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Imprints of dark energy models on structural properties of charged gravastars in

extended teleparallel gravity
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A gravastar comprises three distinct sections: the interior zone, the middle shell, and its outer
region. By considering a specific extended teleparallel gravity model that incorporates conformal
Killing vectors and provides the field equations. We observe that the interior part exhibits a repellent
force acting on the shell. This is based on the assumption that pressure is analogous to negative
energy density. The middle shell consists of ultrarelativistic plasma and pressure, which is directly
proportional to the matter density and counteracts the repellent force exerted by the inner zone.
In the outer zone, we compute the precise solution in a vacuum and then connect these spacetimes
using junction conditions to investigate stability limits. We aim to investigate the influence of dark
energy models on the stable characteristics of gravastar configurations. It is worth noting that the
phantom field exhibits the highest stable configurations for all physically viable selections of physical
parameters. We additionally investigate the influence of physical parameters on the correct length,
entropy, and energy of the gravastar.
Keywords: Gravastar; modified theory; conformal vectors; stability analysis.

I. INTRODUCTION

The remarkable astrophysical conjecture like gravitational collapse and the exploration of stellar structures have
gained the attention of several researchers. Neutron stars, white dwarfs and black holes (BHs) are novel examples
of massive as well as dense compact stellar objects that are formed as an outcome of gravitational collapse. In
recent years, many authors have suggested that the densest stellar models other than BHs can be produced by the
gravitational collapse of a massive star. For this purpose, Mazur and Mottola [1] by incorporating the modified
notion of Bose-Einstein condensation in the gravitational field, presented a novel concept of a collapsing celestial
body characterized as the gravastar. It is believed that such object coincides with the theoretical conditions for stable
stellar development and provides an answer to the issues with classical BHs. In this hypothesis, it is expected that
the quantum vacuum oscillations play a major part in the collapsing phenomenon. A phase transformation appears
that results in the creation of a repellent de Sitter center, which keeps the collapsing candidate balanced and stops
the singularity and horizon from being produced [2]. This conversion occurs very near to the limit 2m

r = 1, rendering
it exceedingly difficult for an outer observer to distinguish between the gravastar and an original BH.
The construction of gravastar structure is specified by three modes in which the inner era (r ≥ 0, r < R1) is based

on the isotropic de Sitter center possessing the p = −ρ equation of state (EoS). The outer vacuum era (r > R2) is
displayed through the Schwarzschild metric having ρ = 0 = p. The inner and outer modes are isolated by a thin
shell (R1 < r < R2) of stiff substance comprising the ρ = p EoS possessing R1 as the inner and R2 as the outer
radius of gravastar. A huge investigation on gravastar geometry has been accomplished after the demonstration of
Mazur and Mottola. The stability of gravastar geometry via different EoSs is examined by Visser and Wiltshire [3].
Carter [4] computed the analytical solutions of gravastar and checked the consequences of EoSs on distinct modes of
gravastar structure. By taking into account the Born-Infeld phantom in lieu of de Sitter line element, Bilić et al. [5]
evaluated the gravastar structures and presented that their outcomes can display the dense dark scenario. Horvat and
Ilijić [6] inspected the energy constraints inside the shell of gravastar and analyzed the stable geometry via different
techniques. The study of thin-shell gravastars developed from inner de Sitter and outer various BH geometries is
presented in [7]-[10].
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Chirenti and Rezzola [11] performed the stability against axial perturbations and found stable structures of gravas-
tar. They also presented the differences of gravastar geometry from BHs. Rocha et al. [12] constructed the models of
prototype gravastars and displayed their differences from BHs. Harko et al. [13] considered the accretion disks about
slowly rotating gravastars and observed that the thermodynamic as well as electromagnetic attributes of the disks
are distinct. They also exhibited that the gravastars yield a less efficient formalism for changing mass to radiation
as compared to BHs. In the presence of nonlinear electrodynamics, Lobo and Arellano [14] formed several models
of gravastar and examined certain specific features of their structures. Similarly, with the effect of the electric field,
Horvat et al. [15] scrutinized the stability of the distinct zones of gravastar. Turimov et al. [16] discussed the outcomes
of magnetic field on the structure of gravastar and elaborated the analytical results in the presence of rotation. Javed
and Lin [17] explored the gravastar geometry by inducing the quintessence and cloud of strings. The detailed study
of thin-shell developing from different inner and outer manifold as studied in [18]-[23].
It is considered that the occurrence of gravitational theories is due to the mysteries behind the cosmological

expansion. In such frameworks, the matter and geometry coupling provides various speculations such as f(R, T )
theory [24], f(R, T,RαβT

αβ) theory [25], f(G, T ) [26] and f(T , T ) theory [27] having R as the curvature scalar, T
exhibits the trace part of the stress energy tensor, G indicates the Gauss-Bonnet scalar and T manifests the torsion
scalar. The discussion about the different modes of gravastar geometry has intrigued researchers to scrutinize the
impact of different gravitational speculations on the structures of gravastar. In geometry-matter coupled f(R, T )
scenario, Das et al. [28] determined the models of gravastar and explored its attributes graphically by incorporating
several EoSs. In the light of f(G, T ) conjecture, Shamir and Ahmad [29] derived the singularity-free solutions of
gravastar and obtained the expressions of various physical factors. Sharif and Waseem [30] observed the consequences
of the Kuchowicz ansatz on the distinct zones of gravastar in f(R, T ) gravity. In the light of f(R, T 2) background,
Sharif and Naz [31, 32] determined the results of the absence as well as the appearance of electric charge on the
geometrical attributes of gravastar. In f(T , T ) theory, Ghosh et al. [33] computed the analytical and singularity free
results of the gravastar yielding various physically viable characteristics.
For massive stellar objects, an inherited symmetry having a set of conformal Killing vectors (CKVs) is essential

