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The entrainment of air in liquid-filled channels occurs across diverse applications, such as
CO2 sequestration, circulatory biological systems, and microfluidics. In confined systems, the
entrapment of a gas volume with an equivalent spherical diameter greater than the dimension
of the channel, results in the formation of an extended bubble that can obstruct the fluid
circuit and eventually compromise performance. Notably, in sealed vertical tubes, buoyant
long bubbles - called Taylor bubbles - cannot rise if the inner tube radius is lower than a
critical value close to the capillary length. This critical threshold for steady ascent has been
shown to be determined by geometrical constraints related to the required matching of the
upper cap shape with the lubricating film developing in the elongated part of the bubble.

As a matter of fact, in application fields involving narrow liquid channels, long bubbles
may be challenging to eliminate. In this context, developing strategies to overcome the
motion threshold and release stuck bubbles is desirable. Such strategies require to modify
the matching conditions by means of an external force field, in a way that favours bubble
ascent. However, it remains unclear how changes in acceleration conditions affect the onset
of motion of buoyancy-driven long bubbles.

This study investigates the onset of motion and the resulting velocity modulation beyond
threshold of elongated bubbles in sealed tubes with an inner radius near the critical value,
where bubble motion is inhibited in a vertical setting. Two strategies are explored to
tune bubble motion, which exploit variations of the axial and transversal gravitational
accelerations: tube rotation around its symmetry axis and tube inclination with respect
to gravity. By revising and extending the matching conditions and the resulting geometrical
constraints of the simple vertical setting, the study predicts the new thresholds based on
rotational speed and tilt angle, respectively, providing predictions for the rising velocity of
bubbles under the resulting modified apparent gravity. Experimental measurements of the
motion threshold and rising velocity are compared against our theoretical developments, with
a good agreement, thus offering practical approaches to control and tune bubble motion in
confined environments.
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1. Introduction
Air entrapment into liquid-filled channels is encountered in a broad range of applications,
from simple hydraulic systems for intravenous filling (Groell et al. 1997) to CO2 sequestration
in depleted geological oil reservoirs (Oldenburg & Lewicki 2006; Corapcioglu et al. 2004;
Wang & Clarens 2012), embolism in circulatory biological systems (Brodribb et al. 2016;
Li et al. 2021), and multiphase microfluidics flows (Baroud et al. 2010). In miniaturized
fluid systems, air bubbles can be exploited for transport of particles or for mixing processes
(Baroud et al. 2007, 2010; Stone et al. 2004). Conversely, long gas bubbles may represent a
challenging issue, since they can occlude the entire cross-section of the channel and reduce
the performance of the fluid circuit (Jensen et al. 2004; van Steijn et al. 2008; Brodribb et al.
2016).

In application fields involving narrow liquid channels, long bubbles may be challenging
to eliminate, while disrupting fluid flow, causing pressure fluctuations and affecting mixing
processes. In perfusion systems for cell cultures, these bubbles can have several detrimental
effects on cell health and experimental outcomes, such as localized nutrient deprivation,
altered pH levels, and accumulation of waste products, all of which can negatively impact
cell viability and function (Sung & Schuler 2009). As an additional example, in fuel cells, the
oxidation of methanol leads to the formation of CO2 bubbles, that reduce the cell’s efficiency
(Litterst et al. 2006). Thus, a considerable effort has been dedicated to the removal of bubbles
in these circuits (see among others Sung & Schuler (2009), Cheng & Lu (2014), Guo et al.
(2022)).

Conversely, transport of long bubbles in microfluidic channels can be cleverly exploited,
for instance for particle sieving. Since the bubble speed is intrinsically linked to the thickness
of its surrounding lubricating film, tuning the velocity of the bubble may be used to separate
particles based on their size (Yu et al. 2018): monitoring the speed of the bubble may prevent
particles larger than the film thickness to reach the fluid region past the bubble. The bubble
thus acts as an active filter that has the high advantage of preventing clogging. Thus, enabling
and controlling the motion of elongated bubbles in capillaries can enhance the efficiency of
these microfluidic systems.

Many hydraulic and microfluidic systems rely on vertical settings (see, for instance, Kaigala
et al. 2011), thereby calling for a better understanding of how bubble transport is influenced by
gravity forces. In a vertical configuration, a gas volume in a liquid-filled channel is expected
to rise owing to buoyancy. The more specific case of buoyant ascent in a vertical tube of a
gas volume with an equivalent spherical diameter larger than the tube inner radius, has been
investigated in the seminal work by Davies & Taylor (1950), that provided a prediction for
the rising velocity of long bubbles in tubes, subsequently termed as Taylor bubbles. However,
it was observed over a century ago (Gibson 1913) that long bubbles within a sealed vertical
tube with a sufficiently narrow diameter exhibit an interesting behavior: they cease to rise and
appear to be stuck. Bretherton (1961) showed that if the tube inner radius was smaller than a
critical value 𝑅𝑐 close to the capillary length ℓ𝑐 of the liquid (more precisely, 𝑅𝑐 ≈ 0.918ℓ𝑐),
no valid bubble shape was compatible with a steady rising motion. This threshold stems from
the asymptotic matching between the upper cap profile, which results from the equilibrium
between surface tension and gravity, and the thin film surrounding the elongated part of the
bubble, where viscous, surface tension and gravity forces are balanced. These two regions
are depicted in Figure 1(a). The condition for the onset of motion can be summarized as
a geometrical constraint which imposes, for the existence of a steadily ascending bubble,
that the upper cap profile exhibits an inflection point with negative slope (for an upward
oriented vertical axis), see Figure 1(b). At the critical condition 𝑅 = 𝑅𝑐, both the slope and
curvature vanish at the solid wall. In addition, for 𝑅 slightly larger than 𝑅𝑐, Bretherton (1961)
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Figure 1: (a) Schematics of a long bubble immersed in a viscous liquid inside a sealed
capillary. The top part of the bubble can be divided into an upper cap and into an

elongated part surrounded by a thin film. For a buoyant bubble to rise, mass conservation
requires the fluid displaced by the tip of the bubble to drain through the thin film. (b)

Sketch of the upper cap profile of a long air bubble within a sealed tube of radius 𝑅, in the
vertical setting studied by Bretherton (1961). The profile exhibits an inflection point

denoted by 𝐼. For 𝑅 > 𝑅𝑐 , the matching with the thin film region at the inflection point is
possible. (c) and (d) Sketch of the configurations investigated in this study. In the first case
(c), the tube is hold vertically and rotates around its symmetry axis at angular frequency
𝜔. In the second case (d), the tube is tilted with respect to gravity and makes an angle 𝛼

with the horizontal plane.

predicted the bubble rising velocity, by exploiting mass conservation through the thin film
and the variation of the slope at the inflection point with the tube’s radius.

Below the threshold 𝑅 < 𝑅𝑐, Lamstaes & Eggers (2017) studied the unsteady bubble
motion and predicted the occurrence of a self-similar pinch-off singularity of the thin
lubricating film around the bubble, thus hindering any further flow and eventually stopping the
progression of the bubble, found to travel a finite distance over infinite time. That prediction
is supported by recent interference microscopy experiments, that have demonstrated that the
bubble is apparently stuck by an infinitely slow flow taking place in the surrounding thin
liquid film whose nanometric thickness results from an equilibrium between capillary stress
and disjoining pressure (Dhaouadi & Kolinski 2019).

For bubble ascent in sealed tubes, it is necessary for the fluid displaced by the tip of the
bubble to drain through the thin film. Thus, enabling the motion of the bubble in sealed tubes
with inner radii smaller than the critical value 𝑅𝑐, requires to develop some strategies that
would act on the thickness of the surrounding lubricating film. Zhou & Prosperetti (2021)
showed numerically that ”encaging” the bubble by means of thin vertical rods regularly
arranged on a circle coaxial with the tube could effectively expand the gap between the
air-liquid interface and the inner solid wall, thus facilitating the downward flow of the liquid
and increasing the rising velocity of the bubble. Bi & Zhao (2001) and Bico & Quéré (2002)
demonstrated that using angular tubes could effectively promote the rising of the bubble even
under strong confinement, owing to the presence of corners that allow for a more efficient
drainage of the liquid around the bubble (Funada et al. 2005). In the same spirit, another
strategy consists in using textured inner walls: because of the imbibition of the roughness,
the effective thickness of the lubricating film is actually larger than on a smooth surface (Bico
et al. 2001).

However, in some applications where the geometry of the tube cannot be modified
adequately, the film thickness could be varied by adjusting the pressure distribution in
the surrounding liquid by mean of an external force field, which could be easily tuned so
as to precisely control the ascent velocity of the bubble. In this context, it has been shown
that imposing a liquid flow in the tube effectively thickens the lubricating film around the
bubble (Yu et al. 2021). In particular, Magnini et al. (2019) demonstrated that when the
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external flow is oriented in the same (upward) direction as buoyancy, it can enable the rise
of bubbles in tubes with radius 𝑅 < 𝑅𝑐. Kubie (2000) documented a significant increase
in the ascent velocity of a Taylor bubble enclosed in a vertical tube subjected to horizontal
oscillations. In the case of a vertically oscillated tube, Brannock & Kubie (1996) reported
instead experimental evidences of the slowing down of the bubble, while Madani et al.
(2009, 2012) observed a more nuanced behavior: as the acceleration of the oscillations is
gradually increased, the rising of the bubble initially slows down, but then increases at larger
accelerations. More recently, Zhou & Prosperetti (2024) studied the rising behavior of a
Taylor bubble exhibiting volume oscillations imposed either by forcing the liquid column
above the bubble to oscillate or by imposing a pulsating pressure field at the top liquid
surface. Their numerical simulations evidence that the gas volume oscillations result in the
thinning of the lubricating film around the bubble and thus in the decrease of the drainage
flow and rising velocity.

Here, we focus on the transport of Taylor bubbles in sealed tubes filled with a viscous
liquid, with an inner radius close to the critical value below which the bubble is stopped in
a vertical configuration. We investigate two different strategies to enable bubble motion and
tune its velocity, namely rotating the tube around its symmetry axis, and inclining it with
respect to gravity (Figure 1(c) and (d)). In both cases, we leverage theoretical developments to
predict the new threshold for the onset of motion, that depends on the rotational speed and on
the tilt angle, respectively. We also provide a prediction for the rising velocity of the bubble
as a function of the liquid properties, the tube geometry and the (modified) gravity field.
Our theoretical findings are then compared with the outcomes of dedicated experimental
campaigns.

The paper is organized in two parts. In the first part (Section 2), we report our investigation
on bubble motion in rotating tubes. Section 2.1 develops the theoretical prediction for the
cap profile of the bubble and the matching conditions between this cap and the flat film
region, from which we derive the theoretical threshold for the onset of motion and the
prediction of the bubble velocity, in terms of the rotational speed. Section 2.2 presents the
experimental setup and a comparison of the results against the theoretical findings. The
second part (Section 3) presents the same structure as the previous one, but investigates the
effect of tube inclination, with theoretical predictions and comparison with experimental
measurements of bubble transport in tilted tubes.

2. Effect of centrifugation
Fluid centrifugation pertains to extensive applications, ranging from the segregation of
complex or biological fluids (Svedberg & Fåhraeus 1926) to numerous industrial processes,
such as wastewater treatment (Turano et al. 2002) or crude oil refining (Gary et al. 2007).
In interfacial flows, spinning rods (Than et al. 1988) and spin-coating (Emslie et al. 1958),
are used to deposit uniform thin films onto diverse substrates such as optical lenses for anti-
reflective properties (Krogman et al. 2005), or silicon wafers for organic semiconductors
fabrication (Yuan et al. 2014). This method precisely controls the film thickness through the
modulation of the angular velocity, essential for achieving high-quality coatings. Additionally,
centrifugation can be employed in the generation of surface roughness in curing polymer
melts (Marthelot et al. 2018; Jambon-Puillet et al. 2021), where centrifugal instabilities
(Rietz et al. 2017) are harnessed to facilitate the formation of periodic patterns.

In sealed tubes, the effect of centrifugation on the shape of capillary interfaces has been
exploited in spinning drop experiments (Vonnegut 1942; Rosenthal 1962; Princen et al.
1967; Torza 1975). These experiments can measure very low interfacial tensions (Drelich
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et al. 2002), by rotating a horizontal tube containing a drop of lower-density liquid within a
higher-density fluid. For high enough rotation rate, the (transverse) gravity acceleration can
be neglected, and the equilibrium shape of the drop results from the balance of the centrifugal
force, that tends to elongate the drop along its axis (and thus to thicken the surrounding liquid
film), with surface tension, that promotes a spherical shape.

In this context, Manning et al. (2011) studied the case of a tube of inner radius 𝑅 partially
filled with a liquid of density 𝜌 and surface tension 𝛾, rotated around its symmetry axis at
angular velocity 𝜔 under weightlessness. They derived a criterion for the occlusion of the
tube by a static meniscus spanning the cross-section of the channel, with a contact angle 𝜙,
and computed a critical angular velocity 𝜔0:

𝜌𝜔2
0𝑅

3

𝛾
= 32 sin3

(
𝜋 + 2𝜙

6

)
, (2.1)

such that the tube cannot occlude if 𝜔 > 𝜔0. In the case of a gas bubble trapped in a capillary,
the contact angle 𝜙 is equal to zero: Eq.(2.1) indicates then that under weightlessness, the
bubble cannot occlude the channel if 𝜌𝜔2𝑅3/𝛾 > 4.

To the best or our knowledge though, the combined effect of axial gravity and transverse
centrifugal force on the rising motion of Taylor bubbles in a vertical setting has not
been studied yet. Building on the demonstrated ability of centrifugation to elongate light
drops or bubbles in tubes, and thereby to thicken their lubricating film, we now study how
centrifugation can facilitate the release of Taylor bubbles that are trapped in sealed capillaries
due to surface tension.

