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Abstract— Existing X-ray based pre-trained vision mod-
els are usually conducted on a relatively small-scale
dataset (less than 500k samples) with limited resolution
(e.g., 224 × 224). However, the key to the success of self-
supervised pre-training large models lies in massive train-
ing data, and maintaining high resolution in the field of X-
ray images is the guarantee of effective solutions to difficult
miscellaneous diseases. In this paper, we address these
issues by proposing the first high-definition (1280 × 1280)
X-ray based pre-trained foundation vision model on our
newly collected large-scale dataset which contains more
than 1 million X-ray images. Our model follows the masked
auto-encoder framework which takes the tokens after mask
processing (with a high rate) is used as input, and the
masked image patches are reconstructed by the Trans-
former encoder-decoder network. More importantly, we in-
troduce a novel context-aware masking strategy that uti-
lizes the chest contour as a boundary for adaptive masking
operations. We validate the effectiveness of our model on
two downstream tasks, including X-ray report generation
and disease recognition. Extensive experiments demon-
strate that our pre-trained medical foundation vision model
achieves comparable or even new state-of-the-art perfor-
mance on downstream benchmark datasets. The source
code and pre-trained models of this paper will be released
on https://github.com/Event-AHU/Medical Image Analysis.

Index Terms— High Definition X-ray Image, Pre-trained
Big Models, Masked Auto Encoder, Medical Report Genera-
tion

I. INTRODUCTION

MEDICAL image analysis based on X-ray is one of the
most important research directions in smart healthcare.

The common applications of X-ray include lesion segmen-
tation [1], detection [2], disease prediction [3], and medical
report generation [4]. Previous works usually focus on a single
task based on pre-trained backbone networks on ImageNet
dataset [5] which are deep convolutional neural networks
like VGG [6], ResNet [7], etc. Early deep learning methods
greatly accelerated the development of medical image analysis
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but gradually reached their performance bottleneck. Potential
reasons include privacy issues with medical data leading to
scarcity, experienced doctors being unable to provide high-
quality annotated data due to various reasons, limitations of
the receptive field of CNN models, etc.

Inspired by the success of self-attention based Trans-
former [8] and self-supervised learning [9] in the natural
language processing community, the researchers also designed
new architectures for the perceptron of image/video data.
Specifically, the ViT [10] and Swin-Transformer network [11]
stand out as top contenders, the self-supervised learning strate-
gies such as reconstruction-based masked auto-encoder [12],
and contrastive learning [13], all sparking a new wave of
research in the academic community. Naturally, these methods
and techniques have also been introduced into the field of X-
ray image analysis, and some progress and achievements have
been made. To be specific, Wu et al. propose MedKLIP [14]
which uses the paired image-text reports (about 227k stud-
ies from the MIMIC-CXR v2 dataset) for domain-specific
knowledge extraction to enhance the medical image-language
pre-training. Chen et al. propose to bridge the fusion-encoder
and dual-encoder type for medical vision-text pre-training via
PTUnifier [15]. Multi-Modal Masked auto-encoder (M3AE)
is proposed by Chen et al. [16] which attempt to learn cross-
modal domain knowledge in a self-supervised learning manner
by reconstructing missing pixels and tokens from randomly
masked images and texts. Xiao et al. [17] verified that the
pre-training of ViT on 266,340 chest X-rays using MAE can
achieve better results than CNN model DenseNet-121 using
the MoCo v2 framework. However, it is easy to find that the
challenging X-ray image based tasks are still far from being
solved well.

According to our observation, reflection, and discussions
and consultations with senior experts in the medical field, we
believe that these models may still be limited by the following
factors:

• The conflict between the high resolution of X-ray im-
ages and the standard resolution of pre-trained models
used in natural images: Specifically, existing models
are typically trained on standard image resolutions, such
as 224× 224, while actual X-ray image resolutions may
reach levels as high as 2000×3000. This discrepancy can
lead to a significant loss of image information originally
present in high-resolution data when down-sampling oc-
curs.

• Existing works rarely take into account the contextual
prior information of chest X-ray images: Standard
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MAE pre-trained models utilize random sampling strate-
gies for token masking, with some works [12] considering
the impact of different mask rates on the results, while
overlooking the importance of differences between the
inside and outside of the chest contour.

• Current X-ray based large-scale models have only
been pre-trained on small-scale datasets. Existing X-
ray image based pre-trained models are usually pre-
trained on public datasets, such as MIMIC [18] which
contains about 300K images only. This level of data might
not be abundant for large-scale model pre-training.

Considering the aforementioned issues, it is natural to raise the
following questions: “Can we further expand the scale of X-
ray images for the pre-training task? Is it possible to conduct
this pre-training task at higher resolutions? Could more prior
information be leveraged to improve the effectiveness of pre-
training?”