to establish a naturally coherent relationship between the elements of matter and geometry through field equations.
These vectors are implemented to provide analytical results of the field equations more accurately as compared to
the earlier existing methods. By incorporating such vectors, the giant system consists of nonlinear partial differential
equations can be turned into ordinary differential equations. Implementing these KVs, Usmani et al. [34] inspected
the various aspects of gravastar by taking into account the electric field and evaluated the solutions for distinct modes
of gravastar. Sharif and Waseem [35] scrutinized the significance of the charge factor on the modes of gravastar in
the light of f(R, T ) scenario by utilizing the CKVs. Bhar and Rej [36] manifested the charged geometry of gravastar
with CKV in the light of f(T ) conjecture. Sharif et al. [37, 38] investigated the geometry of gravastar without charge
and with charge by inducing the CKVs in f(R, T 2) gravity. Ghosh et al. [39] explored the physical characteristics
of gravastars solutions in f(T ) gravity. The study of gravastars solutions in the framework of branworld gravity
is presented in [40] and [41]. Bhar [42] investigated gravastar remedies in the de Rham–Gabadadze–Tolley’s large
gravity is similar to that of massive gravity; explore many physical attributes. In the context of f(Q) gravity, we build
the non-singular solutions for charged gravastar [43, 44]. Also, the study of charged gravastars in Rastall gravity is
presented in [45].
Like other matter-curvature coupled speculations, the f(T , T ) gravity has also gained much attention of researchers

in both astrophysical and cosmological scenarios. In this work, we establish the singularity-free results of charged
gravastar in the context of f(T , T ) theory with CKV. The paper is organized in such a way that the next section
presents the basics of the f(T , T ) scenario. Section III displays the physical exposure of charged gravastars along
with the effects of CKVs. Section IV is devoted to matching the exact inner and outer solutions at the intermediate
shell to establish the geometry of the gravastar. Then, we scrutinize the impact of phantomlike EoS on the stability
of the gravastar model as presented in Section V. The structural attributes like the proper length of the intermediate
thin shell, energy contents, and entropy are observed in Section VI. The findings of our work are manifested in the
last section.

II. f(T , T ) THEORY

To explore the f(T , T ) theory, we choose the following metric

ds2 = gβξdx
βdxξ = ηijθ

iθj , (1)

with

dxβ = ei
βθi; θi = eiβdx

β , (2)
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where Minkowski metric is described by ηij with diag(−,+,+,+). Further, the expression eiβ meets the following
relations

ei
βeiξ = δβξ , eβ

ξeβj = δξj . (3)

As we are working with the torsional based theory, so the Levi-Civita connection is provided as

Γ̺̇
βξ =

1

2
g̺σ(∂ξgσβ + ∂βgσξ − ∂σgβξ). (4)

The Weitzenböck connection or relation is defined as

Γγ
βξ = ei

γ∂βe
i
ξ = −eiξ∂ξei

γ . (5)

Within the scope of Weitzenböck connection by Eq. (5), the torsion becomes

T γ
βξ = Γγ

βξ − Γγ
ξβ . (6)

Further, the contorsion tensor is evaluated by

Kγ
βξ = Γγ

βξ − Γ̇γ
βξ =

1

2
(Tβγ

ξ + Tξγβ − T γ
βξ). (7)

The Eq. (7) can be redefined as

Kβξ
γ = −1

2
(T βξ

γ − T ξβ
γ + Tγβξ). (8)

Th super-potential on combining torsion and contorsion is computed as

Sγ
βξ =

1

2
(Kβξ

γ + δβγT σξ
σ − δξγT σβ

σ). (9)

The Lagrangian density for torsion T expression is given by

T = T γ
βξSγ

βξ. (10)

The Riemann tensor is

Rγ
β̺ξ = Kγ

β̺;ξ −Kγ
βξ;̺ +Kγ

σξK
σ
β̺ −Kγ

σ̺K
σ
βξ. (11)

From the above equation, one can evaluate the Ricci scalar as

R = −T − 2DβT ξβ
ξ , (12)

where Dβ is a covariant derivative. A standard action [46? ] having matter coupling for extended teleparallel
gravitational theory is provided as

s =

∫

dx4e{ 1

2k2
f(T , T ) + L(M)}, (13)

where e = det
(

eiβ
)

=
√−g and k2 = 8πG. L(M) provides the Lagrangian density. The field equations from the Eq.

(13) are calculated as

8πG

2
T Y
X = S ξ̺

β (fT T ∂̺T + fT T∂̺T ) +
[

e−1eiβ∂̺(ee
γ
i S

ξ̺
γ

+T γ
γβS

ξγ
γ

]

fT +
1

4
δξβf +

1

2
fT (T

Y
X + ptδ

ξ
β), (14)

where fT T = ∂2f
∂T ∂T and fT = ∂f

∂T , fT = ∂f
∂T . On plugging Eq. (11) and Eq. (12) in Eq. (14) the field equations

become
(

Rβξ −
1

2
gβξR

)

fT +
1

2
gβξ(f − fT T ) + 2Sξβ σ(fT T ▽σ T + fT T ▽σ T ) = (8πG− fT )Tβξ − fT gβξpt. (15)
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In order to complete this analysis, the following line element is considered

ds2 = −eX(r)dt2 + eY (r)dr2 + r2dθ2 + r2 sin2 θdφ2, (16)

For the isotropic fluid source, the energy-momentum tensor reads as

Tij = diag(eXρ, eY p, r2p, r2psin2θ). (17)

Being modification in matter part, the electromagnetic stress-energy tensor Eiυ is defined by

Eij = 2(FiζFjζ −
1

4
gijFζχF

ζχ), (18)

where

Fij = Ai,j −Aj,i.

