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Abstract

In this paper, we first propose a unified approach for analyzing the stability of phase-

less operator for both amplitude and intensity measurement on an arbitrary geometric

set, thus characterizing the robust performance of phase retrieval via the empirical min-

imization method. The unified analysis entails randomly embedding a concave lifting

operator in tangent space. Similarly, we investigate the structured matrix recovery prob-

lem through the robust injectivity of a linear rank-one measurement operator on an ar-

bitrary matrix set, where the core of our analysis lies in bounding the empirical chaos

process. We introduce Talagrand’s γα-functionals to characterize the relationship be-

tween the required number of measurements and the geometric constraints. We also

generate adversarial noise to demonstrate the sharpness of the recovery bounds in these

two scenarios.

Keywords: Phaseless Operator; Low Rank Plus Sparse; Talagrand’s Functionals; Empirical

Chaos Process; Adversarial Noise.

1 Introduction

Phase retrieval refers to the problem of reconstructing an unknown signal xxx0 ∈ Fn with

F ∈ {R,C} from m phaseless measurements of the form

bk = Aℓ
k (xxx0) , k = 1, · · · , m. (1)

Here, the sample Aℓ
k (xxx0) may be in two forms: For ℓ = 1, the amplitude measurement is

A1
k (xxx0) = |〈φφφk,xxx0〉|, and for ℓ = 2, the intensity measurement is A2

k (xxx0) = |〈φφφk,xxx0〉|2. The
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collection of measurement vectors Φ = {φφφk}mk=1 in V = F
n is known. Phase retrieval has

gained significant attention in the past few decades in various fields due to its wide range

of applications, including X-ray crystallography, astronomy, optics, and diffraction imaging

[7, 27].

As far as applications are concerned, the robust performance of reconstruction is perhaps

the most important consideration. We investigate the phaseless measurements with bounded

noise zzz:

bbb = Aℓ
Φ (xxx0) + zzz, (2)

where Aℓ
Φ (xxx) is phaseless operator Aℓ

Φ : Fn −→ Rm defined by

Aℓ
Φ (xxx) =




|〈φφφ1,xxx〉|ℓ
...

|〈φφφm,xxx〉|ℓ


 . (3)

One of the main goals of this paper is to establish a unified framework for amplitude and

intensity measurement that obtains stable recovery conditions while disregarding specific

recovery approaches and establishing recovery assurances within the framework of the em-

pirical minimization method. These two motivations point to our focus on the stability of the

phaseless operator Aℓ
Φ.

The stability of Aℓ
Φ can infer stable uniqueness, signifying the identification of conditions

that lead to the determination of a unique solution. It has demonstrated that if there is no ad-

ditional information about xxx0, a unique recovery requires at least m = O (n) measurements

[1, 2, 19]. However, prior assumptions on xxx0, such as sparse, can greatly reduce the number

of measurements [19, 44]. Thus, we assume that xxx0 ∈ K to capture the geometric structure

of the signal. We are concerned about the relationship between the number of measurements

m that ensure the unique or stable recovery of xxx0 and the intrinsic geometric properties of

the set K. In many cases of interest, K behaves as if it is a low-dimensional set; thus, m
is significantly smaller than the dimension n. We now define the stability of the phaseless

operator Aℓ
Φ on the set K.

Definition 1 (Stability of Aℓ
Φ). For q ≥ 1, ℓ = 1, 2, Aℓ

Φ : Fn −→ Rm is C-stable on a set K,

if for every uuu,vvv ∈ K, ∥∥Aℓ
Φ (uuu)−Aℓ

Φ (vvv)
∥∥
q
≥ Cdℓ (uuu,vvv) . (4)

Here are the different metrics we use: For ℓ = 1, if F = C, d1 (uuu,vvv) = min
θ∈[0,2π)

∥∥uuu− eiθvvv
∥∥
2

and if F = R, d1 (uuu,vvv) = min{‖uuu− vvv‖ , ‖uuu+ vvv‖}. For ℓ = 2, d2 (uuu,vvv) = ‖uuuuuu∗ − vvvvvv∗‖F . It

can be seen that the definition of Aℓ
Φ can eliminate issues where Aℓ

Φ (uuu) = Aℓ
Φ (vvv) whenever

uuu = cvvv for some scalar c of unit modulus.

As mentioned above, the most natural way to estimate xxx0 is via an empirical ℓq (q ≥ 1)
risk minimization such that

minimize
∥∥Aℓ

Φ (xxx)− bbb
∥∥
q

subject to xxx ∈ K. (5)
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We assume that xxx0 ∈ K and set the solutions of (5) as xxxℓ⋆. The robust performance of model

(5) then refers to estimating the error between xxxℓ⋆ and xxx0.
By lifting intensity measurement, phase retrieval can be cast as a structured matrix recov-

ery problem [7]. The latter also has a wide range of applications, including face recognition,

recommender systems, linear system identification and control; see e.g., [38].

