λ, with Λ characterizing the UV cut-off of the

theory. The effective operators of higher mass dimension are thus suppressed by higher

orders of 1/Λ. In our case, the first operator that satisfies all symmetries of the theory

arises at dimension seven, and is given by

O1 = ∂µϕ∂
µϕ ψ̄ψ , (2.1)

where ψ stands for a fermion field (for instance, an electron).

At dimension 8 there are four independent CP-even operators 2, in the sense that they

are not related to each other by the equations of motion (EoM) or integration by parts.

These are

O1 = ∂µϕ∂
µϕ iψ̄γν

↔
Dνψ,

O2 = ∂µϕ∂νϕ iψ̄γ
ν

↔
Dµψ,

O3 =
1

2
∂µϕ∂

µϕFνρF
νρ ,

O4 =
1

2
∂µϕ∂νϕF

µ
ρF

νρ . (2.2)

The notation is such that ψ̄γν
↔
Dµψ ≡ 1

2 ψ̄γ
νDµψ − 1

2(D
µψ)γνψ, Dµ ≡ ∂µ − ieAµ with Aµ

the vector potential of the photon and e the charge of electron, and Fµν = ∂µAν − ∂νAµ is

the gauge invariant EM field tensor.

The operators O1 and O1 can be transformed into each other using the EoM iγµDµψ =

mψψ. This means that by a redefinition of the field ψ, one can eliminate O1, at the expense

of shifting the Wilson coefficient of O1 (see Appendix A for more details). Due to the soft

breaking of shift symmetry from the mass term, there could also be operators of the form

ϕ2iψ̄γν
↔
Dνψ and ϕ2FνρF

νρ, suppressed by m2
ϕ/Λ

2. When taking ϕ as the DM background,

these two operators have the same effects as O1 and O3 for the experiments we consider.

They will not mix with the dimension-8 operators under RG evolution. We therefore

ignore these two operators in most of the following discussion, but point out when they are

relevant.

Thus our effective Lagrangian is given by

Leff = iψ̄( /D −mψ)ψ +
1

2
∂µϕ∂

µϕ− 1

2
m2
ϕϕ

2 +

4∑
i=1

ciOi . (2.3)

2Other than these CP-even operators, there are also CP-odd ones that obey the Z2 and shift symmetries

but we do not consider them here.
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Notice that with this definition the Wilson coefficients ci carry mass dimension minus four.

When interpreting the bounds on the Wilson coefficients from experimental data discussed

later on, it will sometimes be useful to make the mass dependence of the Wilson coefficients

explicit by writing

ci =
16π2

Λ4
, (2.4)

where Λ is a mass scale and the factor of 16π2 follows the conventions of naive dimensional

analysis (see e.g.[18]). Using this equation, a given bound on a Wilson coefficient can be

translated into a mass scale being indirectly probed by the measurement.

2.2 Renormalization-group flow

The Wilson coefficients ci ≡ ci(µ) are functions of the renormalization scale µ. From the

top-down point of view, they are obtained by matching the EFT and the UV theory at

the scale Λ. Then to use them for processes at a typical low-energy scale µexp defined by

experiments, one needs to evolve these coefficients from µ = Λ down to µ = µexp. This

evolution is governed by the Renormalization Group Equations (RGE).

The computation of the RG flow is outlined in Appendix B. For the RGE at one-loop

level we find

d

d logµ



c1

c2

c3

c4


=

α

4π



0 −4
3 12 7

3

0 16
3 0 8

3

0 −4
3

8
3 0

0 16
3 0 8

3





c1

c2

c3

c4


, (2.5)

where α = e2/(4π) is the fine structure constant. The non-zero off-diagonal terms in the

above matrix imply that the operators generally mix with each other under RG evolu-

tion. However, we notice that non-trivial patterns exist in our case and are governed by

symmetries. This can be seen explicitly by changing the operator basis and organizing

the operators into two sectors, characterized by the quantum number j of the angular

momentum of the (ϕ, ϕ) channel [19]:

• j = 0 sector:

O1 ≡ O1 = (∂µϕ∂
µϕ) iψ̄γν

↔
Dνψ ,

O3 ≡ O3 = (∂µϕ∂
µϕ)

1

2
FνρF

νρ . (2.6)

• j = 2 traceless sector:

O2 ≡ O2 −
1

4
O1 =

(
∂µϕ∂νϕ− 1

4
ηµν∂ρϕ∂

ρϕ

)
iψ̄γν

↔
Dµψ ,

O4 ≡ O4 −
1

4
O3 =

(
∂µϕ∂νϕ− 1

4
ηµν∂ρϕ∂

ρϕ

)
1

2
FµρF

νρ . (2.7)
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The j = 0 sector is easy to identify since its operators are products of two scalar operators

in the dark and QED sectors, respectively. The spin-2 sector can be checked by noticing

that the contribution from O2(O4) to the amplitude for ϕ + ϕ → ψ + ψ (ϕ + ϕ → γ + γ)

scattering consists only of partial waves of angular momentum j = 2. We note that in the

j = 2 operators, the two ϕ fields construct a traceless tensor.

Written in the new basis, the mixing matrix is (with Ci being the coefficient of Oi)

d

d logµ



C1

C3

C2

C4


=

α

4π



0 12 0 0

0 8
3 0 0

0 0 16
3

8
3

0 0 16
3

8
3





C1

C3

C2

C4


. (2.8)

The mixing matrix is now block diagonal (colour coded in Eq. (2.8) with blue and red),

indicating that RG flow between the two sectors is forbidden by angular momentum con-

servation. We will work with the new basis defined by Oi in the following.

There are two additional noteworthy features of the above mixing matrix. First, in the

spin-0 sector (colour coded with blue), the operator O1 does not generate O3, whereas O3

does generate O1. This is because O1 is effectively dimension 7 (see Appendix A) whereas

O3 is dimension 8, and in QFT there is no flow from an operator of lower dimension to an

operator of higher dimension. Second, in the j = 2 sector, the 2×2 mixing matrix (colour

coded with red) has rank 1, suggesting that there is a linear combination of operators,

namely O2 − 2O4, that does not run. Whether this holds only at one loop level or is also

due to some hidden symmetry remains to be verified.

