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Abstract

In this paper, we provide a theoretical analysis of a type of operator learning method without data
reliance based on the classical finite element approximation, which is called the finite element operator
network (FEONet). We first establish the convergence of this method for general second-order linear
elliptic PDEs with respect to the parameters for neural network approximation. In this regard, we
address the role of the condition number of the finite element matrix in the convergence of the method.
Secondly, we derive an explicit error estimate for the self-adjoint case. For this, we investigate some
regularity properties of the solution in certain function classes for a neural network approximation,
verifying the sufficient condition for the solution to have the desired regularity. Finally, we will also
conduct some numerical experiments that support the theoretical findings, confirming the role of the
condition number of the finite element matrix in the overall convergence.
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method, condition number, approximation error, generalization error, Rademacher complexity
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1 Introduction

The emerging field of scientific machine learning, which bridges the gap between traditional numerical
analysis and machine learning, has introduced innovative approaches that enrich conventional numerical
methods, especially in tackling complex tasks. At the forefront of this evolution is the field of physics-
informed neural networks (PINNs) [45]. PINNs employ neural networks trained to comprehend the
underlying physics of systems, thereby enhancing the capability to solve PDEs for physics-based problems
using neural networks. This advancement has spurred the development of various PINN variants [31, 52].
However, these variants are limited by their need for retraining with each new set of input data, such
as initial conditions and boundary conditions, which hampers their utility in dynamic systems where
real-time predictions are essential.

Addressing this limitation, operator networks have emerged, employing data-driven approaches to
understand mathematical operators in physical systems, particularly for parametric PDEs [33, 6]. A
significant breakthrough in this area is the Deep Operator Network (DeepONet) architecture [36], founded
on the universal approximation theorem for operators. DeepONets facilitate rapid solution prediction
when PDE data varies, but depends on extensive pre-computed training data pairs, which is a demanding
task, especially for complex or nonlinear systems. To mitigate these issues, hybrid models like Physics-
Informed Neural Operator (PINO) [34] and Physics-Informed DeepONet (PIDeepONet) [50] have been
introduced. These models amalgamate the strengths of PINNs and operator learning by embedding
physical equations within the loss function of neural operators. Despite this innovation, they often
face challenges such as reduced accuracy in complex geometries, difficulty managing stiff problems, and
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Figure 1: Examples of complex domains where FEONet can predict solutions.

significant generalization errors due to limited input data [24, 11, 30]. Furthermore, employing neural
networks as the solution space complicates the imposition of various boundary values, consequently
impacting the precision of solutions [9].

In response to these limitations, a novel unsupervised operator network based on finite element meth-
ods, termed the Finite Element Operator Network (FEONet), was developed [32]. The main focus of
this paper is on the extensive error analysis of FEONet. In the finite element method (FEM) frame-
work, the numerical solution uh(x) is approximated as a linear combination of nodal coefficients αk,
and nodal basis functions, ϕk(x), defined by piecewise polynomials over a mesh. This is represented as
uh(x) =

∑
αkϕk(x), x ∈ Rd. Building on this concept, the FEONet predicts PDE solutions under various

inputs like initial conditions and boundary conditions. It is versatile and able to handle multiple PDE in-
stances across complex domains as shown in Figure 1 without data reliance. The loss function of FEONet,
inspired by the classical FEM, is based on the residual of the finite element approximation, ensuring ac-
curate PDE solutions and exact compliance with boundary conditions. The FEONet approach infers
coefficients, α̂k, for constructing the linear combination

∑
α̂kϕk to approximate PDE solutions. Thanks

to the ability of FEM to handle boundary conditions, solutions predicted by FEONet also satisfy exact
boundary conditions. Notably, its unique feature lies in solving parametric PDEs without relying on any
paired input-output training data, a significant step forward in computational efficiency and application
versatility. Another advantage of the FEONet is its applicability to singularly perturbed problems. By
integrating the boundary layer element into the finite element space using the corrector basis function,
we can establish an enriched basis scheme for utilization in the FEONet, allowing the model to capture
sharp transitions accurately; see [32] for more details.

While significant progress has been made in scientific machine learning, a notable gap remains in
the area of rigorous convergence analysis, which is essential for establishing the reliability of these
novel methodologies [38, 15, 13]. Some analytical progress has been made with the Deep Ritz method
[39, 37, 14], PINNs [46, 40], and Operator Network approaches [29, 28]. However, discrepancies between
theoretical results and numerical experiment outcomes frequently arise, highlighting the need for more
comprehensive and aligned studies in this area. In addition, to date, there has been a lack of convergence
analysis for unsupervised operator networks such as the FEONet method. In this regard, a key part of our
contribution is integrating the well-established FEM theory within the FEONet framework. This integra-
tion enables a more grounded and consistent convergence analysis, closely aligned with the outcomes of
computational experiments. Our research focuses on this convergence analysis, bridging the gap between
theoretical rigor and practical application. It highlights the potential of FEONet as a reliable tool for
solving second-order elliptic PDEs, demonstrating its suitability for complex computational challenges.

The primary objective of the present paper is to perform a theoretical analysis of the FEONet,
addressing the convergence of the method and deriving an error estimate. To be specific, we consider the
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general second-order linear elliptic PDE of the form

−div (a(x)∇u) + b(x) · ∇u+ c(x)u = f(x) in D, (1.1)

u(x) = g(x) on ∂D. (1.2)

A similar type of theoretical analysis was performed in [27, 32]. Note, however, that the result in [27, 32]
is restricted to the case of self-adjoint equations, and only a partial convergence result was obtained. In
this paper, we will consider more general types of equations and investigate the comprehensive conver-
gence properties of the FEONet. The main novelty of the present paper can be summarized as follows: In
Section 3, we prove the convergence of the predicted solution by the FEONet. Our analysis is applicable
to a general class of equations, which generalizes the previous results in [27, 32]. In the proof of conver-
gence, we see that the convergence of the FEONet is influenced by the condition number of the finite
element matrix, which is also confirmed by the numerical experiments. Subsequently in Section 4, unlike
the previous papers where the parameters of baseline numerical methods were fixed, we identify the role
of these parameters in overall convergence and conduct the complete theoretical analysis of the method.
Additionally, in certain scenarios, we derive explicit error estimates for FEONet, utilizing a novel regu-
larity theory developed for our method. Section 5 then presents numerical experiments that validate our
theoretical findings. Furthermore, guided by the theoretical results obtained in the previous sections, we
utilize the preconditioning techniques from the numerical analysis and confirm their significant impact
on convergence and training efficiency.

In the next section, as a starting point, we briefly describe the idea of FEONet and demonstrate how
it is trained and it predicts the solution within a suitable finite element setting. We also collect some
results for the eigenvalue estimates of the finite element matrices which play an important role in the
entire analysis. Additionally, we shall set up an analytic background for the theoretical analysis as well
as the mathematical description of neural networks. Then the main sections of the paper proceed as
described above, and some concluding remarks are made at the end of the paper.

2 Framework for finite element operator networks

In the equations (1.1)-(1.2), we shall assume that

a ∈ L∞(D)d×d, b ∈ W 1,∞(D)d, c ∈ L∞(D) and f ∈ H−1(D). (2.1)

For the diffusion coefficients a = (aij), we also assume that the uniform ellipticity condition holds: there
exists a positive constant ã > 0 such that

d∑
i,j=1

aij(x)ξiξj ≥ ã

d∑
i=1

ξ2i , ∀ξ = (ξ1, · · · , ξd) ∈ Rd, x ∈ D. (2.2)

For the well-posedness of the equation (1.1)-(1.2) we further assume that

c(x)− 1

2
div b(x) ≥ 0, x ∈ D. (2.3)

The corresponding weak formulation is defined as follows: find u ∈ H1
0 (D) such that

B[u, v] :=

ˆ
D
a(x)∇u · ∇v dx+

ˆ
D
b(x) · ∇uv dx+

ˆ
D
c(x)uv dx =

ˆ
D
f(x)v dx =: l(v) ∀v ∈ H1

0 (D).

