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We study an anisotropic cubic Dirac semi-metal subjected to a constant magnetic field. In the
case of an isotropic dispersion in the x-y plane, with parameters vx = vy, it is possible to find ex-
act Landau levels, indexed by the quantum number n, using the typical ladder operator approach.
Interestingly, we find that the lowest energy level (the zero energy state in the case kz = 0) has a de-
generacy that is three times that of other states. This degeneracy manifests in the Hall conductivity
as a step at zero chemical potential that is 3/2 the size of other steps. Moreover, as n → ∞ we find

energies En ∝ n3/2, which means the n-th step as a function of chemical potential roughly occurs
at a value µ ∝ n3/2. We propose that these exciting features could be used to identify cubic Dirac
semi-metals experimentally. Subsequently, we analyze the anisotropic case vy = λvx with λ ̸= 1.
First, we consider a perturbative treatment around λ ≈ 1 and find that energies En ∝ n3/2 still
holds as n → ∞. To gain further insight into the Landau level structure for a maximum anisotropy,
we turn to a semi-classical treatment that reveals interesting star-shaped orbits in phase space that
close at infinity. This property is a manifestation of weakly localized states. Despite being infinite
in length, these orbits enclose a finite phase space volume and permit finding a simple semi-classical
formula for the energy, which again has the form as above. Our findings suggest that both isotropic
and anisotropic cubic Dirac semi-metals should leave similar experimental imprints.

I. INTRODUCTION

Semi-classical approximations typically are achieved
by taking the ℏ → 0 limit of quantum mechanics [1, 2].
More precisely, this is the limit at which the character-
istic action S is large compared to the reduced Planck
constant ℏ, that is S ≫ ℏ [3, 4]. Within this limit, cap-
turing much of the rich and exotic behavior of quantum
systems and preserving the intuitive explanations that
classical mechanics provides is possible. More than that,
semi-classical physics has allowed us to gain deep insights
into the interplay between classical chaos and quantum
mechanics [5]. A prototypical example of this is the ef-
fect of quantum scarring that occurs with wavefunctions
in quantum billiards that can be traced back to the stable
orbits in a corresponding classical chaotic system, where
such orbits leave their imprints on the quantum wave-
function [6]. An even more important reason for the
interest in semi-classical methods is that they provide
a non-perturbative approximation scheme, which is ana-
lytically accessible - something that is exceptional.

This strength of the approach can be seen most lucidly
in that the semi-classical method can solve problems ap-
proximately that ordinary methods such as perturbation
theory cannot. For instance, if one treats the harmonic
oscillator potential as a perturbation around the free par-
ticle, then perturbation theory cannot produce the well-
known discrete energy levels. However, in this case, the
semi-classical method is impressive because it produces
exact results for the discrete energy levels [7, 8].

This work aims to apply semi-classical methods not

to the ordinary Schrödinger equation with a quadratic
dispersion, whose implications are well-known. Instead,
we want to see its consequences in the context of more
exotic phases of matter - so-called semi-metals.

After the discovery of graphene [9] (a single layer of
carbon atoms arranged in a honeycomb pattern), re-
searchers discovered many exciting transport properties.
A famous example is Klein tunneling [10] showing that
an electron under normal incidence will tunnel through
a barrier with 100% probability. These features can
be traced back to graphene’s peculiar band structure,
where the conduction and valence bands touch at isolated
points. This property made graphene an early example
of a semi-metal -i.e., a material where the overlap be-
tween conduction and valence bands is not precisely zero
like in an insulator or semiconductor and not of finite
measure like in a conductor. Instead, while the over-
lap is non-zero, it has zero measure. Motivated by this
discovery, much interest has emerged in similar classes
of materials. One example is Dirac semi-metals [11, 12],
which were the first experimentally confirmed material in
this class. Dirac semi-metals can be considered a three-
dimensional analog of graphene [11, 13] because, much
like graphene, it has a linear dispersion near isolated band
touching points. Dirac semi-metals are interesting be-
cause the exciting linear band touching is robust. Indeed,
Dirac cones do not appear due to accidental band touch-
ings; instead, they are protected by crystalline symmetry
and spin-orbit coupling [14, 15] and are therefore very
stable. Of course, there is a plethora of other kinds of
semi-metals with robust band features, such as nodal line

ar
X

iv
:2

40
4.

17
90

2v
1 

 [
co

nd
-m

at
.m

es
-h

al
l]

  2
7 

A
pr

 2
02

4



2

semi-metals where bands touch along a one-dimensional
line [16, 17] or also semi-metals with band touchings of
higher than linear order - such as quadratic or cubic dis-
persion [12, 18–21].

