
Spin-aware movement of electrons and time-of-flight momentum spectroscopy∗

Siddhant Das†

Mathematisches Institut, Ludwig-Maximilians-Universität München,
Theresienstr. 39, D-80333 München, Germany

(Dated: Jan. 24, 2023)

In the framework of the de Broglie-Bohm pilot-wave theory, or Bohmian mechanics, we
examine two pedagogical problems that illustrate the bound and unbound motion of spin-1/2
particles: First, a single spin-1/2 particle trapped in the ground state of a spherical box is
studied in both the relativistic and nonrelativistic versions of the theory; second, the free time
evolution of this particle once the confinement is released is examined, demonstrating how
the Fourier transform of the prepared wave function yields the statistics of the particle’s
far-field (asymptotic) velocity, thereby providing a deeper understanding of time-of-flight
momentum spectroscopy techniques.

I. INTRODUCTION

The de Broglie-Bohm (dBB) worldview is grounded in the mantra matter moves. It is commonly
expressed in terms of a dynamical theory for particles or fields—the elements of matter—and their
quantum mechanical wave functions. The role of the wave functions is to steer matter in motion,
analogous to, yet distinct from, the role played by electromagnetic or gravitational fields in classical
mechanics. The most compelling, empirically successful version of the dBB (pilot-wave or Bohmian)
theory features point-like particles pursuing continuous trajectories in spacetime, determined by
their wave function; see Bohm [1952a,b], Bohm and Hiley [1993], Dürr and Teufel [2009], Holland
[1993], Goldstein [2021], Bricmont [2016], Oriols and Mompart [2012], Struyve [2005].

For a single particle with position R, the (Bohmian) trajectories solve the guiding equation

d

dt
R(t) = vΨ(R(t), t

)
(1)

—a first-order equation of motion for the particle’s velocity, where vΨ(r, t) is a vector field that
depends on the wave function Ψ. The Ψ function satisfies Schrödinger’s equation

iℏ
∂Ψ

∂t
= HΨ (2)

at all times. (So in this theory “wave-particle duality” simply means that there is both a wave
and a particle.) The type of wave function, the Hamiltonian H, and the velocity field vΨ, depend
on the nature of particles, the presence of external potentials, and whether the motion is Galilei-
or Lorentz-covariant. Their exact forms are educated guesses motivated by symmetry arguments,
simplicity, empirical sufficiency, the anticipated classical limit, and arguably even operational in-
put Wiseman [2007]. Once specified, the dBB dynamics is determined by Eqs. (1) and (2), and
only these. The particle’s trajectory R(t) is thus uniquely defined for all t, given suitable initial
conditions R(0) and Ψ(r, 0).1

∗
For Andrea Oldofredi (ed.), Guiding Waves In Quantum Mechanics: 100 Years of de Broglie-Bohm Pilot-Wave
Theory, Oxford University Press, forthcoming

†
Siddhant.Das@physik.uni-muenchen.de

1
Berndl et al. [1995], Teufel and Tumulka [2005] establish the existence of the (N -body) dBB dynamics under very
general assumptions on the external potentials and initial conditions.
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An example that is most commonly examined is a nonrelativistic spin-0 particle of mass m
moving in an external potential V (r, t), for which Ψ is a complex-valued function of r and t,

vΨ(r, t) =
ℏ
m

Im

[
Ψ∗∇∇∇Ψ

Ψ∗Ψ

]
(3)

or, alternatively, vΨ(r, t) =∇∇∇S/m writing Ψ = |Ψ| exp(S/ℏ), and

H = − ℏ2

2m
∇2 + V. (4)

The particle’s motion is generally non-Newtonian, readily illustrated in the problem of quantum
tunneling or barrier penetration; see Norsen [2013], Dewdney and Hiley [1982]. Now widely ac-
cessible, particle trajectories derived from the velocity field (3) offer an intelligible, paradox-free,
and persuasive picture of various quantum phenomena. A notable recurring example is that of
the double-slit experiment with (or without) monitoring; see Philippidis et al. [1979], Tastevin and
Laloë [2018].

Of course, the dBB theory does not stop at comforting pictures. As is widely recognized it yields
the same experimental predictions as the textbook/standard quantum formalism Bohm [1952b],
Dürr et al. [2004]—thankfully, without glorifying the role of observation. An illustration of how this
theory proceeds from pictures to predictions in the context of laboratory momentum measurements
is provided below.

In this chapter, we will focus on the dBB equations for a single spin-1/2 particle, which are
based on spinor-valued wave functions. Early on, it was thought that incorporating spin into the
repertoire of the dBB theory would prove to be an impasse,2 to wit: David Bohm reported in a
letter, quoted in [Freire Junior 2019, p. 97]:

“von Neumann thinks my work correct, and even ‘elegant,’ but he expects difficulties
in extending it to spin.”

But within a year, following his 1952 papers, Bohm demonstrated how the theory could naturally
account for the behaviour of spin-1/2 particles Bohm [1953]. Many physicists contributed to this
subject in the years that followed, including Takehiko Takabayasi, Ralph Schiller, Jayme Tiomno,
John S. Bell, and especially Peter R. Holland—it would be a worthy undertaking for historians to
chronicle these developments.

Spin-dependent guiding equations have received relatively little attention in the dBB literature,
outside of discussions of the EPRB-Bell or Stern-Gerlach experiments (see, e.g., Norsen [2014],
Dewdney et al. [1988]). Of greater concern, in almost all instances where spin-1/2 particles are
discussed, the analysis is based on an inadequate nonrelativistic velocity field, which contradicts the
relativistic velocity in the nonrelativistic limit, cf. Holland [1992, 1999, 2003]. This oversight, while
usually not compromising much conceptual accuracy, is regrettable because atoms are composed
entirely of spin-1/2 particles, which are most relevant to chemistry3 and, for that matter, nearly
everything. The subject surely deserves better treatment!

What better way is there of getting acquainted with the dBB dynamics of fermions than the
simple setting of a single spin-1/2 particle trapped within a box (one of the first problems a student
will encounter in quantum mechanics)? The particle-in-a-box problem is certainly of historical
significance considering the interpretive debates between Born, Einstein, and Bohm, the specifics

2
This may have been partially influenced by Bohm’s presentation of Eq. (1) in a second-order, Newtonian form
Bohm [1952a], since it is generally regarded that spin is a type of “nonclassical two-valuedness” and a definitive
symbol of the break from classical modes of thought; in part, this view may have also been reinforced by the “no
hidden variables” theorem due to Kochen and Specker, which forbids assigning pre-existing values (such as the
particle position R) to all the spin components of a particle; see Mermin [1993].