Further, a tensor, i.e., Fij is expressed in the following form

Fij,ζ + Fζi,j + Fjζ,i = 0, (19)

(
√−gF ij),j =

1

2

√−gji. (20)

Now, the Eq. (18) gives us the following relation of electric field (E).

E(r) =
1

2r2
eX(r)+Y (r)

∫ r

0

σ(r)eY (r)r2dr =
q(r)

r2
. (21)

In the above equation, q(r) and δ define the total charge as well as the charge density for the system, respectively.
Finally, the diagonal tetrad is computed by

eYγ =
(

e
X(r)

2 , e
Y (r)

2 , r, r sin θ
)

. (22)

The determinant of eYγ yields e = eX(r)+Y (r)r2 sin θ. The torsion T becomes

T (r) =
2e−Y (r)

r

(

X ′(r) +
1

r

)

. (23)

As, we are working with the diagonal tetrad, a suitable choice of model for f(T , T ) theory [46? ] is presented as:

f(T , T ) = αT (r) + c1T + c2, (24)

where α, c1 and c2 are functional parameters. By using Eq. (16), Eq. (22), and Eqs. (23-24) in Eq. (15), one can
get the f(T , T ) field equations as

8πρ = −
e−Y (r)

4(c1 − 1)(c1 + 2)r2

(

2αc1 − 4α+ αc1r
2Y ′(r)X ′(r)− 2α

×c1r
2X ′′(r)− αc1r

2X ′(r)2 + c1r
2c2e

Y (r) + 2r2c2e
Y (r)

− αc1r

×Y ′(r)− 2αc1e
Y (r)

− 3αc1rX
′(r) + 4αrY ′(r) + 4αeY (r)

)

, (25)

8πp =
e−Y (r)

4(c1 − 1)(c1 + 2)r2

(

2αc1 − 4α+ αc1r
2Y ′(r)X ′(r)− 2α

×c1r
2X ′′(r)− αc1r

2X ′(r)2 + c1r
2c2e

Y (r) + 2r2c2e
Y (r) + 3αc1

×rY ′(r)− 2αc1e
Y (r) + αc1rX

′(r) + 4αeY (r)
− 4αrX ′(r)

)

, (26)

8πp =
e−Y (r)

4(c1 − 1)(c1 + 2)r2

(

αr2Y ′(r)X ′(r)− 2αc1 − 2αr2X ′′(r)

−αr2X ′(r)2 + c1r
2c2e

Y (r) + 2r2c2e
Y (r) + αc1rY

′(r) + 2αc1

×eY (r)
− αc1rX

′(r) + 2αrY ′(r)− 2αrX ′(r)

)

. (27)
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An efficient way to use the field equations to follow the natural link between matter and geometry is to employ
inheritance symmetry. Typically, inheritance symmetry is used to measure the symmetry resulting from the conformal
Killing vectors. Moreover, we employ the vector field h, which may be represented as follows, to further utilize the
idea of conformal symmetry

LZgXY = h(r)gXY , (28)

where L represents the Lie derivative and vector field is denoted by h(r). Using Eq.(16) in Eq.(28), one can get
following relations

Z1X
′

(r) = h(r), Z1 =
rh(r)

2
, Z1Z

′

(r) + 2Z1
,1 = h(r).

The solutions of this system within the scope of Eq. (16) yield the following expressions

eX(r) = K1r
2, eY (r) =

K2

h2(r)
, (29)

where, K1 and K2 are integration constants. Now, inserting the Eq.(29) in Eqs. (25-27), we attain the modified field
equations as:

8πρ =
4α(c1 + 1)h2(r) + 2α(c1 + 4)rh(r)h′(r) +K2

(

2α(c1 − 2)− (c1 + 2)r2c2
)

4(c1 − 1)(c1 + 2)K2r2
, (30)

8πp =
4α(c1 − 3)h2(r) − 10αc1rh(r)h

′(r) +K2

(

(c1 + 2)r2c2 − 2α(c1 − 2)
)

4(c1 − 1)(c1 + 2)K2r2
, (31)

8πp =
−4α(c1 + 1)h2(r) − 2α(c1 + 4)rh(r)h′(r) +K2

(

2αc1 + (c1 + 2)r2c2
)

4(c1 − 1)(c1 + 2)K2r2
. (32)

III. CHARGED GRAVASTAR WITH CONFORMAL MOTION

Here, we shall deal with the new charged gravastar solution under conformal symmetry. On using Eq. (29) into
Eqs. (30-32) within Eq. (21), one can get the following field equations

8πρ+ E2 =
4α(c1 + 1)h2(r) + 2α(c1 + 4)rh(r)h′(r) +K2

(

2α(c1 − 2)− (c1 + 2)r2c2
)

4(c1 − 1)(c1 + 2)K2r2
, (33)

8πp− E2 =
4α(c1 − 3)h2(r) − 10αc1rh(r)h

′(r) +K2

(

(c1 + 2)r2c2 − 2α(c1 − 2)
)

4(c1 − 1)(c1 + 2)K2r2
, (34)

8πp+ E2 =
−4α(c1 + 1)h2(r) − 2α(c1 + 4)rh(r)h′(r) +K2

(

2αc1 + (c1 + 2)r2c2
)

4(c1 − 1)(c1 + 2)K2r2
. (35)

(36)

The expressions of physical factors are obtained simultaneously by solving the above field equations as

ρ = −K2

(

2α+ (c1 + 2)r2c2
)

+ 2α(c1 − 6)rh(r)h′(r) − 8αc1h(r)
2

32π (c21 + c1 − 2)K2r2
, (37)

p =
K2

(

2α+ (c1 + 2)r2c2
)

− 2α(3c1 + 2)rh(r)h′(r) − 8αh(r)2

32π (c21 + c1 − 2)K2r2
, (38)