In this work, we will focus our investigation on the
exotic case of an anisotropic cubic Dirac metal [12, 19]
subjected to a constant magnetic field. We will do so
by using both fully quantum and semi-classical methods.
Semi-classical results are compared to fully quantum re-
sults. Both approaches offer exciting insights and permit
us to speculate about how one might experimentally iden-
tify a cubic Dirac semi-metal, whether it is isotropic or
anisotropic.

We organized our work as follows. In section II, we
introduce the Hamiltonian of the system. In section III,
we study the Hamiltonian for two cases that allow for
an exact quantum mechanical analytical solution - these
cases are isotropic in the x-y plane. First, we consider
the purely two-dimensional limit. Here, the material is
thin, and we may restrict ourselves to momentum kz = 0
in the z-direction for low energies. Next, we consider the
case kz ̸= 0, where the material is thick enough so that
not all momenta in the z− direction are frozen out. In
section IV, we consider perturbatively the effect of the
anisotropy by introducing a small anisotropy parameter
λ ≪ 1. In section V, we recast the problem in a semi-
classical language, which allows us to investigate classi-
cal orbits and study the differences between exact quan-
tum and semi-classical results. We study the maximally
anisotropic limit, which is inaccessible to a fully quantum
analytical treatment. We find classical orbits and solu-
tions for energy levels that are exact in the semi-classical
limit and compare them to numerical results. Lastly, in
Sec. VI we draw our conclusions

II. ANISOTROPIC CUBIC DIRAC
SEMI-METALS

We take the Hamiltonian describing an anisotropic cu-
bic Dirac semi-metal [12]

H(k) = ℏ
(
h(k) 0
0 −h(k)

)
, (1)

as the starting point of our discussion. Such a Hamilto-
nian, for instance, is expected to be realizable in quasi-
one-dimensional molybdenum monochalcogenide com-
pounds [12]. For such a material the basis set that was
used to write the above Hamiltonian is |Ψ⟩ = (|A, ↑
⟩, |B, ↑⟩, |A, ↓⟩, |B, ↓⟩), with A/B and ↑ / ↓ designating
the orbital and spin degrees of freedom, respectively. Of
course, there is the possibility that similar Hamiltoni-
ans may be realizable in other types of materials and
also with different degrees of freedom (such as sublattice
degrees of freedom), giving rise to an identical matrix
structure. For this reason, our results remain general in
what follows, so we will not explicitly use the basis set
introduced above.

The Hamiltonian (1) for our case of a cubic Dirac
semimetal consists of two blocks with the form

h(k) = vx(k̂
3
+ + k̂3−)σx + ivy(k̂

3
+ − k̂3−)σy + vzkzσz, (2)

where k̂± = k̂x ± ik̂y are momentum operators with

k̂i = −iℏ∂i. Finally, σi are Pauli matrices, and vx,y,z
are real-valued and independent coefficients (they are not
velocities) with dimension T−1, T stands for time.
A constant magnetic field B can be introduced into

our description with a convenient choice of the Landau
gauge. That is, it is introduced via a vector potential
A = (0, Bx, 0) using the minimal substitution procedure
k → k − e

ℏcA. In the unit system (e = c = ℏ = 1), we
therefore replace canonical momentum p̂i operators by
kinetic momentum operators π̂i as indicated below

k̂± → π̂± = k̂x ± i(k̂y −Bx̂). (3)

In the following section, we will first study this Hamil-
tonian’s energy levels - so-called Landau levels - fully
quantum mechanically, which is only possible in specific
high symmetry situations.

III. EXACT ENERGY LEVELS FOR THE
ISOTROPIC CASE vx = vy

A. Isotropic case with kz = 0

The Hamiltonian describing an isotropic cubic Dirac
semi-metal with vx = vy = v and the z-direction frozen
out as kz = 0 (see the appendix of [19] for a more detailed
discussion on how this happens for a thin material), is
given by

H(k̂, x) = 2v

 0 π̂3
+ 0 0

π̂3
− 0 0 0
0 0 0 −π̂3

+

0 0 −π̂3
− 0

 . (4)

To solve the eigenvalue problem, we can separate
variables and write the eigenspinors as plane waves
in the y-direction. This is due to the fact that

[H(k), k̂y] = 0 implies conservation of momentum along
the y-direction Ψ(x, y) = eikyyΨ(x) with Ψ(x) =

[Ψ1(x),Ψ2(x),Ψ3(x),Ψ4(x)]
T
. We may now define op-

erators

â =
1√
2B

[
k̂x + i(ky −Bx̂)

]
, (5)