We consider a long bubble of length 𝐿 immersed in a viscous fluid of dynamic viscosity
𝜇, density 𝜌, and surface tension 𝛾, both contained in a vertically-oriented circular tube of
radius 𝑅 ≪ 𝐿, sealed at both ends. The bubble ascends along the vertical axis at a constant
velocity 𝑈𝑏 under the influence of gravity. The tube’s radius is assumed to be of the order
of the capillary length ℓ𝑐 =

√︁
𝛾/𝜌𝑔, where 𝑔 is the acceleration due to gravity, so that the

Reynolds number Re = 𝜌𝑈𝑏𝑅/𝜇 is sufficiently small to neglect any inertial effects.
Bretherton’s solution describing the bubble’s ascent at a constant velocity is valid only

if the tube radius exceeds a critical value 𝑅𝑐 ≈ 0.918ℓ𝑐. As the tube radius 𝑅 approaches
this critical value, the bubble’s ascending speed diminishes, eventually reaching zero. This
phenomenon can be explained through a simple mass conservation consideration: the sealed
tube requires the bubble to displace the liquid below, creating drainage through its peripheral
lubricating film. However, for 𝑅 < 𝑅𝑐 = 0.918ℓ𝑐, surface tension becomes dominant, causing
the bubble to expand and occupy the entire tube cross-section, preventing liquid drainage.

We now examine the scenario where the vertical tube undergoes constant rotation around
its symmetry axis with an angular velocity 𝜔. We can readily anticipate that the centrifugal
force will push liquid towards the solid tube wall, thickening the fluid film around the bubble
and facilitating its ascent. Therefore, a steady rising motion of the bubble may be achievable
even in tubes with 𝑅 < 𝑅𝑐, provided the angular velocity 𝜔 is sufficiently high. In the
subsequent section, we revisit Bretherton’s theory (Bretherton 1961) to predict the new
threshold 𝑅𝑐 (𝜔) and the steady rising velocity 𝑈𝑏 as a function of the rotational speed.

2.1. Theoretical prediction for the threshold and rising velocity
Since our focus lies in describing motion near the threshold characterized by a vanishing
velocity 𝑈𝑏, we preliminary assume a small capillary number Ca = 𝜇𝑈𝑏/𝛾 ≪ 1. Viscous
stresses at the gas-liquid interface thus play a significant role only in regions where the fluid
is strongly confined, i.e. where the interface is very close to the solid wall. Consequently, the
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Figure 2: Sketch of the bubble in a vertical tube that rotates around its central axis with
angular velocity 𝜔. 𝑠 is the arc-length of the interface measured from the tip of the bubble
at 𝑟 = 0. In the static cap region, the air-liquid interface is located by the distance 𝑟1 (𝑠) to

the central axis, and the angle its tangent makes with the horizontal axis is denoted as
𝜃 (𝑠). In the inner region, where a two-dimensional Cartesian system (𝑥, 𝑦) is used, the

interface is located instead by its distance from the solid wall 𝑦1 (𝑥).

upper part of the bubble’s profile can be divided into two regions, see Figure 1(a). The outer
region corresponds to the top of the bubble (cap) where viscous effects are negligible : the
equilibrium is controlled by an interplay between surface tension, gravity, and centrifugal
forces. Conversely, a thin liquid film resulting from a balance between viscous, surface
tension, gravity, and centrifugal forces defines an inner region of small axial curvature. We
now derive the bubble’s profiles in these two regions.

The static cap
In the outer region, the fluid around the cap of the bubble can be considered at rest (Bretherton
1961; Lamstaes & Eggers 2017) so that in the cylindrical reference frame co-rotating with
the tube and translating with the bubble, the pressure 𝑃 in the surrounding fluid satisfies:

0 = −∇𝑃 + 𝜌𝜔2𝑟𝒆𝑟 − 𝜌𝑔𝒆𝑧 . (2.2)

By integrating the radial component of Eq. (2.2), we obtain

𝑃(𝑟, 𝑧) = 1
2
𝜌𝜔2

(
𝑟2 − 𝑟1(𝑧)2

)
+ 𝛾𝜅 + 𝑃air, 𝜅 = − 1

𝑟1(𝑧)
(
1 + 𝑟 ′1(𝑧)2)1/2 +

𝑟 ′′1 (𝑧)(
1 + 𝑟 ′1(𝑧)2)3/2

(2.3)
where 𝑟1(𝑧) and 𝜅 denote the location of the air-liquid interface measured from the central
axis (oriented upwards) and its curvature, respectively.

From the axial component of the momentum conservation equation Eq.(2.2), it follows
that:

𝛾𝜅 − 1
2
𝜌𝜔2𝑟1(𝑧)2 + 𝜌𝑔𝑧 = cst. (2.4)

By denoting as 𝑠 the arclength of the interface profile measured from the tip of the bubble
and 𝜃 its tangent angle with respect to the horizontal (see Fig. 2), the static interface profile
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is given by:

−𝛾
[
𝑑𝜃

𝑑𝑠
+ sin 𝜃
𝑟1(𝑠)

]
− 1

2
𝜌𝜔2𝑟1(𝑠)2 + 𝜌𝑔𝑧 = cst. (2.5)

Differentiating with respect to the curvilinear coordinate 𝑠 gives:

𝛾

[
𝑑2𝜃

𝑑𝑠2 + cos 𝜃
𝑟1(𝑠)

𝑑𝜃

𝑑𝑠
− cos 𝜃 sin 𝜃

𝑟1(𝑠)2

]
= −𝜌𝜔2𝑟1(𝑠) cos 𝜃 − 𝜌𝑔 sin 𝜃. (2.6)

Finally, with the dimensionless variables 𝑟1 = 𝑟1/𝑅 and 𝑠 = 𝑠/𝑅, Eq. (2.6) becomes:

𝑑2𝜃

𝑑𝑠2 + cos(𝜃)
𝑟1

𝑑𝜃

𝑑𝑠
− cos(𝜃) sin(𝜃)

𝑟2
1

= −Bo sin(𝜃) − 𝑟1Ce cos(𝜃), (2.7)

where the Bond number Bo =
𝜌𝑔𝑅2

𝛾
= (𝑅/ℓ𝑐)2 is introduced as the square of the ratio

between the tube radius and the capillary length. The centrifugal number Ce =
𝜌𝜔2𝑅3

𝛾
can be

seen as a rotational Bond number where the centrifugal acceleration 𝑅𝜔2 plays the role of
the gravitational acceleration.

For a given set of parameters (Bo,Ce), two boundary conditions are required to solve
Eq.(2.7). A first condition is provided by the symmetry of the problem, that imposes 𝜃 (0) = 0
at the top of the static cap. The second boundary condition will be determined upon matching
of this static profile with the inner region’s one.

The thin film region
In the inner region where the bubble is surrounded by a thin lubricating film, the film’s
thickness is extremely small compared to the tube’s radius. Following Bretherton (1961),
we thus neglect the azimuthal curvature of the air-liquid interface and consider the thin film
region as planar instead of annular.

Under these assumptions, we introduce the two-dimensional, stationary, Cartesian coordi-
nate system (𝑥, 𝑦), where 𝑥 = 𝑧 −𝑈𝑏𝑡 opposes gravity, and 𝑦 = 𝑅 − 𝑟 represents the distance
to the solid wall. In the framework of the lubrication approximation, the viscous flow in
the thin film is driven by a pressure gradient resulting from a combination between gravity,
capillarity and centrifugal force. The axial velocity accordingly writes (See Appendix A.1
for a detailed derivation):

𝑢(𝑥, 𝑦) = 𝛾

2𝜇

(
−𝑦′′′1 + 𝜌𝜔2𝑅

𝛾
𝑦′1 +

𝜌𝑔

𝛾

)
(𝑦2 − 2𝑦1𝑦) −𝑈𝑏, (2.8)

where 𝑦1(𝑥) denotes the distance of the air-liquid interface to the solid wall of the tube. In
Eq. (2.8), the first term of the right-hand-side stems from surface tension effects, the second
from the centrifugal force and the third from gravity. Upon integration within the thin film,
the volume flux reads:

𝑄 = −2𝜋𝑅𝑈𝑏𝑦1 − 2𝜋𝑅
𝛾

3𝜇

(
−𝑦′′′1 + 𝜌𝜔2𝑅

𝛾
𝑦′1 +

𝜌𝑔

𝛾

)
𝑦3

1. (2.9)

This flux must equate the volume of fluid displaced per unit time by the top of the bubble,
that is equal to 𝜋𝑅2𝑈𝑏. Since 𝑦1/𝑅 ≪ 1, the −2𝜋𝑅𝑈𝑏𝑦1 term in the expression of the flow
rate is a negligible correction. Finally, by imposing flux continuity with the region far away
from the tip, where the film thickness can be considered as uniform and equal to a constant
𝑏, we obtain the following thin film equation:
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𝑦′′′1 =
𝜌𝑔

𝛾

(
1 − 𝑏3

𝑦3
1

)
+ 𝜌𝜔2𝑅

𝛾
𝑦′1. (2.10)

Since 𝑏 is the length scale governing the flow in the inner region, we adimensionalize, as in
Bretherton (1961), with:

𝑦1 = 𝜂𝑏, 𝑥 = 𝜁𝑏(𝜌𝑔𝑏2/𝛾)−1/3, (2.11)
This leads to the ordinary differential equation:

𝜂′′′ =
𝜂3 − 1
𝜂3 + 𝑎𝜂′. (2.12)

where 𝑎 = Ce
Bo2/3

(
𝑏
𝑅

)2/3
. In Eq. (2.12), the left-hand side represents the surface tension

term, while on the right-hand side, the first term accounts for gravity, the second for viscous
dissipation, and the third for the effect of centrifugation.

Matching
We aim at matching the inner solution, that is described by Eq.(2.12), with the static cap
solution provided by Eq.(2.6). Given that 𝑏 ≪ 𝑅, this requires taking the limit 𝜂 → ∞ in Eq.
(2.12) for the inner solution. In this limit, the equation behaves as:

𝜂′′′ = 1 + 𝑎𝜂′, (2.13)
whose general solution reads :

𝜂 = 𝑐1𝑒
√
𝑎𝜁 + 𝑐2𝑒

−
√
𝑎𝜁 + 𝑐3 −

𝜁

𝑎
. (2.14)

The values of 𝑐1, 𝑐2, and 𝑐3 can be found through interpolation using the numerical solution
of the complete equation Eq.(2.12), whose initial conditions are obtained from the uniform
film solution. Indeed, when 𝜂 → 1, Eq. (2.12) becomes

𝜂′′′ = 3(𝜂 − 1) + 𝑎𝜂′, (2.15)
for which the only non-oscillating solution is: 𝜂0 = 1+C exp(F 𝜁), where C is an integration
constant and:

F =

(
2
3

)1/3
𝑎(

27 +
√

3
√

243 − 4𝑎3
)1/3 +

(
27 +

√
3
√

243 − 4𝑎3
)1/3

21/3 32/3 . (2.16)

Since the value of C can be adjusted by shifting the origin of 𝜁 , we can set C = 1 and
a large, negative initial value 𝜁0 to initialize the integration. This procedure yields initial
conditions for the full non-linear equation Eq.(2.12), i.e.:

𝜂(𝜁0) = 1 + exp(F 𝜁0), 𝜂′ (𝜁0) = F exp(F 𝜁0), 𝜂′′ (𝜁0) = F 2 exp(F 𝜁0).

We solve Eq.(2.12)† to obtain the inner solution 𝜂 for various values of 𝑎, and fit the outer
profile 𝜂 = 𝑐1𝑒

√
𝑎𝜁 + 𝑐2𝑒

−
√
𝑎𝜁 + 𝑐3 − 𝜁

𝑎
in the region where 𝜂 ≫ 1. This allows us to retrieve

the coefficients 𝑐1(𝑎), 𝑐2(𝑎) and 𝑐3(𝑎). From Figure 3(a), it is evident that the outer profile 𝜂

† Using the built-in Matlab ODE solver ode45.
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Figure 3: (a) The inner region profile 𝜂 as a function of the dimensionless height 𝜁 . The
dots represent the solution 𝜂 of the full equation Eq.(2.12) for various values of 𝑎, while

the black solid lines represent the outer profile of the inner region
𝜂 = 𝑐1𝑒

√
𝑎𝜁 + 𝑐2𝑒

−
√
𝑎𝜁 + 𝑐3 − 𝜁

𝑎 , where 𝑐1 (𝑎), 𝑐2 (𝑎) and 𝑐3 (𝑎) are obtained by fitting
with the full inner solution, in the 𝜂 ≫ 1 region. The outer profiles clearly exhibit an

inflection point, at a distance referred to as 𝜁∗ (𝑎). For each value of 𝑎, the origin is then
shifted so that 𝜂′′ (0) = 0. (b) Shifted coefficient 𝑐∗1 = −𝑐∗2 as a function of 𝑎 (red dots). The
black solid line corresponds to 𝑐∗1 = 0.500𝑎−3/2 + 0.286𝑎−1/2. (Inset) Shifted coefficient
𝑐∗3 = 𝜂(0) ≡ 𝜂∗ as a function of 𝑎. This coefficient does not vary significantly with 𝑎.

of the inner solution exhibits an inflection point. We thus translate the origin to the position
where 𝜂′′ = 0, located at the coordinate:

𝜁∗ =
1

2
√
𝑎

log
(
−𝑐2
𝑐1

)
. (2.17)

Using the shifted variable 𝜒 = 𝜁 − 𝜁∗, we can now define 𝜂(𝜒) = 𝑐∗1𝑒
√
𝑎𝜒 + 𝑐∗2𝑒

−
√
𝑎𝜒 + 𝑐∗3 −

𝜒

𝑎
,

where the new coefficients 𝑐∗1, 𝑐∗2, and 𝑐∗3 are expressed as:

𝑐∗1 = 𝑐1𝑒
√
𝑎𝜁 ∗

= 𝑐1

√︂
−𝑐2
𝑐1

= sgn(𝑐1)
√−𝑐1𝑐2, (2.18a)

𝑐∗2 = 𝑐2𝑒
−
√
𝑎𝜁 ∗

= 𝑐2

√︂
−𝑐1
𝑐2

= sgn(𝑐2)
√−𝑐1𝑐2, (2.18b)

𝑐∗3 = 𝑐3 −
𝜁∗

𝑎
= 𝑐3 −

1
2𝑎3/2 log

(
−𝑐2
𝑐1

)
= 𝜂(𝜒 = 0). (2.18c)

The new coefficients are well fitted (see Figure 3(b)) by:

𝑐∗1 = −𝑐∗2 ≈ 0.500𝑎−3/2 + 0.286𝑎−1/2, (2.19a)

𝑐∗3 ≈ 1.10, independently of the value of 𝑎. (2.19b)

Thus, the distance from the wall at which the outer profile exhibits an inflection point can
be evaluated as:

𝑦1(0) = 𝜂(0)𝑏 = (𝑐∗1 + 𝑐∗2 + 𝑐∗3)𝑏 ≈ 1.10𝑏 ≪ 𝑅. (2.20)
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Figure 4: Static cap profile for a Bond number Bo = 0.55, and a centrifugal number Ce
that is (a) below and (b) above the threshold Ce𝑐 (Bo). Below the threshold, the slope

𝑟′1 (𝑧) |𝑟=𝑅 is positive at the inflection point, causing the upper profile to escape the fluid
domain 𝑟 < 𝑅. 𝜙 is the contact angle between the tangent to the static cap profile at the wall
and the vertical axis: 𝜙 = tan−1

(
−𝑟′1 (𝑧) |𝑟=𝑅

)
and is thus negative in case (a) and positive

in case (b). (c) Evolution of the static cap profile at fixed Bo = 0.55, when increasing Ce
from a value below the threshold Ce𝑐 ≈ 1 to a value slightly above threshold.

