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Abstract— Furniture assembly remains an unsolved problem
in robotic manipulation due to its long task horizon and
nongeneralizable operations plan. This paper presents the Tactile
Ensemble Skill Transfer (TEST) framework, a pioneering offline
reinforcement learning (RL) approach that incorporates tactile
feedback in the control loop. TEST’s core design is to learn
a skill transition model for high-level planning, along with a
set of adaptive intra-skill goal-reaching policies. Such design
aims to solve the robotic furniture assembly problem in a more
generalizable way, facilitating seamless chaining of skills for
this long-horizon task. We first sample demonstration from
a set of heuristic policies and trajectories consisting of a set
of randomized sub-skill segments, enabling the acquisition of
rich robot trajectories that capture skill stages, robot states,
visual indicators, and crucially, tactile signals. Leveraging these
trajectories, our offline RL method discerns skill termination
conditions and coordinates skill transitions. Our evaluations
highlight the proficiency of TEST on the in-distribution furniture
assemblies, its adaptability to unseen furniture configurations,
and its robustness against visual disturbances. Ablation studies
further accentuate the pivotal role of two algorithmic compo-
nents: the skill transition model and tactile ensemble policies.
Results indicate that TEST can achieve a success rate of 90%
and is over 4 times more efficient than the heuristic policy in
both in-distribution and generalization settings, suggesting a
scalable skill transfer approach for contact-rich manipulation.

I. INTRODUCTION

Robotic furniture assembly is regarded as one of the most
complex problems within the field of robotic manipulations
given its contact-rich, long-horizon nature [1]–[7]. The
contextual purpose of the objects and the associated sub-
tasks that must be executed to succeed the overall task.
Figure 1 shows a typical real-world scenario where a robot is
tasked to assemble two geometrically distinct by functionally
identical objects: a three-legged and a four-legged table. The
global tasks require the same set of robot skills: picking,
insertion, and threading. A common way of assembling these
skills in a working robotic platform is by Learning from
Demonstration (LfD). LfD allows robots to learn a policy from
humans or heuristic demonstrations. In real-world applications
however, LfD is challenging due to its long task horizon
and the multimodal nature of the observations, as shown in
Figure 2(a).
The primary concern arises from the multimodal inputs
that robots must rely on to observe their environment. With
various sensor modalities, there’s an inherent uncertainty in
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Fig. 1: Furniture assembly robot. A natural pipeline of such
assembly tasks requires pick, reach, insert, adjust, and thread
as the candidate skills to be learned.

the provided data because not all modalities carry meaningful
information at the same time during the task. The question
then becomes: How can one ensemble multimodal inputs
and make accurate predictions without the need for online
interactions? The challenges do not end with sensor uncer-
tainty. Robotic assembly tasks are implicitly long-horizon
in nature. This means that robots need to plan, execute, and
connect a series of relevant actions over an extended period
of time to achieve the desired global outcome. Traditional
LfD approaches, such as Behavioral Cloning (BC), often
fall short in these scenarios. They lack the high-level skill
awareness required for such complex tasks and struggle with
generalization, especially when there is a change in certain
sub-task modules in the deployment stage.
Given the aforementioned challenges, two primary solutions
have been proposed. The first is to use ensemble policies
that leverage self-supervised learning to counteract the
uncertainties from multimodal sensors [8]–[10]. The second
is to use hierarchical Reinforcement Learning (RL) methods
to abstract and simplify long-horizon tasks [11]–[14].
In this paper, we introduce a new approach in Figure 2(b)
that addresses both challenges simultaneously. We present the
Tactile Ensemble Skill Transfer (TEST) framework, a unified
solution to jointly model the human preferences (reward),
multimodal observations, and actions of robotic assembly
tasks. Our contributions to this work are listed below:

• We formulate robotic assembly as a skill-based RL prob-
lem over Goal-conditioned Partially Observable Markov
Decision Process (GC-POMDP, in Section III) that
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Fig. 2: Motivation and challenges in contact-rich robotic assembly problem.

describes the goal-reaching problem under multimodal
sensor inputs instead of the fully observable settings.

• Building on this foundation, we introduce Tactile
Ensemble Skill Transfer (TEST), a skill-based offline
RL method that seamlessly integrates the strengths
of ensemble learning with tactile feedback and skill-
conditioned policy learning.