â† =
1√
2B

[
k̂x − i(ky −Bx̂)

]
, (6)

that satisfy the commutation relation [â, â†] = I and can
therefore be interpreted as ladder operators. Using this
notation, the Hamiltonian becomes

H = ωc


0 â3 0 0
â†3 0 0 0
0 0 0 −â3
0 0 −â†3 0

 , (7)
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where ωc = 2v (2eB)
3/2

is called cyclotron frequency
(recall v is not a velocity). The eigenvalue problem
H(k)Ψ(x, y) = EΨ(x, y) for the second spinor Ψ2(x)
component can be reduced to

ω2
c â

†3â3Ψ2(x) = E2Ψ2(x), (8)

which can be solved by harmonic oscillator states
Ψ2(x) =

∣∣n〉. Associated energies are given as

En,s = sωc

√
n(n− 1)(n− 2), (9)

where s = ±1. Using as an ansatz Ψ2(x) =
∣∣n〉 in this

equation, we can obtain full normalized spinors as

Ψ(h)
n (x, y) =

1√
2


s
∣∣n− 3

〉∣∣n〉
0
0

 eikyy, n ≥ 3, (10)

and using a similar relation for the fourth component, we
find

Ψ(−h)
n (x, y) =

1√
2


0
0

−s
∣∣n− 3

〉∣∣n〉
 eikyy, n ≥ 3,

(11)

Here, the label (h) stands for spinors with contributions
that come solely from the upper block and (−h) for the
lower block in the Hamiltonian.

A special case must be considered for describing the
n < 3 states since they require different normalization
and do not come as pairs with opposing signs. For the
case m = 0, 1, 2, we find the spinors

Ψ
(h)
l (x, y) =

 0∣∣l〉
0
0

 eikyy, l < 3, (12)

Ψ
(−h)
l (x, y) =

 0
0
0∣∣l〉
 eikyy, l < 3, (13)

where we find that the zero energy ground state is six-
fold degenerate. This observation is interesting because
it contrasts that of single-layer graphene, which has a
zero energy state with no degeneracy. This ground-state
degeneracy has interesting consequences and impacts the
Hall conductivity. We begin our discussion of this with
the typical formula for the Hall conductivity at finite tem-
perature

σxy = i
∑
n,n′

(
f (En)− f

(
En′

)) ⟨ψn |jx|ψn′⟩ ⟨ψn′ |jy|ψn⟩
(En − En′)

2 ,

(14)
where |ψn⟩ is any eigenstate of the Hamiltonian, f(E) =
(exp(β(E − µ)) + 1)−1 is the Fermi-Dirac distribution,

µ the chemical potential, and β the inverse temperture.
Current operators are found in the usual way by taking
the derivative of the Hamiltonian with respect to a vector
potential. For our eigenstates and eigenvalues, we find a

unitless reduced Hall conductivity σ
(r)
xy , which is given as

σ(r)
xy =

hσxy
4e2

=
9

2
ω2
c

∑
n,σ,σ′

n(n− 1)
f(En+1,σ)− f(En,σ′)

(En,σ′ − En+1,σ)2
.

(15)
Here, the sum is over n ∈ N and σ, σ′ ∈ {−1, 1}. The
result of the computation can be seen in Fig. 1 below.
It shows that the step in Hall conductivity at zero chem-
ical potential is 3/2 times the step size of other steps
in the quantized Hall conductivity. This result differs
from the case of graphene, which we show for compari-
son where the first step is half the usual step size - for a
typical Dirac semi-metal, the result has the same prop-
erties as graphene. The reason for this behavior can be
found in the six-fold degenerate lowest Landau level of
the cubic Dirac semi-metal, which has 3/2 the degener-
acy of other states. This property contrasts graphene,
where the lowest Landau level has half the degeneracy of
other levels. This result also differs from a typical metal
where all steps are equally spaced. The second observa-
tion one may make is that in graphene, steps occur at a
dimensionless chemical potential µ(r) =

√
n. In contrast,

in the cubic Dirac semi-metal case, they occur at values
that asymptotically go to µ(r) = n3/2. Both observations
combined with the step height (it is twice that of a cubic
Weyl semi-metal [22]) - which is due to the level degen-
eracy of the cubic Dirac semi-metal’s Landau levels - can
be used to identify such materials via the quantized Hall
conductivity experimentally.

