
On the Benefits of Coding for Network Slicing
Homa Esfahanizadeh†, Vipindev Adat Vasudevan‡, Benjamin D. Kim+, Shruti Siva‡, Jennifer Kim‡,

Alejandro Cohen∗, and Muriel Médard‡
†Nokia Bell Labs, Murray Hill, NJ, USA, Email: homa.esfahanizadeh@nokia-bell-labs.com

‡Massachusetts Institute of Technology (MIT), Cambridge, USA, Emails: {vipindev, shrutsiv, jennkim, medard}@mit.edu
+University of Illinois Urbana-Champaign (UIUC), Champaign, Illinois, USA, Email: bdkim4@illinois.edu

∗Technion—Israel Institute of Technology, Haifa, Israel, Email: alecohen@technion.ac.il

Abstract—Network slicing has emerged as an integral concept
in 5G, aiming to partition the physical network infrastructure
into isolated slices, customized for specific applications. We theo-
retically formulate the key performance metrics of an application,
in terms of goodput and delivery delay, at a cost of network
resources in terms of bandwidth. We explore an un-coded com-
munication protocol that uses feedback-based repetitions, and
a coded protocol, implementing random linear network coding
and using coding-aware acknowledgments. We find that coding
reduces the resource demands of a slice to meet the requirements
for an application, thereby serving more applications efficiently.
Coded slices thus free up resources for other slices, be they coded
or not. Based on these results, we propose a hybrid approach,
wherein coding is introduced selectively in certain network slices.
This approach not only facilitates a smoother transition from
un-coded systems to coded systems but also reduces costs across
all slices. Theoretical findings in this paper are validated and
expanded upon through real-time simulations of the network.

Index Terms—network slicing, network coding, delivery delay,
goodput, completion time.

I. INTRODUCTION

With wireless technologies evolving to the 5-th generation
(5G) and beyond, the standardization bodies like the Interna-
tional Telecommunication Union (ITU) and 3GPP have identi-
fied different use cases that drive the innovations [1]–[3]. The
three broad families of use cases in 5G are enhanced mobile
broadband (eMBB), ultra-reliable low latency communica-
tions (URLLC), and massive machine-type communications
(mMTC). While the eMBB use cases prioritize achieving high
data rates and traffic density, the URLLC focuses on serving
critical applications with low latency and high reliability. The
large number of connected devices and the heterogeneous
nature of devices are characterized by the mMTC use case.

Evident from the broad range of applications with different
requirements in the upcoming communication networks, there
is no single model that can optimally serve all of them.
Thus, several novel concepts have emerged to define more
advanced and efficient networks that can satisfy a wide range
of user requirements. Among them is network slicing, which
is a mechanism for optimally allocating network resources to
several services and applications that have different require-
ments [4], [5]. Slicing has become an important concern in
the planning and deployment of the network architectures and

This is a slightly modified version of a paper that will be presented at the
IEEE ICC 2024. This work is supported by the SNOB-5G project under the
MIT Portugal Program and by JMA Wireless.

Fig. 1. Heterogeneity in advanced meshed communications with hybrid
technologies. The slices, which share the same network infrastructure, can
use different communication protocols, and they serve different 5G use cases.

is expected to continue and grow as an integral part of 6G
networks [6], [7]. Network slicing in the future generations of
communication networks will enable various applications and
services to jointly and efficiently benefit from the shared net-
work resources, via defining several virtual data pipelines (e.g.,
virtual networks [8]). Emerging applications demand strong
guarantees on their performance metrics, such as latency and
bandwidth, only getting stronger and more challenging to be
satisfied over time. Meeting these stringent requirements in a
dense and heterogeneous network is often not trivial [9], [10],
demanding efficient and real-time network slicing strategies
for defining virtual networks, which is the scope of this paper.

Different slices may employ different communication pro-
tocols to comply with the latest technology and demands of
their associated applications. For instance, in an eMBB use
case with a focus on the bandwidth, the protocols that achieve
the maximum transmission rate (such as Automatic Repeat
Request (ARQ) [11]) are preferred, while in the URLLC use
case, advanced coding schemes can be deployed to achieve
higher reliability and low latency communications. When it
comes to the massive IoT use case, the requirements of
different applications in the IoT environment can be very
different from each other, and the participating devices may
have different computational capabilities. Thus, in an mMTC

ar
X

iv
:2

40
4.

