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Abstract. The discretization of the deep Ritz method [18] for the Poisson equation leads to a high-dimensional
non-convex minimization problem, that is difficult and expensive to solve numerically. In this paper, we consider the
shallow Ritz approximation to one-dimensional diffusion problems and introduce an effective and efficient iterative
method, a damped block Newton (dBN) method, for solving the resulting non-convex minimization problem.

The method employs the block Gauss-Seidel method as an outer iteration by dividing the parameters of a shallow
neural network into the linear parameters (the weights and bias of the output layer) and the non-linear parameters
(the weights and bias of the hidden layer). Per each outer iteration, the linear and the non-linear parameters are
updated by exact inversion and one step of a damped Newton method, respectively. Inverses of the coefficient matrix
and the Hessian matrix are tridiagonal and diagonal, respectively, and hence the cost of each dBN iteration is O(n).
To move the breakpoints (the non-linear parameters) more efficiently, we propose an adaptive damped block Newton
(AdBN) method by combining the dBN with the adaptive neuron enhancement (ANE) method [25]. Numerical
examples demonstrate the ability of dBN and AdBN not only to move the breakpoints quickly and efficiently but
also to achieve a nearly optimal order of convergence for AdBN. These iterative solvers are capable of outperforming
BFGS for select examples.

Key words. Fast iterative solvers, Neural network, Ritz formulation, ReLU activation, Diffusion problems,
Elliptic problems, Newton’s method

1. Introduction. In the past decade, the use of neural networks (NNs) has surged in pop-
ularity, finding applications in artificial intelligence, natural language processing, image recog-
nition, and various other domains within machine learning. Consequently, the use of NNs has
extended to diverse fields, including numerically solving partial differential equations (PDEs)
[4, 9, 16, 18, 29, 31]. The idea of using NNs to solve PDEs may be traced back to 90s [15, 22, 23]
based on some versions of the least-squares principle. Neural networks give rise to a novel class of
functions characterized by piecewise linearity, offering the advantage of adaptability in the physical
partition [7, 8, 25].

In one dimension, the shallow neural networks produce the same class of approximating func-
tions as the free knots splines introduced in 1960s and studied by many researchers [3, 14, 21, 30].
Spline approximations to non-smooth functions can be improved dramatically with free knots [5].
Nevertheless, determing optimal knot locations (the non-linear parameters) becomes a complicated,
computationally intensive non-convex optimization problem and was a subject of many research
articles on various optimization methods such as the DFP method [13, 19], the Gauss-Newton
method [20], a method moving each knot locally [14, 26], etc. (see, e.g., [21, 28] and references
therein).

In the context of the shallow neural network for multi-dimension, the active neuron least
squares (ANLS) method was recently introduced in [1, 2] to efficiently update the non-linear
parameters. By utilizing both the quadratic structure of the functional and the neural network
structure, the structure-guided Gauss-Newton (SgGN) method was newly proposed in [10] for
solving the non-linear least-squares problem. For several one and two dimensional least-squares
test problems which are difficult for the commonly used training algorithms in machine learning
such as BFGS and Adam, the SgGN shows superior convergence. However, the mass matrix for
the linear parameters and the layer Gauss-Newton matrix are ill-conditioned even though they are
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symmetric and positive definite.
The deep Ritz method introduced in [18] is a discretization method for the Poisson equation

using deep neural networks as approximating functions. The method is based on the Ritz mini-
mization formulation of the underlying problem. The resulting discretization is a high-dimensional
and computationally intensive non-convex minimization problem.

The purpose of this paper is to develop a fast iterative solver, a damped block Newton (dBN)
method, for numerically solving the above mentioned non-convex minimization problem arising
from the shallow Ritz discretization of one-dimensional diffusion problems. Like existing ap-
proaches, the neural network parameters are assorted as the linear and non-linear parameters.
The outer interation of the dBN method for the resulting algebraic system from the optimality
conditions is based on the block Gauss-Seidel method, and the inner iteration requires a linear
solver for the linear parameters and a damped Newton iteration for the non-linear parameters.

