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Abstract

This paper expands on existing learned models of human behavior via a measured step in structured irrationality. Specifically, by
replacing the suboptimality constant β in a Boltzmann rationality model with a function over states β(s), we gain natural expressivity
in a computationally tractable manner. This paper discusses relevant mathematical theory, sets up several experimental designs,
presents limited preliminary results, and proposes future investigations.

1. Introduction

With the eruption of deep learning we’ve created many
strong ”intelligence” engines. Yet despite impressive results in
academia, there exists a great gap in deploying systems in the
world alongside humans. Currently, operational frameworks
for human-computer interaction are the missing link, and a key
component of these frameworks are models of human behavior.

In a collaboration setting, simple algorithms often overes-
timate human rationality. The existence of a mathematically
clear optimal sequence of actions does not guarantee that a spa-
tially and temporally imprecise operator with a unique belief
state will perform them. As collaborating humans, we tem-
per our expectations, communication, and planning according
to task difficulty, our partner’s comfort and acuity with the task,
and the uncertainty in their information and actions. In order to
successfully collaborate with us, robots must — at least implic-
itly — model these notions.

A standard method for modeling our suboptimality is ”Boltz-
mann Rationality” [ZMBD08], which models a noisy optimal
trajectory based on exponentially weighting the cost of avail-
able trajectories. However, this model still falls short in ac-
curately modeling human states. Research on models of sys-
tematic suboptimality, such as the ”Boltzmann Policy Distribu-
tion” [LD22], if successful, could open the flood-gates towards
countless downstream competitive, assistive, collaborative, and
observational methods. Furthermore, we believe a better un-
derstanding of human suboptimality could provide insight into
how we represent and plan tasks. In that manner, if we learn
how humans are stupid, along the way we may learn useful
frameworks for how we are so smart.

2. Background

Under the moniker ”Industry 4.0”, the next industrial revo-
lution is expected to be the collaboration of humans and robots
[CPA21]. When we combine the consistency, precision, and
power of robots with the dexterity, intuition, and general adap-
tive knowledge of humans, our industries are able to operate far

more effectively than using only one of the two. A hot area of
research is thus the efficient coordination of fleets of humans
and robots. Much work has been published on the manage-
ment of dynamic new safety conditions [RGBL+17], fatigue
[CPA21], ergonomics, skill [LR22], supervision, cycle times,
preference [LR20], between humans, robots, and teams of hu-
mans and/or robots in assembly tasks. However, current work is
often rigidly fixed to hand-specified characteristics and thus un-
able to adapt to general considerations like humans. The space
of strategies is vast, especially since collaboration can grow to
great industrious scales. [LZL+23] outlines the myriad space of
considerations and methods and concludes that in the 2020s we
will soon reach levels beyond even support, coordination, and
cognition on to co-evolution. In this imagined system, robots
initiate proactive actions, agents are self organizing, and cogni-
tion and empathy are shared amongst both humans and robots.
This structure requires accounting for numerous models of mu-
tual prediction, perception, uncertainty estimation, and well-
being.

One key such model is human proficiency or task difficulty.
This notion appears to critically affect other aspects of col-
laboration tasks, such as the importance of nonverbal com-
munication [AWHS16] and the asymmetry of updates to trust
[SXCH20].

2.1. Models of Human Proficiency

In many supervised learning settings, machine learning mod-
els have reached human ability, and now seek to go beyond. For
this purpose, researchers have modeled the suboptimality of the
human labelers. In [WBBP10], they learn each human annota-
tor’s decision parameters inside a (simultaneously learned) la-
tent image representation space. This simultaneous optimiza-
tion successfully reveals human competence, difficulty of clas-
sification, and superhuman annotations — all three of which are
image-dependent.

In the context of RL, models of capability have been devel-
oped for robots, since human operators often misunderstand
joint limits of robotic arms. [GYS+22] introduces a framework
including a function bh mapping a state to a value between 0
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and 1 representing a human’s belief of how likely it is to be
reachable by the robot. This formalism is then flipped around
to optimize demonstrations to best update the human’s beliefs,
and achieves better performance than simply sampling from un-
traversed waypoints.

In [BSE+22], the authors use [DS79]’s annotator error max-
imum likelihood estimation algorithm for imitation learning,
surpassing rewards achieved by SOTA IL algorithms in Grid-
World, robotic manipulation, and chess endgame settings. They
embed demonstrators and states in a shared representation
space and calculate ”expertise level” as a similarity of the two,
and theoretically show they can recover the true optimal policy
from suboptimal demonstrations.