Furthermore, the slope of the profile at the inflection point is given by:

𝑦′1(0) = 𝜂′ (0)
(
𝜌𝑔𝑏2/𝛾

)1/3
=

(
𝑐∗1
√
𝑎 − 𝑐∗2

√
𝑎 − 1

𝑎

) (
𝜌𝑔𝑏2/𝛾

)1/3
= 0.572

(
𝜌𝑔𝑏2/𝛾

)1/3
> 0.

(2.21)
Remarkably, the conditions on film thickness Eq.(2.20) and slope Eq.(2.21) at the inflection

point are the same as described in Bretherton (1961). Therefore, the centrifugal force alters
the inner region solution and the static cap profile, but the matching conditions (and thus the
boundary conditions for the static cap solution) remain surprisingly unchanged from those
of Bretherton (1961).

The above analysis provides the missing information required to solve the static cap profile
described by Eq. (2.7). Specifically, the static profile for a given set of parameters (Bo,Ce)
is obtained through a shooting method, searching for the first derivative ¤𝜃0 at the tip of the
cap, that is such that the integration of Eq.(2.7) from initial conditions (𝜃0 = 0, ¤𝜃0) results
in a profile where the inflection point ¥𝑟1(𝑧) = 0 is reached for 𝑟1(𝑧) = 𝑅. The numerical
integration of Eq.(2.7) is performed using the Matlab built-in ODE solver ode23t, with a
spacing along the curvilinear coordinate of 0.01R, while the shooting method is implemented
by means of the non-linear Matlab system solver fsolve. The resulting slope 𝑟 ′1(𝑧) |𝑟=𝑅 at
the inflection point is then computed from the generated profile.

For fixed Bo < Bo𝑐,0 = (𝑅𝑐/ℓ𝑐)2 and varying Ce numbers, it appears that some profiles
are unphysical: below a critical value Ce𝑐 that depends on the Bond number Bo, the static cap
shape exhibits a positive slope at the inflection point at the solid wall, causing the upper profile
to extend beyond the fluid domain 𝑟 < 𝑅, as illustrated in Figure 4, which is not compatible
with the matching condition 0 < 𝑦′1(0) = −𝑟 ′1(𝑧) |𝑟=𝑅. By progressively increasing the
centrifugal number Ce, the slope at the inflection point at the wall decreases, leading to a
reduction of the bulge outside the fluid domain, as shown in Figure 4(c). Ultimately, for
Ce > Ce𝑐, the slope becomes negative, causing the entire static cap to reside within the fluid
domain, see Figure 4(b) and (c).

Rapids articles must not exceed this page length
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Figure 5: (a) Contact angle 𝜙 of the static cap profile between the vertical axis and the
tangent to the static cap profile (obtained by integrating Eq. (2.7) while requiring that the
interface reaches the solid wall with an inflection point), as a function of the centrifugal
number Ce, for various Bond numbers Bo. The dots are the values computed from the

shape of the interface, while the solid lines are the best linear fit. For each Bo, the critical
centrifugal number Ce𝑐 is defined as the value of Ce for which the best linear fit cancels
out. (b) The critical centrifugal number Ce𝑐 as a function of the Bond number Bo. At a
given value of Bo, the matching with the inner region is only possible if Ce > Ce𝑐 (Bo).
The dots are the values of Ce that cancel the linear approximation of 𝜙(Ce,Bo) for each

Bond number, while the dotted back line represents the approximation Eq.(2.24). The red
dot with coordinates (Bo𝑐,0 = 0.842,Ce𝑐 = 0) locates the threshold in the absence of

centrifugation.

In the following, we denote as 𝜙 the resulting contact angle between the liquid-air interface
and the vertical axis, i.e. 𝜙 = tan−1 (

−𝑟 ′1(𝑧) |𝑟=𝑅
)
= tan−1 (

𝑦′1(0)
)
. A closer inspection reveals

that within a small range around Ce𝑐, i.e. for |Ce−Ce𝑐 (Bo) | < 0.2, 𝜙 varies linearly with Ce,
as shown in Figure 5(a). Within this range, the contact angle (in radian) is well approximated
by:

𝜙(Ce,Bo) ≈ 0.144 (Ce − Ce𝑐 (Bo)) . (2.22)
where the factor 0.144 is independent from Bo (up to variations less than 0.001 radians).
Interestingly, this prediction is consistent with the occlusion criterion derived by Manning
et al. (2011) under weightlessness (i.e. Bo = 0). Indeed, their equation Eq.(2.1) in the limit
of small contact angle becomes:

Ce(𝜙,Bo=0) ≈ 4
(
1 +

√
3𝜙

)
, (2.23)

which can be recasted as 𝜙(Ce,Bo = 0) ≈ 0.144
(
Ce − Ce𝑐,0

)
, where Ce𝑐,0 ≡ Ce𝑐 (Bo =

0) = 4.
Thus, at fixed Bo, the critical centrifugal number Ce𝑐 (Bo) for vanishing contact angle (or

equivalently for vanishing slope) is retrieved as the value of Ce at which the best linear fit
of 𝜙(Ce,Bo) cancels out. Its dependency on the Bond number is depicted in Figure 5(b).
Note that we performed a convergence analysis and observed no further variations of Ce𝑐,
within a tolerance of 0.07%, when increasing 10 times the resolution on the spacing along the
curvilinear coordinate used to integrate the static cap profiles. For Ce < Ce𝑐, the geometrical
constraint 𝜙 = tan−1(𝑦1(0)) ≈ 𝑦′1(0) > 0 cannot be satisfied, so that this value corresponds
to the threshold for the onset of motion.

As shown in Figure 5(b), Ce𝑐 (Bo) is well approximated by:

Ce𝑐 =
0.295 −

√︁
0.2952 − 0.080(Bo𝑐,0 − Bo)

0.040
, (2.24)
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where Bo𝑐,0 = 0.842 is the critical Bond number in the absence of centrifugation (Ce = 0).
Note that in the limit Bo → 0, the approximation Eq.(2.24) yields Ce𝑐 (Bo = 0) ≈ 3.9, that
is close to the threshold Ce𝑐,0 = 4 computed by Manning et al. (2011) under weightlessness.
Conversely, in the limit (Ce𝑐 → 0, Bo → Bo𝑐,0), Eq.(2.24) simplifies into:

Ce𝑐 ≈ 1
0.295

(Bo𝑐,0 − Bo). (2.25)

By injecting Eq. (2.25) into Eq. (2.22), we obtain

𝜙 ≈ 0.49
(
Bo −

(
Bo𝑐,0 −

Ce
0.295

))
, (2.26)

reminiscent of the expression derived by Bretherton for a non-rotating capillary tube
(𝜙 = 0.49

(
Bo − Bo𝑐,0

)
). The similarity of these expressions highlights the role of the

centrifugation as a downward shift in the critical Bond number for the onset of motion.

In addition, this analysis provides a prediction for the rising velocity of the bubble for
Ce > Ce𝑐 (Bo). Indeed, for Ce close enough to the threshold Ce𝑐 (Bo), the slope of the inner
solution at the inflection point should verify:

𝑦′1(0) = 0.572
(
𝜌𝑔𝑏2/𝛾

)1/3
= tan(𝜙) ≈ 𝜙 ≈ 0.144

(
𝜌𝜔2(𝑅 − 1.10.𝑏)3

𝛾
− Ce𝑐 (Bo)

)
.

(2.27)
Since the volume of fluid displaced per unit time by the tip of the bubble 𝜋𝑅2𝑈𝑏 should be
equal to to the volume flux in the uniform film region, we can relate the thickness 𝑏 to the
inner radius 𝑅 and the velocity𝑈𝑏 through 𝜌𝑔𝑏3/3𝜇𝑈𝑏 = 𝑅/2. Together with Eq.(2.27), this
yields the following expression of Ca as an implicit function of Ce and Bo:

Ce − Ce𝑐 = 3.78Ce
(

Ca
Bo

)1/3
+ 4.35Bo1/3

(
Ca
Bo

)2/9
, (2.28)

where Ce𝑐 is the function of Bo described above.

2.2. Experiments on centrifugated bubbles
In this section, we outline our experimental setup and procedure and compare the results
against the above theoretical developments.

Experimental setup and procedure
Cylindrical borosilicate capillary tubes (Hilgenberg GmbH) are partially filled with silicone
oil (Sigma Aldrich, 𝜌 = 964 kg/m3, 𝜇 = 9.64 × 10−2 Pa.s, 𝛾 = 2.09 × 10−2), leaving an air
bubble with a length 𝐿 greater than 10 times the radius 𝑅 of the tube. Both ends of the tubes
are sealed with epoxy resin. The inner radii of the tubes used in our experimental campaign
vary between 0.8 mm and 1.3 mm, corresponding to Bond numbers Bo ≡ 𝜌𝑔𝑅2/𝛾 in the
range [0.29, 0.76]. Note that the uncertainty in the inner diameters of the tubes is of 0.05
mm.

The tube attachment system, presented in Figure 6(a), consists of two circular mounts made
of PETG, rigidly connected together via two vertical steel rods, and linked by bearings to a
fixed aluminium frame (not represented in the Figure). On each mount, a central, threaded
circular mouthpiece accommodates a hollow cylinder whose inner radius matches the outer
radius of the capillary tube. The extremities of the tube are then inserted into these cylinders,
and securely clamped to the mounts using a clamping chunk. By this means, the tube can
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be easily replaced by a capillary of a different size with minimal adjustments of the setup.
The lower mount is also connected to the shaft of a DC motor that imposes the rotation of
the tube attachment system. While the tube, the mounts and the rods rotate collectively, the
verticality and stability of the whole setup are ensured by the fixed aluminium frame.

The motor is voltage-controlled to achieve the desired rotation speed, measured with less
than 1% error using a tachometer. To enhance visualization, a LED panel is positioned behind
the tube attachment system.

A Basler camera records the evolution of the bubble in the tube, and the velocities of the
upper and lower caps of the bubble are obtained through image post-processing performed
via a custom Matlab script. Specifically, a column of pixel aligned with the tube that crosses
the upper and bottom profiles of the bubble, is extracted from each frame. These slices are
then juxtaposed to each other into an image where the horizontal axis represents time. The
displacement of the bubble extremities with time are clearly visible on the resulting image,
as shown in Figure 6(c).

Once the motor is switched on, a transient regime occurs where the upper cap of the bubble
rises while the bottom cap remains immobile, resulting in the bubble elongation, reminiscent
of spinning bubbles experiments (Vonnegut 1942). This is accompanied by the progressive
thickening of the surrounding film that propagates from the top to the lower cap of the bubble,
as seen in Figure 6(b). Once the propagation front reaches the bottom extremity, the lower
cap starts its ascent at the same (constant) velocity as the upper cap, see Figure 6(c). The
rising regime is assumed to be stationary if the difference between the caps’ velocities is less
than 5%. The bubble velocity is computed as the mean velocity between the upper and the
bottom cap velocities.

For a given inner radius 𝑅 and a fixed rotational speed 𝜔, both Bo and Ce are fixed. The
capillary number Ca = 𝜇𝑈𝑏/𝛾 is then derived from the measurement of the bubble velocity
at steady state 𝑈𝑏. For the experiments reported in this Section, we specify that the Bond
number remains smaller than the threshold Bo𝑐 = 0.842. Thus, the bubble does not move at
all if the rotational speed is zero. To avoid excessively long working time for the motor, we
did not operate it more than 8 hours consecutively. Considering that with our experimental
setup, we cannot precisely detect a motion smaller than 1 mm between the start and the
end of an experiment, the smallest capillary number that is experimentally measurable is
Camin = 1.6 × 10−7. A value inferior to this limit will be accordingly set equal to zero. The
maximal rotational speed achieved by the DC motor is 𝜔max = 400 rad.s−1. For a given tube
inner radius, this sets a limit on the maximal centrifugal number Cemax that is experimentally
reachable.