E2 =
α
(

K2 + 2rh(r)h′(r) − 2h(r)2
)

2(c1 + 2)K2r2
. (39)

(40)

A. Interior mode of charged gravastar

From Eqs. (37) and (38), the relation between the physical terms and the metric functions is given by

ρ+ p =
αh(r) (h(r) − rh′(r))

4π(c1 + 2)K2r2
. (41)
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Employing the condition ρ+ p = 0, we obtain the exact form for h(r) through Eq. (41), which leads to

h(r) = rh0, h(r) = 0, (42)

where h0 acts as an integration constant. Here, h(r) = 0 does not provide a valid solution. On inserting the expressions
of h(r), the physical variables become

ρ = −K2

(

2α+ (c1 + 2)r2c2
)

− 6α(c1 + 2)r2h2
0

32π (c21 + c1 − 2)K2r2
= −p, (43)

E2 =
α
(

K2 + 2rh(r)h′(r) − 2h(r)2
)

2(c1 + 2)K2r2
, (44)

σ =
h0

√

α
(c1+2)r2

4
√
2πK2

. (45)

The corresponding forms of lapse functions yield

ea = K1r
2, e−b =

r2h2
0

K2
. (46)

The active gravitational mass M(r) through Eq. (37) is determined as

M(r) = 4π

(

αr3h2
0

8π (c21 + c1 − 2)K2
+

αc1r
3h02

16π (c21 + c1 − 2)K2
− r3c2

48π (c21 + c1 − 2)
− c1r

3c2
96π (c21 + c1 − 2)

(47)

− αr

16π (c21 + c1 − 2)
+

αr

16π(c1 + 2)

)

.

B. Charged gravastar shell with conformal motion

Here, we are going to compute the exact physical expressions in the light of ρ = p EoS by implementing Eq. (37)
and Eq. (38). ρ = p is given by

− K2

(

2α+ (c1 + 2)r2c2
)

+ 2α(c1 − 6)rh(r)h′(r)− 8αc1h(r)
2

32π (c21 + c1 − 2)K2r2

=
K2

(

2α+ (c1 + 2)r2c2
)

− 2α(3c1 + 2)rh(r)h′(r) − 8αh(r)2

32π (c21 + c1 − 2)K2r2
. (48)

Embedding ρ = p, the expression for h(r) via Eq. (48) is obtained as

h =

√

r
−

4(c1+1)
c1+4

(

6α(c1 + 1)h1 + 3αK2r
4(c1+1)
c1+4 + (c1 + 1)K2c2r

6(c1+2)
c1+4

)

√
6
√

α(c1 + 1)
. (49)

with h1 as an integration constant. h(r) = 0 does not yield a valid solution. Now, substituting the forms of h(r), the
physical variables take the forms

ρ =

r−
6(c1+2)

c1+4

(

6α(c1 + 1)(c1 + 2)h1 + α(c1 + 4)K2r
4(c1+1)

c1+4

)

16π(c1 + 1)(c1 + 2)(c1 + 4)K2
= p, (50)

E2 =

r
−

6(c1+2)
c1+4

(

αc1(c1 + 4)K2r
4(c1+1)
c1+4 − 6α(c1 + 1)(c1 + 2)h1

)

2(c1 + 1)(c1 + 2)(c1 + 4)K2
, (51)

σ =

αr
12

c1+4−7

(

6(c1 − 2)(c1 + 1)(c1 + 2)h1 + c1(c1 + 4)2K2r
4(c1+1)

c1+4

)

√

3
c1+1 + 6h1r

−
4(c1+1)
c1+4

K2
+ r2c2

α

8
√
3π(c1 + 1)(c1 + 2)(c1 + 4)2K2

√

√

√

√

αr
−

6(c1+2)
c1+4

(

c1(c1+4)K2r
4(c1+1)
c1+4 −6(c1+1)(c1+2)h1

)

(c1+1)(c1+2)(c1+4)K2

. (52)
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The associated lapse functions are

ea = K1r
2, e−b =

1

2c1 + 2
+

h1r
−

4(c1+1)
c1+4

K2
+

r2c2
6α

. (53)

The active gravitational mass using Eq. (37) becomes

M(r) =
4παr

16πc1 + 32π
. (54)

C. External mode of the charged gravastar with conformal vectors

We shall evaluate the analytic forms of physical factors using p = ωρ EoS possessing ω = 0 through Eq. (37) and
Eq. (38). Considering the EoS, the expression for h(r) through Eq. (48) is obtained as

h(r) =
((3c1 + 2)r)−

4
3c1+2

√

12αh2 +K2((3c1 + 2)r)
8

3c1+2 (3α+ 2r2c2)

2
√
3
√
α

. (55)

in which h2 exhibits the constant of integration. h(r) = 0 does not yield a consistent solution. On inserting h(r), the
forms of physical factors become

E2 =

α

(

1
c1+2 − 12h2r((3c1+2)r)

−
8

3c1+2
−1

K2

)

4r2
, (56)

σ =

α((3c1 + 2)r)
− 8

3c1+2

(

(3c1 + 2)2K2((3c1 + 2)r)
8

3c1+2 − 12(c1 + 2)(3c1 − 2)h2

)√

1

h2((3c1+2)r)
−

8
3c1+2

K2
+

r2c2
6α + 1

4

8π(c1 + 2)(3c1 + 2)2K2r3

√

√

√

√

α





1
c1+2−

12h2r((3c1+2)r)
−

8
3c1+2

−1

K2





r2

,(57)

The lapse functions in this case are

ea = K1r
2, e−b =

1

h2((3c1+2)r)
−

8
3c1+2

K2
+ r2c2

6α + 1
4

. (58)

Now, we determine the Kretschmann scalar (KS) to exhibit that the external mode is a flat geometry in the
following form

KS = RijklRijkl, (59)

where R indicates the Riemann tensor. The KS for the external zone becomes,

KS =
J3

(

144α2(3c1(15c1 + 4) + 52)h2
0 + J1 + J2

)

432α4(3c1 + 2)2K4
2r

4((3c1 + 2)r)
32

3c1+2

, (60)

where

J1 = (3c1 + 2)2K2
2 ((3c1 + 2)r)

16
3c1+2

(

45α2 + 52r4c22 + 84αr2c2
)

,

J2 = 24α(3c1 + 2)h0K2((3c1 + 2)r)
8

3c1+2
(

α(45c1 + 6) + 2(21c1 − 10)r2c2
)

,

J3 =
(

12αh0 +K2((3c1 + 2)r)
8

3c1+2
(

3α+ 2r2c2
)

)2

.