For the linear parameters, the corresponding coefficient matrix is no longer sparse and depends
on the non-linear parameters. Moreover, its condition number is bounded by O

(
nh−1

min

)
(see

Lemma 3.1), the same as that obtained when using local hat basis functions [17], where n is the
number of neurons and hmin is the smallest gap between two neighboring breakpoints. Instead of
an iterative solver that requires many matrix and vector multiplications, the coefficient matrix is
inverted by an explicit formula per each outer iteration and the inversion is a tridiagonal matrix.
For the non-linear parameters, the corresponding Hessian matrix is diagonal. Hence, computational
cost of each dBN iteration is O(n). To move the breakpoints (the non-linear parameters) more
efficiently, we propose an adaptive damped block Newton (AdBN) method by combining the dBN
with the adaptive neuron enhancement (ANE) method [25]. Numerical examples demonstrate the
ability of dBN and AdBN not only to move the breakpoints quickly and efficiently but also to
achieve a nearly optimal order of convergence for AdBN. These iterative solvers are capable of
outperforming BFGS for select examples.

The remainder of the paper is structured as follows: In section 2 the Poisson equation and the
modified Ritz formulation are introduced and an error estimate is presented. Then, in section 3,
the linear and non-linear algebraic systems are laid out. Additionally, a bound for the condition
number of the coefficient matrix for the linear system is given and the Hessian matrix for the
non-linear system is presented. In section 4, the formula for the inverse of the coefficient matrix is
revealed. Subsequently, the dBN is outlined in the remainder of the section. This algorithm solves
for the linear and non-linear parameters separately while using the derived formulas for the inverses
of the matrices. In section 5 an adaptivity scheme is introduced to improve the convergence of
the method. Lastly, numerical results are presented in section 6, demonstrating the benefit of
adaptivity as well as the ability of dBN to outperform BFGS for those select examples.

2. Poisson’s Equation and Neural Network Approximation. Consider the following
one-dimensional Poisson equation

(2.1)

{
−(a(x)u′(x))′ = f(x), x ∈ I = (0, 1),

u(0) = α, u(1) = β,

where f is a given real-valued function defined on I. Assume that the diffusion coefficient a(x) is
bounded below by a positive constant µ > 0 almost everywhere on I.

One of the Dirichlet boundary conditions is enforced strongly and the other can be enforced
either algebraically (see Appendix A for the formulation) or weakly by penalizing the energy
functional. We opt for the latter; the modified Ritz formulation of problem (2.1) is to find u ∈
H1(I) ∩ {u(0) = α} such that

(2.2) J(u) = min
v∈H1(I)∩{v(0)=α}

J(v),
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where the modified energy functional is given by

J(v) =
1

2

∫ 1

0

a(x)(v′(x))2dx−
∫ 1

0

f(x)v(x)dx+
γ

2
(v(1)− β)2.

Here, γ > 0 is a penalization constant.
Denote by σ(x) = max{0, x} the ReLU activation function, and let

Mn(I) =

{
c−1 +

n∑
i=0

ciσ(x− bi) : ci ∈ R, 0 ≤ b0 < b1 < · · · < bn < bn+1 = 1

}
(2.3)

be the collection of the shallow neural network functions. Then the Ritz neural network approxi-
mation is to find un ∈Mn(I) ∩ {un(0) = α} such that

(2.4) J(un) = min
v∈Mn(I)∩{v(0)=α}

J(v).

2.1. Error Estimate. Define the bilinear and linear forms by

(2.5) a(u, v) :=

∫ 1

0

a(x)u′(x)v′(x)dx+ γu(1)v(1) and f(v) :=

∫ 1

0

f(x)v(x)dx+ γβ v(1),

respectively, and denote the induced norm of the bilinear form by ∥v∥2a = a(v, v). Then the
modified energy function is given by

(2.6) J(v) =
1

2
a(u, v)− f(v) +

1

2
γβ2.

Lemma 2.1. Let u and un be the solutions of problems (2.2) and (2.4), respectively. Then

(2.7) ∥u− un∥a ≤
√
3 inf
v∈Mn(I)∩{v(0)=α}

∥u− v∥a +
√
2
∣∣a(1)u′(1)

∣∣ γ−1/2.

Proof. It is easy to see that the solution u of (2.1) satisfies

(2.8) a(u, v) + αa(0)u′(0)− a(1)u′(1)v(1) = f(v)

for any v ∈ H1(I) ∩ {v(0) = α}. Together with (2.6), we have

a(v − u, v − u) = 2(J(v)− J(u)) + a(1)u′(1)(u(1)− v(1)),

which, combining with the inequality that 2c d ≤ γ−1c2 + γd2, implies

∥v − u∥2a −
∣∣a(1)u′(1)

∣∣2γ−1 ≤ 4(J(v)− J(u)) ≤ 3∥v − u∥2a +
∣∣a(1)u′(1)

∣∣2γ−1.