Experimental results and comparison with the theoretical threshold
For comparison with the theoretical threshold for the onset of motion, we present our
experimental findings in the (Bo,Ce) diagram featured in Figure 7(a). Overall, the theoretical
prediction is quantitatively consistent with the experimental results, that reveal a rapid decay
in the bubble velocity as the centrifugal number Ce approaches the theoretical threshold
Ce𝑐 (Bo). As it was challenging to precisely determine the experimental threshold, we
endeavored to establish a narrow range by identifying the highest Ce ≡ Ce𝑐,exp for which the
bubble displacement fell below our detection limit. This lower bound is denoted by red crosses
on Figure 7(a), and closely align with the theoretical threshold. However, the prediction is
less precise for the smallest values of Bo: the experimental threshold is downward-shifted
with respect to the theoretical prediction.

Figure 7(b) reports measurements of the bubble velocity as a function of the rotational
speed. The trend is satisfyingly captured by Eq.(2.28). We note however that close to the
threshold, the measured velocities are in general higher than predicted, consistently with the
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Figure 6: Experimental setup and post-processing for rotating bubbles. (a) Tube
attachment system. The capillary tube is clamped on both extremities to mounts connected

together by two metal rods. The bottom mount is linked to the shaft of a DC
voltage-controlled motor that imposes the rotation of the system around its central, vertical
axis. (b) Photographs of a long bubble inside a tube filled with silicone oil, at different and
equally spaced time steps within the transient regime. In the red frame, the motor has been
switched on and the upper cap starts rising while the bottom cap remains still. Along with

the resulting bubble elongation, the surrounding liquid film gets progressively thicker
from the top to the bottom part of the bubble. The dotted line roughly locates the position

of the propagation front. Once the front has reached the lower cap, it starts rising. (c)
Intensity profile as a function of time along the tube axis. To produce this image, a column
of pixel aligned with the central axis of the tube is extracted from each frame of the movie.
The columns are then juxtaposed to each other. The locations of the upper and lower cap

as a function of time are easily identified as the two roughy parallel black curves limiting a
darker domain that corresponds to the position of the bubble itself. At time 𝑡1, the motor is

switched on. At 𝑡2, the bubble dynamics reaches a stationary state: the upper and lower
caps rise at same constant velocity, as highlighted by the parallel blue solid lines that are

superimposed on the position of the caps as a function of time. For (b) and (c),
𝑅 = 1.2mm and Ce = 1.97. The transient duration is approximately equal to 𝑡2 − 𝑡1 ≈ 130s

and the capillary number computed from the steady state is Ca ≈ 3.03 × 10−4.

downward shift of the experimental threshold mentioned above. We believe that this can be
ascribed to horizontal vibrations of the tube attachment system observed while operating the
motor. As observed by Kubie (2000), the rising velocity of a Taylor bubble within a vertical
tube is indeed larger when the tube is oscillated in the horizontal plane, and increases with
the oscillation acceleration. This hypothesis is backed up with the photographs of rotating
bubbles along their ascent, that show some asymmetry of the bubble profile with respect to the
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Figure 7: (a) Diagram (Bo,Ce), where each dot corresponds to a measurement of Ca > 0
for a given set of parameters (Bo,Ce). The red crosses indicate the couples

(Bo,Ce = Ce𝑐,exp (Bo)) for which the bubble displacement fell below our detection limit.
The black circles indicate the theoretical threshold for the onset of motion and the black
solid line represents the approximation Eq.(2.24) of Ce𝑐 (Bo). Below this line, the gray

area indicates the region of parameters where the steady rising of a bubble is not possible
according to our theoretical analysis. Finally, the shaded area corresponds to the region of

parameters that is not accessible with our setup, due to the constraints on the maximal
angular velocity provided by the motor. (b) Capillary number Ca as a function of the

centrifugal number Ce measured for various Bond numbers. The dots are the experimental
points, and for each Bond number Bo, the solid line is the theoretical prediction Eq.(2.28),
computed using the corresponding experimental value of Bo indicated in the legend. The

dotted lines also represent the prediction Eq.(2.28), but for Bo ± ΔBo, where ΔBo
accounts for the ±0.05 mm uncertainty on the tube inner diameters. The errorbars

represent the measurement uncertainty on the bubble velocity.

tube axis, as can be seen for instance in Figure 6(b). This is compatible with the observations
of Kubie (2000) under horizontal oscillations: the relative position of the bubble moves
periodically from one side of the tube to the other, which thickens the lubricating film on
one or the other side of the bubble, resulting in a more efficient drainage and thus in faster
bubble ascent.

Despite these discrepancies, our theoretical analysis seems to provide a good estimation
of the threshold for the onset of motion and a satisfying prediction for the general trend of
the rising velocity as a function of the rotational speed.

In summary, rotation reduces the critical tube radius for the onset of motion and facilitates
bubble ascent. From a theoretical point of view, the most appreciable effect of centrifugation
is the modification of the static cap profile, while geometrical constraints stemming from
the matching with the thin film region appear remarkably unchanged from the classical case
without rotation. At the same time, experiments demonstrate the thickening of the thin film
surrounding the elongated part of the bubble, for increasing rotational speed. This thickening
is caused by the centrifugal acceleration which induces a radial, ”gyrostatic” pressure gradient
that pushes liquid towards the solid wall. We can thus interpret centrifugation as a mean to
tune the thickness, and thus the flow rate within the gap between the tube wall and the bubble,
resulting in the lowering of the critical Bond number for the onset of motion.

An alternative and simple strategy to modify the hydrostatic pressure gradient is to tilt the
tube with respect to gravity, whose effect is investigated in the next Section.
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3. Effect of tilt
The influence of inclination angle on the mobility of elongated bubbles was first observed
by White & Beardmore (1962), who pointed out the necessity of careful positioning of
the pipes for precise measurement of the rising velocity. Since then, many studies have
been dedicated to the motion of long bubbles in inclined pipes (Zukoski (1966), Maneri &
Zuber (1974), Bendiksen (1984), Weber et al. (1986), Couët & Strumolo (1987), Shosho &
Rya (2001), Boucher et al. (2023) among others). All studies reported a non-monotonous
dependency of the rising velocity on the tilt angle: starting from a horizontal position,
the velocity of elongated bubbles increases with the inclination of the pipe, reaching a
maximum value. Subsequently, the velocity decreases until the vertical position is attained.
These observations are reminiscent of the so-called Boycott effect (Boycott 1920; Acrivos
& Herbolzheimer 1979) in the case of settling suspensions in sealed tubes, as seminally
observed by Boycott (1920) with blood corpuscules sedimenting in serum, that demonstrated
a several-fold increase in their sedimentation rate when the tube was inclined.

Most of these analyses are interested in the inertial regime, with large Bond numbers,
and only scarce studies were dedicated to the regime close to the onset of motion, that is
dominated by surface tension (low Bond number). Zukoski (1966) conducted an extensive
series of experiments focusing on the velocity of elongated bubbles in tubes within a large
range of Bond numbers, delving into the impact of liquid viscosity and surface tension
on bubble velocity. For low Bond number (Bo = 0.870), elongated bubbles exhibited no
detectable movement in horizontal or vertical positions but could rise in inclined tubes with
angles ranging from 20° to 80° with the horizontal, with a maximum velocity reached about
50°. This observation suggests that tilting the tube with respect to gravity may enable the
motion of long bubbles that are stuck in a vertical configuration owing to surface tension.

In a similar context, Collicott & Manning (2014) studied the stability of a liquid mass in a
tube above a capillary interface spanning the cross-section of the channel, for various contact
angles and tube inclinations with respect to gravity. At fixed contact angle, they computed
the critical Bond number as the threshold above which the Surface Evolver simulations
do not converge to a solution of finite axial extent, thereby identifying the critical Bond
number as a stability threshold for the capillary interface. Within this approach, the critical
Bond number for a 0°- contact angle should correspond to the stability threshold of a long
static bubble, expanding over the entire cross-section of the tube. However, difficulties of
modelling perfectly wetting conditions prevented the authors to compute the critical Bond
number as a function of inclination in this case.

To the best of our knowledge, there is currently no predictive analysis of the mobility
enhancement of Taylor bubbles due to tilted gravity in very narrow capillaries. In this study,
we investigate how the direction of gravity affects the mobility of long bubbles in the low Bo
regime, focusing on the angle-dependent threshold for the initiation of motion.

3.1. Theoretical prediction for the threshold and rising velocity
The three-dimensional static cap

We first introduce the equilibrium equation for the static three-dimensional shape of the upper
cap of the bubble. We define a Cartesian coordinate system (𝑥, 𝑦, 𝑧) where 𝑧 is the direction
aligned with the central axis of the tube. The gravity vector reads g = (𝑔 cos(𝛼), 0,−𝑔 sin(𝛼)),
where 𝛼 is the tilt angle of the tube (𝛼 = 90° corresponds to a vertical tube), see Figure 8(a).

The evaluation of the static interface profiles of the upper cap is based on the two-
dimensional Young-Laplace equation, where length scales are non-dimensionalized with the
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tube radius (Manning et al. 2011; Rascón & Aarts 2017):

∇ ·
(

∇ℎ̄√︁
1 + (∇ℎ̄)2

)
= Bo

(
cos(𝛼)𝑥 − ℎ̄ sin(𝛼)

)
, (3.1)

where ℎ̄(𝑥, 𝑦̄) denotes the height of the static cap; the quantity on the left hand side is the
curvature 𝜅 of the liquid-gas interface while the term on the right hand side corresponds to
the hydrostatic contribution. Eq.(3.1) is complemented with the boundary condition at the
solid wall: ∇ℎ√

1+(∇ℎ)2
.n = − cos(𝜙), where n is the outwards-oriented vector normal to the

tube, and the contact angle 𝜙 is defined similarly as in the first part of this study, as the angle
between e𝑧 and the tangent at the wall to the intersection of the liquid-gas interface with the
plane (n, e𝑧). We thus require the interface to reach the solid wall with a specified slope, that
is assumed to be the same for all directions n. Note that this differs from the first part of this
study, where we imposed a vanishing radial curvature at the wall and computed the contact
angle 𝜙 a posteriori. Here, the contact angle is specified as a boundary condition, with no
requirement on the curvature. We acknowledge that requiring the gas-liquid interface to reach
the wall for all directions n is somehow counterintuitive, given that for small tilt angles 𝛼

(i.e. for a strongly inclined tube with respect to gravity), we expect the film surrounding the
bubble to be thicker in the direction 𝑥 > 0, and the liquid-gas interface to be relatively far
from the solid wall in this region. However, we focus here on the vicinity of the threshold for
the onset of motion, where surface tension is dominant and causes the bubble to expand in
the entire fluid domain

√︁
𝑥2 + 𝑦2 = 𝑟 < 𝑅 in all directions, as experimentally observed (see

for instance Figure 11(d)). The derivation of Eq.(3.1) can be found in Appendix B.

The thin film region and matching
Here, we opt for a simplified description of the inner region, where we neglect azimuthal
variations of curvature and film thickness. That assumption allows us to use as before a
two-dimensional, stationary Cartesian reference frame (𝑥 = 𝑧 −𝑈𝑏𝑡, 𝑦̃), where e𝑥̃ is aligned
with the tube central axis and points upwards (such that e𝑥̃ · g = −𝑔 sin(𝛼)), and e𝑦̃ is the
inward vector normal to the inner solid wall, such that e𝑦̃ · g = −𝑔 cos(𝛼), see Figure 8(b).

Within the lubrication framework, the viscous flow in the thin film around the bubble is
driven by Laplace and hydrostatic pressure gradients. The axial velocity accordingly writes
(see Appendix A.2 for a detailed derivation):

𝑢(𝑥, 𝑦̃) = 𝛾

2𝜇

[
−𝑦′′′1 + 𝜌𝑔 cos(𝛼)

𝛾
𝑦′1 +

𝜌𝑔 sin(𝛼)
𝛾

] (
𝑦̃2 − 2𝑦1 𝑦̃

)
−𝑈𝑏, (3.2)

where 𝑦1 denotes the distance of the air-liquid interface to the solid wall of the tube. Owing
to volume conservation, the flow rate must verify:

𝑄 = −2𝜋𝑅𝑈𝑏𝑦1 − 2𝜋𝑅
𝛾

3𝜇

(
−𝑦′′′1 + 𝜌𝑔 cos(𝛼)

𝛾
𝑦′1 +

𝜌𝑔 sin(𝛼)
𝛾

)
𝑦3

1 (3.3)

= −2𝜋𝑅𝑈𝑏𝑏 − 2𝜋𝑅
𝜌𝑔 sin(𝛼)

3𝜇
𝑏3 (3.4)

= −𝜋𝑅2𝑈𝑏 . (3.5)

where the first and second equality correspond to the volume flux in the inner region and
in the uniformly thin film region, respectively, while the third equality describes the volume
of fluid displaced per unit time by the top of the bubble. Since 𝑦1/𝑅 ≪ 1 and 𝑏/𝑅 ≪ 1,
the −2𝜋𝑅𝑈𝑏𝑦1 and −2𝜋𝑅𝑈𝑏𝑏 terms are negligible corrections, which leads to the following
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Figure 8: (a) Sketch of the static cap in a tube tilted with angle 𝛼 with respect to the
horizontal plane. A Cartesian coordinate system (𝑥, 𝑦, 𝑧) is used, where 𝑧 is the direction
aligned with the central axis of the tube. The height of the liquid-air interface is denoted

as ℎ(𝑥, 𝑦) (b) Sketch of the thin film region. A two-dimensional Cartesian coordinate
system (𝑥, 𝑦̃) is used, where 𝑥 is the direction aligned with the central axis of the tube. The
distance of the liquid-air interface from the solid wall is denoted by 𝑦1 (𝑥). (c) Comparison
between the solution of Eq.(3.1) (red solid line) and the axisymmetric solution of Eq.(2.6)

with no rotation (𝜔 = 0) (pink dotted line), for a tilt angle 𝛼 = 90° (vertical tube), a
contact angle 𝜙 = 0.50° and a Bond number Bo = 0.86.

thin film equation:

𝑦′′′1 =
𝜌𝑔 sin(𝛼)

𝛾

(
1 − 𝑏3

𝑦3
1

)
+ 𝜌𝑔 cos(𝛼)

𝛾
𝑦′1. (3.6)

We adimensionalize with:

𝑦1 = 𝜂𝑏, 𝑥 = 𝜁𝑏(𝜌𝑔𝑏2 sin(𝛼)/𝛾)−1/3,

which leads to the ordinary differential equation:

𝜂′′′ =
𝜂3 − 1
𝜂3 + 𝑎𝜂′, (3.7)

where 𝑎 = cos(𝛼) sin(𝛼)−2/3Bo1/3
(
𝑏
𝑅

)2/3
.