B. Quasi-2D isotropic case kz ̸= 0

After considering the case of semi-metal with kz = 0
(in addition to being isotropic in the x-y plane), we now
consider the case where the dimension of the material
in z-direction is sufficiently large such that considering
non-zero momentum kz ̸= 0 is not only relevant for high
energies. As previously, we will restrict our discussion
to the isotropic case. To keep our description consistent
in units of the cyclotron frequency ωc, we define m =

vzkz

2v(
√
2B)

3 , which can be interpreted as a mass-like term

in the original Hamiltonian model (it causes a gap in the
excitation spectrum). The Hamiltonian then takes the
form

H = ωc


m â3 0 0
â†3 −m 0 0
0 0 −m −â3
0 0 −â†3 m

 . (16)

From here, finding the Landau levels is almost immedi-
ate and follows almost the same steps as in the previous
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a) b)

FIG. 1. Plot of the dimensionless Hall conductivity σ
(r)
xy as function of dimensionless chemical potential µ(r) = µ/ωc. Subfigure

a) shows the Hall conductivity for our problem of a cubic Dirac semi-metal (β = 50/ωc), and Subfigure b) the case of graphene
(β = 100/ωc).

section. We find

En,s(m) = sωc

√
n(n− 1)(n− 2) +m2, n ≥ 3, (17)

with s = ±1, where normalized eigenspinors are given as

Ψ(h)
n,s(x, y) = N


scn
∣∣n− 3

〉∣∣n〉
0
0

 eikyy, (18)

Ψ(−h)
n (x, y) = N


0
0

−scn
∣∣n− 3

〉∣∣n〉
 eikyy, (19)

with the constants

cn =
En,s(0)

En,s(m)−m
, N =

1√
c2n + 1

. (20)

It is important to note that the case of n < 3 again
requires special care and has the same eigenspinors as
given in Eq. (13) with corresponding eigenvalues

E(±h)
n = ∓ωcm, (21)

which are each thrice degenerate. It is important to stress
that the ”−” sign corresponds to the upper block of the

Hamiltonian and the ”+” sign to the lower block, which
is unlike the n > 3 result that has both signs in both
cases. Much like the truly one-dimensional case, we can
plot a Hall conductivity and find the result in Fig. 2
below

FIG. 2. Plot of the dimensionless Hall conductivity σ
(r)
xy as

function of dimensionless chemical potential µ(r) = µ/ωc at
inverse temperature β = 50/ωc and with ”mass” term m =
−3.

We observe that the effect of the mass term m is that
some plateaus have been broadened in width while others
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have been shrunk. This behavior would allow experimen-
talists to recognize if electrons carry momentum in the
z-direction.

IV. PERTURBATIVE ENERGY LEVELS FOR
THE CASE vy ̸= vx

While it was easy to find exact energy levels in the
isotropic case of vy = vx, this task is not simple using
analytical means for the anisotropic case of vy ̸= vx.

Introducing an anisotropy parameter λ =
1−vy/vx

2 is use-
ful. This approach allows us to write the Hamiltonian in
a convenient form

H = ωc(h0 + λh1)⊗ σz, (22)

with λ as perturbative parameter and definitions

h0 =

(
0 â3

â†3 0

)
, h1 =

(
0 â†3 − â3

â3 − â†3 0

)
. (23)

With this, h0 corresponds to an exactly solvable isotropic
Hamiltonian, and λh1 is considered a perturbation.
Eigenvalues E0

n are non-degenerate in the case n ≥ 3
and corrections to the energy to first order can be com-
puted straightforwardly by the standard expressions for
Reighleigh-Schrödinger perturbation theory [23] as

En = E0
n (1− λ) . (24)

Like in previous sections, the degenerate zero eigenval-
ues case requires special care and must be treated us-
ing degenerate perturbation theory. Interestingly, first-
order degenerate perturbation theory yields no correc-
tion such that the expression (24) that includes the first-
order corrections to energies above remains valid in all
cases. Therefore, it is clear that a small anisotropy is
not expected to have much of an impact on the quali-
tative picture of the Hall conductivity (to leading order
ω → (1− λ)ωc is the only modification).

V. SEMI-CLASSICAL TREATMENT

Since a completely quantum mechanical treatment for
the anisotropic case is challenging, we will resort to a
semi-classical treatment in this section. This approach
allows us to gain further insights, such as the shapes of
particle trajectories under the influence of a magnetic
field, and further insights into the anisotropic regime,
which we stress is difficult to access in a complete quan-
tum treatment.

A. Review of Bohr-Sommerfeld-type semiclassics
for matrix Hamiltonians

A general and powerful method to determine en-
ergy levels by studying classical trajectories is the so-
called Gutzwiller approach to the semi-classical density

of states [1]. This approach has been generalized to ar-
bitrary matrix-valued Hamiltonians in [3]. While the
method developed in [3] is quite general and allows for
treatments of various special cases, our current problem
of determining Landau levels for a cubic Dirac semi-metal
is much simpler. Notably, we have three significant sim-
plifications:

1. It is enough to restrict ourselves to one-dimensional
Hamiltonians. We may do so because, in our case
of Landau levels, ky and kz can be treated as pa-
rameters entering a 1D Hamiltonian - that is, as
complex numbers rather than bonafide operators.