Now, together with the fact that J(un) ≤ J(v) for any v ∈Mn(I) ∩ {v(0) = α}, we have

∥un − u∥2a ≤ 4(J(v)− J(u)) +
∣∣a(1)u′(1)

∣∣2γ−1 ≤ 3∥v − u∥2a + 2
∣∣a(1)u′(1)

∣∣2γ−1.

This implies (2.7) and proves the lemma.

The set of the shallow neural network functions,Mn(I), is equivalent to the set of continuous
piecewise linear functions with free knots, i.e., the so-called free knot linear spline functions, (see,
e.g., [12, 30]). It is well-known that there exists a constant C(u) depending on u such that

(2.9) inf
v∈Mn(I)

∥a1/2(u− v)′∥L2(I) ≤ C(u)n−1,

provided that u has certain smoothness. Obviously, (2.9) is valid for u ∈ H2(I) = W 2,2(I) even
when knots are fixed and form a quasi-uniform partition of the interval I. It is expected that (2.9)
is also valid for u ∈W 2,1(I) when knots are free.
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Proposition 2.1. Let u and un be the solutions of the problem (2.2) and (2.4), respectively.
Assume that a ∈ L∞(I), then there exists a constant C depending on u such that

∥u− un∥a ≤ C
(
n−1 + γ−1/2

)
.

Proof. The proposition is a direct consequence of Lemma 2.1 and (2.9).

3. Systems of Algebraic Equations. Let

un = un(x) = un(x; c,b) = α+

n∑
i=0

ciσ(x− bi)

be a solution of (2.4). Then the linear and non-linear parameters

c = (c0, . . . , cn)
T and b = (b0, . . . , bn)

T

satisfy the following system of algebraic equations

(3.1) ∇cJ (un) = 0 and ∇bJ (un) = 0,

where ∇c and ∇b denote the gradients with respect to the respective parameters c and b.
Let H(t) be the Heaviside step function given by

H(t) = σ′(t) =

{
1, t > 0,

0, t < 0.

Obviously, we have

∇cu
′
n(x) =

 H(x− b0)
...

H(x− bn)

 , ∇cun(x) =

 σ(x− b0)
...

σ(x− bn)

 , and ∇cun(1) =

 b− b0
...

b− bn

 .

Let d = ∇cun(1), then the first equation in (3.1) gives

0 =

∫ 1

0

a(x)u′
n(x)∇cu

′
n(x)dx−

∫ 1

0

f(x)∇cun(x)dx+ γ(un(1)− β)∇cun(1)

=

[∫ 1

0

a(x)∇cu
′
n(x) (∇cu

′
n(x))

T
dx

]
c−

∫ 1

0

f(x)∇cun(x)dx+ γ
(
dT c+ α− β

)
d

=

(
A(b) + γddT

)
c−

(
f(b) + γ(β − α)d

)
,

where the coefficient matrix and right hand side vector are defined as

A(b) =

∫ 1

0

a(x)∇cu
′
n(x) (∇cu

′
n(x))

T
dx and f(b) =

∫ 1

0

f(x)∇cun(x)dx,

respectively. Their components are given by

aij(b) =

∫ 1

0

a(x)H(x− bi−1)H(x− bj−1)dx and fi =

∫ 1

0

f(x)σ(x− bi−1)dx.
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Hence, the first equation in (3.1) has the form of

(3.2)
(
A(b) + γddT

)
c = f(b) + γ(β − α)d.

In the rest of the paper, we assume that the breakpoints b = (b0, . . . , bn)
T satisfy

0 ≤ b0 < . . . < bn < bn+1 = 1.

Let hi = bi − bi−1 for i = 1, . . . , n+ 1 and hmin = min
1≤i≤n+1

hi. The next lemma provides an upper

bound for the condition number of the coefficient matrix A(b).

Lemma 3.1. Let a(x) = 1 in (2.1), then the condition number of the coefficient matrix A(b)
is bounded by O

(
nh−1

min

)
.