Upon introduction of the parameter 𝑎, this equation is exactly the same as Eq.(2.12)
describing the inner region in a centrifugated tube, that has been solved in Section 2.1. Thus,
shifting the origin to the position where 𝜂′′ = 0, the distance from the wall at which the inner
solution exhibits an inflection point is:

𝑦1(0) = 𝜂(0)𝑏 = 1.10𝑏 ≪ 𝑅, (3.8)

and the slope of the inner region profile at the inflection point is given by:

𝑦′1(0) = 𝜂(0)
(
𝜌𝑔𝑏2 sin(𝛼)/𝛾

)1/3
= 0.572 Bo1/3 sin(𝛼)1/3

(
𝑏

𝑅

)2/3
> 0. (3.9)

For the matching of the thin film region with a two-dimensional cap, we would need to
determine the value of (positive) contact angle which leads to zero curvature at the wall. For
the matching with the previously introduced three-dimensional shape of the static cap, we
extend this analysis by searching for the contact angle that gives rise to zero radial curvature
in at least one point of the matching boundary. Note that although we imposed as a boundary
condition a constant contact angle 𝜙 at the interface when reaching the wall, the height of
the interface at the wall, and so the curvature, vary along the azimuthal direction. Since
the contact angle at the point of vanishing curvature should be positive according to the
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Figure 9: (a) Static cap profiles computed as solutions of Eq.(3.1) for various tilt angles 𝛼,
with 𝜙 = 0.5° and Bo ⪆ Bo𝑐 (𝛼). The colorbar represents the radial curvature 𝜅𝑟

computed along the height profiles in the plane 𝑦 = 0. The heights of the profiles for
various 𝛼 have been translated for visualisation purposes. (b) Three-dimensional static cap
shape close to critical conditions 𝜙 = 0.5°, for various tilt angles. The colorbar represents

the profile height ℎ̄ − ℎ̄max.

matching condition Eq.(3.9), we identify the critical Bond number as the Bo value for which
the contact angle is zero, and the radial curvature at the wall vanishes in at least one point.
For smaller Bond numbers, the geometrical constraint on the slope cannot be satisfied in at
least one point of the domain.

Eq.(3.1) together with its boundary conditions, is implemented in the Finite-Elements
solver Comsol Multiphysics. We exploit fourth-order Lagrangian shape functions, solving
for the height ℎ and the mean curvature 𝜅 in a grid composed of quadrangolar elements, with
10 boundary layers of 1.3 stretching factor to properly capture the curvature at the boundary.
For each tilt angle 𝛼, solutions are obtained for different values of the contact angle 𝜙 and
Bond number Bo using the built-in Newton algorithm, initialized with the zero solution. We
then perform a continuation study by gradually decreasing the angle 𝜙 from 90°. Note that
the boundary condition 𝜙 = 0° cannot be imposed in this framework, as it implies infinite
directional derivatives for the thickness. We thus study solutions in the close vicinity of
𝜙 = 0° and extrapolate the retrieved behavior for vanishing contact angles; however, this
limitation will not significantly affect the evaluation of the threshold for the bubble rise. For
fixed Bond number, a convergence analysis from a characteristic size of 0.05𝑅 to 0.01𝑅 (i.e.
from 3200 to 33012 elements) showed variations of ∼ 10−4 rad in the value of the contact
angle resulting in a zero radial curvature. The numerical code for 𝛼 = 90° (i.e. for a vertical
tube), 𝜙 = 0.5° and Bo = 0.86, is compared against the axisymmetric solution of Eq.(2.6)
with no rotation (𝜔 = 0). The result of the comparison is reported in Figure 8(c) and a good
agreement is observed.

Figure 9 shows the static cap of the bubble for different inclination angles and Bond
numbers, for same contact angle 𝜙 = 0.5°. For 𝛼 < 90°, the static cap is not axisymmetric:
as the tilt angle increases, the apex of the cap moves toward negative 𝑥. Conversely, an
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elongated region (tongue) develops in the vicinity of the 𝑥 axis, in the direction 𝑥 > 0 (i.e.
in the direction of positive gravitational acceleration) and becomes longer as the tilt angle
increases. The elongated region presents abnormal values of mean curvature with respect
to the rest of the cap. The highest (negative) curvature is observed to be localized at the tip
point of this tongue.

To obtain the critical conditions, we fix the tilt angle and the Bond number and progressively
decrease the contact angle 𝜙. A preliminary analysis showed that the highest radial curvature
is obtained at the tip point of the tongue (of coordinates (𝑥 = 1, 𝑦̄ = 0)), in agreement with
the above observations, and increases with decreasing contact angle. For each contact angle,

we thus compute the radial curvature 𝜅𝑟 = 𝜕2 ℎ̄
𝜕𝑥̄2 /

(
1 +

(
𝜕ℎ̄
𝜕𝑥̄

)2
)3/2

at the extremity of the tongue.

Note that 𝜕ℎ̄
𝜕𝑦̄

(𝑥, 𝑦̄ = 0) = 0 because of symmetry. The contact angle is then decreased until 𝜅𝑟
vanishes. This limit value† of contact angle is denoted 𝜙lim(𝛼,Bo). For the set of parameters
(Bo, 𝛼, 𝜙 = 𝜙lim(𝛼,Bo)), the liquid-air interface exhibits then an inflection point at the wall,
and its tangent plane makes an angle 𝜙lim(𝛼,Bo) with the 𝑧-direction.

Repeating the same procedure varying the Bond number while fixing the tilt angle 𝛼,
we can retrieve 𝜙lim as a function of Bo. In the range 𝜙lim ∈ [0.5°, 2°], 𝜙lim(𝛼,Bo) varies
linearly with the Bond number Bo, as shown in Figure 10(a). For each tilt angle 𝛼 we
interpret the Bond number value at which 𝜙lim(𝛼,Bo𝑐) = 0, as the threshold Bo𝑐 (𝛼) for the
onset of motion. We retrieve this value by performing for each tilt angle 𝛼, a linear fit of
𝜙lim(𝛼,Bo) for 𝜙lim varying between 0.5° and 2°‡, and by extrapolating the value Bo𝑐 (𝛼)
that corresponds to 𝜙lim = 0°. The slope of the fit is also a function of 𝛼, so that overall,
𝜙lim(𝛼,Bo) is approximated by:

𝜙lim(𝛼,Bo) = 𝛽(𝛼) (Bo − Bo𝑐 (𝛼)) . (3.10)

The result of this procedure is displayed on Figure 10. Our study clearly indicates that the
threshold for the onset of motion is lowered by tilting the tube, with a minimum that is
reached for a tilt angle of 45° < 𝛼opt < 50°. Overall, the critical Bond number as a function
of the tilt angle is well approximated by:

Bo𝑐 (𝛼) ≈ 0.54
[
1 + 0.5

( 𝜋

180

)2
(𝛼 − 48°)2 +

( 𝜋

180

)4
(𝛼 − 48°)4

]
, (3.11)

as shown in Figure 10(b). Note that in the vertical case, we retrieved values for the critical
Bond number Bo𝑐 (𝛼 = 90°) and for the slope 𝛽(𝛼 = 90°), that match Bretherton’s values
within 0.1% and 1% of relative error, respectively, thus validating further the procedure.

We now aim at providing a prediction for the ascent velocity. The matching of the two-
dimensional thin film region with the static cap shape at the inflection point amounts to
enforce:

0.572 Bo1/3 sin(𝛼)1/3
(
𝑏

𝑅

)2/3
= 𝜙lim(𝛼,Bo) = 𝛽(𝛼)

[
𝜌𝑔

𝛾
(𝑅 − 1.10𝑏)2 − Bo𝑐 (𝛼)

]
. (3.12)

† The limit value is obtained through linear interpolation, when a change of sign is detected, of the values
of curvature between two successive values of 𝜙, with a step of 9 × 10−5 rad.
‡ The fit is performed by considering at least eight points within the declared range. We verified that the

threshold and slope do not vary appreciably by decreasing the number of points while keeping a constant
distance between the remaining points.
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Figure 10: (a) Contact angle value 𝜙lim for which the radial curvature of the liquid-air
interface vanishes at one point at the wall, as a function of 𝐵𝑜 for various values of 𝛼

(colored dots). For each panel, the black solid line is the linear fit
𝜙lim (𝛼,Bo) = 𝛽(𝛼) [Bo − Bo𝑐 (𝛼)] performed in order to retrieve the threshold for the

onset of motion Bo𝑐 (𝛼), that corresponds to 𝜙lim = 0. (b) Threshold Bo𝑐 as a function of
the tilt angle 𝛼 (black dots). The maximum extrapolation error of the order of 0.001 and is

smaller than the marker size. The black solid line represents the polynomial
approximation Eq.(3.11). The black circles represent instead the threshold Bo2𝐷

𝑐 (𝛼)
retrieved from the matching of the thin film with a two-dimensional static cap profile. The
black dotted line is a guide for the eyes. (Insert) Coefficient 𝛽 as a function of the tilt angle

𝛼. The errorbars represent the 95% confidence interval.

From the volume conservation constraint Eq.(3.4)-(3.5), (𝑏/𝑅) =

(
3Ca

2Bo sin(𝛼)

)1/3
, which

finally yields the following implicit function for the bubble velocity:

Bo − Bo𝑐 (𝛼) = 2.52 Bo2/3Ca1/3 sin(𝛼)−1/3 + 0.63
𝛽(𝛼)Bo1/9Ca2/9 sin(𝛼)1/9. (3.13)

3.2. Experiments on tilted bubbles
Experimental setup and procedure

The same silicone oil used in Section 2.2 is employed to partially fill capillary tubes, that
are then sealed on both ends, trapping a long air bubble inside. The inner radii of the
tubes vary between 1.08mm and 1.96mm, corresponding to Bond numbers in the range
Bo ∈ [0.53, 1.73]. As in the previous Section, the uncertainty in the tubes inner diameters is
of 0.05 mm.

The experimental setup is depicted on Figure 11(a). The tube is attached on an aluminium
arm that can be tilted by an angle 𝛼 ∈ [0°, 180°] with respect to the horizontal plane. A
LED panel is positioned behind the setup for visualization purposes. Once the tilt angle is
fixed, a camera records the rising motion of the bubble along the central axis of the tube.
From the recorded footage, we can then retrieve the bubble velocity as previously described
in Section 2.2, and as illustrated in Figure 11(b) and (c). For the narrowest tubes where the
bubble velocity is the smallest (if not zero), we use time-lapses instead of movies.

Unlike the case of motor-driven rotating tubes, there is in principle no limitation on the
observation time, allowing the detection of much slower bubble displacements. In practice,
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Figure 11: (a) Sketch of the experimental setup. (b) Photographs of a long bubble inside a
tube filled with silicone oil, at different and equally spaced time steps. Here, Bo = 1 and
the tube is tilted by 𝛼 = 35° with respect to the horizontal axis. (c) Intensity profile as a
function of time along the tube axis. To produce this image, a column of pixel aligned

with the central axis of the tube is extracted from each frame of the movie. The columns
are then juxtaposed to each other. The locations of the upper and lower cap as a function

of time are easily identified as the two roughy parallel black curves limiting a slightly
darker domain that corresponds to the position of the bubble itself. The rising velocity is

given by the slope of these black lines. As in (b), Bo = 1 and 𝛼 = 35°. (d) Photograph of a
bubble in a tube tilted by 𝛼 = 50°, with Bo = 0.7. For these parameters, the system is close

to critical conditions for the onset of motion.

we consider the bubble velocity to be zero if the displacement of the bubble over a week
is smaller than our resolution limit of 1mm. This implies that the smallest experimentally
measurable capillary number is Camin = 7.6 × 10−9.

Experimental results and comparison with the theoretical prediction
Our experimental findings are summarized and compared with our theoretical predictions
in Figure 12. Firstly, we observe that the bubble velocity strongly depends on the tilt angle
𝛼 and reaches its maximum at approximately 𝛼 ≈ 50°, a value independent of Bo within
the range of Bond numbers investigated here, as shown in Figure 12(b). Furthermore, for
Bo𝑐 (𝛼 = 50°) = 0.5401 < Bo < 0.842 = Bo𝑐 (𝛼 = 90°), tilting the tube by the appropriate
angle actually enables the motion of a bubble that would otherwise be stuck in a vertical
configuration, as illustrated for instance by the cases Bo = 0.71 and Bo = 0.65 reported
in Figure 12(b) . No motion at all is observed below the threshold Bo𝑐 (𝛼 ≈ 50°). Those
observations align well with our theoretical analysis.