17
68

6v
1

 [
cs

.N
I]

 2
6

A
pr

 2
02

4

use case, multiple transmission techniques (coded or un-coded)
can be deployed. Fig. 1 shows how slicing can be used to serve
the diverse 5G use cases.

Network coding (NC) is a communication solution, which
can significantly improve the communication quality over
lossy channels on several fronts, e.g., reliability and latency.
NC was first proposed as a methodology to achieve the
capacity of the network [12], and since then, it has been
extended and equipped with several techniques [13]–[15] to
offer reliable high-bandwidth communication with low latency
and cost, making it a great candidate for future wireless sce-
narios [16]–[19]. Coding over network slices can significantly
enhance service quality and ensure that the requirements are
satisfied with the available resources [8], [20], [21]. Network
coding implementations have been proven to perform better
and coexist in a network competing for resources without
degrading the performance of non-coding data flows [22].

In this paper, we build upon existing network coding in-
novations and explore the multitude of benefits they provide
in network slices. We show the benefits of network coding
for virtual network slicing, where coding may be applied to
a fraction of the network slices. We focus primarily on the
eMBB and URLLC use cases, where high throughput and
low latency are the priorities, respectively. Further, we discuss
the scenarios of dense heterogeneous networks, which can
be associated with the mMTC use case and may have parts
with and without network coding capabilities. We also propose
dynamic slicing techniques where allocated resources can be
released and reallocated to other applications/slices, once a
particular slice finishes serving its application.

II. SYSTEM MODEL AND PROBLEM SETTING

Consider a multi-path network that consists of n parallel
binary erasure channels (BECs) with erasure probabilities in
P = {p1, . . . , pn}. Such a model complies with the concept
of virtual networks, where global paths are identified and their
end-to-end erasure rates are estimated [8]. At each time slot,
one packet is transmitted through each link, which is lost with
a probability advised by the link parameter. Network slicing is
a partitioning of the network links into J slices, where the links
in Pj ⊆ P are assigned to the j-th slice and ∪J

j=1Pj = P . Ap-
plications that share the network infrastructure have different
requirements, and the questions we discuss in this paper are
how to characterize the performance of an application given
its slice bandwidth and its communication protocol, and how
to split the resources into several slices considering diverse
requirements of each application.

We first define the key performance metrics of an applica-
tion that acquires the j-th slice, j ∈ {1, . . . , J}. The perfor-
mance metrics depend on resources that are allocated to the
application, i.e., Pj , as well as the deployed communication
solution by the application, e.g., random linear network coding
(RLNC) or selective repeat (SR)- ARQ.

• Delivery Delay (resp., In-Order Delivery Delay): Num-
ber of time slots it takes for an information packet to

be delivered (resp., delivered in-order) at the destination,
denoted with D(Pj) (resp., I(Pj)).

• Goodput: Number of information packets that are deliv-
ered per time slot, denoted with G(Pj).

• Completion Time: Number of time slots it takes for an
application to successfully deliver ν information packets,
denoted with Tν(Pj).

Ideally, we need to slice the network such that different re-
quirements of each application are satisfied, e.g., E[G(Pj)] ≥
Gj and E[D(Pj)] ≤ Dj , where Gj is the minimum de-
manded goodput and Dj is the maximum tolerable delivery
delay for the j-th application, so its quality of service will not
be degraded.

III. THEORETICAL CHARACTERIZATION

In this section, we characterize the performance of an
application given its slice bandwidth and its communication
protocol. As our benchmarks, we explore two communication
protocols, i.e., SR-ARQ as a representative of an un-coded
communication solution and RLNC as a representative of a
coded solution. The considered communication system is time-
slotted, and an acknowledgment (ACK/NACK) is received
per transmitted packet after one round trip time (RTT),
corresponding to the communication in the transport layer of a
network. For simplicity of the theoretical analysis, we assume
RTT is the same for all links, and we leave the multi-path
scenario with heterogeneous RTT values for future work.