Thanks to the assumptions (2.1), (2.2) and (2.3), there holds for some constants c0, c1 and c2 > 0 that

B[v, v] ≥ c0∥v∥H1(D), |B[u, v]| ≤ c1∥u∥H1(D)∥v∥H1(D), and |ℓ(v)| ≤ c2∥v∥H1(D), (2.4)

and the existence of a unique weak solution follows by the standard Lax–Milgram theory (see, e.g., [7]).
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2.1 Finite element operator networks

In this section, we aim to describe FEONet, the main numerical scheme under consideration. This is
a novel method introduced in [32], which utilizes the approximation power of deep neural networks in
conjunction with the classical finite element approximation. More precisely, this method leverages the
FEM for neural networks to learn the solution operator without any paired input-output training data
to solve a wide range of parametric PDEs.

As a first step, let us define the finite element space, which will be used throughout the paper.
Let Gh be a shape-regular partition of a given physical domain D, where hE denotes the diameter
of E ∈ Gh and h = maxE∈Gh

hE . We will also assume that there exists a positive constant γ > 0
independent of h > 0 such that maxE∈Gh

hE
ρE

≤ γ, where ρE is the supremum of the diameters of
inscribed balls for an element E ∈ Gh. For a given partition Gh, the finite element spaces are defined
by Vh = V(Gh) := {V ∈ C(D) : V|E ∈ P̂V, E ∈ Gh and V|∂D = 0}, where P̂V ⊂ W 1,∞(Ê) is a finite-
dimensional subspace. Here we assume that Vh has finite and locally supported basis; e.g., for each h > 0,
there exists Nh ∈ N such that Vh = span{ϕh

1 , . . . , ϕ
h
Nh

} and for any basis function ϕh
i , i = 1, . . . , Nh, we

have that if ϕh
i ̸= 0 on E for some E ∈ Gh, then suppϕh

j ⊂
⋃
{E′ ∈ Gh : E′∩E ̸= ∅} =: SE . Furthermore,

by shape regularity, it follows that ∃C ∈ N such that |SE | ≤ C|E| for all E ∈ Gh, where C can be chosen
to be independent of h.

Next, we define our Galerkin approximation. We seek a discrete solution uh =
∑Nh

k=1 αkϕk ∈ Vh

satisfying
B[uh, vh] = ℓ(vh) for all vh ∈ Vh. (2.5)

If we write S = (Sij)1≤i, j≤Nh
, C = (Cij)1≤i, j≤Nh

∈ RNh×Nh , F = (Fj)1≤j≤Nh
∈ RNh with

Sij =

ˆ
D
[a(x)∇ϕi · ∇ϕj + c(x)ϕi ϕj ] dx, Cij =

ˆ
D
(b(x) · ∇ϕi)ϕj dx, Fj =

ˆ
D
f(x)ϕj dx, (2.6)

then the Galerkin approximation is equivalent to the linear algebraic equations

(S + C)α = F, with α = (αk)1≤k≤Nh
∈ RNh . (2.7)

Now, let us introduce the finite element operator network, proposed in [32]. As mentioned earlier,
the input of the FEONet can be any type of PDE data, for example, external force, variable coefficient,
or boundary condition. Here, as a prototype example, we shall consider the networks whose input is an
external forcing term. However, this can be extended to different types of input data in a straightforward
manner. For each external forcing term f , instead of computing the coefficients using (2.7), we approxi-
mate the coefficients α using deep neural networks. For this purpose, we set the input of neural networks
as external force f , parametrized by a random parameter ω for the (possibly high-dimensional) proba-
bility space (Ω, T ,P), assuming that Ω is compact. Typical examples are the Gaussian random fields or
the random forcing terms defined by f(x, ω) = ω1 sin(2πω2x) +ω3 cos(2πω4x), where ω = (ω1, ω2, ω3, ω4)
is i.i.d. distributed uniformly with ωj ∈ [0, 1]. In the present paper, we shall interpret f(x, ω) as a
Bochner-type function defined on D × Ω, and we will assume the following throughout the paper.

Assumption 2.1. If we use the (Pℓ)-finite element approximation (piecewise polynomial function of
degree less than or equal to ℓ ∈ N), we assume that f(·, ·) ∈ C(Ω;Hℓ−1(D)).

Once this input feature ω ∈ Ω passes through the deep neural network, the coefficients {α̂k} are
generated as an output. We then reconstruct the solution by

ûh(x, ω) =

Nh∑
k=1

α̂k(ω)ϕk(x). (2.8)
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Figure 2: Schematic illustration of the decomposition of the FEONet into the encoder Ψ, approximator
N and reconstructor Φ.

For the training of the neural network, we set the population loss function as the L2-residual of the
variational formulation (2.5):

L(α) = Eω∼PΩ

[ Nh∑
k=1

|B[ûh(x, ω), ϕk(x)]− ℓ(ϕk(x))|2
] 1

2

. (2.9)

For the computational efficiency, when we actually compute the approximate solution, we deal with the
empirical loss function which is the Monte–Carlo integration of (2.9):

LM (α) =
|Ω|
M

M∑
j=1

[ Nh∑
k=1

|B[ûh(x, ωj), ϕk(x)]− ℓ(ϕk(x))|2
] 1

2

, (2.10)

where {ωj}Mj=1 is a family of i.i.d. random samples selected from PΩ. For each training epoch, the

parameters of the neural networks are updated toward minimizing the empirical loss LM , and then the
given forcing term goes through the neural network again to predict more accurate coefficients. This
process is repeated until we achieve a sufficiently small loss, and then we finally obtain the solution
prediction (2.8). It is noteworthy that the FEONet only uses sample parameters randomly selected
from Ω for the training, and hence it can be trained without any precomputed pairs of input-output
training data. Moreover, as our method is based on the basis expansion (2.8), one can impose exact
boundary values to the numerical solutions as we can do in the classical FEM. A schematic illustration
of the decomposition of the FEONet is presented in Figure 2. Various numerical experiments on several
benchmark problems can be found in [32], where we can confirm that our approach exhibited excellent
performance, proving its versatility in terms of accuracy, generalization, and computational flexibility.

2.2 Estimations for eigenvalues of finite element matrices

As our FEONet approach is based on the finite element method, it is reasonable to expect that similar
mathematical issues for the FEM may arise in the analysis of the FEONet. In fact, it will be made
clear in the later analysis that the convergence of the FEONet is related to the condition number of the
finite element matrices. In the classical FEM, adaptive or misshaped meshes may have an impact on
the conditioning for the finite element approximation. This has a strong influence on the convergence
of the approximation and the performance of iterative solvers for the resulting linear algebraic systems.
For this reason, a condition number of finite element matrices has had a long history and has been of
particular interest both theoretically and practically. Regarding this topic, a number of estimates of the
largest and the smallest eigenvalues are available for both isotropic and anisotropic mesh geometries, and
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some conditioning techniques have been established in various directions [7, 2, 1, 18, 25]. In the present
paper, the discussion on such matters in full generality is out of scope, and we will only focus on the case
of shape-regular partitions as we defined in the previous section. Therefore, the results we shall present
here are not new and they can be regarded as special cases of the aforementioned results. However, for
the sake of completeness, we will briefly present the derivation of the estimates in this section. These
results will be used in the convergence analysis of the FEONet in later sections.

Let A = S + C where the matrices S and C are defined in (2.6). For the estimation of the largest
eigenvalue, we essentially follow the idea presented in [7]. Note here that since we are considering the
shape-regular meshes, we may identify for all E ∈ Gh that hE ≃ h, and hd ≃ N−1

h . By the inverse
inequality (e.g. Eq. (1.5) in [7]), we have

αTAα = B[uh, uh] ≲ ∥uh∥2H1(D) =
∑
E∈Gh

∥uh∥2H1(E) ≲
∑
E∈Gh

hd−2
E ∥uh∥2L∞(E)

≲ hd−2
∑
E∈Gh

∑
supp(ϕi)∩E ̸=∅

α2
i ≲ hd−2αTα.

This implies that

λmax ≲ hd−2 ≃ N
−1+ 2

d
h , (2.11)

where λmax denotes the largest eigenvalue of A. Next, we shall prove that N−1
h is the lower bound of the

smallest eigenvalue. By Poincaré’s inequality and the inverse inequality, we have

αTAα = B[uh, uh] ≳ ∥uh∥2H1(D) ≳ ∥uh∥2L2(D) =
∑
E∈Gh

∥uh∥2L2(E)

≳ hd
∑
E∈Gh

∥uh∥2L∞(E) ≳ hd
∑
E∈Gh

∑
supp(ϕi)∩E ̸=∅

α2
i ≳ hdαTα.