Proof. For any vector ξ = (ξ0, . . . , ξn)
T ∈ Rn, denote its magnitude by

∣∣ξ∣∣ = ( n∑
i=0

ξ2i

)1/2

. By

the Cauchy-Schwarz inequality, we have

ξtA(b)ξ =

∫ 1

0

(
n∑

i=0

ξiH(x− bi)

)2

dx ≤ |ξ|2
∫ 1

0

(
n∑

i=0

H(x− bi)
2

)
dx

= |ξ|2
n∑

i=0

(1− bi) < (n+ 1)|ξ|2.(3.3)

To estimate the lower bound of the quadratic form ξtA(b)ξ, note that

(3.4) ξtA(b)ξ =

n∑
j=0

∫ bj+1

bj

(
j∑

i=0

ξiH(x− bi)

)2

dx =

n∑
j=0

hj+1

(
j∑

i=0

ξi

)2

≥ hmin

n∑
j=0

(
j∑

i=0

ξi

)2

.

Now, the lemma is a direct consequence of (3.3), (3.4), and the fact that

|ξ|2 =

n∑
j=0

( j∑
i=0

ξi −
j−1∑
i=0

ξi

)2

≤ 2

n∑
j=0

( j∑
i=0

ξi

)2

+ 2

n∑
j=0

(j−1∑
i=0

ξi

)2

≤ 4

n∑
j=0

( j∑
i=0

ξi

)2

.

This completes the proof of the lemma.

In the remainder of this section, we derive the Hessian matrix for the non-linear parameters.

Lemma 3.1. For j = 0, 1, . . . , n, the jth equation of ∇bJ(un) = 0 is given by

∂

∂bj
J(un) = cj

(∫ 1

bj

f(x) dx− γun(1)− a(bj)

(
j−1∑
i=0

ci +
cj
2

)
+ cjγβ

)
= 0.

Proof. For each j = 0, 1, . . . , n, we have∫ bj+1

bj

a(x)(u′
n(x))

2 dx =

∫ bj+1

bj

a(x)

(
j∑

i=0

ciH(x− bi)

)2

dx =

(
j∑

i=0

ci

)2 ∫ bj+1

bj

a(x)dx,

which yields

∂

∂bj

∫ 1

0

a(x)(u′(x))2dx = a(bj)

(
j−1∑
i=0

ci

)2

− a(bj)

(
j∑

i=0

ci

)2

= −2cja(bj)

(
j−1∑
i=0

ci +
cj
2

)
.
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It is easy to see that
∂un(x)

∂bj
= −cjH(x− bj) and

∂un(1)

∂bj
= −cj ,

which implies

∂

∂bj

∫ 1

0

f(x)un(x) dx = −cj
∫ 1

bj

f(x) dx and
∂

∂bj
(un(1)− β)2 = −2cj(un(1)− β).

Hence,

0 =
∂

∂bj
J(un) = −cj

[
a(bj)

(
j−1∑
i=0

ci +
cj
2

)
−
∫ 1

bj

f(x) dx+ γ(un(1)− β)

]
.

This completes the proof of the lemma.

Lemma 3.2. For j = 0, 1, . . . , n, let

g(bj) = f(bj) + a′(bj)

(
j−1∑
i=0

ci +
cj
2

)
.

Then the Hessian matrix ∇2
bJ(un) has the form

H(c,b) =


−c0g(b0) 0 0 . . . 0

0 −c1g(b1) 0 . . . 0
0 0 −c2g(b2) . . . 0
...

...
...

. . .
...

0 0 0 . . . −cng(bn)

+ γccT(3.5)

≡ −B(c,b) + γccT .

Proof. For k = 0, 1, . . . , n, we have

∂

∂bk
cj

[∫ 1

bj

f(x) dx− a(bj)

(
j−1∑
i=0

ci +
cj
2

)]
=

{
−cjg(bj), k = j,

0, k ̸= j.

Now (3.5) is a direct consequence of the fact that ∇bun(1) = −c and Lemma 3.1.

4. A Damped Block Newton (dBN) Method. In this section, we introduce a damped
block Newton (dBN) method for solving the resulting non-convex minimization problem in (2.4),
i.e., the system of algebraic equations in (3.1). The method employs the block Gauss-Seidel method
as outer iteration between the linear and non-linear parameters. Per each outer iteration, the linear
and the non-linear parameters are updated by exact inversion and one step of a damped Newton
method, respectively.

To this end, the coefficient matrix A has the form of

A(b) =



∫ 1

b0
a(x)dx

∫ 1

b1
a(x)dx

∫ 1

b2
a(x)dx · · ·

∫ 1

bn
a(x)dx∫ 1

b1
a(x)dx

∫ 1

b1
a(x)dx

∫ 1

b2
a(x)dx · · ·

∫ 1

bn
a(x)dx∫ 1

b2
a(x)dx

∫ 1

b2
a(x)dx

∫ 1

b2
a(x)dx · · ·

∫ 1

bn
a(x)dx

...
...