A. Communication Protocol 1 (Un-coded): SR-ARQ

In this setting, the transmitted packets are un-coded. When
a packet is sent, its acknowledgment is received (ACK or
NACK), after RTT time slots. Per receipt of a NACK for
a packet, the sender re-transmits the same packet in the next
time slot through a randomly-chosen link of the slice.1

According to the definition, delivery delay of a packet for
the j-th application D(Pj) is the difference between the time
the packet is transmitted for the first time through its allocated
slice, until the time it is successfully received. We assume the
transmission time of a packet (including the first transmission
and the possible re-transmissions) is negligible compared to
RTT . Thus,

D(Pj) ∈
{
RTT

2
,
RTT

2
+RTT,

RTT

2
+ 2RTT . . .

}
.

If there was no error, the goodput was G(Pj) = |Pj | (i.e.,
same as throughput). However, because of packet loss and re-
transmissions, the goodput is typically less than this bound.

Theorem 1. Average delivery delay and average goodput for
the multi-path SR-ARQ communication solution are

E[D(Pj)] = 0.5
1 + Pj

1− Pj

RTT,

E[G(Pj)] =
∑

pi∈Pj

(1− pi) = |Pj |(1− Pj).
(1)

1We assume the sender’s buffer does not have size limitations.

Here, Pj =
(∑

pi∈Pj
pi

)
/|Pj | is the average erasure proba-

bility of the slice.

Proof. We first show that the distribution of delivery delay is,

P

[
D(Pj) =

RTT

2
+ kRTT

]
= Pj

k (
1− Pj

)
, (2)

when k ∈ {0, 1, . . . }, and zero otherwise. We prove this by
induction. We first show the result holds for k = 0:

P

[
D(Pj) =

RTT

2

]

=
∑

pi∈Pj

1

|Pj |
P

[
D(Pj) =

RTT

2
|i-th link is selected

]

=
1

|Pj |
∑

pi∈Pj

(1− pi) = (1− Pj).

Assume P [D(Pj) =
RTT
2 + kRTT] = Pj

k
(1− Pj). Then,

P

[
D(Pj) =

RTT

2
+ (k + 1)RTT

]
=

=
∑

pi∈Pj

1

|Pj |
P

[
D(Pj)=

RTT

2
+ (k + 1)RTT |i-th link is selected

]

=
1

|Pj |
∑

pi∈Pj

piP

[
D(Pj) =

RTT

2
+ kRTT

]
= Pj

k
(1− Pj)

1

|Pj |
∑

pi∈Pj

pi = Pj
k+1

(1− Pj),

and this completes the proof, by induction, for the PMF
expression in (2). Next, we derive the expectation,

E[D(Pj)] =

∞∑
k=0

(
RTT

2
+ kRTT

)
Pj

k
(1− Pj)

=
RTT

2
+RTT (1− Pj)

∞∑
k=0

kPj
k

=
RTT

2
+RTT (1− Pj)

Pj

(1− Pj)2

= 0.5
1 + Pj

1− Pj

RTT.

We now prove the expression for the average goodput. Let
Xi be a binary random variable that takes value one if the i-th
link has a successful transmission, and zero otherwise. Thus,
E[Xi] = 1−pi. By definition, G(Pj) =

∑
pi∈Pj

Xi. Because
of linearity of the expectation, we have

E[G(Pj)] =
∑

pi∈Pj

E[Xi] =
∑

pi∈Pj

(1− pi) = |Pj |(1− Pj).

As we see, the average delivery delay for SR-ARQ only
depends on the average erasure probability of the links in the
slice. Therefore, a slice with only one reliable link is preferred
to another slice with several mediocre links for this commu-
nication protocol, in terms of the delivery delay. However,

the average goodput cannot decrease when an arbitrary link is
added to the slice.

B. Communication Protocol 2 (Coded): RLNC

This communication solution is an adaptive RLNC scheme.
Consider the j-th application with the allocated slice Pj ,
j ∈ {1, . . . , J}. A generation is defined as a sequence of
original packets that are coded together; the generation size
is denoted with kj ≫ |Pj |. The sender sequentially transmits
the coded generations, starting with the first generation. For
each generation, it transmits kjγ

1
j coded packets through the

links in Pj . The parameter γ1
j is called the forward error

correction (FEC) rate, and a reasonable choice is proportional
to 1/(1 − Pj). Upon receiving feedback of the last-sent
encoded packet of a generation, the sender knows that the
receiver requires mj more coded packets (i.e., missing degrees
of freedom) to decode the generation. It then transmits γ2

jmj

coded packets in the next time slot. The parameter γ2
j is

called the feedback-based (FB) rate, and is set such that the
probability that the receiver fails to decode the generation after
the second round is almost zero. If the sender has the option to
select among the paths, its strategy is a random selection. With
this setting, we ensure that all packets are transmitted success-
fully, meeting the ultra-reliable communication requirements.