Therefore, we obtain
λmin ≳ hd ≃ N−1

h , (2.12)

where λmin denotes the smallest eigenvalue of A.
Now let us make some comments on the estimate for the condition number of A. If the ℓ2 norm is

used to define the condition number, we can see that

κ(A) =
σmax

σmin
, (2.13)

where σmax and σmin are maximal and minimal singular values of A respectively. Furthermore, if the
matrix A is normal (i.e., it commutes its conjugate transpose), it is known that (see, e.g., [21]) the
condition number κ(A) of A satisfies

κ(A) =
|λmax|
|λmin |

. (2.14)

Therefore, if A is normal, together with the estimates (2.11) and (2.12), we may conclude that

κ(A) ≲ N
2
d
h ≃ h−2, (2.15)

where Nh is the degree of freedom in the finite element formulation. On the other hand, in [16], the
result for the lower bound of the condition number was obtained. More precisely, the authors proved the
following estimate owing to the shape-regularity of the triangulation {Gh}h>0:

h−2 ≲ κ(A). (2.16)

From (2.16), (2.11) and (2.12), we can derive

λmax ≲ κ(A)1−d/2 and λmin
−1 ≲ κ(A)d/2, (2.17)

which we will use later. The estimates obtained in this section will be utilized in the following sections
to verify the relationship between the condition number and the convergence of the FEONet.
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2.3 Feed forward neural networks

Next, we shall define a class of feed-forward ReLU neural networks, which we will consider throughout
the paper. For each L ∈ N, we denote an L-layer ReLU neural network by a function fL(x) : Rn0 → RnL ,
defined recursively by

f1(x) = W 1x+ b1 and f ℓ(x) = W ℓσ(f ℓ−1(x)) + bℓ for 2 ≤ ℓ ≤ L, (2.18)

where W ℓ ∈ Rnℓ×nℓ−1 and bℓ ∈ Rnℓ is the weight matrix and the bias vector respectively for the ℓ-th
layer. Here, σ : R → R is the ReLU activation function defined by σ(x) = max{0, x}, and σ(x) signifies
the vector (σ(x1), · · · , σ(xk)) for x = (x1, · · · , xk). We denote the architecture of a given network by the
vector n⃗ = (n0, · · · , nL), the family of neural network parameters by θ := θn⃗ = {(W 1, b1), · · · , (WL, bL)},
and its realization as a function by R[θ](x). For a given neural network architecture n⃗, the collection of
all possible parameters is defined by

Θn⃗ =
{
{(W ℓ, bℓ)}Lℓ=1 : W

ℓ ∈ Rnℓ×nℓ−1 , bℓ ∈ Rnℓ

}
. (2.19)

For two feed-forward neural networks θi, i = 1, 2 with architectures n⃗i =
(
n
(i)
0 , · · · , n(i)

Li

)
, we shall write

n⃗1 ⊂ n⃗2 if for any θ1 ∈ Θn⃗1
, there exists θ2 ∈ Θn⃗2

satisfying R[θ1](x) = R[θ2](x) for all x ∈ Rn0 .
Now let us assume that there exists a sequence of neural network architectures {n⃗n}n≥1 satisfying

n⃗n ⊂ n⃗n+1 for all n ∈ N. We define the corresponding family of neural networks by

Nn = {R[θ] : θ ∈ Θn⃗n
}. (2.20)

It is straightforward to verify that Nn ⊂ Nn+1 for any n ∈ N. We shall exploit the following theorem in
the later analysis.

Theorem 2.2. Let K be a compact set in Rm and assume that g ∈ C(K,RN ). Then there holds

lim
n→∞

inf
ĝ∈Nn

∥ĝ − g∥C(K) = 0. (2.21)

It is called the universal approximation theorem and is known to hold for various scenarios. For
instance, the original form of the universal approximation theorem for two-layer neural networks (L = 2)
with an arbitrary number of nodes n exactly coincides with the above theorem [12, 22]. On the other
hand, in the recent paper [26], the authors addressed an extension on the networks of arbitrary depth
with bounded width. The authors assumed that the activation function σ is non-affine and continuously
differentiable at some points, with non-vanishing derivatives at these points. For this case, the authors
considered the class of neural networks with an arbitrary number of layers with m +N + 2 neurons for
each, and derived (2.21).

2.4 Analytic framework

In this section, we shall describe the analytic framework which we will work within. Throughout the
paper, given that the external force f(x, ω) parametrized by ω ∈ Ω, u(x, ω) signifies the corresponding
solution, and uh(x, ω) denotes the finite element approximation

uh(x, ω) =

Nh∑
k=1

α∗
k(ω)ϕk(x), (2.22)

where α∗(ω) = {α∗
k(ω)}

Nh
k=1 is the set of target finite element coefficients obtained from (2.7).
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Next, we consider the approximation of the coefficients α∗ by RNh-valued ReLU neural networks. We
seek for α̂L

n : Ω → RNh solving the minimization problem

α̂L
n = argmin

α∈Nn

L(α), (2.23)

where the minimization is over the neural networks class Nn. Then we denote the associated solution by

uh,n(x, ω) =

Nh∑
k=1

(α̂L
n)k(ω)ϕk(x). (2.24)

Finally, we shall consider the solution for the discrete minimization over the family of neural networks

α̂L
n,M = argmin

α∈Nn

LM (α), (2.25)

where the empirical loss LM was defined in (2.10). In addition, we write the corresponding solution as

uh,n,M (x, ω) =

Nh∑
k=1

(α̂L
n,M )k(ω)ϕk(x). (2.26)

In the present paper, we shall assume that the optimization error is negligible and that we can always
find the exact minimizer for the optimization problems (2.23) and (2.25). Therefore, we shall regard α̂L

n,M

as the neural network approximation for the target coefficients α∗, and uh,n,M is our solution prediction
computed by our FEONet scheme.

The main objective of this paper is to investigate the error ∥u− uh,n,M∥L1(Ω;L2(D)). For this purpose,
we split it into three parts:

u− uh,n,M = (u− uh)︸ ︷︷ ︸
FEM error

+ (uh − uh,n)︸ ︷︷ ︸
approximation error

+ (uh,n − uh,n,M )︸ ︷︷ ︸
generalization error

=: (I) + (II) + (III). (2.27)

The first error (I) arises from the finite element approximation and its mathematical analysis is fairly well-
known. In particular, under suitable assumptions, it is known that (I) converges to 0 as h → 0, and the
convergence rate improves as we approximate the solution with higher-order polynomials assuming that
the solution has suitable regularity properties. The second error (II) is referred to as the approximation
error, occurring when the true coefficient α∗ in (2.22) is approximated by a deep neural network. The
final error (III) is known as the generalization error, which measures how well our predicted solution
uh,n,M trained with M random samples generalizes for other samples that were not used in the training
process; in other words, it is the error mainly caused by the approximation of L by LM .

In the previous works [27, 32] where similar schemes were analyzed, all the convergence results were
studied only when the index for the baseline numerical method (here denoted by h > 0) was fixed.
Furthermore, the effect of h > 0 (or N ∈ N in [27] where the Legendre–Galerkin method was considered)
to the errors (II) and (III) was not investigated in the previous analysis. In the present paper, however,
we will derive a comprehensive error estimate, simultaneously examining the errors (I), (II), and (III)
without fixing h > 0, and analyzing the role of the indices h > 0, n, M ∈ N in each error in (2.27).