...
. . .

...∫ 1

bn
a(x)dx

∫ 1

bn
a(x)dx

∫ 1

bn
a(x)dx · · ·

∫ 1

bn
a(x)dx


.

Let si =
∫ bi
bi−1

a(x)dx for i = 1, . . . , n+ 1. Then the inverse of A(b) is a tri-diagonal matrix given

in the following lemma.
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Lemma 4.1. The coefficient matrix is invertible and its inverse is given by

(4.1) A(b)−1 =



1
s1

− 1
s1

0 0 · · · 0 0

− 1
s1

1
s1

+ 1
s2

− 1
s2

0 · · · 0 0

0 − 1
s2

1
s2

+ 1
s3
− 1

s3
· · · 0 0

...
...

...
...

. . .
...

...

0 0 0 0 · · · 1
sn−1

+ 1
sn

− 1
sn

0 0 0 0 · · · − 1
sn

1
sn

+ 1
sn+1


.

Proof. It is easy to verify that A(b)−1A(b) = I.

Let A(b) = A(b) + γddT , by Lemma 4.1 and the Sherman-Morrison formula, we have

A(b)−1 = A(b)−1 − γA(b)−1ddTA(b)−1

1 + γdTA(b)−1d

The following lemma states a sufficient condition for guaranteeing invertibility of the Hessian
matrix and an explicit formula for its inversion.

Lemma 4.1. If cig(bi) ̸= 0 for all i = 0, 1, . . . , n and 1− γcTB−1(c,b)c ̸= 0, then the Hessian
matrix H(c,b) is invertible. Moreover, its inverse is given by

(4.2) H−1(c,b) = −
[
B−1(c,b) +

γB−1(c,b)ccTB−1(c,b)

1− γcTB−1(c,b)c

]
.

Proof. Clearly, by Lemma 3.2, the assumption implies that H(c,b) is invertible. (4.2) is a
direct consequence of the Sherman-Morrison formula.

Now, we are ready to describe the damped block Newton (dBN) method (see Algorithm 4.1
for a pseudocode). Let

(
c(k),b(k)

)
be the previous iterate, then the current iterate

(
c(k+1),b(k+1)

)
is computed as follows:

(i) Compute the linear parameters c(k+1) by

c(k+1) = A(b(k))−1
{
f(b(k)) + γ(β − α)d(b(k))

}
.

(ii) If c
(k+1)
i g(b

(k)
i ) ̸= 0 for all i = 0, . . . , n, compute the search direction

p(k) = −H(c(k+1),b(k))−1∇bJ(un(x; c
(k+1),b(k))).

(iii) Calculate the stepsize ηk by performing a one-dimensional optimization

ηk = argmin
η∈R+

J(un(x; c
(k+1),b(k) + ηp(k))).

(iv) Set the non-linear parameters by

b(k+1) = b(k) + ηkp
(k).

Remark 4.1. In the case that c
(k+1)
i g(b

(k)
i ) vanishes for some i ∈ {0, . . . , n}, the step (ii) of

the method is modified as follows: set b
(k+1)
i = b

(k)
i and the ith neuron is removed when computing

the search direction p(k).
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Algorithm 4.1 A damped block Newton method for (2.4)

Input: Initial network parameters (c(0),b(0)), coefficient function a(x), the right-hand side func-
tion f(x), boundary data α and β.

Output: network parameters c, b
for k = 0, 1 . . . do
▷ Linear parameters
c(k+1) ← A(b(k))−1

{
f(b(k)) + γ(β − α)d(b(k))

}
▷ non-linear parameters
p(k) ← −H(c(k+1),b(k))−1∇bJ(un(x; c

(k+1),b(k)))
ηk ← argmin

η∈R+

J(un(x; c
(k+1),b(k) + ηp(k)))

b(k+1) ← b(k) + ηkp
(k)

end for

The computational cost of inverting the mass and the Hessian matricies in Algorithm 4.1 is
O(n). More specifically, the linear parameters c(k+1) and the direction vector p(k) are calculated
in 8(n + 1) and 4(n + 1) operations, respectively. This is significantly less than Quasi-Newton
approaches like BFGS, where the computational cost per iteration is O(n2) (see [27], Chapter 6).