In section 3 we will derive bounds on the Wilson coefficients from terrestrial experi-

ments that are sensitive to scales at or below the electron mass. The Wilson coefficients

Ci(me) entering such bounds are related to those at the scale Λ characteristic of a UV

completion through the solution to the RG equation. Neglecting the running of α this

solution is simply

Ci(me) =
[
exp

( α
4π
γ ln

me

Λ

)]
ij
Cj(Λ) , (2.9)

where γ is the matrix on the right-hand side of Eq. (2.8). Taking α = 1/137 and Λ = 1 TeV

as an example, the Wilson coefficients at the two scales are related by

C1(me)

C3(me)

C2(me)

C4(me)


=



C1(Λ)− 0.10C3(Λ)

0.98C3(Λ)

0.96C2(Λ)− 0.02C4(Λ)

0.98C4(Λ)− 0.04C2(Λ)


. (2.10)

Even for the modest value Λ = 1 TeV, the effects of RG running are as large as 5–10%,

depending on the coefficient.
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Figure 1. At energies much lower than the mass of the KK graviton, tree-level exchange is

approximated by a local interaction and represented as an effective operator.

2.3 An example UV completion

The form of the operators, in particular in the j = 2 sector, indicates that they can

originate from integrating out heavy spin-2 particles from a UV theory. Massive spin-2

particles generally arise as composite states (analogous to spin-2 mesons in QCD), or in

models with extra dimensions such as the Kaluza-Klein (KK) graviton modes [20, 21]. Well

known examples are the ADD [22] model and the RS model [23], motivated as solutions to

the hierarchy between the Planck scale and the weak scale. In the ADD setup, the extra

dimensions are flat and the fundamental scale is on the order of a TeV. The weakness of

gravity is due its leakage into the extra dimensions and to get an effective Planck scale in

4D, the size of extra dimensions are relatively large. So in the ADD case the KK gravitons

are light and the mass gap is small, and show up as collective effects. In the RS model,

the extra dimension is exponentially warped by the bulk cosmological constant while the

4D branes at the two boundaries remain flat due to the balance between the cosmological

constant and the brane tension. With the fundamental scale of the theory set to be Planck

scale, fields living on the IR brane (the one at the more curved end of the extra dimension)

will appear to have effective mass of the weak scale. Contrary to the ADD case, the KK

graviton modes in RS have order TeV mass gaps and could show up as distinct resonances at

colliders. Below we are not necessarily committed to any of these specific scenarios, rather

we show that they can generate the dimension-8 operators contained in our low-energy

EFT and thus provide examples of UV completions.

We thus consider the tree-level exchange of a massive graviton (e.g. the lightest KK

modes in the RS model) between the light scalar ϕ and electrons/photons. At energies

much smaller than the mass of the KK graviton, this interaction can be approximated by

local effective operators, see Fig. 1 as an illustration.

This tree-level matching process can be formally carried out by replacing the heavy

field in the action by its classical solution of the EoM. Regardless of its UV origin, the

kinetic part of the action of a massive spin-2 field hµν is described by the Fierz-Pauli

action [24],

SFP =

∫
d4x

{
1

2
∂ρhµν∂

ρhµν − ∂µhνρ∂
νhµρ + ∂µh

µν∂νh

−1

2
∂ρh∂

ρh− 1

2
m2
KK

(
hµνh

µν − h2
)}

,

(2.11)
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where h = hµµ. The KK graviton couples to matter fields through the energy-momentum

tensor Tµν , with the interaction

Lint = − 1

ΛKK
hµνT

µν . (2.12)

Here the scale ΛKK characterizes the strength of the interaction. In the RS model we

have ΛKK ∼ TeV but more generally it is associated with the scale of spontaneous CFT

breaking or the dynamical scale of confinement in composite models. For fermions (ψ),

vectors (γ), and scalars (ϕ), the energy-momentum tensor takes the form

Tψµν =
i

4
ψ̄ (γµDν + γνDµ)ψ − i

4

(
Dµψ̄γν +Dνψ̄γµ

)
ψ

− ηµν
(
ψ̄γρDρψ −mψψ̄ψ

)
+
i

2
ηµν∂

ρ
(
ψ̄γρψ

)
, (2.13)

T γµν =
1

4
ηµνF

λρFλρ − FµλF
λ
ν , (2.14)

T ϕµν = ∂µϕ∂νϕ− 1

2
ηµν

(
∂ρϕ∂

ρϕ−m2
ϕϕ

2
)
. (2.15)

To integrate out the KK graviton at tree level, we rewrite the full action as

S =

∫
d4x

{
1

2
hµνOµνρσhρσ −

1

ΛKK
hµνT

µν

}
, (2.16)

with

Oµν
ρσ = −

[
η
(µ
(ρ η

ν)
σ) − ηµνηρσ

] (
□+m2

KK

)
+ 2∂(µ∂(ρη

ν)
σ) − ∂µ∂νηρσ − ∂ρ∂ση

µν . (2.17)

Then the classical equation of motion for hµν reads

Oµνρσhρσ =
1

ΛKK
Tµν , (2.18)

and we obtain the classical solution

hcρσ = O−1
ρσαβ

1

ΛKK
Tαβ , (2.19)

with O−1 defined by

OµνρσO−1
ρσαβ =

1

2
(δµαδ

ν
β + δµβδ

ν
α) . (2.20)

The effective Lagrangian is then obtained by substituting the classical solution back into

the original Lagrangian,

LEFT = − 1

2ΛKK
hcµνT

µν

= − 1

2Λ2
KK

TµνO−1
µνρσT

ρσ . (2.21)

The effective operators are obtained by expanding O−1 in 1/m2
KK . To leading order, we

have

O−1
µνρσ = − 1

m2
KK

(
1

2
ηµρηνσ +

1

2
ηµσηνρ −

1

3
ηµνηρσ

)
. (2.22)
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Substituting the expressions for Tµν in Eq. (2.15) into Eq. (2.21), we obtain the effective

operators

LEFT ⊃ 1

2Λ2
KKm

2
KK

[(∂µϕ∂νϕ− 1

6
ηµν(∂ρϕ∂

ρϕ+m2
ϕϕ

2))iψ̄γν
↔
Dµψ

− (∂µϕ∂νϕ− 1

4
ηµν∂ρϕ∂

ρϕ)FµλF
νλ] . (2.23)

In the above calculation, we have ignored terms in Tψµν that vanish under the EoM. Matching

with the effective Lagrangian, we find

C1 =
1

24Λ2
KKm

2
KK

, C2 =
1

2Λ2
KKm

2
KK

, C3 = 0 , C4 = − 1

2Λ2
KKm

2
KK

. (2.24)

We see that in this specific example, the UV scale is the hybrid scale
√
ΛKKmKK ,

which could be the geometrical mean of the extra-dimension’s volume and fundamental

scale in flat extra-dimension models or just the scale of CFT breaking or confinement in

RS and composite models respectively.