We focus on the structured matrix recovery problem from rank-one measurements, given

the linear operatorAAAΦ : Rn1×n2 −→ Rm and a corrupted vector of measurements as

bbb = AAAΦ (XXX0) + zzz, (6)

with AAAΦ (XXX0) (k) = 〈φφφa,kφφφ∗
b,k,XXX0〉. We wish to estimate XXX0 ∈ Rn1×n2 with a specific

structure, for instance, low rank or low rank plus sparse. Here, zzz is assumed to be bounded

and we can also choose symmetric rank-one measurement matrices Φ = {φφφkφφφ∗
k}mk=1. The

advantage of rank-one measurement systems over so-called Gaussian measurement systems

is that the former requires much less storage space than the latter [6, 13].

Estimating structured matrix XXX0 from measurements (6) via empirical ℓq (q ≥ 1) risk

minimization favored by a lot of algorithms:

minimize ‖AAAΦ (XXX)− bbb‖q
subject to XXX ∈ M,

(7)

where we assumeXXX0 ∈ M to capture the geometric structure of the matrix and we assume

that M is symmetric. Motivation is similar to deducing the stability of Aℓ
Φ, the robust per-

formance of model (7) requires investigating the robust injectivity of AAAΦ, which is defined

as follows.

Definition 2 (Robust Injectivity ofAAAΦ). For q ≥ 1, we sayAAAΦ : Rn1×n2 −→ Rm is C-robust

injective on a set M if for allXXX ∈ M,

‖AAAΦ (XXX)‖q ≥ C ‖XXX‖F . (8)

Then it is also interesting to ask for the measurement number that can ensure the unique

or stable recovery ofXXX0 based on the intrinsic geometric properties of M. In summary, our

goal is to address the following two specific issues:

Question I: What is the required number of measurements to ensure the stability of the

phaseless operator Aℓ
Φ or the robust injectivity ofAAAΦ related to the intrinsic geometric prop-

erties of K or M?

Question II: How to evaluate the robustness performance of models (5) and (7) using the

empirical minimization approach, regardless of the algorithms used?

Roadmap and Contributions: This paper is based on the assumption that the measure-

ment vectors φφφ,φφφa,φφφb are subgaussian random vectors that satisfy certain conditions; see

Section 2.3. To prove the stability of Aℓ
Φ, we first investigate the random embedding of the

concave lifting operator BpΦ on a specific tangent space, where BpΦ : Fn×n −→ Rm is defined

by:

BpΦ (XXX) =
1

m




|〈φφφ1φφφ
∗
1,XXX〉|p
...

|〈φφφmφφφ∗
m,XXX〉|p


 , 0<p ≤ 1. (9)
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The specific tangent space refers to the fact that we setXXX =XXXhhh,ggg := hhhggg∗ + ggghhh∗ (the tangent

space of rank-1 matrix) in (9) and focus on the estimate of

C1 ‖XXXhhh,ggg‖pF ≤ ‖BpΦ (XXXhhh,ggg)‖1 ≤ C2 ‖XXXhhh,ggg‖pF (10)

where hhh and ggg belong to set K. The stability of A1
Φ can then be derived from the random

embedding of the concave lifting operator B1/2
Φ , while the stability of A2

Φ is linked to the

operator B1
Φ.

The robust injectivity ofAAAΦ can be cast as a nonnegative empirical process. Mendelson’s

small ball method [29, 34] can provide a lower bound for it. The connection between the

geometric properties of M and the measurement number m is determined by the empirical

process in the small ball method (see Theorem 1). This is done by finding the upper bound

of the suprema of empirical chaos process

S (M) = E sup
XXX∈M

〈
m∑

k=1

φφφa,kφφφ
∗
b,k,XXX〉 (11)

for an arbitrary set M. This illuminates our utilization of the generic chaining method [40].

Talagrand’s γα-functionals are employed to quantify the geometric characteristic for the

random embedding of BpΦ and the suprema of empirical chaos process S (M). These mean

that Talagrand’s γα-functionals associated with K or M can determine the necessary mea-

surement number m to guarantee the stability of Aℓ
Φ or robust injectivity ofAAAΦ.

The main contributions of this paper can be attributed to two framework aspects. On the

one hand, our work is a unified framework applicable to arbitrary geometric sets K and M.