Finally, the bubble velocity as a function of the tilt angle 𝛼 at low Bond numbers seems
to be well described by Eq.(3.13), without any fitting parameter, see Figure 12(b). We note
that the agreement with the theoretical prediction appears to slightly deteriorate at larger
Bond numbers. Indeed, several assumptions made in the theoretical analysis only hold in
the vicinity of the threshold and are therefore expected to fail in the large Bo regime. In
large capillaries, the thin film thickness cannot be considered as uniform along the azimutal
direction: the lubricating film is indeed much thicker in the direction 𝑥 > 0 (Zukoski 1966).
Similarly, requiring the static cap profile to expand in the entire fluid domain 𝑟 < 𝑅 is likely
to become inadequate as Bo increases. All together however, the comparison tends to validate
the relevance of a two-dimensional analysis to describe the thin lubricating film surrounding
the bubble, even in a tilted configuration, in the low Bo regime.

It is worth mentioning that as a first attempt to describe the phenomenon, we opted
for a fully two-dimensional description of the air-liquid interface. By matching the two-
dimensional static cap with the thin film profile, we obtained the threshold Bo2𝐷

𝑐 (𝛼) reported
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Figure 12: (a) Diagram (Bo, 𝛼) where each dot corresponds to a measurement of Ca > 0
for a given set of parameters (Bo, 𝛼). The red crosses indicate the couples (Bo, 𝛼) for

which the bubble displacement fell below our detection limit. The black dots indicate the
theoretical threshold for the onset of motion and the black solid line represents the

polynomial approximation Eq.(3.11). Below this line, the gray area corresponds to the
region of parameters where the steady rising of a bubble is not possible according to our
theoretical analysis. (b) Velocity of the bubble as a function of the tilt angle 𝛼 for various

Bond numbers. The dots are the experimental points while for each Bond number, the
solid line is described by Eq.(3.13), using the corresponding experimental value of Bo
reported in the title of each panel. No fit parameter is used here: the values of 𝛽(𝛼) and
Bo𝑐 (𝛼) in Eq.(3.13) are the ones displayed in Figure 10. The dotted lines also represent

the prediction Eq.(3.13), but for Bo ± ΔBo, where ΔBo accounts for the ±0.05 mm
uncertainty on the tubes inner diameters. Here, the markers size represents the maximal

measurement uncertainty on the bubble velocity.

in Figure 10(b). This threshold exhibits the same non-monotonous trend as a function of
the tilt angle, with a minimum reached for 𝛼opt ⪅ 50°. However, it is downward-shifted
with respect to the critical Bond number relying on a three-dimensional description of the
static cap, which provides a much better agreement with experimental measurements, see
Figure 12(a). From this comparison, we conclude that while a simplified, two-dimensional
description of the thin film region is acceptable, a proper characterization of the phenomenon
requires to account for the three-dimensional shape of the static cap.

We can now rationalize the theoretical and experimental results: the increase in transversal
acceleration due to the tilt angle tends to increase the film thickness at the tongue of the static
cap, enabling higher velocities within the tube for the same axial gravity. However, tilting
the tube decreases the driving buoyancy force, which in turn reduces the bubble velocity.
The interplay between these two effects leads to the observed non-monotonous dependency
of the rising velocity on the tilt angle. In the limit case 𝛼 → 0° (horizontal tube), there is no
motion within the tube since the driving force disappears.

4. Conclusion
In this study, we investigated theoretically and experimentally two different strategies aimed
at enabling the motion of long air bubbles trapped in narrow, sealed capillaries partially
filled with a viscous liquid. Both strategies, namely centrifugating the tube or tilting it with
respect to its central axis, amount to modify the pressure distribution in the film surrounding
the bubble by means of an external force field (centrifugal force or tilted gravity). This
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impacts both the shape of the static cap of the bubble, and the profile of the liquid-air
interface in the thin film region. In particular, the resulting pressure gradients lead in both
cases to the thickening of the lubricating film, thus enabling bubble ascent. The threshold
for the onset of motion and the rising velocity above threshold as functions of the rotational
speed and of tilt angle, respectively, are retrieved by the matching of the static cap and
thin film profiles, that conditions the steady ascent of the bubble. Remarkably, the matching
conditions in terms of film thickness and slope at the inflection point are in both cases the
same as described in Bretherton (1961) for the classical vertical setting (without rotation).
However, both centrifugation and inclination alter the inner region solution and the static cap
profile, making this matching possible for smaller Bond numbers. Thus, tunable parameters
such as the rotational speed or the tilt angle, can effectively lower the threshold for the onset
of motion, thus allowing the transport of bubbles even in very narrow capillaries.

The first part of this study was dedicated to the case of a vertical tube in rotation around
its central symmetry axis. We extended Bretherton’s analysis (Bretherton 1961) to account
for the radial pressure gradient resulting from the tube centrifugation. By computing the
shape of the tip of the bubble and solving the lubrication equation describing the thin
film region, we could derive a matching condition yielding a theoretical prediction for
the ascent velocity of the bubble, together with a new threshold for the onset of motion.
Our theoretical findings highlight that centrifugating the tube acts as a downward shift on
the critical bubble confinement. Our experimental campaign corroborated this analysis and
confirmed the relevance of this strategy to release bubbles trapped in very narrow capillaries.

In the second part, we explored how tilting the tube with respect to gravity could
influence the transport of the bubble trapped inside. The three-dimensional static cap shape
of the bubble was computed numerically, while the thin film region was assumed to be
axisymmetric. By matching these profiles at the point of vanishing radial curvature, we could
derive a prediction for the steady velocity of the bubble, that can only hold if the inner radius
is larger than an angle-dependent critical value. This threshold varies non-monotonously
with the tilt angle, with a minimum reached about 𝛼opt ≈ 48°. Those predictions, although
relying on a simplified description of the thin film region, align well with our experimental
findings.

Overall, these strategies seem well suited to many microfluidics applications where it is
instrumental to get rid of trapped bubbles, without compromising the integrity of the capillary.
The use of a tunable external force field provides a practical way to precisely monitor
the motion of long bubbles. For further practical uses, we recall here the approximated
expressions of the thresholds derived along this study:

Bo𝑐 (Ce) ≈ 0.842 − 0.295 Ce + 0.020 Ce2 for centrifugated tubes, and:

Bo𝑐 (𝛼) ≈ 0.54
[
1 + 0.5

( 𝜋

180

)2
(𝛼 − 48°)2 +

( 𝜋

180

)4
(𝛼 − 48°)4

]
, for tilted tubes.

At a more fundamental level, these strategies provide an interesting framework to examine
the infinitely slow dynamics of pinch-off, a phenomenon explored theoretically by Lamstaes
& Eggers (2017) and experimentally investigated by Dhaouadi & Kolinski (2019) in capillary
tubes with inner radii 𝑅 < 𝑅𝑐. For instance, starting from a moving bubble within a rotating
capillary and subsequently halting the rotation offers a practical means to establish a precisely
defined initial condition, from which the pinching process starts.
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Appendix A. Derivation of the thin film velocity profile for the centrifugal and
tilted case

A.1. Thin film velocity profile in a centrifugated tube
Here, we derive the velocity profile in the thin film region when the (vertical) tube is rotated
around its central axis at angular frequency 𝜔. In the rotating reference frame, translating
with the bubble at steady velocity 𝑈𝑏e𝑧 , the stationary Navier-Stokes equations write:

∇.𝒖 = 0, 𝜌 [(𝒖.∇) 𝒖 + 2𝛀 × 𝒖] = −∇𝑝 − 𝜌𝛀 × (𝛀 × 𝒓) + 𝜇Δ𝒖 + 𝜌𝒈, (A 1)

where 𝛀 = 𝜔e𝑧 is the rotation vector.
We introduce the dimensionless variables 𝒖̄, 𝑧, and 𝑟 , and 𝑝 , such that 𝒖 = 𝑈𝑏𝒖̄, 𝑧 = 𝑅𝑧,

𝑟 = 𝑅𝑟 and 𝑝 = 𝜋𝑝, where 𝜋 = 𝜌𝜔𝑅𝑈𝑏. The dimensionless Navier-Stokes equations read:

∇.𝒖̄ = 0, Ro (𝒖̄.∇) 𝒖̄ + 2𝒆𝑧 × 𝒖̄ = −∇𝑝 − 1
Ro

𝒆𝑧 × (𝒆𝑧 × 𝒓̄) + EΔ𝒖̄ − 𝑔

𝜔𝑈𝑏

𝒆𝑧 , (A 2)

where Ro =
𝑈𝑏

𝜔𝑅
is the Rossby number and E = 𝜈

𝜔𝑅2 is the Ekman number. In the experiments
presented in this study, Ro ≪ 1 and the non-linear terms of the Navier-Stokes equation can
therefore be neglected. Under these assumptions, and enforcing axisymmetry, the stationary
Navier-Stokes equations in cylindrical coordinates write:

0 =
1
𝑟

𝜕

𝜕𝑟

(
𝑟𝑢𝑟

)
+ 𝜕𝑢𝑧

𝜕𝑧
, (A 3)

−2𝜌𝜔𝑢𝜃 = −𝜕𝑝

𝜕𝑟
+ 𝜌𝜔2𝑟 + 𝜇

[
𝜕

𝜕𝑟

(
1
𝑟

𝜕

𝜕𝑟
(𝑟𝑢𝑟 )

)
+ 𝜕2𝑢𝑟

𝜕𝑧2

]
, (A 4)

2𝜌𝜔𝑢𝑟 = 𝜇

[
𝜕

𝜕𝑟

(
1
𝑟

𝜕

𝜕𝑟
(𝑟𝑢𝜃 )

)
+ 𝜕2𝑢𝜃

𝜕𝑧2

]
, (A 5)

0 = −𝜕𝑝

𝜕𝑧
+ 𝜇

[
1
𝑟

𝜕

𝜕𝑟

(
𝑟
𝜕𝑢𝑧

𝜕𝑟

)
+ 𝜕2𝑢𝑧

𝜕𝑧2

]
− 𝜌𝑔. (A 6)

Furthermore, in cylindrical coordinates, the stress tensor writes:

𝝈 =

©­­­«
−𝑝 + 2𝜇 𝜕𝑢𝑟

𝜕𝑟
𝜇𝑟 𝜕

𝜕𝑟

( 𝑢𝜃

𝑟

)
𝜇

(
𝜕𝑢𝑟
𝜕𝑧

+ 𝜕𝑢𝑧
𝜕𝑟

)
𝜇𝑟 𝜕

𝜕𝑟

( 𝑢𝜃

𝑟

)
−𝑝 + 2𝜇

𝑟
𝑢𝑟 𝜇

𝜕𝑢𝜃

𝜕𝑧

𝜇

(
𝜕𝑢𝑟
𝜕𝑧

+ 𝜕𝑢𝑧
𝜕𝑟

)
𝜇
𝜕𝑢𝜃

𝜕𝑧
−𝑝 + 2𝜇 𝜕𝑢𝑧

𝜕𝑧

ª®®®¬ ,
and the vector normal to the interface is 𝒏 = 1√

1+𝑟 ′1 (𝑧)2

(
−1, 0, 𝑟 ′1(𝑧)

)𝑇 .

Therefore, the dynamic and kinematic boundary conditions at the fluid-air interface are

𝛾𝜅 = (𝑝 − 𝑝air)
(
1 + 𝑟 ′1(𝑧)

2
)
− 2𝜇

[
𝜕𝑢𝑟

𝜕𝑟
+ 𝑟 ′1(𝑧)

2 𝜕𝑢𝑧

𝜕𝑧

]
+ 2𝜇𝑟 ′1(𝑧)

[
𝜕𝑢𝑟

𝜕𝑧
+ 𝜕𝑢𝑧

𝜕𝑟

]
, (A 7)

0 = 2𝑟 ′1(𝑧)
[
𝜕𝑢𝑟

𝜕𝑟
− 𝜕𝑢𝑧

𝜕𝑧

]
+

(
1 − 𝑟 ′1(𝑧)

2
) [

𝜕𝑢𝑟

𝜕𝑧
+ 𝜕𝑢𝑧

𝜕𝑟

]
, (A 8)
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Figure 13: Sketch of the upper part of a Taylor bubble in a sealed vertical tube, rotating
around its symmetry axis at angular velocity 𝜔. The flow around the bubble is first

described in cylindrical coordinates (𝑟, 𝜃, 𝑧), where e𝑧 is aligned with the tube axis. We
focus on the thin film region, that can be considered as planar instead of annular, and

describe then the lubricating film in Cartesian coordinates (𝑥, 𝑦 = 𝑅 − 𝑟, 𝑧).

where 𝜅 = − 1
𝑟1 (𝑧)

√
1+𝑟 ′1 (𝑧)2

+ 𝑟 ′′1 (𝑧)

(1+𝑟 ′1 (𝑧)2)3/2 is the curvature.

Finally, the no-slip boundary condition at the solid wall implies 𝑢𝑧 (𝑟 = 𝑅) = −𝑈𝑏.