2.2. Inverse RL
Given an environment with states S (often partial observa-

tions), actions A, and rewards R for state transitions, the re-
inforcement learning problem is to find a policy π(a | s) op-
timizing expected returns of a trajectory ξ sampled from the
environment.

π∗ = arg max
π

Eξ∼π[U(ξ)]

IRL solves the inverse problem. Given an environment and roll-
out data of trajectories of a certain policy, we want to calculate
the cost function U(ξ) that the policy is maximizing. The space
of cost functions is vast, so this problem is under-determined
given a finite number of samples. We wish to find meaning-
ful solutions, which depending on the context can mean in-
terpretable feature weights, well-conditioned for optimization,
and/or similarity to the true cost function (under some notion of
similarity in cost function space).

In practice, we observe data from policies other than the op-
timal policy π∗. Most often for HRI tasks, the data we collect
is of humans who are optimizing an objective subject to con-
text clues, internal beliefs, etc. Relative to robot action spaces,
human actions have imprecision in space and time, and are
roughly planned rather than exactly optimal. Algorithms solv-
ing the IRL problem for HRI tasks must account for human
suboptimality in its many forms.

2.3. Boltzmann Rationality
The Boltzmann Rationality (BR) model over trajectories is

formulated as the solution to the near-optimal maximum en-
tropy IRL problem.

That is,

max
P

H(P) s.t. EξD∼P[U(ξD)] ≈ min
ξ

U(ξ)

is solved by the following Boltzmann Rational distribution over
trajectories:

P(ξ) =
1
Z

e−U(ξ) (1)

where Z is a constant normalization factor, and U(ξ) is the cost
accumulated by the trajectory ξ. Typically, cost is calculated

as a function of each state, and summed over the trajectory.
Although a discount factor is sometimes used, for simplicity we
will use γ = 1. The parametrization of the cost function is taken
to be a vector of weights weighing each feature of the state,
computed by some map ϕ(s). These features can be prescribed,
learned offline, or updated online.

P(ξ | θ) =
1
Z

e−
∑

s∈ξ θ
Tϕ(s) (2)

In order to account for a range of possible ”distances” from
optimality, an ”inverse temperature” parameter β is introduced.
Varying β will interpolate between the optimal policy β = ∞
and uniform policy β = 0 (though differently from action-space
interpolation such as used in [BSE+22]).

P(ξ | θ, β) =
1
Z

e−β
∑

s∈ξ θ
Tϕ(s) (3)

Note that any distribution can be induced from Equation 1 by
construing a particular cost function – which is precisely the
problem posed by IRL – and so one might assume any new pa-
rameters would be redundant. However, by imposing structure
on our cost and introducing new parameters, we aim to reach a
more natural parametrization. Such a description can critically
ease the optimization search and can encode interpretable infor-
mation about what is being learned. This core idea is integral
to the algorithm presented in the next section.

The Boltzmann Rationality model seems very natural, as it
coincides with generic theoretical derivations and many phys-
ical systems. In practice however, the mismatch between this
model and actual human behavior bottlenecks human-robot in-
teraction algorithms, particularly in the case of collaboration.
The problem to which this paper contributes is finding better
models of human behavior.

3. Theory

In this section, we introduce mathematical formulation of
state dependent rationality. The derivations begin at the most
general form, and we state any simplifying assumptions along
the way.

To better model human behavior, we will introduce new pa-
rameters to describe systematic suboptimality, expanding on the
one scalar value β. First, we will impose additional structure
on our cost, just as we did under Boltzmann Rationality. We
will now consider several human agents, assuming they are all
optimizing the same cost function. In an experiment with a
clearly communicated objective where humans are subjected to
the same task, this is a fair assumption. Then, we will introduce
the possibility that each human has varying suboptimality over
states.

3.1. Why States?

It is not obvious that suboptimality should be formulated as
a function over states. Often a notion of proficiency of a ”ma-
neuver” is preferred, while in other cases, a dynamic notion
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of attention, knowledge, and mood state of a human is needed.
The space of trajectories can be more expressive than states, but
computations over it are usually intractable. In different instan-
tiations of the reinforcement learning framework, the relevant
and rich information could be in the action space. In practice
this is rarely the case, but a meaningful space to work in is the
policy space, as is used for systematic suboptimality in BPD
[LD22].