2. The eigenvalues of the classical limit Hamilto-
nian H(p, x), where the momentum operator p̂
was mapped to a complex number p, are non-
degenerate. This simplification is possible because
the h(k) blocks in equation (1) are not coupled,
and it is, therefore, enough to consider them sep-
arately, and their eigenvalues can be found to be
non-degenerate.

3. We may ignore degeneracy factors that arise from
different Landau orbits over the plane. This sim-
plification is possible because they only enter the
density of states and not in expressions for the en-
ergy levels that interest us.

These three simplifications mean that in what follows,
we may directly employ the modified Bohr-Sommerfeld
quantization condition that was derived in [3] and is given
below

2Sα − ℏ

[
π(να + 4n)− 2

∫ Tα

0

dtMα

]
= 0. (25)

In what follows, we will choose units with ℏ = 1. We
now move on to explain the different terms that enter
this expression. Hereby, Sα is the classical action for a
primitive periodic orbit - an orbit in phase space that
has only been traversed once. The index α accounts for
different periodic orbits being possible at a fixed energy.
There are two ways this can happen.

1. Potentials can allow for different periodic orbits at
a given energy E like in Fig. 3 below.
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FIG. 3. Plot of a potential landscape V (x) (thick black line)
and energy as a dashed line. Two distinct potential pots are
visible. Each will have its own associated classical periodic
orbits with an action Sα.

2. We deal with matrix Hamiltonians. That is, to the
lowest order, the Schrödinger equation is replaced
by a simple matrix equation

H(x, px = ∂xS)V = EV. (26)

For an n× n Hamiltonian this can be diagonalized
to determine n eigenvectors Vi and n eigenvalue
equations that determine actions Sα

Hi(x, px = ∂xSα) = E, (27)

which are ordinary Hamilton-Jacobi equations and
Hi are eigenvalues of H(x, ∂xS). These Hamilton-
Jacobi equations can have one or more periodic or-
bits associated with a given energy E.

Next, in our expression, Eq. 25 enters να, which is the so-
called Maslov index which for 1D motion counts the num-
ber of reflections by a potential barrier (or more generally
directional changes) that a particle experiences while it
traverses a periodic orbit. The last term that enters is
the so-called semi-classical phase factor

Mα = Im(V †
α [∂px

H(x, px)]∂xVα), (28)

which bears some resemblance to a Berry phase as dis-
cussed in [3, 24–27]. Hereby, Vα is the eigenvector of the
classical Hamiltonian matrix H(x, ∂xSα) corresponding
to the orbit α.

B. The Hamiltonian system

For our computations of semi-classical energies, we will
consider the upper block of (1) only, that is, Eq. (2)
with the magnetic field introduced as before via mini-
mal substitution. This simplification is possible because
the second block in equation (1) will yield (up to a
sign) the same energies as the other block. The semi-
classical limit of the Hamiltonian (2) is then obtained by

replacing momentum operators with canonical momenta
p̂i → ∂xi

S = pi. We obtain the classical expression

h(πi) = 2vx

(
0 π3

+ + λ(π3
− − π3

+)
π3
− + λ(π3

+ − π3
−) 0

)
,

(29)
and we introduced the shorthand notations

π± = px ± i(py + eBx), (30)

where pi are canonical momenta and πi are kinetic mo-

menta. The parameter λ =
1−vy/vx

2 measures the degree
of anisotropy as discussed previously.

C. Isotropic case kz = 0

In the isotropic case, we may set λ = 0 and vx = vy = v
and for a thin sheet, low energies correspond to kz = 0
to find

h(π) = 2v

(
0 π3

+

π3
− 0

)
. (31)

The eigenvalues are obtained from the determinant as
det[h(πi)− E] = 0

Es =2sv
√
(π+π−)3, (32)

where s = ±1. The corresponding normalized eigenvec-
tors are given by

V =
1√
2

(
2v
Es
π3
+

1

)
. (33)

At this level, we see that there is two classical Hamilto-
nians of the form

H(pi, x) = 2sv
(
p2x + (py + eBx)

2
)3/2

. (34)

1. Time for an orbit

Another ingredient that enters our expression for the
generalized Bohr-Sommerfeld quantization condition is
the time for an orbit. Here, we start by investigating
the equations of motion, which are given by Hamilton’s
equations