• We validate our approach with real-world experiments
using the Furniture Bench platform [5], evaluating
the accuracy and efficiency of learned policy. We
also empirically study the generalizability of TEST
towards unseen furniture assemblies, and consistency
under visual disturbances, highlighting the significant
improvements that characterized our framework.

II. RELATED WORK

Contact-rich Robotic Manipulation Our furniture assembly
problem originates in the field of contact-rich robotic manipu-
lation. Computer Vision for robotic systems, while pivotal in
parsing the semantic understanding of environments, cannot
deliver robust information for contact-aware sensing needed
to fully close the loop on intelligent robot assembly. This led
to the integration of force/torque sensors and later, artificial
tactile sensors [8], [15]–[17] which are crucial in robotic
assembly tasks [13], [18], [19]. We highlight two particular
methods of feedback control for robotic assembly. The first
is an end-to-end deep reinforcement learning design, which
integrates multiple sensor inputs into a unified framework,
allowing for a more holistic understanding of the environment
and the task at hand [20], [21]. The second is a hierarchical
design with skill primitives plus task planning, where each
task is broken down into a hierarchy of skills [12], [13], [18],
[19] managed by specific scripted or learned controllers. This
method gained more popularity in robotics research because
it allowed for more generalizable and modular solutions.
Skill-based Reinforcement Learning The challenges of
generalization and long-horizon tasks in robot learning led to

hierarchical skill-based policies, often termed as options [14],
[22], [23]. These policies, comprising a high-level skill
planner and a low-level controller, aimed to reduce sample
complexity and enhance interpretability [24]. This framework
proved especially beneficial for multi-modal decision-making
in robotic manipulation [11]–[14]. Skill-based RL’s primary
challenges are skill discovery and skill chaining. Earlier
works either utilized manually designed skill graphs [25]
or employed unsupervised clustering-based methods [12],
[26]. However, clustering often missed temporal information,
and the learned policy’s effectiveness depended heavily on
cluster initialization and number. More recent works have
explored parameterized skills using temporal abstraction.
For instance, [26] evolved the policy gradient theorem,
introducing a high-level gating policy and intra-option sub-
policies. Subsequent works, such as [27], proposed end-to-end
training methods, alternating between high-level managers
and low-level workers. This approach was further refined
by incorporating maximum-entropy RL [14], adversarial
training [28], model-based RL [29], meta RL [30] and
constraint-conditioned RL [31], [32]. Nevertheless, applying
skill-based RL and planning frameworks onto the real robot
systems is still an unsolved problem that has been marginally
explored [9], [10], none of which addressed the contact-rich
manipulation problem under tactile sensing.

Offline Reinforcement Learning Offline RL, also known
as batch RL, focuses on learning policies from previously
collected data without further interactions with the environ-
ment. This approach is crucial for scenarios where online
data collection is expensive or risky. Conservativeness has
been adopted in value and density estimation [33], [34] to
address the overestimation issues. TD3-BC [35] combines
the strengths of TD3, a popular actor-critic method, with
Behavioral Cloning. The Decision Transformer (DT)-based
approaches [31], [36] rethink the RL paradigm by treating
it as a sequence modeling problem, leveraging transformers
to predict future rewards. Notably, DT tokenizes the reward,



observation, and action from offline trajectories into different
tokens, enabling the potential to incorporate multimodal inputs
from the observation space.

III. PROBLEM FORMULATION

Task Objective The objective of TEST is to improve the
quality of Learning from Imperfect Demonstration (LfID) for
long-horizon robotic assembly tasks. Assume we have N skill
primitives and a skill set denoted as {z(i)}Ni=1. We are given a
skill-labeled offline dataset by some heuristic behavior policy
π
(i)
0 , where (i) refers to the skill index of z. In general, the

objective of the furniture assembly task includes two parts:
accuracy and efficiency. For the accuracy of assembly, we
evaluate the accuracy via the Average Success Rate (ASR),
i.e. ASR = # tasks succeeded

# all tasks , which indicates success in different
assembly tasks or sub-tasks. For the efficiency of assembly,
we evaluate the Average Steps (AS), where AS = # timesteps