While these methods should all be investigated, formulat-
ing suboptimality over states however seems initially the most
promising. In many cases states themselves are the best avail-
able representation of when the environment may become noisy
or unfamiliar. They also contain implicit information about tra-
jectories and maneuvers, as certain states are only reached in
specific traversals towards goals. Particularly, we can make use
of the iterative nature of our optimizers to incorporate the im-
plicit sequential nature of state data into our training algorithms.
Notably, the alignment of state-based formulation with our data
structure, cost formulation, and iterative training method means
we can leverage many of the same conventional computational
tricks to make optimization tractable.

3.2. Forward Model

Let’s see how our trajectory distribution looks when we vary
β over states s. We will parametrize this function just as we did
the cost, as a vector of feature weights θβ. It may be useful to set
or learn a separate featurization than the one used for rewards,
but we will assume the features are descriptive enough to com-
pute both suboptimality and rewards. Equation 3 becomes

P(ξ | θ, β) =
1
Z

e
∑

s∈ξ β(s)θTϕ(s)

P(ξ | θR, θβ) =
1
Z

e−
∑

s∈ξ θ
T
β ϕβ(s)θTRϕR(s)

P(ξ | θR, θβ) =
1
Z

e−
∑

s∈ξ θ
T
β ϕ(s)θTRϕ(s)

P(ξ | θR, θβ) =
1
Z

e−
∑

s∈ξ θ
T
β ϕ(s)ϕ(s)T θR

P(ξ | θR, θβ) =
1
Z

e−θ
T
β (
∑

s∈ξ ϕ(s)ϕ(s)T )θR

where
Z =
∑
ξ̄∈Ξ

e−θ
T
β (
∑

s∈ξ̄ ϕ(s)ϕ(s)T )θR (4)

To simplify notation, we define Φξ =
∑

s∈ξ ϕ(s)ϕ(s)T to be
the ”feature counts” matrix of trajectory ξ. So our trajectory
distribution is

P(ξ | θR, θβ) =
1
Z

e−θ
T
βΦξθR (5)

3.3. Inverse Model

Now we invert the reinforcement learning problem, which
can be computed using Bayesian inference. Let’s consider sev-
eral humans with the same reward model but varying state-
dependent proficiency. Given rollouts ξij from human i and run

j, we compute

P(θR, {θiβ} | {Ξ
i}) =

P({Ξi} | θR, {θ
i
β})P(θR, {θiβ})

P({Ξi})
(6)

We assume the rollouts are independent of each other up to our
human parameters. Note, this assumption could be broken if
the humans gain proficiency during data collection (between or
during trials). Mathematically, this means

P({Ξi} | θR, {θ
i
β}) =

∏
i

P(Ξi | θR, θ
i
β) =
∏

i

∏
j

P(ξij | θR, θ
i
β)

We also assume the human’s parameters are independent of
each other, except for reward which they share.

P(θR, {θiβ}) = P(θR)
∏

i

P(θiβ)

By plugging these derived equations in, we will now attempt to
solve for the parameters θ∗ (where θ refers to θR and {θiβ}) that
achieve the maximum likelihood.

θ∗ = arg max
θ

P(θ | {Ξi})

= arg max
θ

log P(θ | {Ξi})

= arg max
θ

log P({Ξi} | θ) + log P(θ) − log P({Ξi})

= arg max
θ

log P({Ξi} | θ) + log P(θ)

= arg max
θ

∑
i

∑
j

log P(ξij | θR, θ
i
β) + log P(θ)

= arg min
θ

∑
i

∑
j

(
θTRΦξijθ

i
β + log Z(θ)

)
− log P(θ) (7)

This optimization problem is theoretically analyzed in Ap-
pendix A.

4. Experiments

To test the applicability of our theory, there are several ex-
periments we can try. Unfortunately we failed to run these ex-
periments to produce results, but the rough experimental design
for these is elaborated here.

4.1. Environments

We run a simple GridWorld environment to tractably test our
math. For the OverCooked setting, we use the environment pro-
vided in [FHZ+21] and human data gathered from Mechanical
Turk [CSH+20] labeled with human IDs. We chunk our data by
layout and human ID, with a total of 8 different tasks, 88 hu-
mans, and 8 (sometimes less) rollouts from each agent of 397
timesteps each. Note this data is all gathered in the collabo-
rative setting, but we are learning only one agent’s reward and
suboptimality parameters, and absorbing the other into the en-
vironment.
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4.2. Parameter recovery

First, we want to ensure our math is internally consistent, and
that our parameter spaces are meaningful. For this purpose, we
create agents operating directly using our model, and see if we
can recover their internal parameters just from rollout observa-
tion. In the GridWorld setting, this seems works pretty well (see
Figure 1), though a compilation of rigorous results has not been
collected.