Remark 4.2. The minimization problem in (2.4) is non-convex and has many local and global
minimums. The desired one is obtained only if we start from a close enough first approximation.
As in [6, 24], in this paper we initialize the non-linear parameters b to form a uniform partition
of the interval [a, b] and the linear parameters c to be the corresponding solution on this uniform
mesh.

5. An adaptivity scheme. For a fixed number of neurons, the dBN method with the ini-
tialization described in Remark 4.2 moves the uniformly distributed breakpoints very efficiently
to nearly optimal locations as shown in section 6. Nevertheless, those locations may not be the
optimal positions to achieve optimal rate of convergence of the shallow Ritz approximation.

To circumvent this difficulty, we employ the adaptive neuron enhancement (ANE) method [24,
25] that starts with a relatively small neuron network and adaptively adds new neurons based on the
previous approximation. Moreover, the newly added neurons are initialized at where the previous
approximation is not accurate. At each adaptive step, we use the dBN method to numerically
solve the minimization problem in (2.4).

A key component of the ANE is the marking strategy, defining by error indicators, that
determines the number of new neurons to be added. Below, we describe the local indicators and
the marking strategy used in this paper.

Let K = [c, d] ⊆ [0, 1] be a subinterval, a modified local indicator of the ZZ type on K (see,
e.g., [11]) is defined by

ξK = ∥a−1/2 (G(au′
n)− au′

n)∥L2(K),

where G(au′
n) is the projection of au′

n onto the space of the continuous piecewise linear functions.
The corresponding relative error estimator is defined by

(5.1) ξ =
∥a−1/2 (G(au′

n)− au′
n)∥L2(I)

∥u′
n∥L2(I)

.

For a given un ∈Mn(I) with the breakpoints

0 = b−1 < b0 < . . . < bn < bn+1 = 1,

let Ki = [bi−1, bi], then Kn =
{
Ki
}n+1

i=0
is a partition of the interval [0, 1]. Define a subset K̂n ⊂ Kn

8



by using the following average marking strategy:

(5.2) K̂n =

{
K ∈ Kn : ξK ≥

1

#Kn

∑
K∈Kn

ξK

}
,

where #Kn is the number of elements in Kn. Adaptive damped block Newton (AdBN) method is
described in Algorithm 5.1.

Algorithm 5.1 Adaptive damped block Newton (AdBN) method

Input: Initial number of neurons n0, parameters a(x), f(x), α, and β, tolerance ϵ,
(1) Compute an approximation to the solution un of the optimization problem in (2.4) by the
dBN method;

(2) Compute the estimator ξn =

( ∑
K∈K

ξ2K

)1/2

/|un|H1(I);

(3) If ξn ≤ ϵ, then stop; otherwise go to step (4);

(4) Mark elements in K̂n and denote by #K̂n the number of elements in K̂n;

(5) Add #K̂n new neurons to the network and initialize them at the midpoints of elements in

K̂n, then go to step (1)

For numerical experiments presented in the subsequent section, the dBN method in (1) of
Algorithm 5.1 is stopped if the difference of the estimators for two consecutive iterates is less than
a prescribed tolerance δ.

6. Numerical experiments. This section presents numerical results of the dBN and AdBN
methods for solving (2.1). In all the experiments, the penalization parameter γ was set to 104.
For the AdBN method, a refinement occurred when the difference of the estimators for two con-
secutive iterates was less than 10−7. In order to evaluate the performance of the iterative solvers
described in Algorithm 4.1 and Algorithm 5.1, we compare the resulting approximations to the
true solution. For each test problem, let u and un be the exact solution and its approximation in
Mn(I), respectively. Denote the relative error by

en =
|u− un|H1(I)

|u|H1(I)
.

6.1. Exponential solution. The first test problem involves the function

(6.1) u(x) = x

(
exp

(
−
(x− 1

3 )
2

0.01

)
− exp

(
− 4

9× 0.01

))
,

serving as the exact solution of (2.1).
We start by comparing the dBN method with a commonly used method: BFGS. In this

comparison, we utilized a Python BFGS implementation from ‘scipy.optimize’. The initial network
parameters for both algorithms were set to be the uniform mesh for b(0) with c(0) given by solving
(3.1). We see in Figure 1 that dBN requires about 15 iterations to get an accuracy that BFGS
cannot achieve before stopping. Recall that the computational cost per iteration of dBN is O(n)
while each iteration of BFGS has cost O(n2). Not only does dBN decrease the relative error much
more quickly than BFGS, but dBN also achieves a lower final error, which is further emphasized
as the number of neurons increases.