Change of coordinates
In the thin film region, the film thickness is very small compared to the radius, so that the
flow can be treated as if the region were planar, instead of annular. Accordingly, we describe
the flow in the Cartesian coordinate system (𝑥, 𝑦 = 𝑅 − 𝑟, 𝑧), see Figure 13. Furthermore, we
introduce the modified pressure field: 𝑃 = 𝑝 + 𝜌𝜔2𝑅𝑦 + 𝜌𝑔𝑧. In this system of coordinates,
the Navier-Stokes equation become:

0 =
𝜕𝑢𝑦

𝜕𝑦
+ 𝜕𝑢𝑧

𝜕𝑧
−

𝑢𝑦

𝑅 − 𝑦
, (A 9)

−2𝜌𝜔𝑢𝑥 =
𝜕𝑃

𝜕𝑦
− 𝜌𝜔2𝑦 + 𝜇

[
1

𝑅 − 𝑦

𝜕𝑢𝑦

𝜕𝑦
+

𝑢𝑦

(𝑅 − 𝑦)2 −
𝜕2𝑢𝑦

𝜕𝑦2 −
𝜕2𝑢𝑦

𝜕𝑧2

]
, (A 10)

−2𝜌𝜔𝑢𝑦 = 𝜇

[
− 1
𝑅 − 𝑦

𝜕𝑢𝑥

𝜕𝑦
− 𝑢𝑥

(𝑅 − 𝑦)2 + 𝜕2𝑢𝑥

𝜕𝑦2 + 𝜕2𝑢𝑥

𝜕𝑧2

]
, (A 11)

0 = −𝜕𝑃

𝜕𝑧
+ 𝜇

[
− 1
𝑅 − 𝑦

𝜕𝑢𝑧

𝜕𝑦
+ 𝜕2𝑢𝑧

𝜕𝑦2 + 𝜕2𝑢𝑧

𝜕𝑧2

]
. (A 12)

Likewise, the dynamic and kinematic boundary conditions become:

𝛾𝜅 = (𝑃 − 𝑃air)
(
1 + 𝑦′1(𝑧)

2
)
− 2𝜇

[
𝜕𝑢𝑦

𝜕𝑦
+ 𝑦′1(𝑧)

2 𝜕𝑢𝑧

𝜕𝑧

]
+ 2𝜇𝑦′1(𝑧)

[
𝜕𝑢𝑦

𝜕𝑧
+ 𝜕𝑢𝑧

𝜕𝑦

]
, (A 13)

0 = 2𝑦′1(𝑧)
[
𝜕𝑢𝑦

𝜕𝑦
− 𝜕𝑢𝑧

𝜕𝑧

]
+

(
1 − 𝑦′1(𝑧)

2
) [

𝜕𝑢𝑦

𝜕𝑧
+ 𝜕𝑢𝑧

𝜕𝑦

]
, (A 14)

where 𝜅 = − 1
(𝑅−𝑦1 (𝑧) )

√
1+𝑦′1 (𝑧)2

− 𝑦′′1 (𝑧)

(1+𝑦′1 (𝑧)2)3/2 .

Lubrication approximation
We adimensionalize as follows: 𝑢𝑧 = 𝑈𝑏𝑢𝑧 , 𝑢𝑦 = 𝑈𝑦𝑢𝑦 , 𝑢𝑥 = 𝑈𝑥𝑢𝑥 , 𝑃 = 𝑃0𝑃, 𝑦 = 𝑏𝑦,
𝑦1 = 𝑏𝑦1, 𝑧 = 𝑅𝑧, where 𝜖 = 𝑏

𝑅
≪ 1. According to the least degeneracy principle applied
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to the mass conservation equation, 𝑈𝑦 = 𝜖𝑈𝑏 and the mass conservation equation becomes:
𝜕𝑢𝑦

𝜕𝑦
+ 𝜕𝑢𝑧

𝜕𝑧
= 0.

Furthermore, upon introduction of the dimensionless fields and variables, the momentum
conservation equations are written as:

−2𝜌𝜔𝑈𝑥𝑢𝑥 =
𝑃0
𝑏

𝜕𝑃

𝜕𝑦
− 𝜌𝜔2𝑏𝑦̄ +

𝜖
𝜇𝑈𝑏

𝑏2

[
𝜖

1 − 𝜖 𝑦

𝜕𝑢𝑦

𝜕𝑦
+ 𝜖2 𝑢𝑦

(1 − 𝜖 𝑦)2 −
𝜕2𝑢𝑦

𝜕𝑦2 − 𝜖2 𝜕
2𝑢𝑦

𝜕𝑧2

]
, (A 15)

−2𝜌𝜔𝜖𝑈𝑏𝑢𝑦 =
𝜇𝑈𝑥

𝑏2

[
− 𝜖

1 − 𝜖 𝑦

𝜕𝑢𝑥

𝜕𝑦
− 𝜖2 𝑢𝑥

(1 − 𝜖 𝑦)2 + 𝜕2𝑢𝑥

𝜕𝑦2 + 𝜖2 𝜕
2𝑢𝑥

𝜕𝑧2

]
, (A 16)

0 = −𝑃0
𝑅

𝜕𝑃

𝜕𝑧
+ 𝜇𝑈𝑏

𝑏2

[
− 𝜖

1 − 𝜖 𝑦

𝜕𝑢𝑧

𝜕𝑦
+ 𝜕2𝑢𝑧

𝜕𝑦2 + 𝜖2 𝜕
2𝑢𝑧

𝜕𝑧2

]
. (A 17)

The least degeneracy principle applied to the momentum conservation equations along the
𝑥 and 𝑧- axis implies that 𝑈𝑥 = 2𝜖 𝜌𝜔𝑈𝑏𝑏

2/𝜇 and 𝑃0 =
𝜇𝑈𝑏

𝑏𝜖
.

Thus, the momentum conservation equations along the 𝑦-axis becomes :

−4𝜖Re𝑢𝑥 =
Ca
𝜖4Ce

𝜕𝑃

𝜕𝑦
− 𝑦 + Ca

𝜖2Ce

[
𝜖

1 − 𝜖 𝑦

𝜕𝑢𝑦

𝜕𝑦
+ 𝜖2 𝑢𝑦

(1 − 𝜖 𝑦)2 −
𝜕2𝑢𝑦

𝜕𝑦2 − 𝜖2 𝜕
2𝑢𝑦

𝜕𝑧2

]
(A 18)

with Re = 𝜌𝑈𝑏𝑏/𝜇, Ca = 𝜇𝑈𝑏/𝛾 and Ce = 𝜌𝜔2𝑅3/𝛾. From the volume conservation
constraint 𝜌𝑔𝑏3/3𝜇𝑈𝑏 = 𝑅/2, we deduce that Ca

Ce ∼ 𝜖3 2𝑔
3𝜔2𝑅

= 𝑂 (𝜖3). Thus, the system of
equations reduces to:

0 =
𝜕𝑢𝑦

𝜕𝑦
+ 𝜕𝑢𝑧

𝜕𝑧
, 0 =

𝜕𝑃

𝜕𝑦
, 0 = −𝜕𝑃

𝜕𝑧
+ 𝜕2𝑢𝑧

𝜕𝑦2 . (A 19)

The dynamic and kinematic boundary conditions are:

𝛾𝜅 =
𝜇𝑈𝑏

𝑏𝜖

(
𝑃 − 𝑃air

) (
1 + 𝜖2𝑦1

′ (𝑧)2
)
− 2𝜖

𝜇𝑈𝑏

𝑏

[
𝜕𝑢𝑦

𝜕𝑦
+ 𝜖2𝑦1

′ (𝑧)2 𝜕𝑢𝑧
𝜕𝑧

]
+ 2𝜖

𝜇𝑈𝑏

𝑏
𝑦1

′ (𝑧)
[
𝜖2 𝜕𝑢𝑦

𝜕𝑧
+ 𝜕𝑢𝑧

𝜕𝑦

]
, (A 20)

0 = 2𝜖2𝑦1
′ (𝑧)

[
𝜕𝑢𝑦

𝜕𝑦
− 𝜕𝑢𝑧

𝜕𝑧

]
+

(
1 − 𝜖2𝑦1

′ (𝑧)2
) [

𝜖2 𝜕𝑢𝑦

𝜕𝑧
+ 𝜕𝑢𝑧

𝜕𝑦

]
. (A 21)

Thus, including the no-slip boundary condition at the solid wall, the boundary conditions
at leading order are:

𝑃 − 𝑃air = 𝛾𝜅
𝜖𝑏

𝜇𝑈𝑏

,
𝜕𝑢𝑧

𝜕𝑦
= 0, 𝑢𝑧 (𝑦 = 0) = −1. (A 22)

Finally, going back to the dimensional form, and reintroducing the original pressure field
𝑝 = 𝑃 − 𝜌𝜔2𝑅𝑦 − 𝜌𝑔𝑧, the full problem writes:

0 =
𝜕𝑢𝑦

𝜕𝑦
+ 𝜕𝑢𝑧

𝜕𝑧
,

𝜕𝑝

𝜕𝑦
= −𝜌𝜔2𝑅,

𝜕𝑝

𝜕𝑧
= 𝜇

𝜕2𝑢𝑧

𝜕𝑦2 − 𝜌𝑔, (A 23)
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and is complemented by the following boundary conditions:

𝑝(𝑦 = 𝑦1, 𝑧) − 𝑝air = 𝛾𝜅,
𝜕𝑢𝑧

𝜕𝑦
|𝑦=𝑦1 = 0, 𝑢𝑧 (𝑦 = 0, 𝑧) = −𝑈𝑏 . (A 24)

The integration of the pressure field is straightforward and leads to:

𝑝(𝑦, 𝑧) = 𝑝air + 𝛾𝜅 + 𝜌𝜔2𝑅 (𝑦1(𝑧) − 𝑦) . (A 25)

Finally, by injecting this pressure field in the axial component of the momentum equation,
we can derive the following equation for the velocity in the thin film:

𝜇
𝜕2𝑢𝑧

𝜕𝑦2 = 𝛾𝜅′ + 𝜌𝜔2𝑅𝑦′1 + 𝜌𝑔, (A 26)

that results into:

𝑢𝑧 (𝑦, 𝑧) = −𝑈𝑏 +
𝛾

2𝜇

(
𝜅′ + 𝜌𝜔2𝑅

𝛾
𝑦′1 +

𝜌𝑔

𝛾

)
(𝑦2 − 2𝑦1𝑦). (A 27)

A.2. Thin film velocity profile in a tilted tube
We now aim at deriving the velocity profile in the thin film region when the tube is tilted by
an angle 𝛼. Since the Reynolds number Re = 𝜌𝑈𝑏𝑏/𝜇 characterizing the flow in the thin film
region is very small, we can safely neglect the effect of inertia. In the stationary cylindrical
system of coordinates (𝑟, 𝜃, 𝑧), translating with the bubble at steady velocity𝑈𝑏e𝑧 where 𝑧 is
aligned with the central axis of the (tilted) tube, see Figure 14(a), the Navier-Stokes equation
read:

0 =
1
𝑟

𝜕

𝜕𝑟

(
𝑟𝑢𝑟

)
+ 1
𝑟

𝜕𝑢𝜃

𝜕𝜃
+ 𝜕𝑢𝑧

𝜕𝑧
, (A 28)

0 = −𝜕𝑝

𝜕𝑟
+ 𝜇

[
𝜕

𝜕𝑟

(
1
𝑟

𝜕

𝜕𝑟
(𝑟𝑢𝑟 )

)
+ 1
𝑟2

𝜕2𝑢𝑟

𝜕𝜃2 − 2
𝑟2

𝜕𝑢𝜃

𝜕𝜃
+ 𝜕2𝑢𝑟

𝜕𝑧2

]
+ 𝜌𝑔 cos(𝜃) cos(𝛼), (A 29)

0 = −𝜕𝑝

𝜕𝜃
+ 𝜇

[
𝜕

𝜕𝑟

(
1
𝑟

𝜕

𝜕𝑟
(𝑟𝑢𝜃 )

)
+ 1
𝑟2

𝜕2𝑢𝜃

𝜕𝜃2 + 2
𝑟2

𝜕𝑢𝑟

𝜕𝜃
+ 𝜕2𝑢𝜃

𝜕𝑧2

]
− 𝜌𝑔 sin(𝜃) cos(𝛼), (A 30)

0 = −𝜕𝑝

𝜕𝑧
+ 𝜇

[
1
𝑟

𝜕

𝜕𝑟

(
𝑟
𝜕𝑢𝑧

𝜕𝑟

)
+ 1
𝑟2

𝜕2𝑢𝑧

𝜕𝜃2 + 𝜕2𝑢𝑧

𝜕𝑧2

]
− 𝜌𝑔 sin(𝛼). (A 31)

We know from our analysis of the three-dimensional cap profile, that the matching with
the thin film region profile should be imposed at the tip of the tongue exhibited by the static
cap, i.e. at the point of coordinates (𝑟 = 𝑅, 𝜃 = 0, ℎ(𝑅, 0)). We will thus restrict the study
of the thin film solution to the plane (𝜃 = 0), see Figure 14(b). By assuming an vanishing
azimuthal curvature ∼ 1/𝑅, the region of size ∼ 𝑅d𝜃 in the close vicinity of 𝜃 = 0 can be
considered infinite. Yet, in the vicinity of 𝜃 = 0, the derivative with respect to 𝜃 should vanish
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Figure 14: (a) Sketch of the upper part of a Taylor bubble in a sealed tube tilted by an
angle 𝛼 with respect to the horizontal plane. The flow in the thin lubricating film is

described in cylindrical coordinates (𝑟, 𝜃, 𝑧), where e𝑧 is the direction aligned with the
tube axis, such that e𝑧 · g = −𝑔 sin(𝛼). The origin of 𝜃 is chosen such that

e𝑟 (𝜃 = 0) · g = 𝑔 cos(𝛼). (b) Sketch of the cross-section of the channel and of the bubble.
We focus on the region in the vicinity of the plane 𝜃 = 0, described in Cartesian

coordinates (𝑥, 𝑦 = 𝑅 − 𝑟, 𝑧), where e𝑥 · g = 0, e𝑦 · g = −𝑔 cos(𝛼), and e𝑧 · g = −𝑔 sin(𝛼).

by symmetry. Therefore, in this region, the Navier-Stokes equations reduce to:

0 =
1
𝑟

𝜕

𝜕𝑟

(
𝑟𝑢𝑟

)
+ 𝜕𝑢𝑧

𝜕𝑧
, (A 32)

0 = −𝜕𝑝

𝜕𝑟
+ 𝜇

[
𝜕

𝜕𝑟

(
1
𝑟

𝜕

𝜕𝑟
(𝑟𝑢𝑟 )

)
+ 𝜕2𝑢𝑟

𝜕𝑧2

]
+ 𝜌𝑔 cos(𝛼), (A 33)

0 = 𝜇

[
𝜕

𝜕𝑟

(
1
𝑟

𝜕

𝜕𝑟
(𝑟𝑢𝜃 )

)
+ 𝜕2𝑢𝜃

𝜕𝑧2

]
, (A 34)

0 = −𝜕𝑝

𝜕𝑧
+ 𝜇

[
1
𝑟

𝜕

𝜕𝑟

(
𝑟
𝜕𝑢𝑧

𝜕𝑟

)
+ 𝜕2𝑢𝑧

𝜕𝑧2

]
− 𝜌𝑔 sin(𝛼). (A 35)

These equations are complemented by the following dynamic and kinematic boundary
conditions:

𝛾𝜅 = (𝑝 − 𝑝air)
(
1 + 𝑟 ′1(𝑧)

2
)
− 2𝜇

[
𝜕𝑢𝑟

𝜕𝑟
+ 𝑟 ′1(𝑧)

2 𝜕𝑢𝑧

𝜕𝑧

]
+ 2𝜇𝑟 ′1(𝑧)

[
𝜕𝑢𝑟

𝜕𝑧
+ 𝜕𝑢𝑧

𝜕𝑟

]
, (A 36)

0 = 2𝑟 ′1(𝑧)
[
𝜕𝑢𝑟

𝜕𝑟
− 𝜕𝑢𝑧

𝜕𝑧

]
+

(
1 − 𝑟 ′1(𝑧)

2
) [

𝜕𝑢𝑟

𝜕𝑧
+ 𝜕𝑢𝑧

𝜕𝑟

]
, (A 37)

where 𝜅 = − 1
𝑟1 (𝑧)

√
1+𝑟 ′1 (𝑧)2

+ 𝑟 ′′1 (𝑧)

(1+𝑟 ′1 (𝑧)2)3/2 is the curvature, and by the no-slip boundary

condition at the solid wall: 𝑢𝑧 (𝑟 = 𝑅) = −𝑈𝑏.