Figure 1: Posterior Belief of θ parameters from trajectories generated by
θR = [0, 1] and θβ = [1, 100]. For this arbitrary discrete space, we are able
to accurately recover our parameters.

4.3. Shared Goals

We can construct another experiment to test our assumption
of shared goals. We assumed that by communicating to each
play-tester the same objective, their actions would align with
models that share state feature reward weights. For any task in
which we ground our training from trials on the same objective,
we can validate this assumption experimentally. Using live sub-
jects, we can ask the humans to label sampled trajectories from
different human runs and ask them to choose the trajectory that
best achieves the goal of the task, and see if there exists a sta-
tistical difference between the human labelers.

With offline human data (such as our MTurk dataset), we can
at least qualitatively (if not statistically) compare the learned
reward parameters of trajectories by different humans learned
with BR to see how closely they align compared to those
learned from other tasks and random weights.

4.4. Generalization of Learned Rewards

We wish to test how well our learned θR generalizes, to show
it meaningfully corresponds to the reward model and is inde-
pendent from human suboptimality.

We set up an experiment on each of our representative tasks
(from Overcooked and GridWorld). We fit a BR rational model

to the data in aggregate and a BSDR model with each human
identity labeled. Then, we optimize the learned θR to find π∗θR .
By measure the performance of these learned policies with the
original task rewards (known to the experimenters, but not our
algorithms), we can see which achieves better performance.
The cost function that can be opimized to achieve a higher true
reward should be more closely aligned to the true reward.

We can also compare the rewards predicted by our learned
parameters evaluated over some sample human trajectories to
the true values.

Note that it seems BSDR has a competitive advantage in this
experiment since it gets an extra dimension of data: human
ID’s. Without imposing the structure of different agents with
shared cost, our BSDR parameters are redundant and have no
preference for one corresponding to reward and the other to sub-
optimality. Thus BSDR cannot generalize from training on only
1 human. To equalize the playing field, we can train BR with
different βi for each human, and evaluate their performance in-
dividually.

4.4.1. Action Prediction
In this experiment, we directly compare the action distribu-

tions predicted by our human models. Under our list of tasks,
we again train BR, BPD, and BSDR. We then compare their
cross entropy prediction performance of human data to each
other. We can also plot results for a self-play policy, and a ran-
dom policy.

4.5. Generalization of Learned Suboptimality for Goal Infer-
ence

After learning from demonstrator’s performing the same
tasks, we should be able to use our human suboptimality mod-
els to better infer new goals and predict their actions.

4.6. Goal Inference

In this experiment, we test the ability to predict a goal from
a partial trajectory, which should be easier if we have a pre-
existing accurate model of their suboptimality.

We use our calculated values of βi and θiβ from the last exper-
iment. We restrict the reward parameters to be one of a small
set. In this case, we will use GridWorld with certain coordi-
nates as goals. Then, we consider unseen trajectories by the
same human used for training the β parameters. Using only
the initial portion of the trajectory, we numerically compute
with Bayesian inference the likelihood of each possible goal.
We plot the likelihood of the true goal computed from BR and
BSDR averaged over 8 different trajectories from 20 different
humans. We repeat the trial for the first 25%, 50%, 75%, and
100% of the trajectory. And we again repeat for different Grid-
World environments.

Unfortunately, we did not yet collect human data on Grid-
World tasks.
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5. Future Steps

• State-dependent suboptimality may be useful in certain
in environments with relevant information encoded in the
state, while irrelevant in others. Learning a latent repre-
sentation of states, actions, or maneuvers may be the best
bet. [BSE+22] cited meaningful state features as challeng-
ing to learn for unexplored environments, but [YLN21]
successfully learned abstract state-dependent action repre-
sentations to surpass demonstrator performance. Once we
have a meaningful rich space we can learn suboptimality
as a function of that representation.

• One could also investigate the use of more complex sub-
optimality models such as different ways of interpolating
between optimality and irrationality.

• To best gauge human models, we need to work with real
human data. Diverse tasks, environments, and agents are
important for experiments aiming to understand human
models.