Notice that KS → 0 as r → ∞ which interprets that the external structure is an asymptotically flat geometry.
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D. Boundary constraints

Boundary conditions are crucial in calculating the expressions of various parameters that arise within the system.
Now, by comparing the inner and thin shell regions at the surface r = r1, we derive the factor A and investigate
its dependence on charge q. Additionally, by comparing the thin shell domain with the external area at r = r2, we
calculate the thickness (r2 − r1) of the thin shell as well as the range of the outside radius. The internal radius is
taken into account as R1 = 10km [48].

• Comparing the inner and thin shell eras at r = r1 = 10km, we get:

K1r
2
1 = K1r

2
1 , (61)

for gtt component and also for grr component, we have

r2h2
0

K2
=

r21r
−

4(c1+1)
c1+4

1

(

6α(c1 + 1)h1 + 3αK2r
4(c1+1)
c1+4

1 + (c1 + 1)K2c2r
6(c1+2)
c1+4

1

)

6α(c1 + 1)K2
. (62)

• Moreover, through the thin shell and the external region at r = r2, we gain

K1r
2
2 = K1r

2
2 , (63)

for gtt component and also for grr component, we have

r22r
−

4(c1+1)
c1+4

2

(

6α(c1 + 1)h1 + 3αK2r
4(c1+1)
c1+4

2 + (c1 + 1)K2c2r
6(c1+2)
c1+4

2

)

6α(c1 + 1)K2
=

h2((3c1 + 2)r2)
− 8

3c1+2

K2
+

r22c2
6α

+
1

4
. (64)

IV. JUNCTION CONDITIONS

Here, we match the inner and outer calculated solutions of gravastars at the hypersurface. The manifolds mathe-
matically can be illustrated by

ds2± = F±(r±)dt
2
± −F±(r±)

−1dr2± − r2±dθ
2
± − r2± sin2 θ±dφ

2
±, (65)

where the metric constituents of intrinsic and extrinsic manifolds are computed with the help of field equations via
boundary constraints. The lapse function of external (+) manifold can be portrayed as

F+(r+) =
K2r

4(c1+1)
c1+4

+ ((3c1 + 2)r+)
8

3c1+2
(

α
(

6r2+ − 3(c1 + 1)
)

+ 2(c1 + 1)
(

r2+ − 1
)

r2+c2
)

12α(c1 + 1)

(

r
4(c1+1)
c1+4

+ − r2+((3c1 + 2)r+)
8

3c1+2

) . (66)

While for interior, we have

F−(r−) =
r

4(c1+1)
c1+4

−

(

6α(c1 + 1)h2
0 −K2

(

3α+ (c1 + 1)r2−c2
))

6α(c1 + 1)
. (67)

In the present study, the thin-shell enclosing WH geometry is created by means of a cut-and-paste method. Using
this method, a unique regular manifold is produced, which can be expressed as W = W− ∪ W+. The resultant
structure becomes non-singular when the shell radius is less than rh. The components of the proposed manifolds and
hypersurfaces have the following forms, according to the Israel formalism: zγ± = (t±, r±, θ±, φ±) and ηi = (τ, θ, φ),
respectively. Here τ specifies the proper time at the hypersurface. These constituents are connected with each other
with the help of the following coordinate transformation

gij =
∂zγ±
∂ηi

∂zc1±
∂ηj

g±γc1. (68)
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The parametric equation corresponding to the hypersurface is expressed by

H : R(r, τ) = r − y(τ) = 0.

The Lanczos equations at hypersurface, which are the reduced forms of the Einstein field equations, are utilized to
examine the matter axioms displayed by

Sα
c1 =

1

8π
(δαc1ζ

γ
γ − ζαc1), (69)

where ζαc1 = K+
αc1−K−

αc1 and K−
αc1 manifest the constituents of extrinsic curvature. For perfect matter configuration,

the stress-energy tensor is described as Sα
c1 = diag(S,P,P). The surface density and pressure at shell are expressed

by S and P, respectively. The extrinsic curvatures for inner and outer geometries are

K±
αc1 = −n±

µ

[

∂2zµ±
∂ηαηc1

+ Γµ
λν

(

∂zλ±
∂ηα

)(

∂zν±
∂ηc1

)]

. (70)

The unit normals become

nµ
± =

(

ẏ

F±(y)
,
√

ẏ2 + F±(y), 0, 0

)

, (71)

in which the overdot indicates the differential associated with proper time.
Employing Lanczos equations, we obtain

S = − [Kθ
θ ]

4π
= − 1

4πy

{

√

ẏ2 + F+(y)−
√

ẏ2 + F−(y)
}

, (72)

P =
[Kθ

θ ] + [Kτ
τ ]

8π
=

1

8πy

{

2ẏ2 + 2yÿ + 2F+(y) + yF ′
+(y)

√

ẏ2 + F+(y)
− 2ẏ2 + 2yÿ + 2F−(y) + yF ′

−(y)
√

ẏ2 + F−(y)

}

. (73)

It is assumed that the thin shell of the generated geometry has no movement in a radial direction at equilibrium
shell radius y0. Hence, it is observed that the proper time differential of shell radius disappears, i.e., ẏ0 = 0 = ÿ0.