In this paper, we answer these questions by proposing a
novel MAE framework that adopts the context-aware mask-
ing strategy pre-trained on massive (about 1 million) high-
definition X-ray images. As shown in Fig. 1, we resize the
input X-ray image into 1280 × 1280 and believe the high-
definition images can better preserve the detailed informa-
tion of the original data. Then, we partition it into non-
overlapping image patches and project the patches into token
representations. The input tokens are dropped out with a high
ratio (larger than 70%) by following the MAE [12], however,
we propose a novel context-aware masking strategy instead
of random masking used in MAE. Because the chest X-
ray images contain prominent contour line information, and
typically, doctors are more concerned with information about
lesions in the chest area. The visible tokens are added with
position encodings, then, we feed them into a Transformer
encoder. The masked tokens are randomly initialized and
concatenated with the output of the Transformer encoder and
fed into the Transformer decoder network for masked region
reconstruction. After the pre-training phase is finished, we
extract the Transformer encoder as the backbone network
for downstream tasks to validate its effectiveness in these
tasks, including Chinese/English report generation and disease
prediction.

To sum up, the contributions of this paper can be summa-
rized as the following three aspects:

• We propose the first pre-trained foundation model using
high-definition X-ray images (1280 × 1280), based on the
masked auto-encoder framework.

• We exploit a new context-aware masking strategy for the
X-ray image based masked auto-encoder framework.

• We conduct extensive experiments on multiple down-
stream tasks, including Chinese/English medical report gen-
eration and disease classification.

The rest of this paper is organized as follows: we first
introduce the related works in section II by reviewing pre-
training on the medical images, and downstream tasks. In
section III, we focus on describing our proposed framework,
including an overview, pre-training stage, and downstream
tasks. In section IV, we conduct extensive experiments to
validate the effectiveness of our model from both qualitative

and quantitative views. Finally, we conclude this paper and
propose future works in section V.

II. RELATED WORKS

In this section, we will introduce the algorithms mostly
related to ours, including Pre-training on Medical Images and
Downstream Tasks. More works can be found in the following
surveys [19]–[23].

A. Pre-training on Medical Image

The pre-training techniques proposed for the medical image
analysis can be categorized into two main streams, i.e., the
contrastive learning based [14], [24]–[27] and masked token
based reconstruction schemes [16], [28], [29]. A brief sum-
mary of these models is provided in Table I. For the masked
token based reconstruction frameworks, the inputs are usually
masked with a high ratio and attempt to reconstruct them using
an encoder-decoder network. Specifically, Chen et al. [16]
propose the M3AE which takes the masked medical image
and language as the input and conducts feature-level fusion
using cross-attention. They propose two independent decoders
for the reconstruction of vision and language modality. Zhou
et al. [29] introduce the MRM (masked record modeling)
framework which reconstructs masked image patches and
masked report tokens following a multi-task scheme. Xiao
et al. [17] pre-train a foundation model based on masked
autoencoder [12] and conduct extensive ablation studies on
the advantages between ViT and CNN.

For the contrastive learning based models, the relations
between the medical images and reports are mainly consid-
ered for pre-training. Specifically, GLoRIA [24] proposed by
Huang et al. which is an attention-based framework for learn-
ing global and local representations by contrasting image sub-
regions and words in the paired report. G2D [25] (Global to
Dense level representation learning) proposed by Liu et al. is a
medical vision-language pre-training framework that improves
the granularity and more accurate grounding for the learned
features. Zhan et al. propose the UniDCP [26] which is a
unified model and supports multiple medical fine-tuning tasks.
They design cross-modal prompts to harmonize heterogeneous
inputs from multiple pre-training tasks. Wang et al. propose
the PhenotypeCLIP [27] which also follows the contrastive
learning framework and learns more fine-grained phenotype-
based representations to bridge the gap between vision and
language efficiently. CXR-CLIP [30] first generates image-text
pairs from image-label datasets via prompt engineering and
conducts pre-training using three kinds of contrastive losses.
Different from these works which conduct pre-training on low-
resolution X-ray images or contrastive learning between X-
ray and English text, in this work, we propose a pre-trained
foundation model on high-definition X-ray images and support
medical report generation in both English and Chinese.

B. Downstream Tasks

In this paper, we focus on handling two representative tasks,
including medical report generation [41]–[48] and disease
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No. Name Publication Pre-train Data Backbone Modality Pre-train
paradigm

Downstream
Tasks URL

01 ARL [31] ACMMM-2022 ROCO, MedICaT,
MIMIC-CXR 771k(224× 224)

CLIP-ViT-B
+ RoBERTa-base Image-Text ARL VQA, DP,

retrieval GitHub

02 M3AE [16] MICCAI-2022 ROCO,
MedICaT 298k(256× 256)

CLIP-ViT-B
+ RoBERTa-base [ Image-Text M3AE VQA, DP, retrieval GitHub

03 MedKLIP [14] ICCV-2023 MIMIC-CXR 377k(224× 224) ResNet-50
+ ClinicalBERT Image-Text KLIP DP, Seg GitHub

04 Medical MAE [17] WACV-2023 ChestX-Ray14, CheXpert,
MIMIC-CXR (256× 256) ViT-S Image MAE DP GitHub

05 ECAMP [32] arXiv-2023 MIMIC-CXR 377k(448× 448) ViT Image-Text MAE DP GitHub
06 MRM [33] ICLR-2023 MIMIC-CXR 377k(224× 224) ViT Image-Text MAE DP GitHub