We first characterize the random variable mj . The probabil-
ity of mj = 0 is equal to having equal or less than ⌈(γ1

j−1)kj⌉
failed transmissions in the first trial of a generation. Similarly,
the probability of mj = m, 0 < m ≤ kj , is equal to having
⌈(γ1

j − 1)kj⌉+m failed transmissions in the first trial.

Theorem 2. Distribution of the random variable mj is ap-
proximated as follows,

P [mj = m] ≈

∑⌈(γ1
j−1)kj⌉

f=0
λfe−λ

f ! m = 0,

λ⌈(γ1
j −1)kj⌉+m

e−λ

(⌈(γ1
j−1)kj⌉+m)!

m ∈ {1, . . . , kj},

0 otherwise,
(3)

where λ = kjγ
1
jPj .

Proof. The number of failures in a trial can be modeled
as summation of independent non-identical Bernoulli random
variables, assuming the links are memoryless. If the erasure
probabilities (Bernoulli parameters) are close to zero, this
distribution can be approximated by a Poisson distribution with
its parameter being the summation of the parameters of the
Bernoulli random variables [23], i.e.,

λ =
kjγ

1
j

|Pj |
∑

pi∈Pj

pi = kjγ
1
jPj .

Corollary 1. The average delivery delay for the presented
multi-path RLNC communication solution is,

E[D(Pj)] ≈

(
RTT

2
+

⌈
kjγ

1
j

|Pj |

⌉)
P [mj = 0]

+

(
3RTT

2
+

⌈
kjγ

1
j

|Pj |

⌉
+ 1

)
(1− P [mj = 0]).

(4)

Proof. The distribution of delivery delay for the presented
RLNC solution is,2

D(Pj) ≈

RTT
2 +

⌈
kjγ

1
j

|Pj |

⌉
, mj = 0,

3RTT
2 +

⌈
kjγ

1
j

|Pj |

⌉
+ 1, mj > 0.

Therefore, the average delivery delay for RLNC can be ob-
tained as in (4).

Corollary 2. The average goodput for the presented multi-
path RLNC communication solution is,

E[G(Pj)] = E

[
kj

kjγ1
j +mjγ2

j

|Pj |

]
=

kj∑
m=0

kj
kjγ1

j +mγ2
j

P [mj = m]|Pj |.

(5)

We finish this subsection by presenting examples that
demonstrate the performance of network slices that use the
coded solution compared to those that use the un-coded one,
for utilizing the shared network infrastructure.

Example 1. Consider a network with 10 links and RTT =
1000, modeling a high-rate transmission scenario. The erasure
probabilities are specified by the vector P given below, where
the i-th element is the erasure probability of the i-th link:

P = [0.05, 0.01, 0.08, 0.02, 0.06, 0.01, 0.07, 0.09, 0.09, 0.01].

We evaluate the delivery delay of two slices that share this net-
work. We consider the i-th slicing choice as P1 = {p1, . . . , pi}
and P2 = {pi+1, . . . , p10}. The un-coded protocol is SR-ARQ,
and the coded protocol is RLNC with parameters kj = 50,
γ1
j = 1.1/(1− Pj), and γ1

j = 2/(1− Pj), for j ∈ {1, 2}.3

Fig. 2 shows the average delivery delay (left) and average
goodput (right) for various slicing choices and communication
protocols. We observe that the delay of an application that uses
coded communication protocol is consistently lower than the
one that uses un-coded solution, across all slicing choices. The
difference is more significant when the size of the slice grows,
and such a benefit comes at slight cost of a small degradation
in the average goodput.

2In this analysis, we assume the decoding delay is negligible.
3All theoretical results are validated using Monte Carlo simulations.

Fig. 2. Average delivery delay and goodput for different slicing choices and
communication protocols, over a network with 10 heterogeneous links.