S0 = − 1

4πy0

{

√

F+(y0)−
√

F−(y0)
}

, (74)

P0 =
1

8πy0

{

2F+(y0) + y0F ′
+(y0)

√

F+(y0)
− 2F−(y0) + y0F ′

−(y0)
√

F−(y0)

}

, (75)

where at equilibrium position, density and pressure are presented by S(y0) and P(y0), respectively.

V. STABILITY VIA LINEARIZED RADIAL PERTURBATION

We now going to discuss the stable state of a created thin-shell about WH geometry via linearized radial perturbation
at y = y0. We obtain the equation of motion of the shell through Eq. (72) given by

Π(y) + ẏ2 = 0, (76)

having Π(y) as effective potential function illustrated by

Π(y) = − (F−(y)−F+(y))
2

64π2y2S(y)2
+

1

2
(F−(y) + F+(y))− 4π2y2S(y)2. (77)

It is interesting that the constituents of the stress-energy tensor obey the energy conservation requirements given
by

d

dτ
(4πy2S(y)) +P(y)

d

dτ
(4πy2) = 0, (78)
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which yields

S′(y) = −P(S(y))) + 2(S(y)

y
. (79)

In order to expand the effective potential around the equilibrium shell radius to second-order factors for stable
geometry, we implement the Taylor expansion given by

Π(y) = Π(y0) + (y − y0)Π
′(y0) +

1

2
(y − y0)

2Π′′(y0) +O[(y − y0)
3]. (80)

The resulting geometry becomes stable for Π(y0) = 0 = Π′(y0). Thus, we obatin

Π(y) =
1

2
(y − y0)

2Π′′(y0). (81)

To manifest the stability of thin-shell, the second differential form of the effective potential at y = y0 can be
implemented as

• Unstable ⇒ Π′′(y0) < 0,

• Stable ⇒ Π′′(y0) > 0,

• Unpredictable ⇒ Π′′(y0) = 0.

Π′′(y0) =
(

y0S(y0)
(

y0S(y0)
(

16π2A2y
2
0S(y0)

2 −
(

F ′
−(y0)−F ′

+(y0)
)2
)

−A4F−(y0)
)

+ F+(y0) (A3y0S(y0)− 2A5F−(y0)) + A5F−(y0)
2 +A1F+(y0)

2
) (

32π2y40S(y0)
4
)−1

, (82)

where

A1 = 3S(y0)(2P(y0) +S(y0))− 4(P(y0) +S(y0)) (−S(y0)P
′(y0) + 3P(y0) +S(y0)) ,

A2 = F ′′
−(y0) + F ′′

+(y0) + 16π2 (S(y0)(2P(y0) +S(y0))− 4(P(y0) +S(y0)) (S(y0) (P
′(y0) + 1) +P(y0))) ,

A3 = 8P(y0)
(

F ′
−(y0)− F ′

+(y0)
)

+S(y0)
(

y0F ′′
−(y0) + 4F ′

−(y0)− y0F ′′
+(y0)− 4F ′

+(y0)
)

,

A4 = 8P(y0)
(

F ′
−(y0)− F ′

+(y0)
)

+S(y0)
(

y0F ′′
−(y0) + 4F ′

−(y0)− y0F ′′
+(y0)− 4F ′

+(y0)
)

,

A5 = 4S(y0)(P(y0) +S(y0))P
′(y0)− 10P(y0)S(y0)− 12P(y0)

2 −S(y0)
2.

A. Phantomlike EoS

The stable thin-shell configuration is a highly significant subject in the realms of astrophysics and cosmology, since
it assists in the inspection of valid gravastar results. EoS is essential for examining the impacts of distinct kinds
of matter constituents at the hypersurface on the stable state of a thin shell. Among various speculations that can
narrate the exotic substance, one is a phantom-like EoS, that is portrayed as

P = ωS(y), (83)

where the parameter of EoS ω < 0. The various bounds of EoS parameter characterize the distinct kinds of matter
constituents. It exhibits dark energy, quintessence, and phantom energy state if ω < −1/3, 0 > ω > −1/3 and
ω < −1, respectively. To explore the thin-shell stability for three distinct forms of EoS parameter, i.e., dark energy,
quintessence, and phantom energy like matter constituents, we observe the graphical behavior of the second derivative

of effective potential as presented in Eq. (82). For simplification, we can consider y = (Sm
0 + ℓm)1/m, in which ℓ

depicts the length factor and m acts as a constant. We scrutinize the outcome of distinct factors on the stable state
of the shell for different types of energy contents. Some detailed outcomes are given below:

• Figs. (1)-(3) are used to explore the impact of c1 on the stability of gravastars for dark, quintessence and
phantom energies, respectively. Here, we use the regional plots to portray the stable and unstable states of the
shell. The stable regions are denoted with the pink doted region and the unstable region is represented with
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FIG. 1: Plots of Π′′(y0) along α and ℓ for dark energy for various choices of c1 as c1 = 0.3 (first plot), c1 = 0.5 (second plot)

and c1 = 0.9 (third plot) for ω = −1, y0 = (lm + 1)1/m , h0 = 1, K2 = 0.1, c2 = 0.5, m = 2.
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FIG. 2: Plots of Π′′(y0) along α and ℓ for quintessence energy for various choices of c1 as c1 = 0.3 (first plot), c1 = 0.5 (second

plot) and c1 = 0.9 (third plot) for ω = −2/3, y0 = (lm + 1)1/m , h0 = 1,K2 = 0.1, c2 = 0.5, m = 2.
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FIG. 3: Plots of Π′′(y0) along α and ℓ for phantom energy for various choices of c1 as c1 = 0.3 (first plot), c1 = 0.5 (second

plot) and c1 = 0.9 (third plot) for ω = −2, y0 = (lm + 1)1/m , h0 = 1, K2 = 0.1, c2 = 0.5, m = 2.
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FIG. 4: Plots of Π′′(y0) for dark energy for h0 = 0.8 (first plot), h0 = 1.5 (second plot) and h0 = 2 (third plot) for