3
See Lombardi & Fortin’s contribution in this volume.
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of which we will not address here (but see [Myrvold 2003, Sec. 3.1], [de Broglie 1960, Ch. XI, Sec.
3], [Holland 1993, Sec. 6.5.3.]).

The motion of a spin-1/2 particle (henceforth referred to as an electron) prepared in the ground
state of a spherical box is investigated here in both nonrelativistic (Sec. II) and relativistic (Sec.
III) versions of the dBB theory. In both cases, the Bohmian trajectories are explicitly computable
in a coordinate-free way—a rare luxury. The presentation assumes some familiarity with Pauli and
Dirac’s equations and is at a level of quantum mechanics and mathematical methods typical of
courses taken by first-year graduate students in physics.

Switching gears, in Sec. IV, we consider the response of the electron to a sudden removal of
the confining potential. While the Bohmian trajectories are no longer analytically solvable, it is
shown that the escaping electron exhibits free-Newtonian behaviour in the far field—a hallmark of
unbounded dBB motion in scattering situations Daumer et al. [1996, 1997].

This problem offers a segue to examine a widely used technique for determining the momentum
of an abruptly freed bound electron by measuring its arrival (or flight) time on a distant detector
(Sec. V).4 Section VI repurposes the electron-in-a-box example to illustrate this experimental
technique, recovering the expected quantum mechanical result without reference to a quantum
observable. Here, we outline the typical steps involved in applying the dBB theory to experiments,
explaining how seemingly random experimental outcomes can arise within a deterministic theory.

Our analysis highlights a crucial point: the dBB theory not only makes it possible to predict
experimental results but also validates or limits the assumptions that experimenters invariably
make in transforming their raw data (or the directly measured quantities) into final reported results.
This is an important nuance that is often overlooked when comparing different “interpretations”
of quantum mechanics.

Final concluding thoughts are offered in Sec. VII.

II. ELECTRON-IN-A-BOX: NONRELATIVISTIC TREATMENT

For an electron of mass m moving at nonrelativistic speeds, the wave function is a two-
component spinor (or two-spinor) Ψ =

(
ψ+(r, t), ψ−(r, t)

)⊤
. The dBB velocity field and Hamil-

tonian are given, respectively, by [Bohm and Hiley 1993, Ch. 10], [Struyve 2005, Ch. 2]

vΨ(r, t) =
ℏ
m

Im

[
Ψ†∇∇∇Ψ

Ψ†Ψ

]
+

ℏ
2m

∇∇∇×
(
Ψ†σΨ

)
Ψ†Ψ

, (5)

and

H = − ℏ2

2m

(
σ · ∇∇∇

)2
+ V (r, t)1. (6)

Here, V is an external potential, 1 denotes the 2× 2 unit matrix (often omitted, but to be under-
stood), and σ = σxx̂+σyŷ+σzẑ is Pauli’s spin-vector matrix. Incorporating (6) into (2) gives the

Schrödinger-Pauli equation.5 The first (second) term on the right-hand side of (5) is also called the
convective or osmotic (spin or Gordon) velocity. The convective term is a natural generalization
of the spin-0 dBB velocity (3) to spinor-valued wave functions.

4
This is in contrast to the dBB treatments of momentum measurements discussed, e.g., in [Holland 1993, Sec. 6.8.],
[Dürr and Teufel 2009, Sec. 15.1.2.], [Bricmont 2016, Sec. 2.A.3.], or [Dürr et al. 2004, Sec. 5.5.], which involve a
position measurement at a late but fixed time rather than a time-of-flight measurement at a specified detection
surface.

5
If a magnetic field B is present, the gradient in Eqs. (5) and (6) must be replaced by the gauge covariant derivative
involving the vector potential (minimal coupling prescription). The Pauli interaction term ∝ σ ·B is automatically
generated by this and need not be put in by hand.
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A word of caution: The spin velocity term is omitted in most discussions of particles with spin
in the dBB literature. As emphasized in Sec. I, without it the resultant velocity field would not
be recovered from the relativistic velocity field (Eq. (30), below) in the nonrelativistic limit. The
latter is, in fact, uniquely pinned down by covariance considerations Holland [1992, 1999, 2003], as
is, therefore, its nonrelativistic limit given by (5).6

In dropping the spin term (or by inadvertently using the spin-0 equations), one faces the unex-
pected consequence that an electron in the hydrogen ground state is stationary! This mistake has
practically become lore, inspiring novel proposals for modifying the dBB guiding equations to cure
the “stationary electron malady”, e.g., Finley [2021]. Nevertheless, as demonstrated in Colijn and
Vrscay [2002, 2003a,b] (see also footnote 10), if the full velocity field (5) is taken into account the
electron is in fact not stationary in the hydrogen ground state.

We turn now to a discussion of an electron trapped in an infinite spherical well (or spherical
box) of radius a. For this, assume

V (r) =

{
0, r ≤ a

∞, r > a
, r = ∥r∥, (7)

in (6); the Hamiltonian simplifies to

H = − ℏ2

2m
∇2 + V (r), (8)

in view of the identity (σ · ∇∇∇)2 = ∇21—a special case of the spin-matrix identity

(a · σ)(b · σ) = (a · b)1 + i(a× b) · σ. (9)

The Schrödinger-Pauli equation thus reduces to two uncoupled Schrödinger equations for the spinor
components ψ±, allowing for simple space-spin-separated or spin-polarized two-spinor solutions of
the form

Ψ(r, t) = e− itE/ℏ ψ(r)χ, (10)

where ψ is a solution of the time-independent Schrödinger equationHψ = Eψ, and χ is an otherwise
arbitrary, constant two-spinor. (ψ is commonly referred to as the coordinate wave function or the
“spatial-part” of Ψ, while χ is called the “spin-part” of Ψ.) The ground state wave function,
given by [Griffiths and Schroeter 2018, p. 130], is distinguished by its simple dependence on r (in
particular, it exhibits no zeros or nodes within the spherical box):

ψ(r) =
1√

2πa r
sin
(πr
a

)
(11)

for r < a, and zero otherwise. It corresponds to

E =
ℏ2π2

2ma2
. (12)

For spin-polarized wave functions, the guiding equation simplifies to

d

dt
R(t) =

ℏ
m

Im

[∇∇∇ψ
ψ

](
R(t), t

)
+

ℏ
2m

∇∇∇×
(
|ψ|2 ŝ

)
|ψ|2

(R(t), t
)
, (13)

6
One can arrive at (5), or equivalently the current density j = (Ψ

†
Ψ)v

Ψ
, using the nonrelativistic Schrödinger-Pauli

theory; see Wilkes [2020].
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introducing the constant unit vector