C. Communication-Aware Network Slicing

Here, we study networks with a mixed collection of slices,
where some of them are coded and some are un-coded. We
manifest the benefits of using coded slices for the whole
network. By using coding, applications need smaller slices,
which not only reduces the cost for that application but also
frees up more resources for the other applications that may
need more resources. Thus, the same physical network can be
shared by more delay-sensitive applications, when the coded
communication protocol is used by the applications. This
mutual benefit is particularly important for 5G uses cases
that have various requirements. For instance, in the mMTC,
the network needs to be shared with many applications with
potentially different requirements, and it is critical to consider
their differences to optimize the network to serve more and
more applications. Our result motivates incorporating the
statistical measures of communication protocols given their
assigned bandwidth into the network slicing strategy.

The next example highlights the importance of using cod-
ing in realizing more economical networks, as it shows the
difference between the number of delay-sensitive applications
that can be served in a network.

Example 2. Consider a network with 104 BEC links, each
with erasure probability 0.1, and RTT = 1000. The goal is
to serve as many delay-sensitive applications (e.g., URLLC)
as possible over this network, with and without coding. The
requirement of each application is to have a delivery delay of
less than 530 time slots, and to have goodput of at least 5
packets per time slot.

We first consider the un-coded communication protocol. In
order to satisfy the goodput requirement, each application
needs to have at least 6 links, as derived below, see Theorem 1,

E[G(Pj)] ≥ 5 → |Pj |(1− Pj) ≥ 5,→ |Pj | ≥ 5.56.

Based on the theoretical derivations in Theorem 1, the average
delivery delay of an un-coded slice is only dependent on the
average erasure probability, and it is equal to 611.11 time slots
for the current network configuration, regardless of the size of
the slice. As seen, the delay requirement cannot be satisfied,
regardless of the slicing choice, if the un-coded solution is
deployed by the applications.

Next, we consider the coded communication protocol with
kj = 50, γ1

j = 1.1/(1 − Pj) = 1.22, and γ1
j =

2/(1 − Pj) = 2.22, for j ∈ {1, . . . , J}. Based on The-
orem 2, we have λ = kjγ

1
jPj = 6.1, and P [mj =

m] = [0.9776, 0.0124, 0.0058, 0.0025, 0.0010, 0.0004], for
m = 0, 1, 2, 3, 4, 5, respectively, and negligible for m > 5.

To satisfy the delay requirement, each application needs to
have at least 9 links, as derived below, see (4),

E[D(Pj)] ≤ 530(
500 +

⌈
61

|Pj |

⌉)
0.9776 +

(
1501 +

⌈
61

|Pj |

⌉)
0.0224 ≤ 530

⌈
61

|Pj |

⌉
≤ 7.5776 → |Pj | ≥ 8.05.

To satisfy the goodput requirement, each application needs
to have at least 7 links, derived as follows, see (5):

E[G(Pj)] ≥ 5 →
5∑

m=0

50

61 + 2.22m
P [mj = m]|Pj | ≥ 5

→ 0.8184|Pj | ≥ 5 → |Pj | ≥ 6.109.

Therefore, each application needs to acquire at least 9 links
to meet its requirements, and the network can potentially serve
111 such applications.

IV. REAL-TIME SIMULATION OF A NETWORK WITH
MIXED SLICES

In this section, we expand upon our theoretical results
on the network with mixed slices. In particular, we explore
our implementations of both coded slices (using RLNC) and
un-coded slices (using SR-ARQ) through SimPy, a discrete-
event simulator [24]. SimPy excels in simulating real-world
networking scenarios thanks to its adeptness in handling asyn-
chronous events, time-dependent behaviors, and custom event
scheduling. By adopting a process-based paradigm, SimPy
enabled us to effectively simulate data flow within the network
and replicate desired client-server transactions.

For our experiments, we consider a homogeneous network
with the total number of n = 20 links and RTT = 150 slots,
where each link has an erasure probability of 0.2. The network
consists of two slices serving two different applications (each
may have varying requirements). The first slice is dedicated to
the first application, and is allocated i out of the total available
links, i ∈ {1, . . . , 20}. The parameter i indicates the slicing
choice, and the second slice serves the second application with
the remaining resources.