07 G2D [25] arXiv-2023 MIMIC-CXR 213k(256× 256) ResNet-50
+ ClinicalBERT Image-Text G2D DP, Seg, Detect -

08 UniDCP [26] arXiv-2023 ROCO,
MIMIC-CXR 458k(224× 224) CLIPViT Image-Text UniDCP VQA, RG, DP,

Seg, retrieval -

09 T3D [34] arXiv-2023 BIMCV 8k( 96× 96× 96) SwinUNTER
+ RadBERT 3D Volume-Text T3D DP, Seg -

10 PhenotypeCLIP [27] ACL-2023 CheXpert ResNet-50 + BERT Image-Text PhenotypeCLIP RG -
11 MaCo [35] arXiv-2023 MIMIC-CXR ViT-B + BERT Image-Text MAE DP, Seg -

12 CXR-CLIP [30] MICCAI-2023 MIMIC-CXR, CheXpert,
ChestX-ray14 528k(224× 224) ResNet-50 Image-Text CLIP DP, retrieval GitHub

13 PTUnifier [36] ICCV-2023 ROCO, MedICaT, MIMIC-CXR
437k(288× 288)

CLIP-ViT-B
+ RoBERTa-base Image-Text PTUnifier VQA, RG, DP,

retrieval GitHub

14 MPMA [28] TMM-2023 ROCO,
MIMIC-CXR 458k(224× 224) ViT + BERT Image-Text MPMA DP, RG, VQA -

15 IMITATE [37] arXiv-2023 MIMIC-CXR 377k(224× 224) ResNet-50
+ Bio-ClinicalBERT Image-Text IMITATE DP, Seg, Detect -

16 MeDSLIP [38] arXiv-2024 MIMIC-CXR 377k(224× 224) ResNet-50
+ Bio-ClinicalBERT Image-Text ProtoCL DP, Seg, -

17 ASG [39] arXiv-2024 MIMIC-CXR 377k(224× 224) ResNet50 / ViT-B
+ BioClinicalBERT Image-Text ASG DP, Seg -

18 MLIP [40] arXiv-2024 MIMIC-CXR 377k(224× 224) ViT-B
+ BioClinicalBERT Image-Text MLIP DP, Seg, -

Ours - 1M (1280× 1280) ViT Image MAE RG, DP GitHub

TABLE I: Comparison between our model and existing X-ray based pre-trained foundation models. RG and DP are short for
Report Generation and Disease Prediction, respectively.

classification [49]–[54]. For the report generation, Stephanie et
al. propose the MAIRA-1 [41] which combines CXR-specific
image encoder and fine-tuned LLM based on Vicuna-7B [42].
Li et al. [43] propose a Knowledge-driven Encode, Retrieve,
Paraphrase (KERP) method. At its core is the proposed uni-
versal implementation unit-Graph Transformer (GTR), which
dynamically transforms high-level semantics across various
domains of graph-structured data, including knowledge graphs,
images and sequences. ORGAN [44] proposed by Hou et al. is
an observation-guided radiology report generation framework.
It first generates an observation plan, feeds both the plan and
images into the report generation process, and uses an obser-
vation graph and a tree-based reasoning mechanism to accu-
rately enrich the information of each observation by capturing
multiple formats. Liu et al. [45] proposed an unsupervised
model called Knowledge Graph Auto-Encoder (KGAE), which
comprises a pre-constructed knowledge graph, a knowledge-
driven encoder and a knowledge-driven decoder. In the absence
of paired image-report training data, unsupervised KGAE can
generate desirable medical reports. Wang et al. [46] explore
cross-modal feature interactions and propose a Cross-modal
PROtotype driven NETwork (XPRONET) to promote cross-
modal pattern learning and leverage it to enhance the task
of radiology report generation. Zhang et al. [47] utilizes
the Graph-guided Hybrid Feature Encoding (GHFE) module
to encode the intrinsic relationships between pathological
changes into graph embeddings using prior disease knowledge
graphs. The GHFE combines graph embeddings, semantic
embeddings, and visual features to form hybrid features, which
are then fed into the decoder of a Transformer to generate re-

ports. PromptMRG [48] proposed by Jin et al. which converts
the diagnostic results of disease classification branches into
prompts to guide report generation. By utilizing cross-modal
retrieval and dynamic feature aggregation, it further enhances
diagnostic accuracy. Different from existing medical report
generation works, we propose a novel context-aware masking
strategy for Chinese/English medical report generation.