As a final comment, we note that in models of spontaneously broken CFTs a similar

coupling of the form of ∂µϕ∂νϕ × Tµν/f
4
CFT, where ϕ is the dilaton field, fCFT being the

scale of spontaneous CFT breaking, is predicted to be present with the coefficient of this

term predicted by the a-anomaly [25, 26].

2.4 Positivity bounds

The Wilson coefficients of the effective operators are constrained by fundamental properties

of the UV theory, such as Lorentz invariance, unitarity, causality and locality. These

properties ensure that the S-matrix is an analytic function of the Mandelstam variables

(s, t, u), other than poles and cuts determined by on-shell unitarity. The simplest bounds

are obtained by considering the two-to-two scattering amplitude A(s) in the forward limit

in the complex plane of the s (see e.g. [27, 28]). The Wilson coefficient is related to a

contour integral of the amplitude around the origin,
∮

ds
2πi

A(s)
s3

. By distorting the contour,

this integral becomes the integral of the discontinuity along the real axis up to infinity and

unitarity, which relates the discontinuity to the cross section, ensures its positivity. In the

end, this positivity bound is expressed by

d2A(s)

ds2
≥ 0. (2.25)

To apply this to our case, we consider the contribution of the effective operators to the

forward scattering of ϕ+ ψ → ϕ+ ψ and ϕ+ γ → ϕ+ γ, in which case we obtain

d2A(ϕ+ ψ → ϕ+ ψ)

ds2
= 2C2 ,

d2A(ϕ+ γ → ϕ+ γ)

ds2
= −C4/2. (2.26)

The positivity bounds thus require

C2 ≥ 0 , C4 ≤ 0. (2.27)
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Notice that the operators O1 and O3 do not have contributions of order s2 to the scattering

amplitude and are thus not constrained by the positivity bound. The bounds above are

consistent with the Wilson coefficients obtained from integrating out the KK graviton, see

Eq. (2.24).

3 Experimental bounds on the operators

In this section we study the experimental implications of our EFT, assuming that ϕ is a

viable ultralight, sub-eV, dark matter candidate. In the rest frame of the solar system, the

field ϕ can be approximated as a background field,

ϕ(t, x⃗) = ϕ0 cos(mϕ(t− v⃗DM · x⃗)) , (3.1)

where |v⃗DM| ≃ 10−3 [29, 30] is the relative velocity of the DM wind to the sun. The

amplitude ϕ0 can be determined by noticing that the energy density of the ϕ field is

ρϕ =
1

2
(ϕ̇2 +m2

ϕϕ
2) =

1

2
m2
ϕϕ

2
0 . (3.2)

Identifying this with the local DM density, ρϕ = ρDM ≃ 0.4 GeV/cm3 [31], we have

ϕ0 =
√
2ρDM/mϕ. Notice that for simplicity we neglect here the stochastic nature of the

DM field [32–34], as well as the DM velocity dispersion, as these effects lead to subdominant

effects below.

In cases where the spatial dependence of Eq. (3.1) can be neglected, the effective

operators induce time oscillations in fundamental constants such as the speed of light, the

electron mass, and the fine structure constant. These effects are the subject of Section 3.1.

In experiments testing for directional Lorentz violation, on the other hand, the spatial

dependence is crucial and the j = 2 operators lead to the effects discussed in Section 3.2.

Current experiments probing both kinds of effects have produced null results and can

be used to set bounds on the Wilson coefficients as described below. The characteristic

energy scales of such experiments are at or below the electron mass, so the bounds can

be interpreted as being on Ci(me) – they can be turned into bounds on Wilson coefficients

evaluated at high-energy scales of potential UV completions using Eq. (2.9).

3.1 Bounds from the oscillation of fundamental constants

We start by noticing that, by replacing ϕ with its background value in Eq. (3.1), O1 and

O3 lead to corrections to the electron mass term and photon kinetic term respectively 3

C1O1 −→ C1ρDM(1− cos(2mϕt))meψ̄ψ , (3.3)

C3O3 −→
1

2
C3ρDM(1− cos(2mϕt))FµνF

µν . (3.4)

3The shift symmetry breaking operatorsQ1 = m2
ϕϕ

2iψ̄γν
↔
Dνψ andQ3 = 1

2
m2
ϕϕ

2FνρF
νρ, with coefficients

d1 and d2, can be taken into account by interpreting the bounds derived for C1 and C3 as being on the

combinations of them.
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In deriving these equations we have ignored the spatial dependence inside the cosine, since

the wavelength of the ϕ field is always much larger than the typical size of the experiments

we consider in the following, and also used the EoM, i /Dψ = meψ. We find that O1 induces

a shift in the electron mass, while O3 induces a shift of the fine structure constant (after a

field redefinition to bring the photon kinetic term into the canonical form), both oscillate

with frequency 2mϕ:

∆me

me
= −C1ρDM(1− cos(2mϕt)) , (3.5)

∆α

α
= 2C3ρDM(1− cos(2mϕt)) . (3.6)

Next we consider the effects of O2 and O4. With the DM background in Eq. (3.1)

(ignoring again the spatial dependence), we have

C2O2 −→ iCµνψ̄γ
µ

↔
Dνψ , (3.7)

C4O4 −→ −1

2
KµνF

µρF νρ, (3.8)

with

Cµν = C2ρDM sin2(mϕt)×Diag{3/2, 1/2, 1/2, 1/2} ,
Kµν = −C4ρDM sin2(mϕt)×Diag{3/2, 1/2, 1/2, 1/2} . (3.9)

We see that O2 and O4 modify the kinetic terms of the electron and photon fields in a

way that discriminates between time and spatial components, and thus their effects can

not simply be taken as a shift to fundamental constants.