Talagrand’s γα-functionals can quantify the required number of measurements to guarantee

the stability of Aℓ
Φ and the robust injectivity ofAAAΦ. Some examples that can be investigated

include K being a sparse set and M being a low-rank plus sparse set with a near-optimal

measurement number. On the other hand, the robust performance of models (5) and (7) can

be achieved by ensuring the stability of Aℓ
Φ and robust injectivity of AAAΦ. By constructing

adaptive adversarial noise zzz, the recovery bounds
‖·‖q
m1/q of the models are theoretically sharp,

indicating the existence of noise zzz such that the solutions to the models satisfy

dℓ
(
xxxℓ⋆,xxx0

)
&

‖zzz‖q
m1/q

and ‖XXX⋆ −XXX0‖F &
‖zzz‖q
m1/q

.

As far as we know, our work is the first to show a connection between rank-one measure-

ments (such as phase retrieval and structured matrix recovery) and Talagrand’s γα-functionals,

as well as chaos process.

Our contributions also include two specific aspects. We first introduce the stability of the

phaseless operator A1
Φ with random measurements, which was widely discussed in classical

stable phase retrieval [2, 3, 23]. Thus, we extend the random stability of A2
Φ that first con-

sidered in [19]. The author in [37] characterized the robust injectivity of AAAΦ with rank-one

measurement by restricting the set M to at most rank-R matrices; however, the required

number of measurements they obtained is dependent on the additional factor R, making it
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unusable if M exceeds the constraint of at most rank-R. We use the empirical chaos process

to demonstrate that the factor R appears to be an artifact of the proof if M is symmetric.

Related Work: In [19], Eldar and Mendelson considered the stability of A2
Φ in the real

case in the sense of ℓ1-norm such that
∥∥A2

Φ (uuu)−A2
Φ (vvv)

∥∥
1
≥ C ‖uuu− vvv‖2 · ‖uuu+ vvv‖2

and then derived the robust performance of model (5) for the intensity case via empirical

ℓq (q ≥ 1) risk minimization with random noise. The Gaussian width was employed to

quantify the number of measurements needed for the geometric set of xxx0. [30] provided

an incoherence-based analysis of the stability of A2
Φ under random Bernoulli measurements,

following the approach and set taken by [19]. The metric above is evidently unsuitable for

complex case. Besides, Bandeira et al. [2] defined the stability of A1
Φ (uuu) in the real case in

the presence of adversarial noise under a specific estimator with metric d1 (uuu,vvv). However,

they stated that for such a metric, A2
Φ (uuu) was no longer stable in their definition. These

prompt us to establish a unified form for the stability of the phaseless operator Aℓ
Φ; see (4).

In addition, [8, 28, 32] provided the theoretical guarantee for the lifting model based on

intensity measurement with positive semidefinite (PSD) cone restriction. [25, 45] concluded

the robust performance of the amplitude model with K being specific sets, entire space, and

sparse sets, and [12, 26] concluded the intensity model. We provide a unified perspective on

the robustness performance of (5) by the stability of phaseless operator Aℓ
Φ on geometric set

K. Consequently, specific cases, for instance, sparse sets can be derived from our consistent

results, as demonstrated in Corollary 1 below.

[11, 37, 41] used Gordon’s ”escape through a mesh” theorem and the Gaussian width

to describe geometrically the robust injectivity of AAAΦ for gaussian measurement. However,

the coupling of random variables in rank-one measurement operator AAAΦ prevents the Gaus-

sian width from reflecting the number of measurements required related to the geometric set.

Talagrand’s γα-functionals then illuminate our hope of using the chaos process for the char-

acterization of geometric relationships. The chaos process is a powerful tool for processing

structured measurements in compressed sensing [31], blind deconvolution [35], low-rank

tensor recovery [24], and other related applications. The rank-one measurement has gained

significant attention in recent years [6, 13, 18, 22, 33, 37], due to its applicability.

Notation: We review all notation used in this paper in order to ease readability. A variety

of norms are used throughout this paper: Let {σk}rk=1 be a singular value sequence of rank-r

matrixXXX in descending order. ‖XXX‖∗ =
∑r

k=1 σk is the nuclear norm; ‖XXX‖F = (
∑r

k=1 σ
2
k)

1/2

is the Frobenius norm; ‖XXX‖op = σ1 is the operator norm. In addition, Γ (x) denotes the

Gamma function, cone (T ) := {tx : t ≥ 0, x ∈ T } is the conification of set T , Sℓ2 denotes

the ℓ2 unit ball of Fn, and SF denotes the Frobenius unit ball of Fn1×n2 .
Outline: The organization of the remainder of this paper is as follows: Some preliminar-

ies are placed in Second 2. The main results are presented in Section 3. In Section 4, we give

proof of the stability of the phaseless operator Aℓ
Φ and the robust performance of model (5).