Fig. 3 (left) shows that the average in-order delivery delay
slightly increases with the number of links allocated to a slice.
When a larger slice is available, more packets will be sent at
the same time slot. Then the loss of a single packet impacts
more packets in transit, increasing the in-order delivery delay.
However, the RLNC scheme results in significantly lower in-
order delivery delay since it sends additional repair packets
apriori to compensate for any losses in advance. Even though
the average in-order delivery delay increases with number
of available channels, the completion of both coded or un-
coded slices decrease with it, since more transmitted packets

Fig. 3. (left): Average in-order delivery delay (IOD); (right): average
completion time, for different slicing choices and communication solutions.

at each time slot results in a faster completion for a specific
application, as shown in Fig. 3 (right).

RLNC helps the coded slice to achieve a lower average
delay and a significantly lower in-order delay. In fact, the
coded slice can meet the low-delay requirements with a
smaller slice as well, leaving more resources for other appli-
cations that require more bandwidth (e.g., eMBB slice). The
following experiments demonstrate this scenario considering
two applications with different requirements. We assume each
time slot in our network model is 50 µsec, and each link has
a bandwidth of 28 Mbps (i.e., each link can send a packet of
1400 bits per time slot).

The first application is a delay-sensitive application, such
as tactile internet, that requires an average delay of less
than 5ms and throughput of at least 10 Mbps (as per [2],
[25]). The second application is a more throughput-demanding
application, such as an 8K 3D video streaming, that requires
at least 250 Mbps with a delay tolerance of around 10-12
ms [3], [25]4. In our experimental setting, 5 ms corresponds
to 100 time slots, and a goodput of 250 Mbps can be
obtained if at least 8.92 transmissions per slot occur. The first
application requires E[I(P1)] ≤ 100 time slots (modeling
URLLC application), while the second application requires
E[G(P2)] ≥ 9 packets per time slot (modeling an eMBB
slice).

The requirements of the first application can never be met
with an un-coded communication protocol. Introducing coding
in the first slice will make it possible to realize the delay
requirement of application 1, even with a very small number
of links. This provides the second slice with enough resources
to support the high goodput requirements of application 2,
enabling more feasible slicing choices, as shown in table I.
Furthermore, the in-order delay is significantly lower within
coded slices assuring seamless communication. Thus, the
mixed slices satisfy both application requirements with the
same amount of resources, while the un-coded slices fail to
achieve at least one set of requirements. This shows that the
coded slice is essential to achieve ultra-reliable low-latency
requirements in a practical setting. Further, the coded slice
can achieve this performance with a smaller slice of resources
as well, making room for more applications to be served with
the same physical infrastructure.

4The throughput requirements in the standards can directly be considered
as goodput requirements in our settings.

TABLE I
THIS TABLE SHOWS THE PERFORMANCE OF UN-CODED SLICES AND MIXED SLICES SETTINGS. THE PURPLE COLORED ENTRIES SHOW THE SLICES THAT

MATCH THE EMBB REQUIREMENTS, WHILE THOSE WITH BLUE COLOR SHOW THE URLLC SLICES

Slicing Choice Un-coded slices Mixed Slicing
App. 1 (URLLC) - Un Coded App. 2 (eMBB) - Un Coded App. 1 - (URLLC) Coded App. 2 (eMBB) - Un Coded

(|P1|, |P2|) E[D(P1)] E[I(P1)] E[G(P1)] E[D(P2)] E[I(P2)] E[G(P2)] E[D(P1)] E[I(P1)] E[G(P1)] E[D(P2)] E[I(P2)] E[G(P2)]
(5, 15) 112.75 606.35 4.00 112.98 718.53 12.00 94.39 123.63 3.61 112.69 694.37 12.00
(6, 14) 112.94 641.05 4.80 112.76 721.35 11.21 93.12 130.14 4.33 112.78 700.82 11.16
(7, 13) 112.67 649.58 5.60 112.65 682.82 10.39 91.18 131.68 5.06 112.56 703.31 10.39
(8, 12) 112.63 651.93 6.41 112.72 692.53 9.60 90.08 136.19 5.78 112.84 694.10 9.59
(9, 11) 112.88 677.41 7.19 112.64 683.53 8.80 88.50 134.99 6.51 112.72 681.09 8.80