As will be made clear in the later analysis, the convergence of the errors (II) and (III) is closely related
to the condition number of the finite element matrices defined in (2.6). Based on the condition number
estimates derived in Section 2.2, we will rigorously investigate the role of h > 0 on the approximation
and generalization errors, which is a key novel part of the paper compared to the previous work [27, 32].
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3 Convergence analysis for approximate solutions

We start with the following observation on the loss functions defined in (2.9) and (2.10). By the definition
of the loss functions, the solution representation (2.8) and the bilinearity of B[·, ·], we note that

L(α) =
ˆ
Ω

[
Nh∑
i=1

∣∣∣∣ Nh∑
k=1

αk(ω)B[ϕk(x), ϕi(x)]− ℓ(ϕi(x))

∣∣∣∣2
] 1

2

dω

=

ˆ
Ω

[
Nh∑
i=1

∣∣∣∣(Aα(ω))i − (F (ω))i

∣∣∣∣2
] 1

2

dω = ∥Aα(ω)− F (ω)∥L1(Ω) ,

(3.1)

where A and F are defined in (2.6). In the same manner, by the definition of population loss, we have

LM (α) =
|Ω|
M

M∑
j=1

|Aα(ωj)− F (ωj)|, (3.2)

where each ωj is randomly chosen according to the distribution of PΩ. With the aid of the above
observation, the loss functions L and LM are represented in terms of the finite element matrices, and the
analysis has now become a matter of the properties of these matrices. It is noteworthy that the matrix
A contains the information of the given PDE and boundary conditions, and thus the characterization of
A which can cover various PDE settings are of importance. In this perspective, the following lemma is
useful in the analysis of the FEONet scheme regarding the structure of A, which is a direct consequence
of the spectral theorem (see, e.g., Proposition 3.1 in [27]).

Lemma 3.1. Suppose that T is a N × N symmetric and positive-definite matrix and let us denote
minimum and maximum eigenvalues of T by λmin and λmax respectively. Then for any x ∈ RN , we have

λmin|x| ≤ |Tx| ≤ λmax|x|. (3.3)

In this section, we shall use the above lemma with the matrix T = ATA, which is symmetric.
Furthermore, by coercivity of B[·, ·], we find that A is positive-definite, and hence, ATA is also positive-
definite. Therefore, even though A is not symmetric, we can apply Lemma 3.1 with T = ATA. Based on
this fact, in this section, we will derive estimates for the approximation error and the generalization error
for the approximate coefficients ∥α∗ − α̂L

n∥L1(Ω) and ∥α̂L
n − α̂L

n,M∥L1(Ω) respectively. Before proceeding
further, we introduce modified loss functions defined by

H(α) = ∥ATAα(ω)−ATF (ω)∥L1(Ω) and HM (α) =
|Ω|
M

M∑
i=1

|ATAα(ωi)−ATF (ωi)|,

and their minimizers over the class of neural networks

α̂H
n = argmin

α∈Nn

H(α) and α̂H
n,M = argmin

α∈Nn

HM (α).

3.1 Approximation error and Ceá’s lemma

In this section, we aim to analyze the approximation error for the approximate coefficients. By Assump-
tion 2.1, it is easy to verify that F ∈ C(Ω;RNh) and hence α∗ = A−1F ∈ C(Ω;RNh). The precise
statement for the approximation error estimate is encapsulated in the following theorem, which is a
version of Ceá’s lemma for the neural network approximation of the FEONet.
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Theorem 3.2 (Approximation error). Suppose that Assumption 2.1 holds and let κ(A) denote the con-
dition number of the finite element matrix A = S+C defined in (2.6). For the finite element coefficients
α∗ ∈ C(Ω;RNh) and the approximate coefficient α̂L

n ∈ Nn, we have

∥α∗ − α̂L
n∥L1(Ω) ≲ κ(A)2 inf

α∈Nn

∥α− α∗∥L1(Ω). (3.4)

Proof. By the triangle inequality, we can see that

∥α∗ − α̂L
n∥L1(Ω) ≤ ∥α∗ − α̂H

n ∥L1(Ω) + ∥α̂H
n − α̂L

n∥L1(Ω). (3.5)

If we let ρmax and ρmin be maximum and minimum singular values of A respectively, (i.e., the square
root of the eigenvalue of ATA), from the repetitive application of Lemma 3.1 with T = ATA, we have

∥α∗ − α̂H
n ∥L1(Ω) ≤

1

(ρmin)2
(
∥ATAα∗ −ATF∥L1(Ω) + ∥ATAα̂H

n −ATF∥L1(Ω)

)
=

1

(ρmin)2
H(α̂H

n ) ≤
1

(ρmin)2
inf

α∈Nn

H(α) =
1

(ρmin)2
inf

α∈Nn

∥ATAα−ATF∥L1(Ω)

≤ 1

(ρmin)2
inf

α∈Nn

(
∥ATAα−ATAα∗∥L1(Ω) + ∥ATAα∗ −ATF∥L1(Ω)

)
≤

(
ρmax

ρmin

)2

inf
α∈Nn

∥α− α∗∥L1(Ω) = κ(A)2 inf
α∈Nn

∥α− α∗∥L1(Ω),

where we have used the minimality of α̂H
n and the fact that ATAα∗ = ATF .

Next, let us estimate the second term on the right-hand side of (3.5). If we write the largest eigenvalue
of A as λmax, by using the facts that ∥AT ∥ = ∥A∥ = ρmax and |λmax| ≤ ρmax (see, e.g., [21]), we have

∥α̂H
n − α̂L

n∥L1(Ω) ≤
1

(ρmin)2
(
∥ATAα̂H

n −ATF∥L1(Ω) + ∥ATAα̂L
n −ATF∥L1(Ω)

)
≤

(
ρmax

ρmin

)2

inf
α∈Nn

∥α− α∗∥L1(Ω) +
∥AT ∥
(ρmin)2

∥Aα̂L
n − F∥L1(Ω)

≤
(
ρmax

ρmin

)2

inf
α∈Nn

∥α− α∗∥L1(Ω) +
ρmax

(ρmin)2
λmax inf

α∈Nn

∥α− α∗∥L1(Ω)

≤ 2

(
ρmax

ρmin

)2

inf
α∈Nn

∥α− α∗∥L1(Ω) = 2κ(A)2 inf
α∈Nn

∥α− α∗∥L1(Ω).

One interesting point is that the convergence of the approximate coefficient depends on the condition
number of A. The FEONet uses a basis expansion similar to the classical FEM, but the essential difference
is that the FEM solves the algebraic equation Aα = F , while the FEONet seeks to find a minimizer of
|Aα − F | over the class of neural networks. In the traditional FEM, iterative methods are commonly
used to solve the equation Aα = F (e.g., Krylov subspace methods, conjugate gradient methods) and
the convergence of iterative methods depends on the condition number, which eventually affects the
overall computation of the solution in the FEM. Therefore, it is natural to suspect whether the condition
number also plays a role in computing the solution prediction of the FEONet, and the above theorem
quantitatively confirms this relationship. As in the traditional FEM, we have seen that a high condition
number also hinders the computation of solutions by the FEONet.

Another intriguing point is that, for a fixed finite element parameter h > 0, (and hence the condition
number κ(A)), by the universal approximation theorem (2.21), we can prove that

∥α∗ − α̂L
n∥L1(Ω) → 0 as n → ∞, (3.6)

which is the desired convergence property of our approximate coefficients.
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3.2 Generalization error

For the generalization error, we begin with the following definition so-called Rademacher complexity .

Definition 3.3. Let {Xi}Mi=1 be a sequence of i.i.d. random variables. For a function class F , we define
the Rademacher complexity by

RM (F) = E{Xi}Mi=1
E{εi}Mi=1

[
sup
f∈F

∣∣∣∣ 1M
M∑
i=1

εif(Xi)

∣∣∣∣],
where εi’s denote i.i.d. Bernoulli random variables, which means that P(εi = 1) = P(εi = −1) = 1

2 .

As we can see from the above definition, the Rademacher complexity is the expectation value of the
maximum correlation between the vector (f(X1), · · · , f(XM )) and the random noise (ε1, · · · , εM ), where
the maximum is taken over the family of functions F . This measures the capability of the class F to
fit random noise. For comprehensive information on the Rademacher complexity, see [17, 49]. The next
theorem states that the difference between a population loss and an empirical loss can be bounded by
the Rademacher complexity (see, for instance, Proposition 4.11 in [49]).

Theorem 3.4. Let F be a class of function and {Xi}Mi=1 be a sequence of i.i.d. random variables. Then
we have the following inequality

E
[
sup
f∈F

∣∣∣∣ 1M
M∑
j=1

f(Xj)− EX∼PΩ
f(X)

∣∣∣∣] ≤ 2RM (F), (3.7)

where the expectation is taken for the random variables {Xi}Mi=1.

Next, we define the following function class of interest concerning the loss functions:

FL
n := {|Aα− F | : α ∈ Nn}, FH

n := {|ATAα−ATF | : α ∈ Nn}. (3.8)

Now, we shall utilize Theorem 3.4 with both F = FL
n and F = FH

n to derive the estimate for the
generalization error. The precise statement is presented in the following theorem.