In Figure 2 (a), we present the initial neural network approximation of the exact solution in
(6.1), obtained by using uniform breakpoints and determining the linear parameters through the

9



(a) Relative error en vs number of iterations using
32 neurons, the ratio between the final errors is 0.673

(b) Relative error en vs number of iterations using
64 neurons, the ratio between the final errors is 0.783

Fig. 1: Comparison between BFGS and dBN for approximating function (6.1)

solution of (3.2). The approximations generated by the dBN and AdBN methods are shown in
Figure 2 (b) and (c), respectively. We observe that our methods influence the movement of break-
points, enhancing the overall approximation. Worth noting is that the placement of breakpoints
by AdBN appears to be more optimal than that achieved by dBN in terms of relative error.

(a) (b) (c)

Fig. 2: Results of using ReLU networks to approximate the exact solution in (6.1): (a) initial NN
model with 22 uniform breakpoints, en = 0.227, (b) optimized NN model with 22 breakpoints,
500 iterations, en = 0.100, (c) adaptive NN model with 22 breakpoints: 10 initial breakpoints, 2
refinements (13, 22 neurons), en = 0.083

To verify this observation, we estimate the order of convergence for the approximation to (6.1)
in Algorithm 4.1. Recall that according to Proposition 2.1, it is theoretically possible to achieve
an order of convergence of O(n−1). However, since (2.4) is a non-convex minimization problem,
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the existence of local minimums makes it challenging to achieve this order. Therefore, given the
neural network approximation un to u provided by the dBN method, assume that

en =

(
1

n

)r

,

for some r > 0.
The larger this r is, the better the approximation. In Table 1, dBN is applied for 1000 iterations

for different values n, and the resulting r is calculated. Since

0.74 < r < 0.8,

it can be infered that the algorithm gets stuck in a local minimum. Henceforth, to improve this
order of convergence, we can use the AdBN method.

n en r
60 4.65× 10−2 0.749
90 3.41× 10−2 0.751
120 2.49× 10−2 0.771
150 1.97× 10−2 0.783
180 1.78× 10−2 0.775
210 1.59× 10−2 0.775
240 1.27× 10−2 0.796
270 1.22× 10−2 0.787
300 1.09× 10−2 0.792
330 1.01× 10−2 0.792
360 9.94× 10−3 0.783
390 9.54× 10−3 0.780
420 8.07× 10−3 0.798

Table 1: Relative errors en and powers r for n neurons after 1000 iterations.

In fact, adding adaptivity improves the r value. Table 2 illustrates AdBN starting with 19
neurons, refining 8 times, and reaching a final count of 280 neurons. The stopping tolerance was
set to ϵ = 0.01. The recorded data in Table 2 includes the relative seminorm error and the error
estimator for each iteration of the adaptive process.

Additionally, Table 2 provides the results for dBN with a fixed 187 and 280 neurons. Compar-
ing these results to the adaptive run with the same number of neurons, we observe a significant
improvement in rate, error estimator, and seminorm error within the adaptive run. The exper-
iments confirm that AdBN improves the overall error. Furthermore, the order of convergence
notably improves, especially with a larger number of neurons.

6.2. Non-smooth solution. The second test problem has the exact solution

(6.2) u(x) = x2/3,

which belongs to H1+ 1
6−ϵ(I) for any ϵ > 0. We highlight that the order of convergence for

approximating this solution with n uniform breakpoints is at most O
(
n−1/6

)
. However, it is

more optimal to concentrate more mesh points to the left side, where the curve is steeper. This
adjustment is evident in Figure 3 (b) and (c); the breakpoints shift to the left where the function
exhibits the most curvature. This adjustment significantly improves the approximation compared
to using uniform breakpoints, as illustrated in Figure 3 (a). The relative errors confirm that the
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NN (n neurons) en ξn r
Adaptive (19) 1.04× 10−1 0.149 0.768
Adaptive (27) 6.55× 10−2 0.089 0.827
Adaptive (32) 5.71× 10−2 0.075 0.826
Adaptive (45) 4.21× 10−2 0.054 0.832
Adaptive (68) 2.76× 10−2 0.032 0.851
Adaptive (94) 2.01× 10−2 0.023 0.860
Adaptive (137) 1.39× 10−2 0.015 0.869
Adaptive (187) 1.04× 10−2 0.011 0.873
Adaptive (280) 6.93× 10−3 0.007 0.882
Fixed (187) 1.87× 10−2 0.020 0.761
Fixed (280) 1.12× 10−2 0.013 0.781

Table 2: Comparison of an adaptive network with fixed networks for relative errors en, relative
error estimators ξn, and powers r

order of convergence improves substantially when the breakpoints are moved according to the
steepness of the function.