For the disease classification, Li et al. [49] propose the
Unify, Align, and Refine (UAR) method, which introduces
the Latent Space Unifier, Cross-modal Representation Aligner
and Text-to-Image Refiner to learn multi-level cross-modal
alignments. The authors of [50] present a prototype repre-
sentation learning framework that integrates global and local
alignment between medical images and reports. By construct-
ing a sentence-wise prototype memory bank, the network can
focus on low-level local visual features and high-level clinical
language features. BoMD [51] proposed by Chen et al. is
a method designed for learning noisy multi-label CXR by
detecting and re-labeling noisy samples from the dataset in
a smooth manner. It optimizes a set of multi-label descriptors
to promote their similarity with the semantic descriptors
generated by a multi-label image annotation language model.
Tanida et al. [52] propose a method that focuses explicitly
on highlighted anatomical regions through object detection
and generates descriptions for specific regions. Its interactive
functionality allows radiologists to directly participate in the
decision-making process. Kiut [53] proposed by Huang et
al. is designed to learn multi-level visual representations. It
incorporates a u-connection schema to simulate interactions
between different modalities and has developed a symptom
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graph and an injectable knowledge distiller to assist in report
generation. Wang et al. [54] introduced multiple learnable
expert tokens to encourage these expert tokens to capture
complementary information through orthogonal loss. Each
participating expert token guides the cross-modal attention
between input words and visual tokens, enhancing the quality
of generated reports. In contrast to existing disease prediction
approaches, we employ a foundation model pre-trained on
high-resolution X-ray images and have developed a novel
context-aware masking strategy based on an X-ray image
masked auto-encoder framework.

III. OUR PROPOSED APPROACH

In this section, we will first give an overview to help better
understand our pre-training framework. Then, we dive into
the details of pre-training on high-definition X-ray images.
After that, we will introduce the downstream tasks used to
validate the effectiveness of our pre-trained model, including
Chinese/English report generation and disease prediction.

A. Overview

As illustrated in Fig. 1, our pre-training scheme follows
the masked auto-encoder framework [12] that attempts to
reconstruct the highly masked input patches. Note that, we take
the high-definition X-ray images as the input to better retain
its raw detailed information. The image is partitioned into non-
overlapping regions and transformed into token representations
using a convolutional layer. Inspired by the fact that the cue
in the chest part may be more important than other regions,
therefore, we introduce a simple but effective context-aware
masking strategy by masking more patches inside the chest
regions. We believe this will help the model to focus on these
regions in the pre-training phase. The visible tokens are fed
into the ViT encoder and the outputs are concatenated with
the randomly initialized masked tokens. Then, a Transformer
decoder network is adopted to reconstruct the input image.
Once the pre-training is finished, we fine-tuning the Trans-
former encoder for the downstream task to achieve a higher
performance. More details will be introduced in subsequent
sub-sections, respectively.

B. Pre-training Stage

In this section, we will focus on the details of our pre-
training from the perspective of Input Processing, Context-
Aware Masking, Transformer Encoder and Decoder, and Loss
Function.
Input Processing. Given the raw X-ray images, we first resize
them into a fixed-resolution I ∈ RH×W×1, here, we set both
H and W as 1280. Following the Transformer encoder used
in MAE [12], we partition the whole image into N non-
overlapping regions {P1, P2, ..., PN}, and the resolution of
each region is 64×64×1. Then, we adopt a convolution layer
(kernel size 64× 64) to transform the image patches into the
token representations {X1, X2, ..., XN} whose dimension is
1024. After we get these tokens, the MAE framework masks
them with a high ratio, and the rest of them are treated as

visible tokens. For example, He et al. [12] mask 70% of them
for the natural image, and Xiao et al. [17] claim that the
best downstream performance can be achieved when removing
90% of them in the pre-training stage of their MAE-based
X-ray model. However, seldom of they consider the context
information of chest X-ray images for the masking operation.
Context-Aware Masking. In this work, we propose a novel
context-aware masking strategy to process the transformed
tokens. The key insight is that more useful cues can be mined
in the chest region of X-ray image. Specifically, we manually
define a boundary line of the chest, as shown in Fig. 1,
and mask the tokens inside of the chest line with a higher
probability. Once we remove the masked tokens, the visible
tokens Xi, i ∈ {1, 2, ...,M} are added with position encodings
Ei, i ∈ {1, 2, ...,M}, therefore, we feed the Xi = Xi+Ei, i ∈
{1, 2, ...,M} into the Transformer encoder network.
Transformer Encoder and Decoder. In our practical im-
plementation, we adopt the ViT-L [10] (16 heads and 1024
embedding dimension, 304M trainable parameters) as the
Transformer encoder network which contains 24 Transformer
blocks. The key operator in the Transformer is multi-head self-
attention and the detailed computing process of self-attention
can be formulated as:

SelfAttenion = Softmax(
QKT

√
c

)V (1)

where Q,K and V are processed input tokens Xi, c is the
dimension of input tokens. Softmax(·) denotes the Softmax
layer.

Given the output of Transformer encoder, we integrate
them with the masked tokens, whose parameters are randomly
initialized, and feed into the Transformer decoder network. For
the detailed network architecture of the Transformer decoder,
we directly borrow from the vanilla MAE framework for the
masked X-ray image reconstruction. It contains 8 Transformer
blocks.
Loss Function. After we obtain the reconstructed image
patches, we compute its distance with the ground truth image
patch using the L2 loss function. Note that, existing work [17]
demonstrates that other loss functions like L1, smooth-L1,
SSIM, and adversarial loss do not improve the MAE frame-
work.