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
, (35)

with q is the position and p is momentum coordinates.
In our case, we find

ẋ = 3s
(
4|E|v2

) 1
3 px,

ẏ = 3s
(
4|E|v2

) 1
3 (py + eBx),

ṗx = 3seB
(
4|E|v2

) 1
3 (py + eBx),

ṗy = 0,

(36)
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From (36) one finds (taking a time derivative of ẋ and
using the equation for ṗx) that the equation of motion
for the x-coordinate is given as

ẍ = −ω2(x+ xs), (37)

which constitutes a shifted harmonic oscillator with po-
sition shift xs = py/(eB) (note that py is constant as
shown above). It is important to note that this equation
is valid for both classical Hamiltonians in Eq. (34). It
also means that it is enough to consider only one of the
eigenvalues to find semi-classical energy levels. Indeed,
in the remainder of this section, we will focus on only
one of the Hamiltonians and, therefore, drop all indices
related to orbits. The oscillator frequency is found to be

ω = 3(4|E|v2) 1
3 eB. (38)

The time for an orbit as per definition ω = 2π/T then is
then found to be

T =
2π

3(4|E|v2) 1
3 eB

. (39)

2. Classical orbit, action, and Maslov index

Now, from Eq. (37), we find the solutions

x = xs + x0 sin(ωt), px = seBx0 cos (ωt) , (40)

with amplitude

x0 =
1

eB

(
|E|
2v

) 1
3

, (41)

which can be found for a given energy by placing the
solutions (40) in Eq. (32). Plotted, we get the typical
phase space curve of a harmonic oscillator that can be
seen below

xsxs - x0 xs + x0
x

B e x0

-B e x0

px

FIG. 4. Phase space curve of an electron in cubic semi-metal
subjected to a constant magnetic field.

which is just an elliptic orbit. This curve directly tells
us that the particle along each orbit changes direction
twice, and therefore, the Maslov index is

να = 2. (42)

We may next use px = ∂xS in Eq. (32) to find the action
for an orbit as

S =

∫ √(
|E|
2v

) 2
3

− (py + eBx)2dx. (43)

This integral for a single period of a primitive orbit gives

S =
π

eB

(
|E|
2v

) 2
3

. (44)

3. Semi-classical Berry-like phase and energy levels

For the semi-classical phase term using (28) we find

M± = 9eB

(
|E|v2

2

) 1
3

, (45)

which is a constant, and therefore the integral
∫ T

0
dtM =

MT = 3π is trivial.
We may use our results (44), (42), (45) and put them

into (25) to find that our semiclassical energies are then
given by

E = ±ωc(n− 1)3/2, (46)

with ωc = 2v (2eB)
3/2

.

4. Performance of semi-classical results

Understanding under what conditions the semi-
classical results perform well compared to the exact re-
sults obtained earlier is helpful. Of course, we see directly
that the results are different. This observation poses the
question under which conditions the results agree.
Typically, semi-classical results are reliable for large

quantum numbers. Therefore, we do an expansion for
large n of both the exact Eexact and semi-classical Esemcl

results to find

Eexact = ±ωc

(
n3/2 − 3

2
n

1
2 +

3

8
n−

1
2

)
+O

(
n−

3
3

)
,

Esemcl = ±ωc

(
n3/2 − 3

2
n

1
2 − 1

8
n−

1
2

)
+O

(
n−

3
3

)
,

(47)

where we can see that results agree well in the limit of
large quantum numbers - they only disagree at order
O(n−1/2) as it is typical in the semi-classical approach
- because typically larger quantum numbers correspond
to a larger classical action. To better understand how ac-
curate the approximation is, we plot the density of states
below and energy levels as a function of n. The approx-
imation’s effectiveness is also visualized in the figure be-
low.
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FIG. 5. (color online) The left column of the figure shows a
plot of the density of states, and the right column shows the
relative error between exact and approximate energies.

The semi-classical energy levels agree very well with
exact results except for the lowest energy. Furthermore,
as expected, the approximation error decreases rapidly
as a function of the quantum number n.