Theorem 3.5 (Generalization error). Let Assumption 2.1 holds and κ(A) be the condition number of
the finite element matrix A = S + C defined in (2.6). Then we have

E
[
∥α̂L

n − α̂L
n,M∥L1(Ω)

]
≲ κ(A)1+d/2RM (FL

n ) + κ(A)d+2RM (FH
n ) + κ(A)2 inf

α∈Nn

∥α− α∗∥L1(Ω). (3.9)

Proof. By the triangle inequality, we have

E
[
∥α̂L

n − α̂L
n,M∥L1(Ω)

]
≤ E

[
∥α̂L

n − α̂H
n ∥L1(Ω)

]
+ E

[
∥α̂H

n − α̂H
n,M∥L1(Ω)

]
+ E

[
∥α̂H

n,M − α̂L
n,M∥L1(Ω)

]
=: (I) + (II) + (III)

From the argument used in the proof of Theorem 3.2, we know that

(I) ≲ κ(A)2 inf
α∈Nn

∥α− α∗∥L1(Ω). (3.10)
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Next, through the repeated applications of Lemma 3.1 and Theorem 3.4, we obtain

(II) ≤ 1

ρ2min

E
[
∥ATAα̂H

n −ATF∥L1(Ω) + ∥ATAα̂H
n,M −ATF∥L1(Ω)

]
=

1

ρ2min

E
[
H(α̂H

n ) +H(α̂H
n,M )

]
≲

1

ρ2min

E
[
H(α̂H

n,M )
]

≲
1

ρ2min

(
E
[
H(α̂H

n,M )−HM (α̂H
n,M )

]
+ E

[
HM (α̂H

n )
])

≲
1

ρ2min

RM (FH
n ) +

2

ρ2min

E
[
HM (α̂H

n )−H(α̂H
n )

]
+

2

ρ2min

E
[
H(α̂H

n )
]

≲
1

ρ2min

RM (FH
n ) +

(
ρmax

ρmin

)2

inf
α∈Nn

∥α− α∗∥L1(Ω),

where we have used the argument used in the proof of Theorem 3.2 to obtain the last inequality. Finally,

(III) ≤ 1

(ρmin)2
(
E
[
∥ATAα̂H

n,M −ATF∥L1(Ω)

]
+ E

[
∥ATAα̂L

n,M −ATF∥L1(Ω)

])
=:

1

(ρmin)2
[
(I)′ + (II)′

]
.

For the remaining terms, note that

(I)′ ≤ E
[
H(α̂H

n,M )−HM (α̂H
n,M )

]
+ E

[
HM (α̂H

n,M )
]
≲ RM (FH

n ) + E[HM (α̂H
n )]

≲ RM (FH
n ) + E

[
HM (α̂H

n )−H(α̂H
n )

]
+ E

[
H(α̂H

n )
]
≲ RM (FH

n ) + (ρmax)
2 inf
α∈Nn

∥α− α∗∥L1(Ω),

and subsequently,

(II)′ ≤ E
[
∥AT ∥L(α̂L

n,M )
]
≤ ∥AT ∥

(
E
[
L(α̂L

n,M )− LM (α̂L
n,M )

]
+ E

[
LM (α̂L

n,M )
])

≤ ∥AT ∥
(
2RM (FL

n ) + E
[
LM (α̂L

n)− L(α̂L
n)
]
+ E

[
L(α̂L

n)
])

≲ ∥AT ∥
(
4RM (FL

n ) + λmax inf
α∈Nn

∥α− α∗∥L1(Ω)

)
.

Again, by the facts that ∥AT ∥ = ∥A∥ = ρmax and |λmax| ≤ ρmax together with the above estimates,

(III) ≲ κ(A)d+2RM (FH
n ) + κ(A)1+d/2RM (FL

n ) + κ(A)2 inf
α∈Nn

∥α− α∗∥L1(Ω).

By combining the above estimates for (I), (II) and (III), together with the fact |λmax| ≤ ρmax, we can
derive the desired estimate.

If the finite element parameter h > 0 is fixed, along with ρmin, ρmax, and κ(A), then, according to the
universal approximation property, we know that the last term on the right-hand side of (3.9) converges to
zero. For the first term and the second term, we may assume that the Rademacher complexities converge
to zero as M → ∞; this is a common assumption in statistical learning theory, and it indeed holds for
several function families. See, for example, [41, 14, 37, 20], where this issue was addressed. Therefore,
in this case, we can show that for fixed h > 0, the generalization error converges to zero as n, M → ∞.
More precisely, we have

E
[
∥α̂L

n − α̂L
n,M∥L1(Ω)

]
→ 0 as n, M → ∞. (3.11)

3.3 Convergence of approximate solutions

Based on the convergence of coefficients (3.6) and (3.11), we shall prove the convergence of the FEONet
prediction to the finite element approximation, which is encapsulated in the following theorem.
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Theorem 3.6. Suppose Assumption 2.1 holds, and assume that for all n ∈ N, RM (FL
n ) and RM (FH

n )
converge to 0 as M → ∞. Then we have

lim
n→∞

lim
M→∞

E
[
∥uh − uh,n,M∥L1(Ω;L2(D))

]
= 0, (3.12)

where the expectation is to take over the random sampling ωj ∼ PΩ.

Proof. From the definition (2.22) and (2.26), we have that

∥uh − uh,n,M∥L1(Ω;L2(D)) =

ˆ
Ω

∥∥∥∥ Nh∑
j=1

(α∗
j − (α̂L

n,M )j)ϕj

∥∥∥∥
L2(D)

dω ≲
ˆ
Ω

( Nh∑
j=1

(α∗
j − (α̂L

n,M )j)∥ϕj∥L2(D)

)
dω

≲ max
1≤i≤Nh

∥ϕj∥L2(D)

ˆ
Ω

( Nh∑
j=1

|α∗
j − (α̂L

n,M )j |
)
dω

≲ max
1≤i≤Nh

∥ϕj∥L2(D)N
1/2
h ∥α∗ − α̂L

n,M∥L1(Ω).

(3.13)
Therefore, for given h > 0, by (3.6) and (3.11), we conclude that as n, M → ∞,

E
[
∥uh − uh,n,M∥L1(Ω;L2(D))

]
≲ E

[
∥α∗ − α̂L

n,M∥L1(Ω)

]
≲ E

[
∥α∗ − α̂L

n∥L1(Ω)

]
+ E

[
∥α̂L

n − α̂L
n,M∥L1(Ω)

]
→ 0.

4 Error estimates for approximate solutions

In the previous section, we considered the general class of second-order elliptic equations (1.1)-(1.2) and
proved that the error ∥uh − uh,n,M∥L1(Ω;L2(D)) goes to zero as n, M → ∞. On the other hand, in this
section, we will deal with some particular cases where we can derive an explicit error estimate.

First, we shall consider the case of self-adjoint PDEs, i.e., the case when b(x) = 0 for all x ∈ D.
In this case, we can significantly simplify the proof in Section 3 by avoiding the use of the auxiliary
loss function H. Furthermore, by using the condition number estimates of finite element matrices, we
can identify the role of the finite element parameter h > 0 in the entire convergence and obtain the
explicit error bound. Secondly, we will introduce a function space called the Barron space, which is the
family of functions endowed with a quantity that can control the approximation and generalization errors
by adopting a particular machine learning model. We will provide a sufficient condition for our target
function to be contained in the Barron space, and derive the explicit error bounds which identify the role
of the parameters h > 0, n, M ∈ N in the overall convergence of the FEONet.

4.1 Self-adjoint PDEs

Henceforth, in this section, let us assume that b(x) = 0 for any x ∈ D in (1.1), so that the equations
under consideration become self-adjoint:

−div (a(x)∇u) + c(x)u = f(x) in D, (4.1)

u(x) = 0 on ∂D. (4.2)

We shall adjust the analytical setting discussed in Section 2 accordingly, so all the notations are now for
the equation (4.1)-(4.2). In this case, the finite element matrix A is just S (instead of S + C as before),
which is symmetric and positive-definite. Therefore, we can directly apply Lemma 3.1 with T = A = S,
which allows us to avoid the use of the auxiliary loss function H. As we can see from the following
theorems, since we only work the original loss function L, the main assertions and the proofs can be
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significantly simplified. Again, let us denote the condition number of the finite element matrix A = S by
κ(A), and the largest eigenvalue and the smallest eigenvalue by λmax and λmin respectively. Note that
since A is symmetric (and hence normal) and positive-definite, we can write κ(A) = λmax/λmin.