ŝ =
χ†σχ

χ†χ
(14)

—the so-called unit spin-vector associated with Ψ.7 The numerator of the last term in Eq. (13)
is equivalent to

(
∇∇∇|ψ|2

)
× ŝ, since ∇∇∇× ŝ = 0 (the components of ŝ do not depend on the spatial

coordinates). We thus have

d

dt
R(t) =

ℏ
m

Im

[∇∇∇ψ
ψ

](
R(t), t

)
+

ℏ
m

Re

[∇∇∇ψ
ψ

](
R(t), t

)
× ŝ. (15)

In the present case, the spatial wave function ψ, Eq. (11), is a function of r only; therefore,

∇∇∇ψ
ψ

= ψ−1 dψ

dr
êr =

[
π

a
cot
(πr
a

)
− 1

r

]
êr, r < a, (16)

with êr = r−1r. Since this quantity is real-valued, the first term on the right-hand side of (15)
vanishes. Consequently, only the second nonzero term, i.e., the spin or Gordon term, determines
the velocity of the electron within the box. Incorporating (16) in Eq. (15), we obtain

Ṙ(t) =
ℏ

mR(t)

[
π

a
cot

(
πR(t)

a

)
− 1

R(t)

]
R(t)× ŝ, (17)

where R(t) = ∥R(t)∥ is the distance of the electron from the centre of the box at time t. (The
overdot indicates a derivative taken w.r.t. t.) Equation (17) holds for R(t) < a; the electron’s
velocity is undefined for R(t) ≥ a, i.e., outside and on the surface of the box (where its wave
function is identically zero).

However, not surprisingly, no solution of (17) starting within the volume of the box allows the
particle to escape it. To establish this, note that

d

dt
R2(t) = 2R(t) · Ṙ(t) ∝ R(t) ·

(
R(t)× ŝ

)
= 0, (18)

i.e., R(t) is a constant of the motion with R(t) = R(0). The electron’s trajectory thus lies on
the surface of a sphere of radius R(0), concentric with the spherical box. In particular, R(0) < a
implies that R(t) < a for all t.

Furthermore, since the component of velocity along the spin-vector ŝ is zero, we have

d

dt

(
R(t) · ŝ

)
= Ṙ(t) · ŝ = 0. (19)

This implies that R(t) · ŝ = const. = R(0) · ŝ, or equivalently,(
R(t)−R(0)

)
· ŝ = 0. (20)

That is, R(t) lies in a plane perpendicular to ŝ that passes through the point R(0).8 It can thus
be inferred that the electron trajectory is part of a circle (formed by the intersection of this plane
with the spherical surface of radius R(0)) whose centre is situated at a distance |R(0) · ŝ| from the
centre of the box.

7
For any two-spinor χ = (χ+, χ−)

⊤
, χ

†
σχ = 2 Re

[
χ
∗
+χ−

]
x̂+ 2 Im

[
χ
∗
+χ−

]
ŷ +

(
|χ+|

2 − |χ−|
2)

ẑ; consequently

∥χ†
σχ∥

2
= 4 |χ∗

+χ−|
2
+

(
|χ+|

2 − |χ−|
2)2

= |χ+|
4
+ 2 |χ+|

2 |χ−|
2
+ |χ−|

4
=

(
χ
†
χ
)2 ⇒ ∥ŝ∥ = 1.

8
Recall that the equation of a plane in the point-normal form is given by (r− r0) · n̂ = 0.
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In fact, the motion is periodic. To demonstrate this we solve Eq. (17) with initial condition
R(0) = R0, assuming R0 < a. Since we have established that R(t) = R(0) = R0, Eq. (17) can be
written as

Ṙ(t) = −ω0 R(t)× ŝ, (21)

where

ω0 =
ℏ

mR2
0

[
1− πR0

a
cot

(
πR0

a

)]
, (22)

is a positive9, trajectory-specific constant, determined by the initial condition. (Note that Eq. (21)
is the familiar Bloch equation for the precession of a magnetic moment M(t) in a uniform magnetic
field B, with Larmor frequency ω0.) Differentiating (21) w.r.t. t, we have

R̈(t) = −ω0 Ṙ(t)× ŝ
(21)
= ω2

0

(
R(t)× ŝ

)
× ŝ = ω2

0

[(
R(t) · ŝ

)
ŝ − ∥ŝ∥2R(t)

]
, (23)

applying the triple vector cross product identity a × (b × c) = (a · c)b − (a · b) c. Since ∥ŝ∥ = 1
and R(t) · ŝ is a constant of the motion, Eq. (23) reduces to

R̈(t) + ω2
0 R(t) = ω2

0

(
R0 · ŝ

)
ŝ, (24)

the (classical) equation of motion for a forced simple harmonic oscillator. Its general solution is
the familiar one:

R(t) =
(
R0 · ŝ

)
ŝ+ cos(ω0t)J+ sin(ω0t)K, (25)

where J and K are arbitrary constant vectors. Evidently, the motion is periodic with period 2π/ω0,
characteristic of an individual trajectory.

The variation with radial distance of the angular velocity ω0, Eq. (22), reflects the profile of
the wave function.10 Electrons orbiting closer to the center of the box (R0 ≪ a) have an angular
velocity

ω0 ∼
π2

3

ℏ
ma2

+ O
(
R0

a

)2
, (26)

whereas for those moving close to the boundary of the box,

ω0 ∼
ℏ

ma(a−R0)
, (27)

as R0 approaches a. The latter suggests that the electron is moving at an astronomically high speed
near the box’s edge! Such a feature is not surprising in a nonrelativistic treatment. However, it is
absent in the relativistic account presented below, where the dBB velocity vΨ does not exceed c
(the speed of light in vacuum).

To complete the trajectory calculation, note that R(0) = R0
(25)⇒ J = R0 − (R0 · ŝ) ŝ. In order

to determineK, differentiate (25) w.r.t. t and use the initial velocity condition Ṙ(0)
(21)
= −ω0R0×ŝ.

This yields K = −R0 × ŝ. The explicit solution for the Bohmian trajectory is thus given by

R(t) = cos(ω0t)R0 + sin(ω0t) ŝ×R0 +
[
1− cos(ω0t)

] (
R0 · ŝ

)
ŝ, (28)

which is reminiscent of Rodrigues’ rotation formula. Geometrically, this means that the position
of the particle at time t is obtained by rotating its initial position vector R0 by an angle ω0t about
the spin-vector-axis counterclockwise, as illustrated in Fig. 1.

9
x cotx < 1 for 0 < x < π.