• The question is left of how to take advantage of these hu-
man models for collaboration. Knowledge of β(s) could
be used to estimate conditional uncertainty to assess risk
in plans. For assistance tasks where the human’s objective
is unknown, an assistance task could be to steer the state
towards the human’s expertise. In a game context, given
the human model, one could explicitly compute the best
response strategy to it.

• We can experiment using different features for our reward
and suboptimality models.
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Appendix A. Further Analysis of the Max Likelihood
Problem

The following is an incomplete attempt at analytically ana-
lyzing the optimization problem from the MLE in Equation 7.
It can be safely ignored.

Note that the Z(θ) term is omitted from the following com-
putations, which is an error.

θ∗ = arg max
θ

∑
i

∑
j

θTβ
∑

s∈ξij

ϕ(s)ϕ(s)T

 θR
 + log P(θR) +

∑
i

log P(θiβ)

This quantity can be computed efficiently by flattening Ξi

into a vector of states visited, and performing tensor multipli-
cations with the θi vector. An einsum summation could work

as well. Notice that the terms involving θi can be separated out.
So

θ∗ = arg min
θiβ

∑
s∈Ξi

θTRϕ(s)ϕ(s)T

 θiβ + log P(θiβ)

We can summarize our data with the frequency rates at which
human i visits state s: ρi(s). Then Given a discretized search
space of θ values we can simply search over them all.

To find this numerically for large spaces, let’s compute the
gradient.

Let’s define the matrix Φi =
∑

j
∑

s∈ξij
ϕ(s)ϕ(s)T .

Let’s assume a prior that is uniform over θ with unit length,
and 0 otherwise. Then our maximum likelihood problem be-
comes

θ∗ = arg min
∥θ∥=1
θTR

∑
i

Φiθiβ

Then we see that θR that minimizes the quantity is just the
unit vector in the opposite direction from

∑
iΦ

iθiβ.

θ∗R = −

∑
iΦ

iθiβ

∥
∑

iΦ
iθiβ∥

Then with that fixed, we can go into the minimization over {θiβ}.
We are left with

θ∗ = arg max
θ

P(θR, {θiβ} | {Ξ
i})

= arg min
∥θ∥=1
−

1
∥
∑

iΦ
iθiβ∥

(
∑

i

Φiθiβ)
T (
∑

i

Φiθiβ)

= arg min
∥θ∥=1
−

1
∥
∑

iΦ
iθiβ∥
∥
∑

i

Φiθiβ∥
2

= arg max
∥θ∥=1
∥
∑

i

Φiθiβ∥

= arg max
∥θ∥=1
∥
∑

i

Φiθiβ∥
2

This is not an obvious expression to maximize, but we can
get some insight to the theoretical analysis. Let’s calculate the
derivative of the unconstrained objective

∂

∂θiβ
∥
∑

i

Φiθiβ∥
2 =

∂

∂θiβ
(
∑

i

Φiθiβ)
T (
∑

i′
Φi′θi

′

β )

= 2(
∂

∂θiβ

∑
i

Φiθiβ)
T (
∑

i′
Φi′θi

′

β )

= 2ΦiT (
∑

i′
Φi′θi

′

β )

The critical points appear when the derivatives are all 0.
This occurs at a minimum when

∑
iΦ

iθiβ = 0. Other criti-
cal points appear whenever

∑
iΦ

iθiβ is in the null space of ev-

ery ΦiT . Given our weight constraint, we can use Lagrange
multipliers to solve the constrained optimization problem. Let
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f (θ) = ∥
∑

iΦ
iθiβ∥

2 and g(θ) = ∥θiβ∥ − 1. Then our likelihood is
maximized when L(θ, λ) = f (θ) + λg(θ) is at a stationary point.

∀i
∂

∂θiβ
L(θ, λ) = 0

∂

∂λ
L(θ, λ) = 0

∀i 0 = 2ΦiT (
∑

i′
Φi′θi

′

β ) + 2λθiβ

1 = ∥θiβ∥

These computations can in practice be rather large.

• With a large state dimension D, Φi will have D2 entries.
It may be easier to keep the expression decomposed into∑

s∈Ξi θTRϕ(s)ϕ(s)T .

• For limited data per human, it may be more efficient to use
the sum over states.

• In the case of large data per human, and a small state space
(or in rare cases, a small number of states visited per hu-
man), it can be efficient to transform the sum over states
into a product of a state feature tensor by ρi(s), a vector
representing the frequency at which a human visits state s.
We can construct an operational quantity like that used in
MaxEntIRL: feature counts ϕ̃i.
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