Theorem 4.1 (Approximation error). Suppose that Assumption 2.1 holds. For the finite element coeffi-
cients α∗ ∈ C(Ω;RNh) and the approximate coefficient α̂L

n ∈ Nn, we have

∥α∗ − α̂L
n∥L1(Ω) ≤ κ(A) inf

α∈Nn

∥α− α∗∥L1(Ω). (4.3)

Proof. By using Lemma 3.1 with T = A = S, it follows that

∥α∗ − α̂L
n∥L1(Ω) ≤

1

λmin

(
∥Aα∗ − F∥L1(Ω) + ∥Aα̂L

n − F∥L1(Ω)

)
=

1

λmin
L(α̂L

n) ≤
1

λmin
inf

α∈Nn

L(α) = 1

λmin
inf

α∈Nn

∥Aα− F∥L1(Ω)

≤ 1

λmin
inf

α∈Nn

(
∥Aα−Aα∗∥L1(Ω) + ∥Aα∗ − F∥L1(Ω)

)
≤ λmax

λmin
inf

α∈Nn

∥α− α∗∥L1(Ω) = κ(A) inf
α∈Nn

∥α− α∗∥L1(Ω).

Theorem 4.2 (Generalization error). If Assumption 2.1 holds, we have

E
[
∥α̂L

n − α̂L
n,M∥L1(Ω)

]
≲ κ(A)d/2RM (FL

n ) + κ(A) inf
α∈Nn

∥α− α∗∥L1(Ω). (4.4)

Proof. By the use of Lemma 3.1 and Theorem 3.4, we have

E
[
∥α̂L

n − α̂L
n,M∥L1(Ω)

]
≤ 1

λmin
E
[
∥Aα̂L

n − F∥L1(Ω) + ∥Aα̂L
n,M − F∥L1(Ω)

]
=

1

λmin
E
[
L(α̂L

n) + L(α̂L
n,M )

]
≤ 1

λmin
E
[
L(α̂L

n,M )
]

≲
1

λmin

(
E
[
L(α̂L

n,M )− LM (α̂L
n,M )

]
+ E

[
LM (α̂L

n)
])

≲
1

λmin
RM (FL

n ) +
1

λmin
E
[
LM (α̂L

n)− L(α̂L
n)
]
+

1

λmin
E
[
L(α̂L

n)
]

≲
1

λmin
RM (FL

n ) +
λmax

λmin
inf

α∈Nn

∥α− α∗∥L1(Ω).

Therefore, from (2.12) and (2.16), we obtain the desired inequality.

Now, from Theorem 4.1 and Theorem 4.2, we have the following estimates:

E
[
∥α∗ − α̂L

n,M∥L1(Ω)

]
≲ κ(A) inf

α∈Nn

∥α− α∗∥L1(Ω) + κ(A)d/2RM (FL
n ). (4.5)

The above estimate plays a pivotal role in the error analysis. For example, from the above inequality
together with the classical finite element theory, we can estimate an error between the true solution u and
the solution prediction uh,n,M by the FEONet. More precisely, for the (Pℓ)-finite element approximation
(piecewise polynomial function degree less than or equal to ℓ ∈ N), by the optimal error estimate of finite
element approximation and the elliptic regularity theory, it follows that

∥u− uh∥L1(Ω;L2(D)) ≲ hℓ+1

ˆ
Ω
|u(ω)|Hℓ+1(D) dω ≲ hℓ+1

ˆ
Ω
∥f(ω)∥Hℓ−1(D) dω = hℓ+1∥f∥L1(Ω;Hℓ−1(D)).
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Furthermore, for the finite element basis function ϕh
j on the shape-regular partition, it is straightforward

to verify that ∥ϕh
j ∥L2(D) ≈ hd/2. Therefore, as we did in (3.13), we can obtain the following estimate:

E
[
∥u− uh,n,M∥L1(Ω;L2(D))

]
≲ hℓ+1 + max

1≤i≤Nh

∥ϕj∥L2(D)N
1/2
h E

[
∥α∗ − α̂L

n,M∥L1(Ω)

]
≲ hℓ+1 + κ(A) inf

α∈Nn

∥α− α∗∥L1(Ω) + κ(A)d/2RM (FL
n )

(4.6)

Unlike the convergence obtained in Theorem 3.6 where the error uh − uh,n,M with fixed h > 0 was
addressed, here we do not fix h > 0 and investigate the total error u − uh,n,M (instead of uh − uh,n,M ),
identifying the role of h > 0 in the entire convergence. It is noteworthy from the estimate (4.6), that the
choice of small h > 0 may not always guarantee a small error, and we need to choose a suitable h > 0
to minimize the error for the predicted solution. In the next chapter, with some regularity assumption,
we will further estimate the right-hand side of (4.6) in terms of n, M ∈ N to obtain the complete error
estimate, which is the main goal of this paper.

4.2 The Barron Space

In this section, we shall introduce a certain class of functions called the Barron space, to honor the
seminal work of Barron concerning the mathematical analysis of a class of two-layer neural networks. It
has been studied that this type of function can be well approximated by two-layer neural networks with
dimension-independent convergence rates with respect to the width [4, 14]. We start with the so-called
spectral Barron space which was Barron’s original approach [47, 48, 37]. For an integrable function f
defined on Ω ⊂ Rm, we define the quantity

γs(fe) =

ˆ
Rm

(1 + |ξ|)s|f̂e(ξ)|dξ, (4.7)

where fe ∈ L1(Rm) is an extension of f to Rm and f̂e is the Fourier transform of fe. We call the space
of functions with bounded γs(·) as the Barron space. More precisely, we shall define

Bs(Ω) := {f : Ω → R : γs(fe) < ∞ for some extension of fe of f},

which is equipped with the norm
∥f∥Bs(Ω) := inf

fe|Ω=f
γ(fe),

where the infimum is taken over all extensions fe ∈ L1(Rm). Then one can show that Bs(Ω) is con-
tinuously embedded in Hs(Ω) provided that Ω is bounded [47]. There are some results providing the
characterization of the Barron Space. For example, a sufficiently smooth function with compact support
is contained in the Barron space, which is presented in the following lemma (see, e.g., [19]).

Lemma 4.3. If g ∈ Cβ
0 (Rm) with |β| > m/2 + s for some s ∈ N, then g ∈ Bs(Rm) in the sense that

γs(g)
2 ≲
ˆ
Rm

(
|g|2 + |∂βg|2

)
dx < ∞. (4.8)

More characterizations and properties can be found in various papers including [4, 5, 47]. Note that,
if the function is defined in a bounded domain Ω rather than the whole space Rm, we need to extend
the functions from Ω to Rm. This can be done by a continuous extension argument such as the Whitney
extension theorem which is encapsulated in the following theorem (see, e.g., [19]).

Lemma 4.4. If g ∈ Cβ(Ω), then for a closed set Γ ⊂ Rm satisfying Ω ⊂⊂ Γ, there exists an extension

ge ∈ Cβ
0 (Rm) such that g = ge in Ω and ge = 0 in Rm \ Γ.
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In modern machine learning theory, the Barron space is sometimes defined in a different way, using
a probabilistic integral representation [14, 8]. More precisely, let us consider a function g : Ω → R with
the following integral representation

g(ω) =

ˆ
R×Rm×R

aσ(b · ω + c)ρ(da,db,dc), (4.9)

where ρ is a probability distribution on R×Rm ×R and σ is an activation function. Then we define the
norm of such function as

∥g∥Ws(Ω) = inf
ρ
(Eρ[|a|s(∥b∥1 + |c|)s])1/s ,

where the infimum is taken over all ρ with the representation (4.9). The probabilistic Barron space Ws(Ω)
is defined as the class of continuous functions which can be represented by (4.9) with finite Barron norm
∥ · ∥Ws(Ω). This is less explicit than the Fourier-based characterization, but it is known to contain more
functions that can be efficiently approximated by two-layer neural networks [43, 44].