C. Downstream Tasks
In this work, we validate our proposed framework by

introducing the pre-trained Transformer encoder (i.e., ViT-
L) into two downstream tasks, including X-ray based report
generation and disease prediction, as illustrated in Fig. 1 (b)
and (c).
X-ray based Report Generation. Given the X-ray image, the
task of report generation targets describing the disease infor-
mation using natural language. Usually, this task is formulated
as an English sentence generation. In addition, we also build a
new X-ray dataset for Chinese report generation. More details
about this dataset will be introduced in section IV-A.2. In our
implementation, we build our report generator based on the
R2Gen1 toolkit proposed in [55].

1https://github.com/zhjohnchan/R2Gen

https://github.com/zhjohnchan/R2Gen
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Fig. 1: (a) An illustration of our proposed high-definition X-ray image based pre-training framework using masked auto-
encoder. (b, c) are two downstream tasks used for the validation of our pre-training framework.

Fig. 2: The detailed architectures of Transformer from [8].

Disease Prediction. This task can be treated as a standard
multi-category classification problem by mapping the input
X-ray image into a distribution of the response score of each
category. However, this may ignore the semantic information
of category names which is also useful for high-performance
recognition. In this work, we follow the VTB2 [56], which

2https://github.com/cxh0519/VTB

formulates the multi-label classification task as a vision-text
fusion problem, for the disease prediction. As shown in Fig. 1
(c), we adopt the pre-trained ViT encoder to extract the
features of the input X-ray image and utilize the CLIP text
encoder to embed the given disease name. Then, we fuse the
two modalities using a multi-modal Transformer network and
predict the disease using a fully connected (FC) layer.

IV. EXPERIMENTS

In this section, we will first introduce the datasets, evalua-
tion metrics, and implementation details in sub-section IV-A,
IV-B, IV-C, respectively. Then, we will focus on reporting
and analyzing the results of the medical report generation
and disease prediction, in sub-section IV-D, IV-E. After that,
we will give extensive ablation studies of our model in sub-
section IV-F and visualize the reconstruction on the masked
tokens, similar matric, generated medical reports, and disease
predictions in sub-section IV-G. Also, we describe the limita-
tions of this work in sub-section IV-H.

A. Datasets

1) Pre-training Dataset: To pre-train a high-performance X-
ray foundation model, the first thing we need to do is the
collection of large-scale X-ray images. Therefore, a large-
scale and high-resolution dataset that contains 1, 053, 791 X-
ray medical images is collected for the pre-training. Some
representative samples are visualized in Fig. 3.

2) Downstream Datasets: We conduct extensive experi-
ments on medical report generation task and disease prediction
task, and the involved datasets including IU-Xray [57], our
Private Chinese Chest X-ray image based report genera-
tion dataset (termed PCC-Xray in this paper), and RSNA-
Pneumonia [58] dataset. A brief introduction to these datasets
is given below.

https://github.com/cxh0519/VTB
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Fig. 3: Some representative samples of our collected PCC-Xray dataset.

Fig. 4: The word cloud of our newly collected PCC-Xray
dataset for Chinese medical report generation.

• [English Report Generation] IU-Xray dataset [57] is a
widely used dataset for the evaluation of radiology reporting
systems. It contains 7,470 chest X-ray images and corre-
sponding 3,955 reports. Following previous works [57], in
our experiments, we utilize the processed dataset obtained
by excluding samples with one image only. Specifically, our
training, validation, and testing subset contains 2069/296/590
samples, respectively.

• [Chinese Report Generation] PCC-Xray dataset: It was
built by the First Affiliated Hospital of Anhui University
of Chinese Medicine and Anhui University which contains

200, 172 high-resolution chest X-ray images. Each X-ray
image is meticulously annotated with a Chinese medical
report, with an average of 71 Chinese characters per sentence.
Regarding the Chinese medical reports of interest, we provide
a word cloud as shown in Fig. 4. It can be observed that
our reports cover descriptions of many common diseases and
some difficult and miscellaneous conditions. We split it into
the training, validation, and testing subset which contains
140120/20018/40034 X-ray image and report pairs, respec-
tively.

• [Disease Prediction] RSNA-Pneumonia dataset [58] com-
prises 30k frontal view chest radiographs, each accompa-
nied by bounding boxes indicating pneumonia opacities if
present. We follow the official data split, which includes
training/validation/testing sets consisting of 25184/1500/3000
samples, respectively.