# skill phase .
To better evaluate the quality of the goal-reaching quality
in the learned policy, we will also consider the Average
Reward (AR) as one of the metrics.
Framework Formulation We formulate our problem in
the Goal-conditioned Partially Observable Markov Decision
Process (GC-POMDP) following the formulation of GC-
MDP [37] and POMDP [38]. A GC-POMDP is defined as a
tuple (S,A,O,P,R,G,Ω), where S is the state space, here
we define states as the 6D pose of the objects of interest. A is
the action space that indicates the target pose and movement
of the end-effector. O is a finite set of observations, and
our robotic assembly system, in fact, gives us multimodal
observations c = [op, ov, oc], where op is the proprioceptive
observation of the manipulator, ov represents the vision
observation from an external camera, and oc refers to the
contact-aware observation given by the tactile sensors. P is
the state transition probability function. G is the goal space in
the 6D pose of the objects to be assembled together, G ⊂ S.
R : S×A → R is the reward function, in practice our reward
function is induced by the target goal g ∈ G. Ω : S×A→ O
is the observation function, which maps a state-action pair to
an observation. It captures the probability of observing o after
taking action a and ending up in state s′, i.e., Ω(o|s′, a). The
objective in GC-POMDP is to find a policy that maximizes the
expected cumulative reward Eπ

[∑T
t=0 γ

trt|Ot

]
over time.

Additional Assumptions We further model our robotic
assembly task by adopting the skill learning formulation [26]
in the above GC-POMDP. We represent the skill-based RL
problem as a tuple (Iz, πz, βz) associated with certain skill
z. Iz is the initial set of states of skill z, πz = π(·|o, z) is a
goal-conditioned skill-conditioned policy, and βz : S → [0, 1]
is a termination function of the skill z.
Firstly and most importantly, we assume the invariance of
skill primitives across different assembly tasks. The skill
primitives required to finish the assembly tasks during testing
is the superset of skills demonstrated in the training envi-
ronments, i.e. ztrain ⊆ ztest. Secondly, we assume whenever
the end-effector reaches the goal of skill z, the manipulator
always has smooth transition to the next candidate skill in the
assembly tasks, i.e. ∃ z′, ∀ Gz = {s|βz(s) = 1}, Gz ⊂ Iz′ .

IV. METHODOLOGY

In this section, we introduce our proposed framework TEST.
We use a Skill Transition Model (STM), which learns the
higher-level transition model p(z′|z, c). Then for each sub-
skill, we learn the intra-skill goal-reaching policies π(·|o, z)
via Tactile Ensemble Policy Optimization (TEPO), which
transforms offline RL into a sequential modeling problem
with hindsight relabeling as data augmentation. We implement
both STM and TEPO in an end-to-end Tactile Ensemble Skill
Transformer, which is visualized in Figure 3. Lastly, we
introduce the hierarchical skill transfer pipeline of TEST
during the online deployment stage that aims the maximize
the zero-shot performance in the target domain and improve
robustness against sensor noise, i.e. image corruption.

Algorithm 1: TEST Training and Inference
Data: Number of Skills N , number of trajectories M ,

number of iterations K, maximum timesteps T ,
offline behavior policy {π(i)

0 }Ni=1, step-wise
penalty c, pose distance measure dz , initial
State Set Iz , terminal state condition βz

Result: Optimized STM p̂θ, skill policies {π̂(k)
ϕ }Nk=1

/* TEST Hierarchical Training */

Offline data collection: D = {τ}Mm=1 ← {π
(i)
0 }Ni=1;

for k = 1, · · · ,K do
Reward modeling:
r(s, g; z) = −rpenalty − d(s, g; z) + αI(s = g);

Initialize s0 ∼ Iz;
/* Hindsight Relabeling */
Sample goal: g ∼ ps(τ);
Relabel: τ ′ = Relabel(τ) with (5);
Data Augmentation: D ∪ {τ ′};
for m = 1, · · · ,M do

Sample context c′t ∼ Bk with a horizon H:
ct′ ← {Rt, o

p
t , o

v
t , o

c
t , st, at}t

′

t=t′−H+1\{at′};
/* STM */
Next skill sampling: zt′ ∼ p̂θ(·|zt′−1, ct′);
Update STM θ ← θ − η∇θLSTM with (4);
/* TEPO */
Skill-conditioned policy:
at′+1 ∼ πϕ(a|ct′ , zt′);

Update TEPO ϕ← ϕ− η∇ϕLTEPO with (6);
/* TEST Hierarchical Inference */
z ← z0;
Initialize s0 ∼ Iz;
for t = 1, · · · , T do

/* Skill-based policy rollout */
while !βz(si) do

ai ← argmaxa πϕ(a|ci, z);
oi, ri, βz(si)← env.step(ai; z);
R̂i ← max(R̂i−1 − ri, 0);
ci.update({R̂i, oi, ai});
i← i+ 1;

/* Switch skill at termination */
STM Prediction: z ← argmaxz′ p̂θ(z

′|z, ci);



Tactile-Ensemble Skill Transformer
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Fig. 3: Diagram of TEST. We tokenize the input sequence with reward-to-go, proprioceptive observation, visual observation,
followed by a tactile observations. The input bundle will predict the target pose as the action for the current timestep. At
each step, the inputs are aggregated to predict the state at the current timestep.