The regularity we will mainly concern in this paper is B2(Ω), and hence, we shall denote B(Ω) = B2(Ω)
henceforth. In several papers, it was shown that Bs+1(Ω) is continuously embedded into Ws(Ω) for all
s ∈ N [4, 51], and W1(Ω) = W2(Ω) = W3(Ω) = · · · = W∞(Ω) provided that σ is the ReLU activation
function [14]. Therefore we will use the single notation W(Ω) to denote the probabilistic Barron space.
From the above properties, it follows that B(Ω) ↪→ W(Ω).

We begin with the following regularity result which identifies a sufficient condition for our target
coefficient α∗ to be contained in the Barron space. To do this, we need to assume the following.

Assumption 4.5. For a compact set Ω ⊂ Rm, f(x, ω) ∈ L1(D;Cβ(Ω)) with |β| > m/2 + 2.

Proposition 4.6. Suppose that Assumption 4.5 holds. Then each target coefficient (finite element coef-
ficient) α∗

j is contained in B(Ω) for j = 1, · · · , Nh with the estimate

∥α∗
j∥B(Ω) ≲ κ(A)d/2.

Proof. By recalling the definition of the finite element coefficients α∗, for each j ∈ Nh

α∗
j (ω) = ãj1F1(ω) + · · ·+ ãjNh

FNh
(ω) =

ˆ
D
f(x, ω)[ãj1ϕ1(x) + · · ·+ ãjNh

ϕNh
(x)] dx =:

ˆ
D
f(x, ω)Bj(x) dx,

where (ãj1, · · · , ã
j
N ) denotes the j-th row of A−1. Since the largest component of the inverse of A is

bounded above by λ−1
min (see, e.g., [21]), from (2.17), we see that |Bj | ≲ κ(A)d/2.

Next, by Assumption 4.5 and Lemma 4.4, there exists an extension fex ∈ Cβ
0 (Rm) for each x ∈ D.

We then define an extension of α∗
j by

α∗
j,e(ω) =

ˆ
D
fex(x, ω)Bj(x) dx.

By Fubini’s theorem, we have

α̂∗
j,e(ξ) =

ˆ
Rm

[ˆ
D
fex(x, ω)Bj(x) dx

]
e−iξ·ω dω

≲ κ(A)d/2
ˆ
D

ˆ
Rm

fex(x, ω)e
−iξ·ω dω dx = κ(A)d/2

ˆ
D
f̂ex(x, ξ) dx.

Again, by Fubini’s theorem together with (4.8) and the continuity of the extension ex, it follows that

γs(α
∗
j,e) =

ˆ
Rm

(1 + |ξ|)s|α̂∗
j,ẽ(ξ)|dξ ≲ κ(A)d/2

ˆ
Rm

(1 + |ξ|)s
ˆ
D

∣∣∣∣f̂ex(x, ξ)∣∣∣∣ dx dξ
≲ κ(A)d/2

ˆ
D

ˆ
Rm

(1 + |ξ|)s|f̂ex(x, ξ)|dξ dx ≲ κ(A)d/2
ˆ
D
γs(fex) dx ≲ κ(A)d/2

ˆ
D
∥f∥Cβ(Ω) dx.

From Assumption 4.5, we can conclude that α∗
j ∈ B(Ω) for all j = 1, · · · , Nh.
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Based on Proposition 4.6, henceforth, we will assume that our target coefficient satisfies α∗
j ∈ B(Ω)

for all 1 ≤ j ≤ Nh. Next, let us define an ansatz space for approximation. In the previous sections, we
used the general class of feed-forward neural networks as approximators. On the other hand, here we
use a set of two-layer ReLU neural networks, which is known to effectively approximate the function of
Barron type. Specifically, the class of feed-forward neural networks Nn defined in Section 2.3 now denotes
the family of two-layer ReLU networks from Ω into RNh , which contains n neurons in the hidden layer.
Also, we shall use the following class of scalar-valued neural networks:

Nn,2 :=

{
α(ω; θ) =

1

n

n∑
j=1

ajσ(bj · ω + cj) : θ = (aj , bj , cj)
n
j=1, aj , cj ∈ R, bj ∈ Rm for all 1 ≤ j ≤ n

}
.

Furthermore, for a two-layer neural network with the parameter θ = (aj , bj , cj)
n
j=1, we define the so-called

path norm by

∥θ∥P :=
1

n

n∑
j=1

|aj |(∥bj∥1 + |cj |).

Then we define the main ansatz class in this section which consists of the two-layer ReLU neural networks
with the parameters whose path norms are bounded by the Barron norm of the target coefficients:

N ∗
n,2 :=

{
α(ω; θ) ∈ Nn : ∥θ∥P ≤ 2 max

1≤j≤Nh

∥α∗
j∥W(Ω)

}
.

It is known that if the target function is contained in the Barron space, it can be well approximated by
two-layer neural networks without the curse of dimensionality which is presented in the following theorem
(see, for example, [4, 14]).

Theorem 4.7. Let g ∈ W(Ω) and n ∈ N. Then there exists a two-layer ReLU neural network gn(·; θ) ∈
Nn,2 with ∥θ∥P ≤ 2∥g∥W(Ω) satisfying

∥g(·)− gn(·; θ)∥2L2(Ω) ≤
3∥g∥2W(Ω)

n
.

Note that the above theorem is for the scalar-valued neural networks. Let us describe the way to
apply Theorem 4.7 to our case, where the vector-valued neural networks are considered. For the target
coefficient α∗(ω) = (α∗

i (ω))
Nh
i=1 with α∗

i ∈ W(Ω), by Theorem 4.7, there exists two-layer neural networks

α∗
i,n(ω) =

1

n

n∑
j=1

aijσ(b
i
j · ω + cij) ∈ N ∗

n,2

for each i = 1, · · · ,Nh, satisfying

∥α∗
i − α∗

i,n∥2L2(Ω) ≤
3∥α∗

i ∥2W(Ω)

n
.

Now we define a (vector-valued) two-layer ReLU neural network ĝ : Ω → RNh with nNh nodes such that
the weight matrix and the bias vector of the hidden layer is defined by

W 1 = (b11, · · · , b1n, · · · , b
Nh
1 , · · · bNh

n )T ∈ RnNh×n and b1 = (c11, · · · , c1n · · · , c
Nh
1 , · · · , cNh

n )T ∈ RnNh .

The weight matrix of the second layer is defined by

W 2 =


a11 · · · a1n 0 · · · 0 0 · · · 0 · · · 0 · · · 0
0 · · · 0 a21 · · · a2n 0 · · · 0 · · · 0 · · · 0

...
...

...
. . .

...

0 · · · 0 0 · · · 0 0 · · · 0 · · · aNh
1 · · · aNh

n

 .
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Then we have

inf
g∈NnNh

∥α∗ − g∥L1(Ω) ≲ ∥α∗ − ĝ∥L2(Ω) =
(
∥α∗

1 − α∗
1,n∥2L2(Ω) + · · ·+ ∥α∗

Nh
− α∗

Nh,n
∥2L2(Ω)

) 1
2

≲
1√
n

(
∥α∗

1∥2B(Ω) + · · ·+ ∥α∗
Nh

∥2B(Ω)

) 1
2
≲

κ(A)3d/4√
n

.

Therefore, we obtain the following result.

Proposition 4.8. Suppose that Assumption 4.5 holds. Then we have

inf
α∈Nn

∥α∗ − α∥L1(Ω) ≲
κ(A)d√

n
. (4.10)

Next, we shall investigate the generalization error. To do this, we will use the following result [14, 42].

Theorem 4.9. For the function class FQ,1 = {g(·; θ) ∈ Nn,2 : ∥θ∥P ≤ Q} and FQ,2 = {g ∈ W : ∥g∥W ≤
Q}, we have

RM (FQ,j) ≤ 2Q

√
2 log(2m+ 2)

M
for j = 1, 2. (4.11)

Let us write A = (aij) and amax = maxi,j |aij |. Since the finite element matrix A is symmetric and
positive-definite, there exists some k ∈ N such that |aij | ≤ akk for any i, j = 1, 2, · · · , Nh (see, e.g., [21]).
Therefore, from the estimate (2.17), it follows that amax ≤ |akk| = eTkAek ≤ λmax ≲ κ(A)1−d/2, where
ek denotes the k-th standard basis. In order to apply Theorem 4.9 to our case, let us first define the
following function classes:

Fn := {|Aα− F | : α = (αj)
Nh
j=1, αj ∈ N ∗

n,2 for j = 1, · · · , Nh},

Fn,1 := {|Aα| : α = (αj)
Nh
j=1, αj ∈ N ∗

n,2 for j = 1, · · · , Nh},

F i,j
n,1 := {|aijg| : g ∈ N ∗

n,2}, Fmax
n,1 := {amaxg : g ∈ N ∗

n,2}.