D. Quasi-2D isotropic limit

Next, we consider the case pz ̸= 0, which can describe
a sheet of finite thickness. To obtain a simpler notation
that we can compare to the exact quantum case, we set
pz = mωc/(2vz). The notation is suggestive and clarifies
that pz takes the role of a mass termm. The Hamiltonian
then takes the form

h(π) = 2v

(
mωc

2v π3
+

π3
− −mωc

2v

)
. (48)

The eigenvalues are readily found as

E = 2vs

√
(π+π−)3 +

(mωc

2v

)2
, (49)

with s the sign of the energy. The corresponding eigen-
vectors can be written as

V =
√
2

√
1− mωc

E

(
π3
+v

E−2mωc

1

)
. (50)

The classical system will reduce to a harmonic oscillator
after using the same methods as in the previous section.
However, this time with a slightly modified driving fre-
quency

ω = 3

(
2v
(∣∣E|2 −m2ω2

c

)
|E|3/2

) 2
3

eB. (51)

Considering the limit of small mass and the relation to
the frequency in the massless case, Eq. (38) is interesting.
We will use the term ω0 to refer to the frequency of the
massless case below. In the limit of small masses, the
oscillation frequency becomes

ω ≈ ω0 −
2

3

m2ω2
c

|E|2
ω0, (52)

which tells us that a mass term reduces the oscillation
frequency just as intuition would dictate. Because we
have harmonic motion, we find a Maslov index

ν = 2. (53)

The action of a primitive can be computed in analogy to
the previous case and is given as

S =
π(|E|2 −m2ω2

c )
1
3

22/3eBv2/3
. (54)

Lastly, we find that the semi-classical phase factor has
the form

M =
9Be

(
v
(
|E|2 − 4m2ω2/v2

))2/3
2

1
3E

, (55)

which is a constant. Therefore, the integral
∫ T

0
dtM =

2πM/ω = 3π is trivial.
Applying the Bohr-Sommerfeld quantization condition

Eq. (25) as before, we find that energy levels are given
as

Esemcl = ωc

√
m2 + (n− 1)3. (56)

We may now compare the semi-classical result Esemcl to
the exact result Eq. (17), which we title Eexact to find

Esemcl − Eexact = (n− 1)
ωc

2m
+O(m−3), (57)

which tells us that, similar to expectations, a mass term
turns the energy levels more classical (the approximation
error shrinks for large mass).

E. Maximally anisotropic case vx = 0

In the last part of the section, we consider a case that is
difficult to solve by analytical means in an exact quantum
treatment - the case of a maximally anisotropic cubic
Dirac semi-metal. Maximum anisotropy is achieved for
vx = 0 and vy = v, where the classical Hamiltonian takes
the form

H = v

(
0 π3

− − π3
+

π3
+ − π3

− 0

)
. (58)

For this case, it is advantageous to combine Hamilton-
Jacobi equations for different eigenvalues into a single
Hamilton-Jacobi equation det(E−H) = 0, and one finds

E2 + v2
(
π3
− − π3

+

)2
= 0. (59)

Eigenvectors that correspond to different solutions for E
are given as

V± =
1√
2

(
±1
1

)
, (60)
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and are independent of momenta and positions, which
directly lets one realize that the semi-classical phase M
will have no contributions. It is, therefore, important
to recognize that the main contribution to orbits will
be from the classical phase space orbit. The combined
Hamilton-Jacobi equation (59) can be interpreted as an
implicit relation for the orbit in phase space

E2 − 4v2(Bex+ py)
2
(
(Bex+ py)

2 − 3p2x
)2

= 0, (61)

which leads to an interesting phase space orbit shown in
Fig. 6.

FIG. 6. Plot of phase space trajectories in terms of unit-
less momentum p̃i = pi(eB)−1/2, unitless energy ϵ =

Ev−1(eB)−3/2 and position x̃ = x(eB)1/2 (recall v is not
a velocity and we set ℏ = 1). In both cases, we set py = 0
because this term only leads to a shift of the trajectory center
along the x-axis. The red curve is for a value ϵ = 1 and the
blue one for a value ϵ = 0.02

We observe that semi-classical particles in this problem
traverse star-shaped orbits in phase space. These orbits
do not close except at infinity (for a non-zero value of
vx, the closure happens at a finite value, though). It is
clear from the figure that despite orbits that only close at
infinity, the phase space volume enclosed by the trajec-
tory is finite. This observation is interesting and peculiar
because the finite phase space volume implies discretized
energy levels corresponding to localized states. At the
same time, the classical particles are not localized - they
move to infinity along the jags of the star. This obser-
vation demonstrates how a particle can be localized for
a quantum mechanical problem. The classical dynamics
do not reflect this in the real space trajectory but only in
phase space through a finite volume. The Maslov index

can also easily be found from the figure if we note that
barrier reflections happen when the momentum deriva-
tive becomes infinite - this happens at four spots along
the orbit (the two spikes at x̃ = 0 and the indents at
p̃x = 0). Therefore, the Maslov index in equation (25) is
ν = 4.
The last ingredient in equation (25) to find semi-

classical energies is the action, which is the volume en-
closed by the orbit. The simplest way to do this is to
realize that it is enough to compute the area of one of
the four star sectors, which is marked in blue Fig. 7
below.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.5