(10, 10) 112.86 686.04 8.00 112.67 670.10 7.98 88.57 141.96 7.23 112.81 670.14 7.98
(11, 9) 112.64 681.09 8.80 112.72 668.09 7.20 87.92 144.62 7.95 112.85 664.13 7.20
(12, 8) 112.89 683.22 9.60 112.73 656.51 6.39 87.41 146.63 8.68 112.76 662.45 6.39
(13, 7) 112.71 693.10 10.41 112.72 642.27 5.59 86.92 149.95 9.40 112.89 640.77 5.60
(14, 6) 112.83 701.44 11.22 112.60 635.95 4.81 87.11 154.38 10.13 112.70 624.61 4.80
(15, 5) 112.75 714.11 11.97 112.92 617.11 4.00 86.75 157.66 10.85 112.80 608.91 3.99

V. CONCLUSIONS AND FUTURE WORK

This work expands the benefits of network slicing in 5G
networks and beyond, and presents a novel hybrid approach
that incorporates coding into a fraction of virtual network
slices. To rigorously evaluate the efficacy of our new hybrid
approach, we considered performance requirements of the
key 5G use cases, i.e., eMBB and URLLC, as identified
by 3GPP. Although we considered a hybrid solution where
coding is available only on a fraction of the slices in the
network, how to optimally determine the amount of physical
resources needed for the different applications and use cases
in the entire network remains as future work. As an interesting
envisioning technology, we propose combining the idea of
resources allocation optimization and network sliced manage-
ment, e.g., using SDN network controller [8], [26], [27] and
using advanced coding solutions [14], [18]. The configuration
of the virtual sliced network can therefore be self-organized.

REFERENCES

[1] 3GPP-TS.22.861, “Feasibility Study on New Services and Markets
Technology Enablers for Massive Internet of Things; Stage 1,” 3rd
Generation Partnership Project (3GPP), Technical Specification (TS)
22.861, 09 2016, version 14.1.0.

[2] 3GPP-TS.22.862, “Feasibility study on new services and markets tech-
nology enablers for critical communications; Stage 1,” 3rd Generation
Partnership Project (3GPP), Technical Specification (TS) 22.862, 10
2016, version 14.1.0.

[3] 3GPP-TS.22.863, “Feasibility study on new services and markets tech-
nology enablers for enhanced mobile broadband; Stage 1,” 3rd Gener-
ation Partnership Project (3GPP), Technical Specification (TS) 22.863,
09 2016, version 14.1.0.

[4] N. Alliance, “Description of network slicing concept,” NGMN 5G P,
vol. 1, no. 1, pp. 1–11, 2016.

[5] J. Ordonez-Lucena, P. Ameigeiras, D. Lopez, J. J. Ramos-Munoz,
J. Lorca, and J. Folgueira, “Network slicing for 5G with SDN/NFV:
Concepts, architectures, and challenges,” IEEE Communications Maga-
zine, vol. 55, no. 5, pp. 80–87, 2017.

[6] S. Zhang, “An overview of network slicing for 5G,” IEEE Wireless
Communications, vol. 26, no. 3, pp. 111–117, 2019.

[7] W. Wu, C. Zhou, M. Li, H. Wu, H. Zhou, N. Zhang, X. S. Shen, and
W. Zhuang, “AI-native network slicing for 6G networks,” IEEE Wireless
Communications, vol. 29, no. 1, pp. 96–103, 2022.

[8] A. Cohen, H. Esfahanizadeh, B. Sousa, J. P. Vilela, M. Luis, D. Raposo,
F. Michel, S. Sargento, and M. Medard, “Bringing network coding into
SDN: Architectural study for meshed heterogeneous communications,”
IEEE Communications Magazine, vol. 59, no. 4, pp. 37–43, 2021.

[9] G. Joshi, Y. Kochman, and G. W. Wornell, “On playback delay in
streaming communication,” in 2012 IEEE International Symposium on
Information Theory Proceedings. IEEE, 2012, pp. 2856–2860.

[10] E. Dias, D. Raposo, H. Esfahanizadeh, A. Cohen, T. Ferreira, M. Luís,
S. Sargento, and M. Médard, “Sliding Window Network Coding Enables
NeXt Generation URLLC Millimeter-Wave Networks,” IEEE Network-
ing Letters, 2023.

[11] M. Anagnostou and E. Protonotarios, “Performance analysis of the
selective repeat ARQ protocol,” IEEE Transactions on Communications,
vol. 34, no. 2, pp. 127–135, 1986.