We first note that Fmax
n,1 ⊂ {g ∈ Nn,2 : ∥g∥P ≤ 2amax∥α∗∥W(Ω)}. Since the Rademacher complexity of

a set of a single function is zero, by Theorem 4.9, Proposition 4.6 and Talagrand’s contraction principle
(see, e.g., [49]), we have that

RM (Fn) ≤ RM (Fn,1) ≤
Nh∑

i,j=1

RM (F i,j
n,1) ≤ (Nh)

2RM (F∗
max) ≲

κ(A)1+d

√
M

. (4.12)

Therefore, from (4.6), (4.10) and (4.12), we finally obtain the following theorem, which is the main result
of this paper.

Theorem 4.10. Let Assumption 4.5 hold. If we use the (Pℓ)-finite element approximation, the predicted
solution uh,n,M by the FEONet satisfies the following error estimate:

E
[
∥u− uh,n,M∥L1(Ω;L2(D))

]
≲ hℓ+1 +

κ(A)1+d

√
n

+
κ(A)1+3d/2

√
M

. (4.13)

Remark 4.11. As described earlier, in the method we propose, we first choose the finite element param-
eter h > 0 and make a triangulation. During this process, the first term in the error (4.13) can be reduced
as desired, and better convergence can be achieved when using higher-order methods. After h > 0 is fixed
and basis functions are set, we proceed with the neural network approximation for the target coefficients.
Since κ(A) ≈ h−2, if h > 0 is small, the second and third terms of the error in (4.13) may increase.
However, by increasing the number of neurons in the hidden layer (n → ∞) and using more training
samples for training (M → ∞), we can reduce these error terms as much as we want. Additionally, by
using the preconditioning techniques, we can significantly reduce the condition number. This provides a
theory-guided strategy to reduce the second and third error terms in (4.13), ensuring faster convergence.
This will be explicitly confirmed through numerical experiments in the next section.
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Figure 3: The relative L2 errors resulting from varying the number of training samples and the model
size.

5 Numerical experiments

In this section, we shall perform some numerical experiments to confirm the theoretical findings in the
previous sections. Motivated by [3], we randomly generate input samples (in this paper, external forces)
of the form

f(x) = n1 sin(m1 · x) + n2 cos(m2 · x) x ∈ D, (5.1)

where the random parameters n1, n2, m1 and m2 are sampled from uniform distributions. As described in
Section 2.1, we train the FEONet using these random samples. Note that we don’t need any precomputed
input-output (f, u) pairs for training. We then evaluate the performance of the trained model using
different random samples that were not used in the training. For the corresponding true solutions for the
test data, we computed the finite element solutions on a sufficiently fine mesh, using the finite element
software package FEniCS [35]. All the computations were conducted using the Intel Xeon Cascade Lake
(Gold 6226R) processor and TESLA V100 GPU.

5.1 Convergence against the number of training samples and model size

We first demonstrate that for fixed h > 0, the error ∥uh − uh,n,M∥ decreases as the model size n and
the number of input samples M increase, which was theoretically proved in Theorem 3.6. To do this, we
consider the 2D Poisson equation within the domain D, which is a square with a hole (see the second
domain in Figure 1), i.e.,

−∆u(x, y) = f(x, y), (x, y) ∈ D,

u(x, y) = 0, (x, y) ∈ ∂D.
(5.2)

Figure 3 illustrates the experimental results, where we can see a relationship between relative errors and
the approximation parameters; the model size n ∈ N and the number of training samples M ∈ N. We
use the convolutional neural networks (CNN) as a baseline model and train the model with the gradually
increasing number of convolutional blocks. We also conduct the training with a varying number of training
samples from 10 to 20, 40, 80, 160, 320, and up to 1000. As we expected, we can confirm the decreasing
tendency of errors as depicted with red lines in Figure 3.

Secondly, what we also proved in the theory was that the convergence depends on the condition
number κ(A) (e.g. Theorem 3.2, Theorem 3.5, (4.5) and (4.6)). This motivates us to train the FEONet
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Figure 4: The relative L2 errors against the number of elements.

with the preconditioned loss

K(α) = ∥P−1Aα(ω)− P−1F (ω)∥L1(Ω) and KM (α) =
|Ω|
M

M∑
i=1

|P−1Aα(ωi)− P−1F (ωi)|, (5.3)

so that all of κ(A) in the theoretical results can be replaced by the term κ(P−1A) which is known to
be smaller. In our experiment, for the preconditioning, we used the Sparse Approximate Inverse (SPAI)
preconditioner [10]. The experimental results for this are demonstrated in Figure 3 with green lines. As
we expected from theory, the errors are reduced and it has been shown that we can train the model with
smaller numbers of training samples and convolutional blocks, and hence we can improve the training
efficiency if we use the preconditioning. This provides us with a theory-guided classical numerical analysis
strategy to improve the performance of the proposed machine-learning model.

5.2 Convergence against the number of element

Next, we shall confirm the theoretical result presented in Theorem 4.10. Note that the input samples of
type (5.1) satisfy Assumption 4.5. For this experiment, we consider the convection-diffusion equation

−0.1uxx − ux = f(x), x ∈ [−1, 1],

u(−1) = u(1) = 0.
(5.4)

The experimental results concerning the quantitative relationship between test errors and the number
of elements are depicted in green in Figure 4; one for piecewise linear approximation and the other for
piecewise quadratic approximation. As we can see in Figure 4, up to a certain point, as the degree of
freedom increases, the relative L2 error decreases following the convergence rate which is known in the
classical theory of FEM (−2 for P1 approximation and −3 with P2 approximation), as indicated by
dotted lines. But after that point, we can see that the error increases again. This phenomenon was
predicted in the theoretical result presented in Theorem 3.6. Thanks to the first term in (4.13), the error
goes down when it reaches a local minimum. However, as the number of elements further increases, the
condition number κ(A) goes up, and hence, so does the relative L2 error. The theoretical error bounded
for both P1 and P2 obtained in Theorem 3.6 are drawn in red in Figure 4, and we can confirm that the
experimental results have a similar tendency as the theoretically predicted results.

Secondly, according to Theorem 3.6, when the number of elements is large, we can reduce the total
error by using the preconditioning technique. As discussed in Section 5.1, we compare the results for the
original FEONet, and the one using the preconditioned loss (5.3), and the experimental result is presented
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Figure 5: The FEONet prediction for 2D Poisson equation without or with preconditioning.

in Figure 5. When the number of elements is relatively small, the preconditioning slightly improves the
performance. However, for the case when the number of elements is large, using the preconditioner for
the training significantly improves the overall performance of the model. This also matches with the
theoretical findings in the previous sections.

6 Conclusion

In this paper, we have investigated the convergence of approximate solutions predicted by the FEONet
proposed in [32], and derived an error estimate, simultaneously examining the whole approximation
parameters h > 0 and n, M ∈ N. Based on the eigenvalue estimates from the classical FEM theory,
we proved the convergence of the numerical solution for general linear second-order PDEs, and the
convergence depends on the condition number of the finite element matrix. Furthermore, for a self-
adjoint case, a novel regularity theory for the neural network approximation was proposed, from which
we obtained the complete error estimate. Finally, we conducted some numerical experiments which
support the theoretically shown results in the paper.

An interesting future research direction is to study the optimization error. Since the neural tangent
kernel (see e.g., [23]) of the FEONet also depends on the finite element matrices, again from the eigenvalue
estimates for FEM, we may theoretically analyze the corresponding optimization error. The analysis of
the FEONet for nonlinear equations is also intriguing. In [32], we showed that the FEONet can also
learn a solution operator for nonlinear equations. This ability becomes particularly highlighted if we
compare the FEONet with the classical FEM, since we don’t need any iterative schemes to predict
solutions, allowing us to make a real-time solution prediction for nonlinear equations. These topics are
of independent interest, and will be addressed in the forthcoming papers.
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