In low-energy atomic physics experiments the operator O2 induces non-trivial changes

to the non-relativistic QED Hamiltonian, h. For instance, the kinetic term for the electron

is shifted to

h ⊃ −
(
1− 5

2
C2ρDM sin2(mϕt)

)
∇2

2me
. (3.10)

This leads to a change in the Rydberg energy, which can be obtained by replacing me →
(1 + 5

2C2ρDM sin2(mϕt))me. However, this simple replacement is not generally true for

higher-order terms responsible for (hyper)fine structure, such as spin-orbit and spin-spin

interactions. We discuss the shifts in these terms in Appendix C.

To see the effect of O4, we write the photon Lagrangian in the following form:

L =− 1

4
FµνF

µν + C4O4 (3.11)

→1

2
(1− C4ρDM sin2(mϕt))E

2 − 1

2
(1 + C4ρDM sin2(mϕt))B

2 . . . , (3.12)

where the . . . refers to terms suppressed by v⃗DM, which are the topic of section 3.2. We see

that the DM background acts as a medium with effective permittivity ϵ and permeability

µ given by

ϵ =
1

µ
= 1− C4ρDM sin2(mϕt) . (3.13)
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This implies that the speed of light is modified to

c′ =
1

√
ϵµ

≃ 1 + C4ρDM sin2(mϕt). (3.14)

The requirement of c′ ≤ 1 gives C4 ≤ 0, in agreement with the positivity bound in Eq. (2.27).

The coefficient C4 also affects atomic-physics observables such as the Rydberg energy and

(hyper)fine structure – the relevant calculations are given in Appendix C.

We now consider experimental probes of the effects discussed above. Oscillations of the

electron mass and fine structure constant due toO1 andO3 can be probed by comparing two

systems which have typical frequencies f1 and f2 with different dependence on me and α,

and looking for the sinusoidal modulations of the ratio of the two frequencies. Currently the

strongest bounds on the oscillation of α come from optical clock comparisons. In [35, 36],

the 2S1/2(F = 0) → 2D3/2(F = 2) electric quadrupole (E2) and the 2S1/2(F = 0) →
2F7/2(F = 3) electric octopole (E3) transitions of 171Yb+ are measured and compared. The

strong bounds benefit from the strong α dependence ∆(fE3/fE2)
fE3/fE2

= −6.95∆α
α . Also studied

in [36], as well as in [37], is the comparison between the E3 transition with the 1S0 →
3P0 transition in 87Sr, which has the sensitivity ∆(fE3/fSr)

fE3/fSr
= −6.01∆α

α . Considering the

scenario where the oscillation of α is due to a dark matter background φ, with interaction of

the form L ⊃ de
√
4πGφFµνF

µν/4 where G is the Newton’s constant, bounds are reported

on the parameter de in [36, 37]. By identifying the same amplitude of oscillation of α

at the same frequency, we can relate the bound on our Wilson coefficient at given mϕ to

the bound on de at 2mϕ, with the correspondence C3(mϕ) ↔
√

2πG
ρDM

de(2mϕ)
2mϕ

. We show the

bounds on C3 from these two experiments in the upper left plot in Fig. 2. We see that C3
is more constrained by the Yb+/Sr comparison at mϕ ≳ 10−18 eV, which requires roughly

|C3| ≲ 10−14 eV−4. (3.15)

In the upper right plot of Fig. 2 we show the corresponding bound on Λ, using Eq. (2.4).

The bound is very weak, Λ ≳ 10 keV, compared to the scale the UV completions considered

in Sec. 2.3.

The bounds on the oscillation of me are generally weaker than those on α. In [38], the

resonant frequency fc of a silicon optical cavity and the frequency fH of the 1H hyperfine

transition are compared, yielding sensitivity to oscillations of me according to ∆(fH/fc)
fH/fc

=
∆me
me

. The bound is reported in terms of the parameter dme, defined by the interaction

L ⊃ −dme
√
4πGmeφψ̄ψ. At lower masses mϕ ≲ 10−20 eV, stronger bounds are provided

in [39] by the comparison of 171Yb optical lattice clock and a 133Cs fountain clock. Using

the correspondence C1(mϕ) ↔
√

2πG
ρDM

dme (2mϕ)
mϕ

, we can translate the bounds therein to

bounds on C1. As shown in the lower left plot of Fig. 2, we find roughly

|C1| ≲ 10−10 eV−4 . (3.16)

The corresponding bound on the cut-off Λ =
√
4π|C1|−1/4 is shown in the lower right plot,

leading to Λ ≳ keV.
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Figure 2. The bounds on Wilson coefficients from experiments searching for oscillations of funda-

mental constants for different dark matter mass mϕ. Upper: Exclusion regions of C3 (left) and the

corresponding cut-off Λ ∼
√
4πC−1/4

3 (right). Orange regions are obtained from [36] (comparison

of Yb+ E3/E2 as well as Yb+/Sr) and blue regions from [37] (comparison of Yb+/Sr). Lower:

Exclusion regions of C1 (left) and the corresponding cut-off Λ ∼
√
4πC−1/4

1 (right), obtained by

comparing the frequencies of Yb/Cs [39] (orange) or H/Si [38] (blue). Also shown with gray shaded

regions are bounds from the MICROSCOPE experiment, obtained from direct translation of the

bounds given in [15, 40].

There is one subtlety in re-interpreting bounds derived from linear DM coupling as

those on quadratic coupling, as we did above. When the quadratic coupling is positive

and sufficiently strong, the DM profile is modified significantly due to interactions with

the earth and the ϕ field gets screened at the surface of the earth [15, 40]. Any terrestrial

experiments will thus not feel it. For our case, this happens at C1,3 ≳ 10−3(10
−20eV
mϕ

)2eV−4,

so is not relevant for the parameter space studied above, where the clock experiments are

most sensitive. However, at larger mϕ the screening effect could be important.

In Fig. 2 we also show the bounds from equivalence principle tests. The stringent limit

is from the MICROSCOPE experiment [41] which measures the differential accelerations

of macroscopic masses. We notice that for C3 this bound is weaker than those from clocks,

while for C1 it could be stronger at mϕ ≳ 10−19 eV. However, the bounds from clocks are

expected to be improved significantly by future experiments. In particular, the nuclear

clock [42, 43] is expected to improve the ability to probe scalar dark matter by 5-6 orders

of magnitude, due to its strongly enhanced sensitivity.