1.0

1.5

2.0

2.5

3.0

FIG. 7. Plot of one sector of the star orbit. Marked in
blue is the area one needs to compute. The blue curve
is given by p̃x =

√
x2/3 + ϵ/(6x) and the orange curve by

p̃x =
√

x2/3− ϵ/(6x)

We find that the area can be separated into different
pieces, giving a unitless action s with

s/4 =

∫ ∞

0

dx

√
2x3 + ϵ

6x
−
∫ ∞

ϵ1/32−1/3

dx

√
2x3 − ϵ

6x
. (62)

The integral simplifies considerably to give

s =
24/3

√
πϵ2/3Γ

(
7
6

)
Γ
(
5
3

) , (63)

where Γ is the Gamma function. After units are reintro-
duced, the result is inserted into the Bohr-Sommerfeld
quantization condition, and the resulting relation solved
for the energy. We find the semi-classical energy levels
to be given by

En = ℏωc

π3/4Γ
(
5
3

)3/2
8Γ
(
7
6

)3/2 n3/2, (64)

which much like the isotropic case behave as En ∝ n3/2

just with a different proportionality constant. Of course,
it is interesting that we obtained relatively simple closed-
form results semiclassically, where a full quantum treat-
ment is difficult. Even a proper numerical treatment is
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numerically expensive because particles are only weakly
localized (for details, see appendix A). We compare our
closed-form semi-classical approximation to the exact nu-
meric results below to find out if our approximation is
reliable.

0 2 4 6 8 10 12 14 5 10 15 20 25

0.1

0.01

0.003

FIG. 8. (color online) The left column of the figure shows a
plot of the density of states, and the right column shows the
relative error between exact and approximate energies.

The results are in excellent agreement with a complete
numerical treatment. Therefore, we can see that the clas-
sically non-localized particles are weakly quantum local-
ized. Moreover, the functional form of the energies tells
us that even in an anisotropic case, one can expect similar
behavior for the Hall conductivity as we have predicted
for the isotropic case.

VI. CONCLUSION

In summary, we have shown that the Landau levels of
a cubic Dirac semi-metal exhibit intriguing features both

quantum mechanically and from a classical perspective.
We have shown in a fully quantum mechanical treatment
that one would expect experimentally detectable signa-
tures of a cubic Dirac semi-metal in the Hall conduc-
tivity, and we have found explicit analytical expressions.
While the anisotropic case could not be understood by
employing a full quantum treatment, we made consider-
ably much more progress on the semiclassical side.

Interestingly, we found that in the anisotropic case, the
electrons do not localize classically. Rather they move in-
finitely far from the origin. However, they were found to
be quantum mechanically weakly localized, giving rise to
discrete energy levels. Our work also provides an exciting
example of quantum corrections playing a significant role
in localization, enriching the phenomenological literature
in this respect. Nevertheless, weak localization from the
classical side has left its imprint in that the numerics for
finding exact quantum energy levels are relatively expen-
sive when using a local set of basis functions.
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Appendix A: Numerical solution of the maximally
anisotropic case

For a numerical treatment, we have expressed the
Hamiltonian (58) in terms of the usual Landau basis as

h =
ωc

2

(
0 a†

3 − a3

a3 − a†
3

0

)
, (A1)

and we used that we may write

(a3)ij =
√
2i+ 3i2 + i3δi+3,j . (A2)

A naive expansion letting i and j run from zero to a cut-
off does not yield valid results. Indeed, as one can already
check in the isotropic case, such an approach leads to
issues with unphysical states at zero energy. One finds
a sixfold fold degeneracy instead of the actual physical
threefold degeneracy. Luckily, there is a simple way to
fix this. If one replaces

a3 → (a3)chop,x,y, (A3)

where (a3)c,x has the last three columns chopped from the
matrix and (a3)c,y has the last three rows chopped. In
the isotropic case, this replacement leads to the correct
number of zero modes and the correct eigenvectors for
the zero modes, which justifies this replacement.

For the anisotropic case, we may then write the nu-
merical Hamiltonian as

hchop =
ωc

2

(
0 (a†

3
)c,x − (a3)c,x

(a3)c,x − (a†
3
)c,y 0

)
,

(A4)
which leads to the results employed in the main text. We
should also note that this approach is slowly converging,
so a basis of ∼ 222 states was needed (close to state-of-
the-art system sizes in exact diagonalization) to generate
results from the main text. The resulting Python code
employing sparse matrix diagonalization is available from
the authors upon reasonable request.
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