ω = −1, y0 = (lm + 1)1/m , c1 = 0.3, K2 = 0.1, c2 = 0.5, m = 2.
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FIG. 5: Plots of Π′′(y0) for quintessence energy for h0 = 0.8 (first plot), h0 = 1.5 (second plot) and h0 = 2 (third plot) for

ω = −2/3, y0 = (lm + 1)1/m , c1 = 0.3, K2 = 0.1, c2 = 0.5, m = 2.
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FIG. 6: Plots of Π′′(y0) for phantom energy for h0 = 0.8 (first plot), h0 = 1.5 (second plot) and h0 = 2 (third plot) for

ω = −2, y0 = (lm + 1)1/m , c1 = 0.3, K2 = 0.1, c2 = 0.5, m = 2.
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FIG. 7: Plots of Π′′(y0) for dark energy for K2 = 0.1 (first plot), K2 = 0.12 (second plot) and K2 = 0.14 (third plot) for

ω = −1, y0 = (lm + 1)1/m , c1 = 0.3, h0 = 1, c2 = 0.5, m = 2.
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FIG. 8: Plots of Π′′(y0) for quintessence energy for K2 = 0.1 (first plot), K2 = 0.12 (second plot) and K2 = 0.14 (third plot)

for ω = −2/3, y0 = (lm + 1)1/m , c1 = 0.3, h0 = 1, c2 = 0.5, m = 2.
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FIG. 9: Plots of Π′′(y0) for phantom energy for K2 = 0.1 (first plot), K2 = 0.12 (second plot) and K2 = 0.14 (third plot) for

ω = −2, y0 = (lm + 1)1/m , c1 = 0.3, h0 = 1, c2 = 0.5, m = 2.
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the grey doted region. It is noted that the stability is reduced by increasing the parameter c1 for the dark
energy distributions see Fig. (1). In the presence of quintessence energy, this parameter behaves differently.
For such matter contents, the stability regions become greater for higher values of c1 see Fig. (2). For the
phantom energy, the created geometry displays maximal stable nature for smaller as well as higher values of c1
as compared to the dark as well as quintessence energy contents see Fig. (3).

• Figs. (4)-(6) are used to observe the stable/unstable phase of the obtained structure for different choices of h0

having distinct kinds of matter contents. For the selection of dark and quintessence matter distribution, the
developed structure expresses maximum stable behavior for greater choices of h0 see Fig. (4) and (5). For the
phantom energy, the gained structure only exhibits stable conduct and the stable regions increase by increasing
h0.

• Figs.(7)-(9) are devoted to explain the impact of K2. It is noted that the smaller values of K2 are only suitable
for the stable behavior of the gravastar structure see Fig.(7). For phantom energy system shows more unstable
behavior as compared to the dark energy see Fig.(8). For the phantom energy again system is expresses maximum
stable behavior for every choice of the K2 see Fig.(9).

VI. SOME PHYSICAL ATTRIBUTES

The physical properties of charged gravastars like appropriate length, energy, and entropy with CKVs, are the main
topics of this section. The shell’s proper length, denoted by δ, and thickness are discussed here. The thickness of the
shell is a tiny real positive value, δ, such that 0 < δ ≪ 1. The parameters y and y+ δ specify the shell’s bounds. The
appropriate length of the shell is displayed mathematically as follows [49]

l =

∫ y+δ

y

√

eY (r) =

∫ y+δ

y

√

√

√

√

√

√

K2r
4(c1+1)

c1+4 ((3c1 + 2)r)
8

3c1+2 (α (6r2 − 3(c1 + 1)) + 2(c1 + 1) (r2 − 1) r2c2)

12α(c1 + 1)

(

r
4(c1+1)
c1+4 − r2((3c1 + 2)r)

8
3c1+2

) dr. (84)

To resolve the aforementioned intricate integration, we presume that the

√

√

√

√

√

√

K2r
4(c1+1)
c1+4 ((3c1 + 2)r)

8
3c1+2 (α (6r2 − 3(c1 + 1)) + 2(c1 + 1) (r2 − 1) r2c2)

12α(c1 + 1)

(

r
4(c1+1)
c1+4 − r2((3c1 + 2)r)

8
3c1+2

) =
dB(r)

dr
, (85)

as

l =

∫ y+δ

y

dB(r)

dr
dr = B(y + δ)−B(y) ≈ δ

dB(r)

dr
|r=y

= δ

√

√

√

√

√

√

K2y
4(c1+1)
c1+4 ((3c1 + 2)y)

8
3c1+2 (α (6y2 − 3(c1 + 1)) + 2(c1 + 1) (y2 − 1) y2c2)

12α(c1 + 1)

(

y
4(c1+1)

c1+4 − y2((3c1 + 2)y)
8

3c1+2

) . (86)

δ is a small real positive constant whose square and higher powers can be neglected. The shell’s thickness and the
proper length can therefore be correlated and examined. Both the shell radius and the physical parameters influence
this relationship. It is found that the proper length of the shell increases by increasing the shell’s thickness see Fig.
(10). Also, the physical parameter α greatly affects the proper length. It is noted that the proper length becomes
smaller by enhancing α negatively. Also, this graphical analysis explains the direct relation between the proper length
and thickness of the shell. It is also observed that the parameter affects the proper length. It is found that the proper
becomes greater by enhancing the parameter c1 see the right plot of Fig. (10).
A non-attractive force and a negative energy zone exist in the internal region of a gravastar, because the substance

follows the equation of state p = −ρ. Finding the appropriate length as [49]