(a) (b) (c)

Fig. 3: Results of using ReLU networks for approximating function (6.2): (a) initial NN model with
23 uniform breakpoints, en = 0.284, (b) optimized NN model with 23 breakpoints, 500 iterations,
en = 0.056, (c) adaptive NN model with 23 breakpoints: 9 initial breakpoints, 2 refinements (14,
23 neurons), en = 0.042

7. Discussion and Conclusion. The resulting discretization from the shallow Ritz approx-
imation to one-dimensional diffusion problem is a high-dimensional minimization problem in (2.4).
This is a computationally challenging problem to solve numerically due its non-convexity.

This paper proposed the dBN method to numerically solve this non-convex minimization
problem. The dBN uses the block Gauss-Seidel method for the linear and non-linear parameters
as outer iteration and inverts the corresponding coefficient and Hessian matrices exactly for inner
iteration. Even though the coefficient matrix is dense and ill-conditioned, its inverse is tri-diagonal.
Moreover, the Hessian matrix is diagonal. Hence, computational cost per each iteration of the dBN
method is O(n) which is significantly faster than O(n2) for the commonly used “second-order”
methods. Numerical results demonstrated that the dBN method moves the uniformly distributed
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breakpoints to nearly optimal locations very efficiently.
In order to achieve optimal rate of convergence of the shallow Ritz approximation, the paper

proposed the AdBN method that empolys the adaptive neuron enhancement (ANE) method for
adaptively adding neurons, initialized at where the previous approximation is inaccurate, and
uses the dBN method for solving the minimization problem. Numerical results show that AdBN
improves the rate of convergence.

When using the shallow ReLU neural network, the condition number of the coefficient matrix
for the diffusion problem is bounded by O

(
nh−1

min

)
(see Lemma 3.1), the same as that obtained

when using local hat basis functions. For applications to general elliptic partial differential equa-
tions and least-squares data fitting problems, the corresponding dBN method requires inversion
of the mass matrix. However, the condition number of the mass matrix is extremely large. This
difficulty will be addressed in a forthcoming paper.

Appendix A. Enforcing Dirichlet Boundary Condition Algebraically. Another way
to make a function un ∈Mn(I)∩{un(0) = α} satisfy the Dirichlet boundary condition un(1) = β
is by enforcing this algebraically. Consider the energy functional given by

J (v) = 1

2

∫ 1

0

a(x)(v′(x))2dx−
∫ 1

0

f(x)v(x)dx.

Let h = h(b) = (σ(1− b0), σ(1− b1), . . . , σ(1− bn))
T and consider the Lagrangian function

L(c,b, λ) = J (un(x; c,b)) + λ(un(1)− β)

= J (un(x; c,b)) + λ(hT c+ α− β),

hence, if un minimizes J (v) for v ∈ Mn(I) ∩ {un(0) = α}, subject to the constraint un(1) = β,
then by the KKT conditions:

(A.1) ∇cL (un) = 0,
∂

∂λ
L (un) = 0 and ∇bL (un) = 0.

The first two equations in (A.1) can be written as(
A(b) h
hT 0

)(
c
λ

)
=

(
f(b)
β − α

)
,

which can be solved efficiently, by writting the matrix in the left hand side as

(A.2)

(
A(b) h
hT 0

)
=

(
I 0

hTA(b)−1 1

)(
A(b) h
0 −hTA(b)−1h

)
,

and since (
I 0

hTA(b)−1 1

)−1

=

(
I 0

−hTA(b)−1 1

)
,

it follows that (A.2) is equivalent to(
A(b) h
0 −hTA(b)−1h

)(
c
λ

)
=

(
I 0

−hTA(b)−1 1

)(
f(b)
β − α

)
which can be solved by finding λ first and then solving for c. According to (4.1), the computational
cost is O(n).

On the other hand, for the non-linear parameters b, the Hessian matrix ∇2
bL(un) = −B(c,b),

where B(c,b) is defined in (3.5). Therefore, as described in section 4, we solve (2.1) iteratively,
alternating between solving exactly for (cT , λ)T and performing a Newton step for b.
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