10
Electron orbits for the hydrogen ground-state wave function are similar in all respects to the present ones, except
that ω0 = ℏ/(ma0R0) [Colijn and Vrscay 2002, Eq. (7)], where a0 is the Bohr radius. Those for an isotropic
harmonic potential of trapping frequency ω have ω0 = ω, independent of R0.
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ω0t

e−

ŝ

R(t)
R0

FIG. 1. A de Broglie-Bohm electron trajectory for the spin-polarized ground-state wave function of a
spherical box.

III. ELECTRON-IN-A-BOX: RELATIVISTIC TREATMENT

In what follows, we present a brief relativistic account of the electron-in-a-box problem. For
this, Dirac’s Hamiltonian

H = − iℏcα · ∇∇∇+ βmc2 + V (r) (29)

replaces the Schrödinger-Pauli Hamiltonian (6) of the nonrelativistic theory, and the dBB velocity
field is given by Bohm [1953], [de Broglie 1960, Ch. XVI], Holland [1999]

vΨ
R(r, t) = c

Ψ†αΨ

Ψ†Ψ
, (30)

where Ψ(r, t) is a four-spinor wave function. In these equations,

α =

(
0 σ
σ 0

)
(31)

is the 4× 4 Dirac α-vector matrix containing in the off-diagonal blocks the Pauli-spin-vector-
matrix introduced earlier, β = diag(1, 1,−1,−1), and 0 is the 2× 2 zero or null matrix. This
velocity field reproduces (5) in the nonrelativistic limit. In fact, vΨ

R can be rewritten to closely
resemble (5) (featuring spatial derivatives of the wave function) through Gordon’s decomposition
identity [Greiner 1992, Sec. 8.1].

That ∥vΨ
R(r, t)∥ ≤ c regardless of Ψ is a consequence of a so-called Fierz identity Van Oosterhout

[1966], [Kofink 1937, Sec. 4]:

(Ψ†Ψ)2 − ∥Ψ†αΨ∥ 2
= µ2 + ν2, (32)

where µ = Ψ†βΨ, and ν = Ψ†(αxαyαz)βΨ are real-valued quantities. Clearly, the left-hand side
of (32) is ≥ 0, establishing our claim.11

11
Actually, the very form of the velocity field (30) forces ∥vΨ

R∥ to be bounded for any Ψ. This is a consequence
of a theorem in linear algebra [Horn and Johnson 2013, Thm. 4.2.2., p. 234] which states that for any nonzero
Ξ ∈ Cn

, and n × n-Hermitian matrix A, the ratio (Ξ
†
AΞ)/(Ξ

†
Ξ) (the so-called Rayleigh quotient) is real-valued

and ≤ λmax—the largest eigenvalue of A. In light of this result and observing that λmax = 1 for αx, αy, or αz

(since each α matrix squares to the identity matrix), it follows that every component of (30) is ≤ c, hence via the
triangle inequality, ∥vΨ

R∥ ≤
√
3 c. However, to establish the tighter bound ∥vΨ

R∥ ≤ c, additional input about the
α matrices is needed.
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Next, we address the electron in a spherical box problem. To begin, the relativistic ground-state
wave function needs to be found. It turns out that we can resurrect the nonrelativistic ground-state
wave function to obtain its relativistic counterpart (see, App. A for details), with the final result

Ψ(r, t) = e− itER/ℏ

 ψ(r)χ

− iℏc
ER +mc2

(
σ · ∇∇∇

)
ψ(r)χ

 , (33)

where ψ(r) is the nonrelativistic spatial wave function (11), χ is an arbitrary, constant two-spinor,
and

ER = mc2
√
1 +

2E

mc2
, (34)

with E = (12). (ER ≈ mc2 + E for E ≪ mc2.) Note that (33) is not space-spin separated as its
nonrelativistic counterpart (10). In what follows, we set

ℏc
ER +mc2

= γ (35)

for brevity (γ has the physical dimensions of a length).
Since ψ is real and ∇∇∇ψ = dψ/dr êr, we obtain

Ψ†Ψ = ψ2 (χ†χ
)
+ γ2

(
dψ

dr

)2(
êr · σχ

)†(
êr · σχ

)
=

(
ψ2 + γ2

(
dψ

dr

)2)
(χ†χ), (36)

using σ = σ† and the identity (9). Furthermore, following some simplifications,

Ψ†αΨ = − iγ

(
ψ
dψ

dr

)
χ†
[
σ
(
êr · σ

)
−
(
êr · σ

)
σ
]
χ. (37)

The terms enclosed in square brackets evaluate to 2i êr×σ. Thus, in terms of the unit spin-vector
(14) introduced earlier, we have

vΨ
R(r, t) = c F

(
γ

ψ

dψ

dr

)
êr × ŝ, (38)

where

F (ξ) =
2ξ

1 + ξ2
.

Even without substituting the known expression for ψ, it follows quite explicitly from (38) that
∥vΨ

R∥ ≤ c, given ∥ êr × ŝ∥ ≤ 1, and |F (ξ)| ≤ 1 for any real ξ. And, in the nonrelativistic limit
c→ ∞,12 equivalently γ → 0, such that γc

(35)−→ ℏ/(2m), the right-hand side of (38) obligingly
reproduces the nonrelativistic velocity field, Eqs. (16-17). The absolute necessity of the spin-term
of Eq. (5) cannot be overemphasized here. Without it, the expected nonrelativistic limits would
fail to follow.

12
More appropriately, when the nondimensionalised velocity (ma/ℏ) c→ ∞.
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It is a fortunate coincidence that the relativistic guiding equation obtained by incorporating
(38) in (1) has precisely the same form as its nonrelativistic counterpart, Eq. (17). This implies
that the relativistic electron orbits are circular as well, given by the closed-form expression (28),
except that ω0 must be replaced by

ω0R =
c

R0
F

(
mR0

ℏ
γω0

)
, (39)

where ω0 is the R0-dependent nonrelativistic angular velocity of Eq. (22). Given that F is a
bounded function with linear behaviour around zero, ω0R is bounded for all 0 ≤ R0 ≤ a. In par-
ticular,

ω0R ∼ 2c

γ

(
1− R0

a

)
+ O(a−R0)

3, (40)

as R0 → a−, thus taming the divergence encountered in (27).

0.980 0.985 0.990 0.995 1.000
0

2

4

6

8

10

R0/a

10
−

2
(m

a2 ω
/

h̄)

ω0R (a = 50 λ)

ω0R (a = 200 λ)

ω0R (a = 500 λ)

ω0R (a = 103 λ)

ω0

FIG. 2. Nondimensionalized relativistic (ω0R) and nonrelativistic (ω0) angular velocities vs.R0, the electron’s
distance from the centre of the box. Here, a and λ̄ = ℏ/(mc) denote the box radius and the reduced Compton
wavelength of the electron, respectively. Notable differences between ω0 and ω0R only appear near the edge
of the box for R0 > 0.9a. Note that ω0R (ω0) vanishes (blows up) as R0 → a−.