Change of coordinates
As before, we neglect curvature in the azimuthal direction, and describe the thin film region
within the Cartesian coordinate system (𝑥, 𝑦 = 𝑅 − 𝑟, 𝑧), see Figure 14(b). Furthermore, we
introduce the modified pressure field: 𝑃 = 𝑝 + 𝜌𝑔 cos(𝛼)𝑦 + 𝜌𝑔 sin(𝛼)𝑧. In this system of
coordinates, the mass conservation and momentum conservation equations along the 𝑦 and
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𝑧 directions become:

0 =
𝜕𝑢𝑦

𝜕𝑦
+ 𝜕𝑢𝑧

𝜕𝑧
−

𝑢𝑦

𝑅 − 𝑦
,

0 =
𝜕𝑃

𝜕𝑦
+ 𝜇

[
1

𝑅 − 𝑦

𝜕𝑢𝑦

𝜕𝑦
+

𝑢𝑦

(𝑅 − 𝑦)2 −
𝜕2𝑢𝑦

𝜕𝑦2 −
𝜕2𝑢𝑦

𝜕𝑧2

]
,

0 = −𝜕𝑃

𝜕𝑧
+ 𝜇

[
− 1
𝑅 − 𝑦

𝜕𝑢𝑧

𝜕𝑦
+ 𝜕2𝑢𝑧

𝜕𝑦2 + 𝜕2𝑢𝑧

𝜕𝑧2

]
.

Likewise, the dynamic and kinematic boundary conditions become:

𝛾𝜅 = (𝑃 − 𝑃air)
(
1 + 𝑦′1(𝑧)

2
)
− 2𝜇

[
𝜕𝑢𝑦

𝜕𝑦
+ 𝑦′1(𝑧)

2 𝜕𝑢𝑧

𝜕𝑧

]
+ 2𝜇𝑦′1(𝑧)

[
𝜕𝑢𝑦

𝜕𝑧
+ 𝜕𝑢𝑧

𝜕𝑦

]
, (A 38)

0 = 2𝑦′1(𝑧)
[
𝜕𝑢𝑦

𝜕𝑦
− 𝜕𝑢𝑧

𝜕𝑧

]
+

(
1 − 𝑦′1(𝑧)

2
) [

𝜕𝑢𝑦

𝜕𝑧
+ 𝜕𝑢𝑧

𝜕𝑦

]
, (A 39)

where 𝜅 = − 1
(𝑅−𝑦1 (𝑧) )

√
1+𝑦′1 (𝑧)2

− 𝑦′′1 (𝑧)

(1+𝑦′1 (𝑧)2)3/2 .

Lubrication approximation
We adimensionalize as follows: 𝑢𝑧 = 𝑈𝑏𝑢𝑧 , 𝑢𝑦 = 𝑈𝑦𝑢𝑦 , 𝑃 = 𝑃0𝑃, 𝑦 = 𝑏𝑦, 𝑦1 = 𝑏𝑦1,
𝑧 = 𝑅𝑧, where 𝜖 = 𝑏

𝑅
≪ 1. According to the least degeneracy principle applied to the mass

conservation equation,𝑈𝑦 = 𝜖𝑈𝑏 and the mass conservation equation becomes: 0 =
𝜕𝑢𝑦

𝜕𝑦
+𝜕𝑢𝑧

𝜕𝑧
.

Furthermore, upon introduction of the dimensionless fields and variables, the momentum
conservation equations along the 𝑦 and 𝑧 directions are written as:

0 =
𝑃0
𝑏

𝜕𝑃

𝜕𝑦
+ 𝜖 𝜇𝑈𝑏

𝑏2

[
𝜖

1 − 𝜖 𝑦

𝜕𝑢𝑦

𝜕𝑦
+ 𝜖2

(1 − 𝜖 𝑦)2 𝑢𝑦 −
𝜕2𝑢𝑦

𝜕𝑦2 − 𝜖2 𝜕
2𝑢𝑦

𝜕𝑧2

]
, (A 40)

0 = −𝑃0
𝑅

𝜕𝑃

𝜕𝑧
+ 𝜇𝑈𝑏

𝑏2

[
− 𝜖

1 − 𝜖 𝑦

𝜕𝑢𝑧

𝜕𝑦
+ 𝜕2𝑢𝑧

𝜕𝑦2 + 𝜖2 𝜕
2𝑢𝑧

𝜕𝑧2

]
. (A 41)

The least degeneracy principle applied to the momentum conservation equation along the
𝑧-axis implies that: 𝑃0 =

𝜇𝑈𝑏

𝑏𝜖
. At leading order, the problem reduces then to:

0 =
𝜕𝑢𝑦

𝜕𝑦
+ 𝜕𝑢𝑧

𝜕𝑧
, 0 =

𝜕𝑃

𝜕𝑦
, 0 = −𝜕𝑃

𝜕𝑧
+ 𝜕2𝑢𝑧

𝜕𝑦2 . (A 42)

The dynamic and kinematic boundary conditions are:

𝛾𝜅 =
𝜇𝑈𝑏

𝑏𝜖

(
𝑃 − 𝑃air

) (
1 + 𝜖2𝑦1

′ (𝑧)2
)
− 2𝜖

𝜇𝑈𝑏

𝑏

[
𝜕𝑢𝑦

𝜕𝑦
+ 𝜖2𝑦1

′ (𝑧)2 𝜕𝑢𝑧
𝜕𝑧

]
+ 2𝜖

𝜇𝑈𝑏

𝑏
𝑦1

′ (𝑧)
[
𝜖2 𝜕𝑢𝑦

𝜕𝑧
+ 𝜕𝑢𝑧

𝜕𝑦

]
, (A 43)

0 = 2𝜖2𝑦1
′ (𝑧)

[
𝜕𝑢𝑦

𝜕𝑦
− 𝜕𝑢𝑧

𝜕𝑧

]
+

(
1 − 𝜖2𝑦1

′ (𝑧)2
) [

𝜖2 𝜕𝑢𝑦

𝜕𝑧
+ 𝜕𝑢𝑧

𝜕𝑦

]
. (A 44)

Therefore at leading order, and including the no-slip boundary condition at the solid wall,



31

the boundary conditions write:

𝑃 − 𝑃air = 𝛾𝜅
𝜖𝑏

𝜇𝑈𝑏

,
𝜕𝑢𝑧

𝜕𝑦
= 0, 𝑢𝑧 (𝑦 = 0) = −1. (A 45)

Finally, going back to the dimensional form, and reintroducing the original pressure field
𝑝 = 𝑃 − 𝜌𝑔 cos(𝛼)𝑦 − 𝜌𝑔 sin(𝛼)𝑧, the full problem reduces to:

0 =
𝜕𝑢𝑦

𝜕𝑦
+ 𝜕𝑢𝑧

𝜕𝑧
,

𝜕𝑝

𝜕𝑦
= −𝜌𝑔 cos(𝛼), 𝜕𝑝

𝜕𝑧
= 𝜇

𝜕2𝑢𝑧

𝜕𝑦2 − 𝜌𝑔 sin(𝛼), (A 46)

and is complemented by the following boundary conditions:

𝑝(𝑦 = 𝑦1, 𝑧) − 𝑝air = 𝛾𝜅,
𝜕𝑢𝑧

𝜕𝑦
|𝑦=𝑦1 = 0, 𝑢𝑧 (𝑦 = 0, 𝑧) = −𝑈𝑏 . (A 47)

The pressure field integrates straightforwardly into:

𝑝(𝑦, 𝑧) = 𝑝air + 𝛾𝜅 + 𝜌𝑔 cos(𝛼) (𝑦1(𝑧) − 𝑦) . (A 48)

Finally, by injecting this pressure field in the axial component of the momentum equation,
we can derive the following equation for the velocity in the thin film:

𝜇
𝜕2𝑢𝑧

𝜕𝑦2 = 𝛾𝜅′ + 𝜌𝑔 cos(𝛼)𝑦′1 + 𝜌𝑔 sin(𝛼), (A 49)

which leads to the velocity profile:

𝑢𝑧 (𝑦, 𝑧) = −𝑈𝑏 +
𝛾

2𝜇

(
𝜅′ + 𝜌𝑔 cos(𝛼)

𝛾
𝑦′1 +

𝜌𝑔 sin(𝛼)
𝛾

)
(𝑦2 − 2𝑦1𝑦). (A 50)

Appendix B. Derivation of the equilibrium equation for the static cap
Following previous works (see e.g. Rascón & Aarts (2017); Lubbers et al. (2014); Manning
et al. (2011)), we derive from energy principles the three-dimensional equilibrium equation
for the equilibrium of the static cap. We introduce the coordinate system (𝑥, 𝑦, 𝑧), with the
𝑧 axis aligned with the central tube axis, and the 𝑥 axis aligned with the gravity component
normal to the 𝑧 axis (so that e𝑥 .g = 𝑔 cos(𝛼), see Figure 8(a)). The location of the air-liquid
interface is denoted by ℎ(𝑥, 𝑦).

The Gibbs free energy associated with the cap interface can be written as:

𝐸 (ℎ) = 𝛾A + G, (B 1)

where the first term on the right-hand-side is the surface energy. As in Rascón & Aarts
(2017), the surface A is computed as

A =

∫
Ω

√︁
1 + (∇ℎ)2 𝑑𝑥𝑑𝑦, (B 2)

with Ω the cross-section of the capillary. The term G represents in turn the gravitational
potential energy, that in general form reads (Pitts 1973):

G = −
∫
𝑉

𝜌𝒈 · 𝒓 𝑑𝑥𝑑𝑦𝑑𝑧, 𝒓 = (𝑥, 𝑦, 𝑧), 𝒈 = 𝑔(cos𝛼, 0,− sin𝛼), (B 3)

where the volume 𝑉 is given by:

𝑉 =

∫
Ω

𝑑𝑥𝑑𝑦ℎ(𝑥, 𝑦). (B 4)
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Upon introduction of the Lagrange multiplier 𝜆 to ensure volume conservation, the functional
to be minimized to obtain equilibrium reads:

𝐹 (ℎ) = 𝛾

∫
Ω

√︁
1 + (∇ℎ)2 𝑑𝑥𝑑𝑦 + 𝜌𝑔

∫
𝑉

(−𝑥 cos𝛼 + 𝑧 sin𝛼) 𝑑𝑥𝑑𝑦𝑑𝑧 − 𝜆

∫
𝑉

𝑑𝑥𝑑𝑦𝑑𝑧. (B 5)

Upon integration along the 𝑧 direction between 0 and ℎ:

𝐹 (ℎ) = 𝛾

∫
Ω

√︁
1 + (∇ℎ)2 𝑑𝑥𝑑𝑦 + 𝜌𝑔

∫
Ω

(
−𝑥 cos𝛼 + 1

2
ℎ sin𝛼

)
ℎ 𝑑𝑥𝑑𝑦 − 𝜆

∫
Ω

ℎ 𝑑𝑥𝑑𝑦. (B 6)

Formal minimization of the functional 𝐹 (ℎ) with respect to ℎ leads to the following partial
differential equation:

𝛾∇.
(

∇ℎ√︁
1 + (∇ℎ)2

)
= 𝜌𝑔 (cos(𝛼)𝑥 − ℎ sin(𝛼)) + 𝜆, (B 7)

with the constant contact angle condition at the wall:
∇ℎ√︁

1 + (∇ℎ)2
.n = − cos(𝜙), (B 8)

where n is the unit exterior normal to the tube wall. The value of 𝜆 can be set by integrating the
resulting equilibrium equation within the whole domain, leading to the following expression:

𝜆 = −2𝛾
𝑅

cos(𝜙) + 𝜌𝑔ℎ0 sin𝛼, (B 9)

where ℎ0 = 𝑉/Ω is the reference average value of the static cap height. By imposing 𝜆 = 0,
the reference height reads ℎ0 =

2ℓ2
𝑐 cos(𝜙)
𝑅 sin 𝛼

, reminiscent of the well-known Jurin height. Upon
non-dimensionalization with the tube radius 𝑅, one obtains the equilibrium equation reported
in the main text Eq.(3.1).
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Bico, J., Tordeux, C. & Quéré, D. 2001 Rough wetting. EPL 55, 214.
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