E =

∫ y+δ

y

4πr2ρ(r)dr = δ

αy−
4(c1+1)

c1+4

(

6
(

c21 + 3c1 + 2
)

h1 + (c1 + 4)K2y
4(c1+1)

c1+4

)

4(c1 + 1)(c1 + 2)(c1 + 4)K2
2

. (87)
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FIG. 10: Proper length along δ for various choices of α (left plot) and c1 (right plot) with h1 = 1, α = 0.5, Y = 0.5, c2 = 1, z =
10;.
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FIG. 11: Energy contents along δ for various choices of α (left plot) and c1 (right plot) with h1 = 1, α = 0.5, Y = 0.5, c2 =
1, z = 10;.
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FIG. 12: Entropy of shell along δ for distinct choices of α (left plot) and c1 (right plot) with h1 = 1, α = 0.5, Y = 0.5, c2 =
1, z = 10;.
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The final shell energy expression is dependent on the physical parameters of gravity and the thickness and radius of
the shell.
It is found that the energy of the shell reduces by enhancing the shell’s thickness see Fig. (11). Also, the physical

parameter α greatly affects the energy. It is noted that the energy becomes larger as α increases negatively. Also,
this graphical analysis explains the inverse relation between the energy of the shell and the c1. For higher values of
c1, the energy of the shell becomes smaller see the right plot of Fig. (11).
The degree of disturbance or disruption in a structure of geometry is able to be determined using the amount

of entropy of the structure. To measure the randomness of gravastar, the shell’s entropy is examined. Mazur and
Mottola’s concept is utilized to get the entropy equation of a gravastar thin-shell as [49]

S =

∫ y+δ

y

4πr2j(r)
√

eY (r)dr. (88)

The entropy density at a given local temperature is computed as

j(r) =
ηKB

~

√

p(r)

2π
, (89)

with η as a dimensionless factor. Here, we consider Planck units (KB = 1 = ~) yielding the following form of the
shell’s entropy [49]

S = δ

y2

√

√

√

√

y
−

6(c1+2)
c1+4

(

6α(c1+1)(c1+2)h1+α(c1+4)K2y
4(c1+1)
c1+4

)

(c1+1)(c1+2)(c1+4)K2

√

√

√

√

√

K2y
4(c1+1)
c1+4 ((3c1+2)y)

8
3c1+2 (α(6y2−3(c1+1))+2(c1+1)(y2−1)y2c2)

α(c1+1)

(

y
4(c1+1)
c1+4 −y2((3c1+2)y)

8
3c1+2

)

2
√
6

.

(90)
Moreover, the shell’s entropy should be proportional to δ. It is gained that the energy of the shell reduces by enhancing
the shell’s thickness see Fig. (12). It is noted that the entropy of the shell increases by enhancing α negatively. For
higher values of c1, the entropy of the shell becomes larger.

VII. CONCLUSION

In this paper, we scrutinize the gravastar geometry in f(T , T ) gravity, an extended teleparrlel gravity with spher-
ically symmetric space-time and an isotropic fluid source. By using the conformal symmetry for the spherically
symmetric space-time, we want to investigate gravastar. As far as we are aware, this is the initial effort to look into
the gravastar f(T , T ) theory. To sum up, the investigation of gravastar geometry has uncovered discrete areas with
disparate equations of state (p = ωρ, where ω = −1, 1, 0) and conformal coordinates of death. The Kretschmann
scalar confirmed regularity and the determination of precise solutions for the interior, intermediate, and outer areas.
Gravastars’ overall geometry was formed by joining these regions with junction conditions, taking into account two
possible external geometry possibilities. The stability and physical properties of charged gravastars were investigated;
stability restrictions in terms of the coupling constant and conformal parameters were discussed. The assessment of
the produced structure’s appropriate length, energy content, and entropy adds to our knowledge about gravastars and
their characteristics. The detail discussion are given below:

• The stability of gravastars is closely connected to the parameters c1, h0, and K2, which represent the specific sort
of energy content within the system see Figs. (1)-(9). The behavior of gravastar structures exhibited substantial
variations depending on the dominant presence of either dark, quintessence, or phantom energy. Increasing the
value of c1 generally decreases the stability of dark energy, but it improves the stability of quintessence energy
and results in the highest level of stability for phantom energy. Similarly, larger values of h0 enhanced stability
in structures containing dark and quintessence energy, whereas structures with phantom energy remain stable
regardless of the chosen value of h0. Furthermore, it has been observed that gravastar structures tend to be
more stable when the values of K2 are lower. In particular, systems with phantom energy show higher levels
of instability compared to systems with dark energy. These findings emphasize the intricate interaction among
many energy components and characteristics in affecting the stability of gravastars.

• The association between the shell thickness and its suitable length has been analyzed in detail; physical char-
acteristics and the shell radius are important factors in defining this correlation. As shown in Fig. (10), it is
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seen that the shell’s proper length increases with the shell’s thickness. The proper length is strongly influenced
by the physical parameter α; a negative rise in α results in a drop in the proper length. Furthermore, as can
be observed in the right plot of Fig. (10), the parameter c1 also influences the proper length, with larger values
resulting in a longer proper length. Moreover, as the thickness increases, the shell’s energy drops, as shown
in Fig. (11), where α and c1 are critical factors in determining the energy levels. Based on Fig. (12), it is
determined that the shell’s entropy is proportional to δ, increasing with a negative enhancement in α and for
greater values of c1.

These results offer important new understandings of how shell parameters and physical attributes interact to define
the shell’s properties within gravastar structures.
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