The relativistic and nonrelativistic angular velocities are compared in Fig. 2 for select values of
a. The relativistic orbital velocity increases monotonically with increasing distance from the box’s
centre, reaching a maximum value (characteristic of the box radius a), after which it begins to
decrease and eventually vanishes asymptotically as R0 approaches a. In other words, the electrons
slow down to rest at the box’s boundary. Numerical calculations show that ω0R is appreciably
different from ω0 only for a− R0 ≲ ℏ/(mc) ≈ 3.86× 10−13m (the reduced Compton wavelength).
Therefore, FAPP, the ground-state electron orbits are adequately described by the nonrelativistic
theory.

IV. ELECTRON MOTION POST-DECONFINEMENT

Left to itself, the trapped electron will continue orbiting indefinitely, leaving little more of
interest to say about this system. To evoke a more dramatic response, one could imagine opening
the box suddenly, say, at time t0, and subsequently investigating the wave function of the particle,
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and the evolution of its motion, due to such a “shock.” Specifically, this could aid in the analysis
of an experiment designed to catch the emerging electron on, e.g., a microchannel plate.

The quantities that are typically reported in this kind of experiment are either the electron’s
impact position, its arrival time, or both. These measurements are ubiquitous in particle physics
and serve as the basis for measuring momentum, energy, etc. The measurement of momentum
will be treated in detail in Sec. V. In what follows, we present a nonrelativistic discussion of the
electron trajectories (using the dBB equations of Sec. II) post-deconfinement.

In the absence of the spherical box potential (7), the wave function evolves freely13 with Hamil-
tonian H = − ℏ2/(2m)∇21 (cf. Eqs. (6) and (9)), thus continuing to remain space-spin separated,
as (10), for t > t0. Over time, the electron is transported to distances ≫ a as the wave function
spreads isotropically, filling the entire space. The wave function for any t can be expressed as
follows:

Ψ(r, t) =

{
(10), t ≤ t0

ψ>(r, t)χ, t > t0
, (41)

where ψ> solves the free-particle Schrödinger equation

iℏ
∂ψ>

∂t
= − ℏ2

2m
∇2ψ>. (42)

In order for Ψ and vΨ to be continuous at t = t0, we require

ψ>

(
r, t+0

)
= e− it0E/ℏ ψ(r), (43)

where ψ(r) is the spatial-part of the ground state wave function, Eq. (11).

The solution of Eq. (42) with initial condition (43) can be found in the literature; see, e.g.,
Moshinsky [1952a], Godoy [2003, 2007]. Nonetheless, for completeness, we derive it in App. B
by methodically reducing the three-dimensional calculation to a one-dimensional one that can be
solved with ease, obtaining

ψ>(r, t) =
N0

r

[
M(r + a, k, τ)−M(r − a, k, τ)− M(a− r, k, τ) +M(−a− r, k, τ)

]
. (44)

Here,

N0 =
ie− iEt0/ℏ

2
√
2πa

, k =
π

a
, τ =

ℏ
m

(t− t0), (45)

and M(r, k, t) is Moshinsky’s function, which inevitably appears in problems involving matter
waves suddenly released from bounded domains Nussenzveig [1992], del Campo et al. [2009]. Note
that the electron wave function ceases to be stationary post-deconfinement, i.e., it is no longer
separated in r and t. A few snapshots of ψ> are plotted in Fig. 3.

Besides the general dispersive spreading of the wave function, with its amplitude gradually
diminishing over time at every r, ψ> presents a train of tiny ripples, or wavelets, close to the
boundary of the spherical box. With time, these wavelets move farther away, nucleating into
distinct, self-similar wave packets. This wave phenomenon, dubbed diffraction in time—due to its
“close mathematical resemblance with the intensity of light in the Fresnel diffraction by a straight

13
We are neglecting, for brevity, the electron’s free fall due to gravity in the problem.
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at select instants of τ . The dashed curve in panel (a) denotes the spatial ground state wave function.

edge” Moshinsky [1952b], arises in response to a sudden change in the boundary conditions of the
wave function at some surface (that of the spherical box, r = a, in the present case).14

Some of these aspects of the wave function are easier understood considering the approximation

ψ>(r, t) ≈ 2N0

√
2π

iτ

a

r

sin(ar/τ)

(ar/τ)2 − π2
ei(r

2
+a

2
)/(2τ), (46)

which is derived in App. B assuming r ≫ a and r ≫ πτ/a. Interestingly, though, with the exception
of very small values of τ , it turns out to be a very good approximation to (44) for practically all r
and τ .

Now, turning to the Bohmian trajectories, the simplified guiding equation (15) (applicable for
spin-polarized wave functions) continues to be valid for t > t0 except that ψ → ψ>. As ψ> is
spherically symmetric, we write

∇∇∇ψ>

ψ>

=
[
R(r, t) + i I(r, t)

]
êr, (47)

where R (I) is the real (imaginary) part of ψ−1
> dψ>/dr. This allows expressing the equation of

motion for t > t0 in the form

Ṙ(t) =
ℏ

mR(t)

(
I
(
R(t), t

)
R(t) + R

(
R(t), t

)
R(t)× ŝ

)
, (48)

14
Note that ψ> becomes nonzero at all distances from the spherical trap as soon as the trap is removed. A relativistic
treatment of the problem expectedly modifies this feature, requiring the wave function to strictly vanish for any
r > a+ c(t− t0), at time t [Moshinsky 1952b, Sec. IV], Godoy and Villa [2016].
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where ŝ is the unit spin-vector defined in Eq. (14). (For t ≤ t0, Eq. (17) applies.) Note that the
first term within parentheses (originating from the convective velocity term) is now nonzero. Also,
the velocity field is now explicitly time-dependent, making it much harder to determine Bohmian
trajectories.