Although the operators O2 and O4 lead to more complicated effects than the simple
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oscillation of fundamental constants, they can still affect the results of aforementioned

frequency comparison experiments. Consider for example the fc/fH comparison. The

frequency of the cavity is determined by fc = Nc/2d, where N is an integer number, c is the

speed of light and modified by C4 according Eq. (3.14), d is the cavity size and proportional

to the Bohr radius d ∝ 1/mee
2 which is modified by me → (1 + 5

2C2ρDM sin2(mϕt))me

and e2 → (1 + C4ρDM sin2(mϕt))e
2 (from the correction to the Coulomb potential due

to the change in permittivity). We find that fc → (1 + (52C2 + 2C4)ρDM sin2(mϕt))fc.

We also derive the frequency of Hydrogen hyperfine splitting from spin-spin interaction

in Appendix C and obtain fH → (1 + (5C2 + 2C4)ρDM sin2(mϕt))fH . In the end we have
∆(fH/fc)
fH/fc

= 5
4C2ρDM(1−cos(2mϕt)). The bound obtained for C1 from this experiment should

thus be taken as the bound for C1−5C2/4. In principle, one could also derive similar bounds

from other experiments mentioned above. However, the dependence of energy levels on C2
and C4 in high Z atoms such as 133Cs is not as simple as for the Hydrogen atom and

requires numerical calculations taking into account the many-body effects and higher order

relativistic corrections, which are beyond the scope of this work.

Concerning the correction to the speed of light in Eq. (3.14), we may directly put

bounds on C4 from experiments measuring the propagation of light, for instance, the Lunar

Laser Ranging experiment, where the time of travel for a round-way trip of the laser between

the earth and the moon was measured. The oscillation in c maps onto an oscillation in the

time of travel, which would be interpreted as a correction to the distance r between earth

and the moon, ∆r ≈ −rC4ρDM sin2(mϕt). However, one should bear in mind that the

frequency of the clock used in the experiment would also be modified by C4. Nevertheless,
supposing that there is no non-trivial cancellation between the two effects, we can make

an estimation of the bound. In [44], the bound of the amplitude A for the oscillation of

∆r with period of one sidereal month was obtained to be A ≲ 1 mm. This gives a bound

|C4| ≲ 10−3 eV−4 at mϕ ≈ 10−21 eV. Translating this to a mass scale using Eq. (2.4),

we have Λ ∼
√
4π|C4|−1/4 ≲ 20 eV, which is very weak compared to the bounds from

clock/cavity comparison experiments. In Sec. 3.2 we will show that linear corrections in

v⃗DM which were neglected in Eq. (3.14) do not affect round-way trip measurements and

this bound still holds. On the other hand, quadratic corrections in v⃗DM do not cancel out

in a round way trip, and stronger bounds can be obtained using interferometers.

3.2 Bounds from experiments measuring Lorentz violation

One feature of particular interest in our EFT is the Lorentz violating effects (in particular

the asymmetry under spatial rotations) from O2 and O4 when ϕ takes the background

value Eq. (3.1) and v⃗DM is not ignored. Our EFT thus provides a concrete model to be

tested in the large number of experiments testing Lorentz violation in recent years.

Motivated by potential Lorentz violation at the Planck scale, the general low-energy

effective theory describing the effects of spontaneous Lorentz symmetry breaking has been

developed as the Standard-Model Extension (SME) [45, 46] and has been widely used to

interpret results from experiments hunting for Lorentz violation. For comparison with our
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EFT, the relevant terms in the SME Lagrangian take the form

LSME ⊃ i(ηµν + cµν)ψ̄γ
µ

↔
Dνψ − 1

4
FµνF

µν − 1

4
(kF )κλµν F

κλFµν . (3.17)

Here the parameters cµν and (kF )κλµν characterize Lorentz-violating, in the electron and

photon sector respectively. They are defined in the Sun-centred celestial equatorial frame

(SCCEF) 4 and are assumed to be constant. Both of them are defined to be (double)

traceless, cµµ = 0, (kF )
µν
µν = 0. Furthermore, (kF )κλµν has the symmetries of the Riemann

tensor.

Ten of the 19 independent coefficients in (kF )κλµν generate a birefringence effect, which

is strongly constrained by polarization measurements of photons traveled over cosmological

distances. If these ten components are zero, (kF )κλµν can be formulated as

(kF )κλµν =
1

2
(ηκµkλν − ηκνkλµ − ηλµkκν + ηλνkκµ), (3.18)

with kµν ≡ (kF )
µαν
α , which is symmetric and traceless.

Comparing with our effective operators after substituting ϕ with Eq. (3.1) yields

cµν = C2ρDM(vµvν − ηµν/4),

kµν = −C4ρDM(vµvν − ηµν/4), (3.19)

with vµ =
(√

1 + v2DM, v⃗DM

)
. Unlike in the previous subsection, here (to be compared

with the bounds for SME parameters) we ignored the oscillation and took the average

⟨sin2(mϕt)⟩ = 1/2. This is valid in two regimes: either when the oscillation period is much

shorter than the typical time scale of the experiment so that the oscillation is averaged

out, or when the oscillation is so slow that the amplitude does not change much during

the experiment. The intermediate region requires a dedicated analysis of the original

experimental data and we leave it for future work. In this subsection we are more focused

on the Galilean violating effects, occurring at order |v⃗DM|2 ∼ 10−6 .