B. Evaluation Metrics
For the X-ray report generation task, we adopt the widely

used four metrics for the evaluation, including CIDEr (Cap-
tions Generated by Diverse Experts) [59], BLEU-4 (Bilingual
Evaluation Understudy-4) [60], ROUGE-L (Recall-Oriented
Understudy for Gisting Evaluation - Longest Common Sub-
sequence) [61], and METEOR (Metric for Evaluation of
Translation with Explicit Ordering) [62]. Specifically, CIDEr
measures the consensus between the generated captions and
multiple reference captions. It evaluates the quality of image
captioning by computing the cosine similarity between n-
grams in the generated caption and those in the reference
captions. BLEU-4 evaluates the quality of machine-generated
translations or text summaries by comparing them against
reference translations or summaries. It measures the precision
of n-grams (usually up to 4-grams) in the generated text com-
pared to the reference texts. ROUGE-L assesses the quality of
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text summaries or translations by comparing them to reference
texts. It focuses on the longest common subsequences between
the generated and reference texts, emphasizing recall. ME-
TEOR evaluates machine-generated translations or summaries
by considering both unigram precision and recall, as well as
the alignment between the generated and reference texts. It
also incorporates stemming and synonymy matching.

For the disease prediction task, in this work, we adopt the
AUROC (Area Under the Receiver Operating Characteristic
Curve), F1, and Accuracy metrics to compare the performance
of different models. To be specific, AUROC is a metric
commonly used to evaluate binary classification models. It
measures the ability of the model to distinguish between
positive and negative samples across different decision thresh-
olds. The F1 score is the harmonic mean of precision and
recall. It’s commonly used in binary classification tasks to
provide a single metric that balances both precision and
recall. Accuracy simply measures the proportion of correctly
classified instances out of the total instances evaluated.

C. Implementation Details
• Pre-training Stage. In the pre-training phase, we resize

the X-ray image into a fixed resolution, i.e., 1280×1280. The
learning rate is set as 0.00025, and the weight decay is 0.04.
The batch size is 1024 and training for a total of 83 epochs
on our dataset. The AdamW [63] is adopted as the optimizer.
The pre-training is conducted on a server with eight NVIDIA
A800 GPUs (80GB) and about 660 hours are needed for our
pre-training phase.

• Downstream Tasks. For the generation of Chinese
medical reports, we fine-tune the model using our PCC-Xray
dataset, which comprises a total of 200,000 X-ray images. The
training configuration is as follows: we resize the images to
224× 224, set the batch size to 16, employ RoBERTa [64] as
the tokenizer, and conduct training over 60 epochs. In the case
of English medical report generation, we fine-tune the model
on the IU-Xray dataset. Before inputting the images into the
model, we resize them to 384 × 384. We set the batch size
to 16, establish a maximum sequence length of 30, and keep
other parameters identical to R2Gen.

For the disease prediction task, we performed experiments
on the RSNA-Pneumonia dataset using code derived from the
Visual-Textual Baseline (VTB). We configured the batch size
to 200 and set the input image size to 224×224, while leaving
the remaining configurations unchanged.

D. Results of Medical Report Generation
In this sub-section, we conduct extensive experiments on the

Chinese/English report generation and compare it with current
state-of-the-art report generators.

1) Chinese Report Generation: As shown in
Table II, the baseline R2Gen+MAE achieves
0.660, 0.588, 0.536, 0.498, 0.594 on our newly collected
PCC-Xray dataset on the BLEU-1, BLEU-2, BLEU-3,
BLEU-4, and ROUGE-L metrics, meanwhile, the results can
be improved to 0.679, 0.609, 0.560, 0.523, 0.611 when using
the ViT backbone network pre-trained on our X-Ray dataset

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE L
R2Gen+MAE 0.660 0.588 0.536 0.498 0.594
Ours 0.697 0.631 0.583 0.548 0.635
Ours (w/o CaM) 0.694 0.627 0.579 0.543 0.628

TABLE II: Experimental results on the PCC-Xray dataset. w/o
denotes without the following item.

Methods CIDEr BLEU-4 ROUGE-L METEOR
R2Gen [55] 0.398 0.165 0.371 0.187
KERP [43] 0.280 0.162 0.339 -
HRGP [66] 0.343 0.151 0.322 -
MKG [67] 0.304 0.147 0.367 -
PPKED [68] 0.351 0.168 0.376 0.190
MGSK [65] 0.382 0.178 0.381 -
CA [69] - 0.169 0.381 0.193
CMCL [70] - 0.162 0.378 0.186
DCL [57] 0.586 0.163 0.383 0.193
Ours 0.677 0.185 0.395 0.197
Ours (w/o CaM) 0.611 0.171 0.375 0.195

TABLE III: The performances of our proposed model com-
pared with other state-of-the-art systems on IU-Xray dataset.
The best results in each column are highlighted in bold. w/o
denotes without the following item.

using the masked auto-encoder framework. This comparison
demonstrates that pre-training on large-scale X-ray images
indeed helps feature representation learning more than on
natural images. When the context-aware masking strategy
is adopted in the pre-training, the results can be further
improved to 0.719, 0.656, 0.611, 0.577, 0.651. It is easy to
find that the context-aware masking works for our X-ray
based pre-training foundation model.

2) English Report Generation: As shown in Table III, we
also adapt our framework to handle the English medical report
generation task. In this section, we report the experimental
results on the IU-Xray dataset which is 0.677, 0.185, 0.395,
0.197 on the CIDEr, BLEU-4, ROUGE-L, METEOR metric,
respectively. Compared with our baseline method R2Gen [55]
which obtains 0.398, 0.165, 0.371, 0.187 on these metrics,
our model achieves a significant improvement. Compared
with other models, such as DCL [57] and MGSK [65], our
results are also better than theirs. These results fully validated
the effectiveness of our proposed foundation model for the
perception of X-ray images.