[12] R. Ahlswede, N. Cai, S.-Y. Li, and R. W. Yeung, “Network information
flow,” IEEE Transactions on information theory, vol. 46, no. 4, pp. 1204–
1216, 2000.

[13] T. Ho, M. Médard, R. Koetter, D. R. Karger, M. Effros, J. Shi, and
B. Leong, “A random linear network coding approach to multicast,”
IEEE Transactions on information theory, vol. 52, no. 10, pp. 4413–
4430, 2006.

[14] A. Cohen, D. Malak, V. B. Bracha, and M. Médard, “Adaptive causal
network coding with feedback,” IEEE Transactions on Communications,
vol. 68, no. 7, pp. 4325–4341, 2020.

[15] V. A. Vasudevan, T. Soni, and M. Médard, “Practical sliding window re-
coder: Design, analysis, and usecases,” in 2023 IEEE 29th International
Symposium on Local and Metropolitan Area Networks (LANMAN), 2023,
pp. 1–6.

[16] A. Cohen, G. Thiran, V. B. Bracha, and M. Médard, “Adaptive causal
network coding with feedback for multipath multi-hop communications,”
IEEE Transactions on Communications, vol. 69, no. 2, pp. 766–785,
2020.

[17] F. Michel, A. Cohen, D. Malak, Q. De Coninck, M. Médard, and
O. Bonaventure, “FlEC: Enhancing QUIC with application-tailored
reliability mechanisms,” IEEE/ACM Transactions on Networking, 2022.

[18] A. Cohen, M. Médard, and S. S. Shitz, “Broadcast approach meets net-
work coding for data streaming,” in 2022 IEEE International Symposium
on Information Theory (ISIT). IEEE, 2022, pp. 25–30.

[19] P. Enenche, D. H. Kim, and D. You, “Network Coding as Enabler for
Achieving URLLC Under TCP and UDP Environments: A Survey,”
IEEE Access, 2023.

[20] F. H. Fitzek, F. Granelli, and P. Seeling, Computing in Communication
Networks: From Theory to Practice. Academic Press, 2020.

[21] V. Latzko, C. Vielhaus, M. Mehrabi, and F. H. P. Fitzek, “Analysing
and learning low-latency network coding schemes,” in 2023 19th In-
ternational Conference on Wireless and Mobile Computing, Networking
and Communications (WiMob), 2023, pp. 175–180.

[22] M. Kim, J. Cloud, A. ParandehGheibi, L. Urbina, K. Fouli, D. J. Leith,
and M. Médard, “Congestion control for coded transport layers,” in 2014
IEEE International Conference on Communications (ICC). IEEE, 2014,
pp. 1228–1234.

[23] J. L. H. Jr. and L. L. Cam, “The Poisson Approximation to
the Poisson Binomial Distribution,” The Annals of Mathematical
Statistics, vol. 31, no. 3, pp. 737 – 740, 1960. [Online]. Available:
https://doi.org/10.1214/aoms/1177705799

[24] SimPy, “Simpy: Discrete event simulation for python,” Tech. Rep. 9,
2017, Tech. Rep., 2017. [Online]. Available: https://simpy.readthedocs.
io/en/latest

[25] N. Alliance, “5g white paper,” Next generation mobile networks, white
paper, vol. 1, no. 2015, 2015.

[26] L. Mamushiane, A. Lysko, and S. Dlamini, “A comparative evaluation

https://doi.org/10.1214/aoms/1177705799
https://simpy. readthedocs. io/en/latest
https://simpy. readthedocs. io/en/latest

of the performance of popular SDN controllers,” in 2018 Wireless Days
(WD). IEEE, 2018, pp. 54–59.

[27] R. Amin, M. Reisslein, and N. Shah, “Hybrid SDN networks: A survey
of existing approaches,” IEEE Communications Surveys & Tutorials,
vol. 20, no. 4, pp. 3259–3306, 2018.

	Introduction
	System Model and Problem Setting
	Theoretical Characterization
	Communication Protocol 1 (Un-coded): SR-ARQ
	Communication Protocol 2 (Coded): RLNC
	Communication-Aware Network Slicing

	Real-Time Simulation of a Network with Mixed Slices
	Conclusions and Future Work
	References