One of the most precise terrestrial tests of Lorentz violation comes from the comparison

of the E3 transitions of two 171YB+ clocks [47]. These two clocks are placed in magnetic

fields with different orientations. The magnetic fields define the quantization axis for these

two ions and break the mF degeneracy in the 2F7/2(F = 3) states. For both ions the
2F7/2(F = 3,mF = 0) states are selected. If no Lorentz violation exists, the frequencies

of the transitions in these two clocks should be the same. With Lorentz violation, on

the other hand, the energy levels of the clocks are modified to be different. First, the

cµν terms directly add to the non-relativistic Hamiltonian of the electron a spherically

asymmetric contribution [48]. Second, Lorentz violation in the photon sector modifies the

electromagnetic potential sourced by the nucleus [49]. These two effects are described by

the effective Hamiltonian [48, 50]

δh = −C(2)
0

p2 − 3p2z
6me

, (3.20)

4This frame is defined as follows. The Z-axis is parallel to the rotational axis of the Earth and directed

north. The X-axis points from the Sun towards the vernal equinox. The Y -axis completes a right-handed

system.
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with C
(2)
0 = c′xx + c′yy − 2c′zz and c′µν = cµν − 1

2kµν .
5

Notice that the c′µν in Eq. (3.20) is the value in the clock frame while the parameters

in Eq. (3.17) are defined in the SCCEF frame, so that one has to do a time-dependent

Lorentz transformation to relate them due to the orbiting of the earth around the sun as

well as the rotation of the earth. The experiment thus has sensitivities not only to the

spatial components c′XY but also to c′TX and c′TT
6. However, these are suppressed by a

small boost factor, β ∼ 10−4 and therefore result in weaker bounds.

With the data from a six-month measurement period, [47] reports bounds on Lorentz-

violating parameters. The strongest bounds are put on the spatial components c′XY ≲
10−20. This implies that

C2 + C4/2 ≲ 2× 10−9 eV−4 , (3.21)

which translates to a bound on the cutoff of Λ ≳ 0.5 keV.

Lorentz violation in the photon sector can also be probed with interferometers, because

the speed of light is modified and depends on the direction of propagation. In the lab frame,

we have the modification of the effective refractive index n̄ [52]:

δn̄ = −1

2
l̂j l̂kκ̃jke− +

1

2
ϵjkl l̂j κ̃klo+ + κ̃tr, (3.22)

where κ̃jke− = −kjk + 1
3kiiδ

jk, κ̃jko+ = −ϵijkk0i, κ̃tr = 2
3k00 [53], and l̂ denotes the direction

of the propagation. In the interferometer experiments, two beams of light are sent to two

different directions l̂1 and l̂2 and compared when reflected back. The effect of the second

term in Eq. (3.22) cancels out in this two way measurement (since l̂ changes sign on the

way back). Then the difference between these two beams is only sensitive to κ̃jke−:

n̄1 − n̄2 = δn̄1 − δn̄2 = −1

2
(l̂j1 l̂

k
1 − l̂j2 l̂

k
2)κ̃

jk
e−. (3.23)

Again the Lorentz transformation from the lab frame to the SCCEF provides the (weaker)

sensitivity of the experiment also to other LV parameters.

In [52], the data from Laser Interferometer Gravitational-Wave Observatory (LIGO)

was analysed and the null LV signal 7 gives strong bounds |κ̃XYe− | < 2.7 × 10−22. Using

Eq. (3.19) and the relations under Eq. (3.22), together with the positivity bound, this

implies

−2× 10−10 eV−4 ≲ C4 ≤ 0, (3.24)

or in terms of the cut-off, Λ ≳ keV.

5The dependence on the particular combination cµν − 1
2
kµν can be understood by the observation that

by doing a coordinate transformation xµ → xµ − 1
2
kµνx

ν [49], the Lorentz-violating terms in the photon

sector can be eliminated and the fermion sector changes as cµν → cµν − 1
2
kµν [51]. Such a transformation

corresponds to a choice of “rods and clocks” defined by the freely-propagating electromagnetic field in the

experiment.
6Here and in the following we use the uppercase indices for the SCCEF coordinates and lowercase indices

for coordinates in the lab frame.
7In fact an anomaly with semi-annual frequency is found from the analysis. However this should not be

interpreted as signal of LV since it is imcompatible with the constraints obtained from other frequencies.
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Let us comment on the range of mϕ for which the bounds from the two experiments

above apply. In the clock comparison experiment, the data is taken every roughly 2 seconds

and covers a period of Te ≈ 4×106 s. This means either mϕ ≪ 10−21 eV so that the period

of is oscillation much longer than Te, or mϕ ≫ 10−15 eV so that the oscillation is averaged

out. For the analysis of data from LIGO, which covers a period of 16 months, the slow

oscillation regime corresponds to mϕ ≪ 10−22 eV. For the fast oscillation regime, we

require 2π/mϕ ≪ 2L/c, where L ≃ 4 km is the arm length of LIGO. This corresponds

to mϕ ≫ 10−11 eV. Away from these mass ranges, the oscillating nature of ϕ cannot be

ignored when obtaining bounds from the experimental data.

4 Astrophysical, cosmological and collider bounds

In addition to terrestrial experiments, our theory can also leave signals in astrophysical and

cosmological observations, warranting dedicated investigation that we leave for future work.

However, we note the bounds derived from such observations often suffer from considerable

uncertainties or rely on specific assumptions. For instance, the observation of high-energy

cosmic rays could place strong constraints on Lorentz violation [54–56]. If the coefficient

κ̃tr is positive, charged particles experience rapid energy loss through Cherenkov radiation

when their energy exceeds a critical energy Ec determined by κ̃tr. Thus, observations of

charged particles with energy Eo that have traversed astronomical distances imply that

Eo < Ec, leading to bounds on κ̃tr. The specific bound for our case depends on the

distribution as well as stochastic fluctuations of dark matter on the larger scales between

the cosmic source and Earth.

There are additional bounds that do not assume ϕ as dark matter. The interaction

between SM particles and light particles with masses ≲ 100 MeV can be constrained by

their effect on the rate of stellar cooling [57]. As an example, consider the process of

photon annihilation into a pair of ϕ induced by the operator O3. The cross section in the

center of mass frame is given by σγγ→ϕϕ = C2
3ω

6/32π, where ω is the photon energy. In

the thermal bath of photons, the energy loss rate per unit volume can be estimated as [58]

Γγγ→ϕϕ = n2γ⟨2ωσγγ→ϕϕ⟩ ≈ 178C2
3T

13. The constraint of the additional energy loss (per

unit volume and time) in the supernovae burst SN1987A is about Γ < 10−14 MeV5, with

the core temperature T ≈ 30 MeV [57]. This gives the bound Λ ∼
√
4π/C1/4

3 ≳ 100 GeV.

The cooling of Horizontal Branch and Red Giant stars provide bounds in a similar way.