For convenience, let us use a spherical-polar coordinate system where the polar axis is pointing
along ŝ. The particle position and velocity at time t are given by (cf. [Reed 2019, Ch. 2] or [Symon
1971, Sec. 3.5])

R = R êr, Ṙ = Ṙ êr + R Θ̇ êθ + R sinΘ Φ̇ êϕ, (49)

respectively, where R(t), Θ(t) and Φ(t) denote the spherical coordinates of the particle at time
t. We also have ŝ = cos θ êr − sin θ êθ, hence êr × ŝ = − sin θ

(
êr × êθ

)
= − sin θ êϕ. Incorporating

this into (48) and comparing the result with Ṙ, Eq. (49), yields the component equations

Ṙ(t) =
ℏ
m

I
(
R(t), t

)
, Θ̇(t) = 0, Φ̇(t) = − ℏ

mR(t)
R
(
R(t), t

)
. (50)

The second equation has the obvious solution Θ(t) = Θ(t0), the value of Θ at time t0. In fact,
Θ being the angle of inclination of the electron’s position vector R to the spin-vector ŝ (see Fig.
1) is a constant of the motion for t < t0 as well.

To this point our considerations have been exact. Unfortunately, the remaining two equations
in (50) cannot be solved analytically. We may, however, glean the qualitative behaviour of the
Bohmian trajectories in the far field (i.e., r ≫ a), which is relevant for our subsequent discussion
of momentum measurements, below. For this, we utilize (46) to obtain without further approxi-
mations I(r, t) ≈ r/τ , in turn, Ṙ ≈ R(t)/(t− t0). The solution is

R(t) ≈ v∞(t− t0), (51)

where v∞ is a constant of integration. The escaping electron thus acquires a constant radial
velocity at large separations from the spherical box; see Fig. 4 (right panel). The constant v∞ is
trajectory-specific and varies with the exact initial position of the electron.15

The remaining equation for Φ̇ can be similarly analysed using (46). One finds in view of (51) that
Φ(t) → const. asymptotically. Individual Bohmian trajectories therefore become approximately
straight lines of constant Θ and Φ in the far field, as shown in Fig. 4 (left panel). In other words,
they become asymptotically Newtonian with a well-defined constant velocity, which is a prominent
feature of Bohmian trajectories in scattering problems Daumer et al. [1996, 1997], Römer et al.
[2005], [Dürr and Teufel 2009, Ch. 16].

Note: The spin velocity contribution is more pronounced in the near-field (i.e., at distances
≲ a), where the trajectories tend to circulate ŝ, as shown in Fig. 4 (middle panel). However, it
decreases with distance as R(r, t) becomes subleading to I(r, t) in the far field. As a result, it is the
convective velocity primarily governing the motion of the unbound electron post-deconfinement,
whereas the spin velocity alone is responsible for the motion of the bound electron (Sec. II).16

V. MOMENTUM SPECTROSCOPY: GENERAL CONSIDERATIONS

For a particle described by the wave function Ψ(r), the standard/textbook quantum formalism

predicts that the result of a momentum measurement is random with distribution |Ψ̃(p)|2 (or Ψ̃†Ψ̃

15
For an initial Gaussian wave function of width σ0, the guiding equations can be solved exactly, yielding v∞ =
ℏR0/(2mσ

2
0) [Holland and Philippidis 2003, Eq. (8.7)]. That is, the further the electron starts from the centre of

the wave packet, the faster it escapes.
16

Although this pattern is somewhat paradigmatic (see also Holland and Philippidis [2003]), the spin velocity can
dominate the electron’s motion over very long distances in some special cases, such as when a spin-polarized
electron is propagating within a waveguide and its motion is bounded in all but one direction Das et al. [2019].
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for spinor-valued Ψ), where

Ψ̃(p) =
(
2πℏ

)− 3/2
∫
R3
d3r Ψ(r) exp

(
− i

ℏ
p · r

)
(52)

is the momentum-space wave function. It is easily calculated for the ground state of the spherical
box (Eq. (10)):

Ψ̃(p) =
(a
ℏ

)3/2 sin q

q
(
π2 − q2

) χ, q =
a

ℏ
∥p∥. (53)

However, the question of what precisely constitutes a “momentum measurement”, i.e., what ex-
periments could validate the above prediction, is often passed over in silence.

On the other hand, a plethora of experimental literature exists on recovering the momentum
distribution (or the closely related Wigner distribution) from directly observable quantities, like
the impact position or arrival time of the particle Ullrich et al. [2003], Wolf and Helm [2000],
Kurtsiefer et al. [1997, 1995]. But since reconstruction is always theory-dependent we must, in the
end, turn to theory to relate the directly measured quantities to the desired ones. To discuss this
point further, we take a closer look at the widely used “time-of-flight momentum spectroscopy”
technique.

The key step of this method involves a measurement of the transit time or time-of-flight (ToF)
of a particle prepared in the wave function of interest at a starting time t0 and allowed to move
freely. When this particle is registered by a remote detector at a (random) time t1, its ToF

tf = t1 − t0 (54)

is used to define the particle’s momentum, or, rather, its magnitude p, as follows:

p =
mL

tf
. (55)
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Here, L is the known distance between the source and the detector (typically much larger than
the width of the prepared wave packet). After repeating the experiment numerous times and
accumulating the flight times, an empirical distribution of tf , and in turn p given by Eq. (55), is
obtained. The latter is expected to reproduce the quantum mechanical distribution

ΛQM(p) =

∫
R3
d3p′ δ

(
∥p′∥ − p

)
Ψ̃†(p′)Ψ̃(p′), (56)

where δ is Dirac’s delta function. In mathematical terms, if Πexp(tf ) is the measured ToF distri-
bution, one expects

ΛQM(p) =
mL

p2
Πexp

(
mL

p

)
. (57)

At the core of this scheme lies Eq. (55), which translates the measured tf to the reported p. It
is motivated under the assumption that free Newtonian motion prevails, enabling the particle to
approach the detector at a constant speed p/m; p being the magnitude of the particle’s momentum.
Heisenberg, for instance, makes just such an assumption in [Heisenberg 1987, p. 32]:

“The momentum of the [bound] electron can most readily be measured by suddenly
rendering the interaction of the electron with the nucleus and neighbouring electrons
negligible. It will then execute a straight-line motion and its momentum can be mea-
sured in the manner already explained.” (Emphasis added.)

Considering how passionately Heisenberg contended that since motion and particle trajectories are
not disclosed to us outside of measurement, hence speaking of them has essentially no meaning or
advantage Aristarhov [2022], it may seem incredibly circular that he refers to motion in the very
conception of momentum measurements. Indeed, according to Valentini [2010], Einstein cautioned
Heisenberg that his treatment of observation was unduly laden with the outdated theory of classical
mechanics, and this would eventually get him into “hot water”.