A. Learning the Skill Transition Model from Offline Data

Our goal is to learn the State Transition Model as an inter-
skill transition model that operates at a high level, focusing
on how different skills or sub-tasks can be chained together
to achieve a complex, long-horizon task.
We have an input trajectory τ = {τi}Ti=1 with a skill horizon
T . For each i ∈ [1, T ], we have

τi = {o0, a0, r0, s1, · · · , oT−1, aT−1, rT−1; g} (1)

The step reward in our method is goal-conditioned, labeled
by the sequential information from demonstrated trajectories:

r(st, gt; z) = −rpenalty︸ ︷︷ ︸
Time Penalty

−d(st, gt; z)︸ ︷︷ ︸
Distance to Goal

+αI(st = gt)︸ ︷︷ ︸
Arrival Bonus

, (2)

where gt = {st′ |maxt′ t
′ < t, s.t. βz(st′) = 1}, which is

the last demonstration that satisfies the termination condition
β. Following the autoregressive structure in [36], every future
z will depend on a context c of trajectory history,

ct = {Rt−H+1, ot−H+1, at−H+1, · · ·Rt, ot, at}, (3)

where Rt =
∑

t′≥t rt′ is the summation of the future reward
till the end of the episode, denoted as reward-to-go. The inter-
skill transition determines the sequence in which different
skills should be executed, ensuring smooth execution between
consecutive trajectories of the skills. The STM follows a
categorical distribution: pθ(z′|z, c) = Categorical(ℓθ(z, c)),
where ℓθ(·, ·) is the output logits of decoder output followed
by the Skill Transformer’s encoder, as shown in the skill
prediction block of Figure 3. It also considers potential
dependencies between skills, ensuring that prerequisite tasks
are completed before dependent ones.
In the demonstration collection phase, we randomly sample
from the heuristic policy with a Finite State Machine (FSM).
We then fit the skill transfer based on the trajectory ob-
servation c and current skill z by minimizing the negative

log-likelihood loss:

LSTM = Eτ∼π0
Ez∼τ

[
− log pθ(z

′|z, c)
]
, (4)

By leveraging tactile feedback and ensemble learning, the
inter-skill policy can make real-time decisions about what
would be the most likely next skills to perform, enabling
diverse way of skill composition in online deployment.

B. Skill-conditioned Goal-reaching Policy Optimization

The Tactile Ensemble Policy Optimization (TEPO) module in
the TEST framework is designed to learn a skill-conditioned
goal-reaching policy π(a|c, g, z), where the goal is implicitly
induced by g = {s|βz(s) = 1}. Without loss of generality,
we still denote π(a|c, g, z) ≜ π(a|c, z). We parameterize our
action distribution by the output logits as follows a Gaussian
distribution: πθ(a|c, z) = N

(
µθ(c, z),Σθ(c, z)

)
.

Intuitively, TEPO learns a goal-reaching policy at the sub-
skill level. Although the horizon is significantly shortened
compared to directly learning over the entire horizon of
tasks, the rewards could still be sparse, being provided only
when the exact goal is achieved. This sparsity can adversely
affect learning, especially in our offline settings where the
robot cannot interact with the environment to gather more
data. Therefore, we conduct an additional goal relabeling
strategy for TEPO training. For the input sub-skill trajectory
τk corresponding to zk introduced in (1), the original g ∈
{s|βzk(s) = 1}. We then resample the goal states from those
in trajectories τk,

Goal Relabeling: g′ ∼ ps(τk)

Reward Relabeling: r′t = r(s, g′; zk),
(5)

where ps(·) is the empirical marginal state distribution
of the input trajectories. After the hindsight relabeling,
we can generate multiple relabeled trajectories τ ′k =
{o0, a0, r′0, s1, · · · , oT−1, aT−1, r

′
T−1; g

′}, which diversifies
the step reward, and corresponding reward-to-go predictions



for identical historical sequences, improving goal scenario
generalization. After the data augmentation with hindsight
relabeling, we get the augmented trajectories s. Given the
offline demonstration, TEPO aims to minimize the following
negative log-likelihood loss with an entropy regularizer [39]:

LTEPO = Eτz∼πz
0

[
− log πϕ(a|c, z)− λH[πϕ(·|c, z)]

]
. (6)

where λ is the weight of the regularizer. The learned low-
level policy π(a|c, z) takes into account both the context
c consisting of multimodal observations, goal preference,
and skill representation z. Through a combination of tactile
feedback and ensemble learning, the intra-skill policy opti-
mizes the trajectory in real-time, ensuring that the robot can
adapt to changes and uncertainties in the environment. This
adaptability is crucial for tasks like insertion that require
fine motor skills, such as aligning parts with tight tolerances.
The training pipeline is summarized as a pseudocode in
Algorithm 1. After we train the TEST model with STM and
TEPO in an alternative optimization, we apply hierarchical
inference at the online deployment stage to further improve
the performance of TEST. As illustrated in Algorithm 1, TEST
conducts hierarchical inference between the skill-conditioned
goal-reaching policies and skill transition predictions. TEST
follows the transformer structure of GPT-2 [40].

V. EXPERIMENTS

A. Environment Design

Tasks Design: We design our furniture assembly platform
based on the FurnitureBench set [5]. Specifically, we select
the one-leg assembly of the square table, the most widely
studied environment as our in-distribution setting. For the
generalization setting, we selected a different furniture stool
with a different leg geometry and different angles of threading.
Similar to the in-distribution setting, here we only consider
the one-leg assembly task for real-robot evaluation.
Hardware Setup: As is illustrated in Figure 4, to support
our hierarchical decision-making systems with multimodal
sensory inputs, we use a Kinova Gen3 collaborative robot
arm as the manipulator to which we instrumented its gripper
fingers with tactile sensing devices. We chose the Gelsight
Mini [6], a type of optical-based tactile sensor with excellent
optical resolving power. We are also using the optional tracker
gel pads which give us additional feedback about the slipping
state of the grasped parts. The sampling frequency is 15 Hz
on the external camera and 30 Hz on the tactile sensors on
both fingers. In the low-level control, we use position control
in the end-effector’s Cartesian space at 100 Hz which allows
us to generate smooth interpolated trajectories.
Real-world Offline Data Collection: In the real-world
experiments, we use the heuristic policies π

(i)
0 , where z(i) ∈

{pick, reach, insert, screw, adjust}. The skill is parameter-
ized by the starting pose and goal 6D pose of the end
effector. During the data collection phase, we use AprilTags
to represent the objects’ state, then use the estimated state
to design goal-reaching policies with some randomness. To
guarantee the safety of the real robot, we actively detect

the violation of safe contact constraints by the movement of
the tactile sensor’s markers. Specifically, we use the optical
flow to detect such violations. We collected a total of 2,000
trajectories for all the skills and this heuristic policy is fully
operated in the real world.

Fig. 4: Hardware system setup for the experiments.

Method Square Table / Stool
AR (↑) ASR (↑) AS (↓)

BC+GSA 0.59 / 0.14 0.3 / 0.0 36.8 / 80.0
LSTM+GMM 1.02 / 1.05 0.8 / 0.5 22.4 / 24.4

TEST w/o STM 0.33 / 0.16 0.4 / 0.2 49.0 / 76.4
TEST w/o TEPO 0.85 / 1.12 0.7 / 0.4 62.0 / 66.4

TEST (Ours) 1.64 / 1.52 0.9 / 0.9 16.4 / 14.0

Heuristic Policy 1.00 / 1.00 0.7 / 0.7 67.1 / 64.0

TABLE I: Results on online assembly of square table, and
generalization setting for the stool. The evaluation results
average over 10 episodes on our furniture assembly robot.
The Bold means the best results among all.

Noise Level (cm) Evaluation Metrics
Reward (↑) ASR (↑) AS (↓)

0.1 1.58 0.9 28.8
0.2 1.34 0.9 41.2
0.5 1.09 0.8 64.4
1.0 0.68 0.5 77.2

0.0 1.64 0.9 16.4

TABLE II: Experiment results on TEST’s robustness under
disturbances. We add Gaussian noise to the state prediction
from vision inputs. The noise level indicates the standard
deviation of the target position (on the x, y, and z-axis).