With typical core temperature T ≈ 10 keV, they give Λ ≳ GeV, which are weaker then

that from SN1987A, but still significantly stronger than the bounds derived from terrestrial

experiments. However, it is noteworthy that all these cooling bounds can potentially be

avoided through density (Chameleon) effects [59–61].

On the cosmological front, for ϕ being ultralight particles, they must decouple from

the thermal bath prior to neutron decoupling to avoid changing the effective relativistic

degrees of freedom and impacting the Big Bang Nucleosynthesis (BBN) process. This

requirement leads to the condition n⟨σv⟩ < H, where n ∼ T 3 is the number density (T

being the temperature at decoupling), ⟨σv⟩ ∼ T 6/Λ8 is the averaged cross section, and

H ∼ T 2/MP is the Hubble parameter (MP being the Planck mass). Consequently, we
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obtain the constraint Λ > (T 7MP )
1/8. Considering T ∼ MeV, we find Λ ≳ GeV. Again,

this stringent bound can potentially be circumvented through density effects.

Collider searches also offer valuable insights into our model. For instance, we can

utilize data from the Large Electron-Positron Collider (LEP) on mono-photon events with

significant missing energy to constrain the coupling of dark matter to electrons. The

SM background in such cases is e+e− → γνν, and it is found to be in agreement with

measurements (see Table 6 in [62]). By imposing the requirement that the additional cross-

section from e+e− → γϕϕ is smaller than the uncertainty, we can constrain the couplings

C1 and C2. We do not consider such bounds in this work, considering the possibility that

ϕ could be a composite state, which should be replaced by more fundamental degrees of

freedom at collider energies.

5 Discussion and conclusions

In this paper we have studied an effective theory of scalar ultralight dark matter (ULDM)

with quadratic couplings to the QED sector of the SM. Assuming a shift and Z2 symmetry,

the leading interactions between the ULDM and the SM arise from dimension-8 operators.

We calculated the one-loop RG mixing of such operators and showed that to all orders

they can be can be classified into two sectors, j = 0 or j = 2, without any RG mixing

between them. Such operators can be associated with a variety of fundamental theories

and in some cases may be the leading interactions between the ULDM and the SM – as

an explicit example we showed how they can be generated by massive spin-2 graviton

exchange. The ULDM background leads to Lorentz and Galilean violating effects, which

we shall refer to collectively as Lorentz violating (LV).

The sign of the Wilson coefficients (C) in the j = 2 sector is constrained by positivity

bounds. Regarding experimental tests of our theory, we considered two types of terres-

trial experiments: those investigating the oscillation of fundamental constants and those

searching for Lorentz-violating effects. We found that the first kind of experiment provides

bounds on the Wilson coefficients of both sectors, while only the operators of j = 2 sec-

tor are probed in the second kind of experiment. When the bounds are translated to a

mass scale using C ∼ 16π2/Λ4, the current sensitivity of these two kinds of measurements

only reaches the scale of Λ ≳ O(1 − 10) keV. These bounds are found to be rather weak,

because the effects of the dimension-8 operators in terrestrial experiments are suppressed

by ρDM/Λ
4 ≈ (0.04 eV/Λ)4. We note that this scaling is not unique to our model, but

generally exists for other Lorentz-violating ULDM models. For instance, consider a dark

photon A′
µ. To obtain Galilean violation one must replace ∂µϕ∂νϕ → A′

µA
′
ν in the opera-

tors discussed above. This would seem to generate dimension-6 operators, but there is an

extra suppression of m2
A/Λ

2 due to U(1) gauge symmetry. The dipole operator – which

is dimension 5 – leads to magnetic-like DM background that interacts with electron spin,

and generically cannot be probed in the clock comparison experiments.

The bounds obtained here could be improved by an order of magnitude with future

clock experiments. Moreover, the potential existence of an ULDM solar halo [63–65],
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leading to a bound DM density in the solar system approximately 104 times larger than

that of the standard halo model, would also elevate the bounds by a factor of 10.

Unlike the approach commonly discussed thus far in the literature (based on the SME

ansatz), which is not based on a consistent effective theory, our EFT of ULDM gives a con-

sistent description of Lorentz and Galilean symmetry violation. It leads to several other

interesting implications, namely that we can consistently compare the bounds associated

with Galilean symmetry violation to those associated with oscillation of fundamental con-

stants and tests of equivalent-principle violation. Interestingly, enough, we find that these

completely different three classes of experiments currently probe roughly the keV scale. In

addition, we have found that stronger but indirect bounds arise from astrophysical and

cosmological observations, which probe the 0.1-100 GeV scale. However, these bounds are

model dependent, and can be avoided by density and temperature effects which may give

rise to dramatic changes in the ULDM mass and coupling, thus inhibiting its production

in stars or in the early universe.
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A Eliminating the O1 operator

We can use the following field redefinition to absorb O1 into O1

ψ −→ ψ +
c1
mψ

1

2
∂µϕ∂

µϕψ , (A.1)

ψ̄ −→ ψ̄ +
c1
mψ

1

2
∂µϕ∂

µϕψ̄ . (A.2)

Under the above redefinition,

iψ̄
↔
/Dψ −→ iψ̄

↔
/Dψ +

c1
mψ

O1 , (A.3)

−mψψ̄ψ −→ −mψψ̄ψ − c1O1 , (A.4)

where we ignored terms of higher dimension operators (d > 10). Thus, the Lagrangian now

becomes

L −→ LQED +

(
c1 +

c1
mψ

)
O1 +

4∑
i=2

ciOi . (A.5)
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Figure 3. New vertices

We can now redefine the coefficient c1 −→ c1 − c1
mψ

, which leads to the Lagrangian in

Eq. (2.3).

B RG flow calculation

B.1 New vertices

Apart from the QED vertex, our calculation involves six new vertices associated with the

dimension-8 operators. Consider the expanded form of operators O1 and O3:

O1 = ∂µϕ∂
µϕ iψ̄γν

↔
Dνψ

=
1

2
∂µϕ∂

µϕ iψ̄γν∂νψ − 1

2
∂µϕ∂

µϕ i(∂νψ̄)γ
νψ︸ ︷︷ ︸

V1

− e∂µϕ∂
µϕAνψ̄γ

νψ ,︸ ︷︷ ︸
V3

O3 =
1

2
∂µϕ∂

µϕFνρF
νρ ,︸ ︷︷ ︸

V2

The terms V1, V2 and V3 correspond to the following vertices,

Operators O2 and O4 can be expanded similarly and they contain three more vertices

that look identical to the above.