E. Results of Diseases Recognition
As shown in Table IV, we report our experimental results

on the disease prediction task and compare them with recent
state-of-the-art recognition models. Obviously, our recognition
results are comparable to these models but still inferior to
them. We think this may be caused by the fact that our model is
pre-trained on high-resolution X-ray images, but the images in
RSNA-Pneumonia dataset [58] are the standard resolution. In
our future works, we will consider pre-training on multi-scale
X-ray images to further improve the generation and robustness
of our model. Another possible reason is that the VTB is
proposed for pedestrian attribute recognition, the parameter
configurations may be different from the disease recognition
task.
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Backbone Method RSNA-Pneumonia (AUC)
1% 10% 100%

CNN

GLoRIA [24] 86.1 88.0 88.6
PRIOR [50] 85.7 87.1 89.2
MedKLIP# [14] 87.3 88.0 89.3
KAD [71] 89.8 91.8 92.5

Transformer

MAE [12] 84.2 89.6 91.3
REFERS [72] 89.4 91.6 92.7
MGCA# [73] 90.7 92.6 93.4
MRM [33] 91.3 92.7 93.3
ECAMP [32] 91.5 92.9 93.8
Ours 83.4 86.3 88.2
Ours (w/o CaM) 46.3 83.7 86.9

TABLE IV: Results of disease recognition on RSNA-
Pneumonia dataset. Methods with # leverage disease-level
annotations. w/o denotes without the following item.

Resolution BLEU-4 METEOR ROUGE-L CIDEr
384× 384 0.185 0.197 0.395 0.677
448× 448 0.162 0.197 0.369 0.625
512× 512 0.163 0.192 0.361 0.596

TABLE V: Performance on the IU-Xray test dataset using
different input sizes.

F. Ablation Study
In this sub-section, we conduct extensive experiments to

further help the readers better understand our framework.
1) Random Masking vs Context-aware Masking: To verify

the effectiveness of our proposed Context-aware Masking
(CaM, for short) for the X-ray based masked auto-encoder,
we compare the performance of report generation with and
without (w/o) the CaM, as shown in Table IV. With the help
of CaM, we achieve 83.4, 86.3, 88.2 when using 1%, 10%,
and 100% of the training data of RSNA dataset, but we only
get 46.3, 83.7, and 86.9 on these settings when removing this
module, i.e., Ours (w/o CaM). This comparison fully validated
the effectiveness and importance of the context-aware masking
strategy. Similar conclusions can also be drawn from Table II
and Table III.

2) Does High Definition X-ray Image Works for Report Gen-
eration?: As shown in Table V, we set different resolutions of
X-ray images to test its influence on the final results, including
384× 384, 448× 448, and 512× 512. We can find that better
results can be obtained when the resolution is set as 384×384,
i.e., 0.185, 0.197, 0.395, 0.677 on the BLEU-4, METEOR,
ROUGE-L, CIDEr metric. This result is consistent with current
vision models which can achieve higher performance when
slightly increasing the resolution from 224 × 224. However,
the performance drops when further increasing the resolution,
as reported in [74], [75].

3) The Curve of Relationship between Epoch and Accuracy:
As shown in Table VI and Fig. 5, we report the corresponding
results on the IU-Xray testing subset in the pre-training
phase, i.e., 20th, 40th, 60th, 80th, and 83th epoch. Generally
speaking, better results can be obtained in the late stage of our
pre-training.

4) Influence on the Maximum Length of Medical Report Pre-
dicted by the Report Generator: As shown in Fig. 6, we give
a visualization of the distribution of the number of words

Method BLEU-4 METEOR ROUGE-L CIDEr
Epoch-20 0.175 0.206 0.373 0.662
Epoch-40 0.169 0.197 0.368 0.658
Epoch-60 0.169 0.220 0.382 0.708
Epoch-80 0.173 0.209 0.376 0.674
Epoch-83 0.168 0.220 0.382 0.706

TABLE VI: The detailed accuracy on the IU-Xray testing
dataset in the training phase.

Fig. 5: Variation of the accuracy on the IU-Xray testing dataset
in the training phase.

Fig. 6: Distribution of sentence length of IU-Xray dataset.

Fig. 7: Variation of different maximum length of report
generator on the IU-Xray testing subset.
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Origin Mask Reconstruction Origin Mask Reconstruction

Fig. 8: Visualization of the reconstructed masked tokens on our newly collected PCC-Xray dataset.

Origin Lungs Origin Lungs Origin Lungs

Fig. 9: Visualizations of activation response maps on the IU-Xray dataset.