B. Baselines

We compare the performance of TEST with the following
baselines and the variants of TEST. BC+GSA [12], or
Behavior Cloning with Generalized State Abstraction applies
unsupervised clustering for state abstraction and hierarchical
policy learning based on the input offline data in the entire task
horizon. LSTM+GMM [41], uses Long Short-term Memory
and Gaussian Mixture Model, aiming to capture both the
sequential nature of the demonstrations and variability in



the actions across the states. It’s particularly designed for
long-horizon LfD problems with multimodal observations.
TEST w/o STM, is an ablation variant on TEST by removing
the skill transition model. TEST w/o TEPO is an ablation
variant on TEST by removing the tactile ensemble in policy
optimization. Heuristic Policy: a set of heuristic policies
{π(i)

0 }Ni=1 that are used to collect data. Safe yet conservative,
the heuristic policies have access to privileged information
on the skill label during the evaluation stage.

C. Evaluation Protocol

As mentioned in Section III, we compare the following
metrics: AR, ASR, and AS. The original definition of the
reward is given by (2). Based on our furniture assembly robot,
as visualized in Figure 1, we evaluate all the experiments
with an average of 10 episodes. The maximum number of
skills per episode is 80, and we count each skill as a step in
the AS metric. For the AR, we normalize the average return
with respect to the heuristic policy π0.

D. Results and Analysis

In this part, we answer the following research questions:
• RQ1: What is the in-distribution performance of TEST

compared to the heuristic policies and other baselines?
• RQ2: What is TEST’s generalization performance to-

wards unseen furniture, compared to other baselines?
• RQ3: How is the robustness of TEST under noise distur-

bances in the observation space, e.g. image corruption?
We illustrate our key findings on the above three research
questions in Table I, II and Figure 5, 6.

Fig. 5: Visualization of the embedding of TEST’s learned
skills t-SNE. We see a clear cluster in each sub-skill, and
rollout trajectories in the stool and square table align well.

For RQ1, TEST outperforms BC+GSA and LSTM+GMM
with higher accuracy and efficiency in the long-horizon
assembly tasks in the square table. For RQ2, TEST still
manages to generalize and outperform the Heuristic Policy
even if it does not access the direct skill labels in the unseen
furniture stool. Compared to other baselines, TEST has
the lowest performance drop and the highest success rate
compared to the other baselines. For RQ3, we manually
add the Gaussian noise from the prior pose estimation from
vision observation ov and evaluate TEST’s performance in

Fig. 6: Bar plot for comparison on the Average Steps (↓) of
each sub-skill between four methods. We can see that TEST
significantly outperforms other baselines and the heuristic
behavior policy π0.

the square table environment. Though the efficiency of TEST
drops significantly, the accuracy is still maintained to some
extent. Attributed to the multi-modal design, TEST is actually
robust under mild disturbances in the visual observation.
We also provide ablation studies by removing key modules in
TEST. TEST w/o STM only conducts the tactile ensemble in
policy optimization for the long task horizon, which indicates
the agent can hardly generalize even with contact awareness,
if the skill transition is not properly represented. TEST w/o
TEPO keeps the hierarchical skill-based learning structure
while removing the tactile signals in policy optimization.
This reinforces the idea that the addition of tactile sensors
improves the performance of contact-rich manipulation.
In addition, to understand the effectiveness of TEST’s design,
we scatter the embedding of skill representation in Figure 5
to verify the invariance of skills between different furniture
configurations. We also analyze the efficiency in each sub-
skill in Figure 6. The results show that pick is the easiest skill,
while insertion is the hardest one where TEST outperforms
baselines with the clearest margin.

VI. CONCLUSION

In this work, we introduced TEST, a hierarchical, skill-based
offline reinforcement learning framework tailored for robotic
assembly tasks. TEST emphasizes the integration of tactile
feedback, enhancing the contact-aware decision-making of
robotic agents. At its core, TEST employs a Skill Transition
Model, parameterized by a trajectory-level transformer for
inter-skill transitions, and leverages Hindsight goal relabeling
for intra-skill policy learning. Comprehensive evaluations on
a furniture assembly robot underscore TEST’s superiority
over existing LfID baselines.
The limitation of TEST is that it still assumes access
to accurate skill labels in offline data, which may not
always be available in more general teleoperation cases.
The assumption that skill primitives seamlessly integrate
is another simplification, overlooking potential mismatches
between consecutive skill states. Additionally, as furniture part
geometries become complicated, the challenge of effectively
fusing tactile imprints with marker movements for decision-
making emerges as a promising direction for future research.
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