B.2 Diagrams contributing to operator mixing at one-loop order

The RG equation for the Wilson coefficients follows from the structure of the operator

renormalization matrix for O1 – O4. Operator renormalization in the MS scheme can be

extracted from the UV divergent parts of photon-DM scattering and electron-DM scatter-

ing. There are several diagrams contributing to each of these processes, which are shown

below. Evaluating these diagrams and requiring that the scattering amplitudes are UV

finite after including wavefunction renormalization of the electron and photon fields leads

to Eq. (2.5).

B.2.1 First set of diagrams (electron-DM scattering)

The relevant diagrams for electron-DM scattering are given in Figure 4.
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Figure 4. Electron-DM scattering diagrams

B.2.2 Second set of diagrams (photon-DM scattering)

The relevant diagrams for photon-DM scattering are given in Figure 5.

C Energy levels of the Hydrogen atom

In this section we give results for the dependence of the hydrogen atom energy levels on the

Wilson coefficients C2 and C4, when the field ϕ takes on the background value in Eq. (3.1).

To derive them, we have obtained the total Hamiltonian for the electron-proton system

interacting with the electromagnetic field in the non-relativistic limit using the standard

techniques outlined in, for instance, [66]. This involves taking the non-relativistic limit

of the free Dirac Lagrangian, and then calculating the interaction Hamiltonian from the

Fourier transform of the Born-level electron-proton scattering amplitude in the same limit.

In presenting the results, it is useful to introduce the quantities

c̃ ≡ C2ρDM sin2(mϕt) , k̃ ≡ C4ρDM sin2(mϕt) . (C.1)

Time derivatives acting on these objects are suppressed by mϕ and are thus neglected in

what follows.
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Figure 5. Photon-DM scattering diagrams

Focusing on the terms relevant for the Rydberg energy, the spin-orbit interaction, and

the spin-spin interaction, the resulting time-dependent Schrodinger equation takes the form(
1 +

3

2
c̃

)
i∂tψ =

(
H̃0 + H̃s−o + H̃s−s

)
ψ . (C.2)

The Rydberg energy is obtained by setting the spin-orbit (H̃s−o) and spin-spin (H̃s−s)

Hamiltonians to zero, and solving the energy levels using the leading-order Hamiltonian

H̃0 = −e
(
1 +

3

2
c̃+ k̃

)
A0 − (1− c̃)

∇2

2me
, (C.3)

with A0 = e/(4πr) the Coulomb potential. Explicitly, one finds the eigenvalue equation(
− α̃
r
− ∇2

2m̃e

)
ψnlm = Ẽnψnlm, (C.4)

where we have defined

α̃ =
(
1 + k̃

)
α , m̃e =

(
1 +

5

2
c̃

)
me . (C.5)

It follows that

Ẽn
En

=
m̃eα̃

2

meα2
= 1 +

5

2
c̃+ 2k̃ (C.6)

where En are the standard energy levels of the hydrogen atom obtained by setting the

Wilson coefficients set to zero.

– 21 –



We next turn to spin-orbit and spin-spin splittings, which are treated in perturbation

theory. To this end, for a given value of nlm, we first write the energy level E in presence

of these perturbations as

Ẽ = Ẽn +∆Ẽs−o +∆Ẽs−s . (C.7)

For the spin-orbit Hamiltonian, we find

H̃s−o =

(
1 +

3

2
c̃

)
α̃

4m̃e
(1 + 4c̃) σ⃗e ·

(
∇⃗1

r
× i∇⃗

)
, (C.8)

where σ⃗e is the electron spin operator. From the fact that ∆Es−o/En ∝ α2, it is easy to

show that

∆Ẽs−o

Ẽn
=
(
1 + 4c̃+ 2k̃

) ∆Es−o
En

. (C.9)

Finally, for the spin-spin Hamiltonian, we find

H̃s−s =
e

2me
(1− c̃)×

(
1− k̃

)
σ⃗e · B⃗ , (C.10)

where

B⃗ =
gpe

2mp

[
1

4πr3
[(3σ⃗p · r̂)r̂ − σ⃗p] +

2

3
σ⃗pδ

3(r⃗)

]
. (C.11)

Here σ⃗p and mp are the spin operator and mass of the proton, respectively, while gp is the

g-factor parameterizing its magnetic moment. Proceeding in analogy with the spin-orbit

term, we then find

∆Ẽs−s

Ẽn
=

(
1 +

5

2
c̃

)
∆Es−s

En
. (C.12)

The dependence of the energy levels on the Wilson coefficients as given above is a

non-trivial result of the calculation. However, it can be understood heuristically starting

from the relevant terms in the standard NRQED Lagrangian (see [67]):

LNRQED = ψ†
e

(
iD0 +

D⃗2

2me
− e

2me
σ⃗ · B⃗ − e

8m2
e

σ⃗ ·
[
iD⃗ × E⃗ − E⃗ × iD⃗

])
ψe , (C.13)

where ψe is the non-relativistic electron field. Note that, according to Eq. (3.7), the effect

of c̃ is to modify the time and spatial components of the covariant derivatives by

D0 → D̃0 = (1 + 3c̃/2)D0 , Di → D̃i = (1− c̃/2)Di . (C.14)

If we furthermore treat Aµ as an external field sourced by the proton, with

E⃗ = ∇⃗A0 , B⃗ = ∇⃗ × A⃗ (C.15)
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then we can obtain the remaining dependence on the Wilson coefficients through the mod-

ifications

E⃗ → ˜⃗
E =

1

ϵ
(1 + c̃) E⃗ ,

B⃗ → ˜⃗
B = µ (1− c̃) B⃗ , (C.16)

where E⃗ = ∇⃗e/(4πr) and B⃗ is given in Eq. (C.11). The dependence on c̃ in the above

equation is obtained by applying replacements analogous to Eq. (C.14) on the A0, ∇i and

Ai appearing in Eq. (C.15), while the dependence on k̃ is reflected in the change in the

permittivity and permeability in the Maxwell Lagrangian as given in Eq. (3.13).
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