However, in all fairness to Heisenberg and other quantum physicists who availed themselves
of Newtonian presuppositions in the early stages of theory development, one could argue à la
[Valentini 2010, pp. 503-504], paraphrasing Einstein, that while

“experiment is theory-laden, and correct measurement procedures must be laden
with the correct theory, [...] when new experimental phenomena are discovered—
phenomena that require the formulation of a new theory—in practice the old theory
is at first assumed to provide a reliable guide to interpreting the observations [...]
Note that this is a practical necessity, for the new theory has yet to be formulated.
However—and here is the crucial point—once the new theory has been formulated,
one ought to be careful to use the new theory to design and interpret measurements,
and not continue to rely on the old theory to do so. For one may well find that con-
sistency is obtained only when the new laws are found and applied to the process of
observation.”

But today, nearly a century later, many quantum physicists boldly reject the existence of particle
trajectories,17 even though trajectory-based considerations are essential to numerous experiments
designed to verify the predictions of quantum mechanics, including the ToF momentum spec-
troscopy method under consideration.

17
Echoing, e.g., [Landau and Lifshitz 1977, p. 2]: “In quantum mechanics there is no such concept as the path of a
particle.”
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An alternative way to justify the ToF method without using classical trajectories would start
with the quantum mechanical prediction ΠQM(tf ) for the directly measured ToF distribution, and
deduce that Eq. (55) is simply a change of variables that relates it to the momentum distribution
via Eq. (57) (with Πexp → ΠQM). However, this is easier said than done because calculating the
quantum mechanical ToF distribution has been a long-standing issue, absent a recognized arrival-
time observable, with various proposed solutions Muga and Leavens [2000], Muga et al. [1998], Das
and Nöth [2021].18 Here, we will not go into a case-by-case examination of the existing suggestions
to determine which ones validate or contradict the experimental method in question.

But, against this background, it is clear that the dBB quantum theory involving particle tra-
jectories, and not dependent on quantum observables to describe experiments, would be more
appropriate for evaluating this experimental technique. In the following section, we offer a dBB
analysis of the ToF momentum spectroscopy method by applying it to the electron-in-a-box exam-
ple.

VI. TOF MOMENTUM SPECTROSCOPY: A DBB ACCOUNT

For mathematical convenience, we will assume the ToF detector has a spherical surface with
radius L≫ a that surrounds the spherical box. Once the box is abruptly removed at time t0, as
shown in Sec. IV, the trapped electron veers from its otherwise circular orbit and begins moving
along a spiral curve that eventually follows a rectilinear path. An individual electron, therefore,
contacts the detector (resulting in a detection event) at a definite time t1 at which

R(t1) = L, (58)

where R(t) denotes the electron’s distance from the centre of the box at time t. Equations (58)
and (54) implicitly define the ToF of the electron as a function of its initial position R0 within the
box (which determines R(t) via the guiding Eqs. (17) and (50)), and of the known parameters L
and t0.

While we are only able to determine this tf numerically (see below), for L≫ a one expects

tf ≈ L

v∞
, (59)

where v∞ is the asymptotic Bohmian velocity of the electron (cf. Sec. IV); keeping in mind that
the brief period spent in the near-field close to the trapping region contributes negligibly to the
total ToF. It thus follows from (59) that the p determined via (55) is simply the asymptotic dBB
momentum of the electron acquired in flight, post deconfinement, viz., mv∞.19 Just this insight,
free from implicit Newtonian assumptions, provides a much-needed physical foundation for Eq.
(55) in quantum mechanical contexts.

Although a single electron can be dependably prepared in the ground state of a trap at the
start of each experimental run, controlling its position is practically impossible; for this reason, the
measured arrival time t1 varies randomly from one experimental run to the next. The statistical
distribution of t1, and hence tf , may be calculated thanks to the quantum equilibrium hypothesis
(QEH), which postulates that the random initial positions of a Bohmian particle follow Born’s
statistical rule, see Dürr et al. [1992], Norsen [2018], Callender [2007], Colin [2012]. In particular,

18
It has even been suggested that the “time of arrival cannot be precisely defined and measured in quantum mechan-
ics” Aharonov et al. [1998] or “that wave mechanics cannot accommodate an exact and ideal arrival-time concept”
Allcock [1969]. Should these suggestions be taken seriously, Eq. (55) becomes vacuous.

19
Although, the momentum of a Bohmian particle defined along Newtonian lines as mṘ is generally not conserved
even in the absence of external potentials.
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the electron positions within the box are distributed according to the Ψ†Ψ distribution, where Ψ
is the ground state wave function (10).20

Leveraging the QEH, Fig. 5 (left panel) presents a ToF histogram generated from ≈ 1.25× 105

Bohmian trajectories, the flight times of which were acquired by numerically integrating the guid-
ing equations. The main lobe of the histogram is preceded by many smaller, secondary lobes (seen
magnified in the inset), which are caused by a small fraction of electrons that get rapidly trans-
ported by the diffraction-in-time wavelets discussed in Sec. IV (see also Das et al. [2019], Mousavi
[2009]). ToF experiments involving cold neutrons and atoms have also reported the presence of
such secondary lobes Szriftgiser et al. [1996], Hils et al. [1998].
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trajectories emanating from the spherical box and arriving on a spherical detector of radius L = 500. Right
panel: histogram of p reconstructed from these arrival times using the formula (55). The solid line depicts
ΛQM(p) defined in (60).

As in the real experiments, we convert the computed Bohmian flight times into momenta using
Eq. (55), and the result is the momentum histogram displayed in Fig. 5 (right panel). The quantal
prediction (56), given by

ΛQM(p)
(53)
=

4πa

ℏ
sin2(pa/ℏ)[

π2 − (pa/ℏ)2
]2 (60)

is fully in agreement with it. Since the dBB theory does not even utilize momentum-space wave
functions in stating its dynamical equations, this agreement is quite remarkable indeed.

We offer here some theoretical calculations that corroborate the numerical results, turning first
to a consideration of the electron’s arrival time t1. The distribution of this quantity, ΠdBB(t1),
is usually very difficult to evaluate, but in the current scenario, where the Bohmian trajectories
intercept the detection surface at most once, it is directly expressible in terms of the wave function
as explained, e.g., in [Das and Nöth 2021, Sec. 6]. We find for this distribution, the exact result

ΠdBB(t1) =
ℏ
m

(
4πL2) Im[ψ∗

>

dψ>

dr

]
(L, t1). (61)

Letting t1
(54)→ tf + t0, (61) becomes the ToF distribution depicted by the black curve in Fig. 5 (left

panel). Recalling our approximation for ψ>, Eq. (46), one can see immediately that the obtained
ToF distribution would reproduce (60) exactly when incorporated into Eq. (57) in place of Πexp(tf ).