Image Ground Truth Ours

胸廓对称，气管居中；两侧肋骨、肋间隙正常；两下肺纹
理增多增粗，其间见斑点、小斑片状密度增高影，两侧肺
门和纵隔影未见明显异常；主动脉结突出伴有钙化影，心
影横径稍增大；膈肌平滑，双侧肋膈角锐利。

两胸廓对称，肋骨走形自然，未见畸形及骨质破坏。双肺
纹理增多、增粗、紊乱。两肺未见明显实质性病变。心影
横径增宽。双膈面尚光整，肋膈角尚锐利。

两侧胸廓对称，两肺未见明显实质性病变，两侧膈面光
滑，两侧肋膈角锐利。心影形态、大小未见明显异常。

两侧胸廓对称，两肺未见明显实质性病变，两侧膈面光
滑，两侧肋膈角锐利。心影形态、大小未见明显异常。

两肺纹理稍增多，可见散在分布斑点状高密度影，边界尚
清，心影大小形态大致正常范围内，双侧膈肌光滑，肋膈
角锐利。

两肺纹理增多，右上肺野见斑点、条状、结节状中等密度
影，边界部分清晰。心影大小形态大致正常范围内，双侧
膈肌光滑，肋膈角锐利。

Fig. 10: The X-ray image based medical report generation on our PCC-Xray dataset.
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Not Lung Opacity Lung Opacity

Fig. 11: Visualizations of lung opacity prediction in RSNA-
Pneumonia dataset.

in each sentence on the IU-Xray dataset. We can find that
most sentences contain about 20-40 words. Interestingly, as
the results reported in Fig. 7, the peak results can be achieved
when the maximum length of the medical report predicted by
the report generator is set as 30. Therefore, we choose this
hyper-parameter as 30 in this work for the IU-Xray dataset.

G. Visualization
In this sub-section, we give some visualizations to help the

readers better understand the effectiveness of our model, in-
cluding the reconstructed masked tokens (Section IV-G.1), the
activation response maps (Section IV-G.2), generated medical
reports (Section IV-G.3), and predicted diseases (Section IV-
G.4).

1) Reconstructed Masked Tokens: As shown in Fig. 8, we
provide some representative samples predicted by our model.
The 1th and 4th column are the raw X-ray images, the
2th and 5th column are masked images, and the 3th and
6th column are the reconstructed images. We can find that
our proposed context-aware masking strategy guided MAE
framework predict the masked tokens well.

2) Activation Response Maps: As shown in Fig. 9, given the
text lungs, we can find that the activation maps can accurately
highlight the target regions. Therefore, we can achieve a
higher performance on the downstream tasks. However, the
activation maps are imperfect, as the background regions are
also highlighted.

3) Medical Report Generation: In addition to aforemen-
tioned visualization on the reconstructed masked tokens and
activation response maps, we also show the generated medical
reports on the PCC-Xray dataset, as shown in Fig. 10. It is easy
to find that our model performs well and accurately predicts
the reports.

4) Disease Prediction: As shown in Fig. 11, given the X-ray
image from the RSNA-Pneumonia dataset and all the labels
(binary classification) we need to recognize, our model can
predict the disease accurately.

H. Limitation Analysis
This work attempts to conduct self-supervised pre-training

based on MAE (Masked Auto-Encoder) on a high-resolution
X-ray dataset and validates it on two mainstream medical
downstream tasks. The results indicate that our X-ray based

model indeed achieves promising results. Experimental results
fully demonstrate that Transformer-based big model frame-
works can ensure decent results, but they still cannot achieve
the astonishing performance boost seen in large language
models. We think the current model can still be improved
from the following perspectives: 1). The current framework
adopts the Transformer as the core block, bringing a huge
computation cost in the pre-training phase. 2). Only X-ray
images are used in the pre-training phase which ignores
the semantic cues, therefore, the overall performance may
still sub-optimal. 3). Current mainstream backbone networks
adopts 224×224 as their default resolution of the input image,
however, the specific design to address the high-resolution
images still further exploring.

V. CONCLUSION AND FUTURE WORKS

In this work, we summarize the issues of existing X-ray
image based pre-training methods and propose to pre-training
a high-definition foundation model. Specifically, we follow the
self-supervised pre-training framework masked auto-encoder
(MAE) and design a new context-aware masking strategy.
For the downstream tasks, we test our model on both En-
glish/Chinese report generation and disease prediction. The
experiments on multiple benchmark datasets fully validated
the effectiveness of our model.

In future work, further improvements are still needed to
pursue breakthroughs. Specifically speaking, 1). The X-ray
based vision foundation model proposed in this paper is based
on Transformer but has a complexity of O(N2), resulting in
high memory consumption and computational costs when han-
dling high-resolution X-ray data. In the future, we will attempt
to introduce new lightweight network architectures (such as
State Space Model/Mamba [76]) to address its computational
complexity issues. 2). Pre-training purely from a visual self-
supervised manner can yield decent improvements, but the
overall accuracy is still not satisfactory. Subsequently, we will
consider multi-modal pre-training approaches, incorporating
large language models, knowledge graphs, etc., to further
enhance the representation ability of the visual foundation
model. 3). In addition to pre-training, to enhance performance
on downstream tasks (such as medical reports), we will explore
the introduction of knowledge graphs or other useful prompts
to improve its performance in text generation.
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