20
In order for Ψ

†
Ψ to be a legitimate probability distribution, χ

†
χ = 1.
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Our explanation of the ToF momentum spectroscopy technique for the particle-in-a-box scenario
is now complete. The theoretical treatment proceeds along similar lines in most cases. That being
said, it is important to be aware of exceptional situations where the technique would not work.
For instance, in situations where the initial wave functions are not well-localized, Das and Struyve
[2021], or when there is backflow, Das and Dürr [2019], or where more than one entangled particle
is involved, e.g., Ayatollah Rafsanjani et al. [2024], the Bohmian trajectories are not necessarily
asymptotically Newtonian, hence the applicability of (55) is questionable.

VII. CONCLUSION

The dBB theory views spin as an aspect of the movement of quantum particles dictated by
guiding equations that incorporate spinor-valued wave functions. To illustrate this spin-aware mo-
tion of fermions, the first part of this chapter provided a comprehensive, step-by-step examination
of the motion of a single electron confined in a spherical box using both relativistic and nonrel-
ativistic versions of the theory. Next, we investigated the reaction of the trapped electron to a
sudden removal of the confining potential.

The chapter’s second part focused on how the dBB theory is typically applied to actual exper-
iments. For concreteness, we investigated the widely used ToF momentum spectroscopy method,
which is grounded in trajectory-based assumptions. It was noted that standard quantum mechan-
ics, which prohibits discussing particle trajectories and is beset with the long-standing “arrival-
time problem,” makes such assumptions extremely difficult to defend. On the other hand, the dBB
treatment of this experimental method is transparent and produces the anticipated results in a
principled way, offering a solid theoretical basis for the heuristics that experimenters are employ-
ing to interpret the measurements. A few potential situations in which the heuristics might be
insufficient were also touched upon.
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Appendix A: Relativistic ground-state wave function

The electron’s ground-state wave function assumes the form Ψ(r, t) = Ψ(r) e− itER/ℏ, where Ψ(r)
is a four-spinor satisfying Dirac’s time-independent equation(

− iℏcα · ∇∇∇+mc2β
)
Ψ = ERΨ (A1)

in the region r < a. Here, α = (31), and β = diag(1,−1). Denoting the upper and lower two-spinor
components of Ψ by Ψ±, Eq. (A1) yields the component equations

−iℏc (σ · ∇∇∇)Ψ∓ =
(
ER ∓ mc2

)
Ψ±. (A2)
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Eliminating Ψ−, we obtain

−(σ · ∇∇∇)2Ψ+ =
E2

R −m2c4

ℏ2c2
Ψ+. (A3)

The 2-spinor Ψ+ becomes the wave function of the electron in the nonrelativistic limit. Noting
that (σ · ∇∇∇)2 = ∇21, cf. Eq. (9), we find that Eq. (A3) reduces to the usual time-independent
Schrödinger-Pauli equation

− ℏ2

2m
∇2Ψ+ = EΨ+, (A4)

upon setting

E2
R −m2c4

ℏ2c2
=

2m

ℏ2
E. (A5)

The ground-state wave function solution of (A4), which corresponds to E = (12), has already been
identified, viz., Ψ+ = ψ(r)χ with ψ(r) = (11), χ being a constant spinor. Equation (A5) then fixes
ER in terms of the nonrelativistic ground-state energy E. Note that only ER > 0 fulfilling (A5)
(Eq. (34)) pertains to electron solutions. Finally, incorporating Ψ+ into Eq. (A2), we obtain Ψ−,
and hence the complete ground-state wave function (33).

Appendix B: Time-evolution post switching

The free-particle Schrödinger equation (42) with initial condition (43) can be solved as follows:
Exploiting the spherical symmetry of the problem, express the solution as

ψ>(r, t) = r−1 φ

(
r,

ℏ
m

(t− t0)

)
. (B1)

We require

φ(r, 0)
(43)
= rψ>(r, t0) =

H(a− r)√
2πa

sin
(πr
a

)
e− it0E/ℏ. (B2)

(H(·) denotes Heaviside’s step function.) In order for Eq. (B1) to provide a solution ψ> of Eq.
(42), the function φ must satisfy the one-dimensional Schrödinger equation

i
∂φ

∂t
= − 1

2

∂2φ

∂r2
. (B3)

Furthermore, given our ansatz (B1), φ must vanish at r = 0 in order for ψ> to be regular at the
origin.

We are then essentially seeking the wave function of a free particle moving on the half-line
(r ≥ 0) subject to an impenetrable potential barrier at r = 0, and specified initial condition at
time zero. The solution can be expressed in the form

φ(r, t) =

∫ ∞

0
dr′ φ

(
r′, 0

)
K
(
r, r′, t

)
, (B4)

where

K
(
r, r′, t

)
= −

√
2i

πt
sin

(
rr′

t

)
exp

[
i

2t

(
r2 + r′2

)]
(B5)
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Goodman [1981], Nevels et al. [1993]. Letting u = π/a and v = r/t, the trigonometric identity
2 sin

(
ur′
)
sin
(
vr′
)
= cos[(u− v)r′] − cos[(u+ v)r′], allows rewriting (B4) as

φ(r, t) = N0

[
η(r, t) − η(−r, t)

]
, (B6)

where N0 = ie− iEt0/ℏ/
(
2
√
2πa

)
and

η(r, t) = i

√
2i

πt

∫ a

0
dr′ exp

[
i

2t

(
r2 + r′2

)]
cos

(
πr′

a
− rr′

t

)
—a Gaussian integral expressible in terms of the familiar error (or complementary error) function.
However, it is convenient to express the final result in terms of the Moshinsky function M(r, k, t)
Nussenzveig [1992], which is a judicious repackaging of the complementary error function:

M(r, k, t) =
1

2
erfc

(
r − kt√

2it

)
eikr− itk

2
/2. (B7)

(the functionM(r, k, t) itself satisfies Eq. (B3), reducing to the “truncated plane wave” H(−r)eikr
in the limit t→ 0+.) In any case, we have

η(r, t) =M
(
r − a,

π

a
, t
)
−M

(
r + a,

π

a
, t
)
, (B8)

which via Eqs. (B1) and (B6) completely defines the time-evolved wave function ψ>(r, t), Eq. (44).
For |r − kt| ≫ 1, the Moshinsky function has the following approximation:

M(r, k, t) ≈
√

it

2π

eir
2
/(2t)

r − kt
+ H(kt− r)eikr− itk

2
/2, (B9)

from which it follows, for r ≫ a and r ≫ πt/a, the approximations

η(±r, t) ≈
√

2t

iπ

sin(ra/t)

r ∓ πt/a
ei(r

2
+a

2
)/(2t), (B10)

in turn, using Eqs. (B6) and (B1), the result (46).
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