In Section 5, we provide proof of the robust injectivity ofAAAΦ and the robust performance of

model (7). In Section 6, we show the recovery bounds are theoretically sharp. The Appendix

presents proofs of some auxiliary conclusions.
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2 Preliminaries

2.1 Talagrand’s Functionals

The following definition is Talagrand’s γα-functionals [40, Definition 2.7.3] and forms the

core of the geometric characteristics of this paper.

Definition 3. For a metric space (T , d), an admissible sequence of T is an increasing se-

quence (An)n≥0 of partitions of T such that for every n ≥ 1, |An| ≤ 22
n

and |A0| = 1.

We denote by An (t) the unique element of An that contains t. For α ≥ 1, define the γα-

functional by

γα (T , d) = inf
T

sup
t∈T

∞∑

n=0

2n/α∆(An (t)) ,

where the infimum is taken with respect to all admissible sequences of T and ∆(An (t))
denotes the diameter of An (t) for d.

We require some properties of γα-functionals. The first is that they can be bounded in

terms of covering numbers N (T , d, u) by the well-known Dudley integral [40],

γα (T , d) ≤ C

∫ diam(T )

0

(logN (T , d, u))1/α du. (12)

This type of entropy integral was introduced by Dudley [17] to bound the suprema of gaus-

sian process. In addition, Sudakov’s minoration inequality [40, Exercise 2.7.8] provides a

lower bound for γ2 (T , d),

γ2 (T , d) ≥ cu
√
logN (T , d, u). (13)

The following proposition presents the subadditivity of γα-functionals in vector space. Its

proof can be found in [35, Lemma 2.1].

Proposition 1 (Subadditivity of γα-Functionals). Let (T , d) be an arbitrary vector space.

Suppose T1, T2 ⊂ T . Then

γα (T1 + T2, d) . γα (T1, d) + γα (T2, d) .

2.2 Properties of ψs-Norm

Recall that for s ≥ 1, the ψs-norm of a random variable X is defined as

‖X‖ψs
:= inf{t > 0 : E exp (|X|s /ts) ≤ 2}. (14)

In particular, random variable X is called subgaussian if ‖X‖ψ2
< ∞ and sub-exponential

if ‖X‖ψ1
<∞. We present several useful properties of ψs-norm.

Proposition 2 (Properties of ψs-Norm). Let X be a random variable and s ≥ 1.
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(a) ‖Xq‖ψs
= ‖X‖qψqs

for all q ≥ 1. In particular, ‖X2‖ψ1
= ‖X‖2ψ2

;

(b) ‖X‖ψs
. ‖X‖ψl

for all l ≥ s;

(c) (E |X|q)1/q . q
1
s ‖X‖ψs

for all q ≥ 1.

Proof. See Appendix A.

In particular, property (a) provides us with the relationship of the ψs-norm between ran-

dom variables X and Xq. Property (b) implies that for s ≥ 1, all random variables with

finite ψs-norm are also sub-exponential random variables. Property (c) tells us for q ≥ 1, all

q-th moments of X exist whenever ‖X‖ψs
is finite.

2.3 Subgaussian Measurement

Throughout this paper, we will focus on measurement systems Φ = {φφφk}mk=1 in phase re-

trieval and Φ = {φφφa,kφφφ∗b,k}mk=1 in structured matrix recovery. Here φφφk,φφφa,k and φφφb,k are given

as independent copies of a random vector φφφ, whose entries are assumed to be i.i.d. subgaus-

sian random variables φ with ψ2-norm K, expectation E [φ] = 0 and variance E |φ|2 = 1.

It should be noted that by Proposition 2.(c) and E |φ|2 = 1, we have K & 1. To avoid

some ambiguities, we may need an additional assumption in phase retrieval that E |φ|4>1.

For instance, in the real case of i.i.d. Rademacher random variables, it is impossible to dis-

tinguish between vector xxx0 = eee1 and vector x̃xx0 = eee2. Note that in this scenario we have

E |φ|2 = E |φ|4 = 1. To simplify the description, we provide the following definition.

Definition 4. We call a random vector φφφ suitable K-subgaussian if its entries φ are i.i.d.

subgaussian with ψ2-normK, E [φ] = 0 and E |φ|2 = 1. Besides, φφφ is called suitable (K, β)-
subgaussian if its entries φ are i.i.d. subgaussian with ψ2-norm K, E [φ] = 0, E |φ|2 = 1 and

E |φ|4 ≥ 1 + β for some β>0.

Furthermore, the following two lemmas provide upper bounds for high-order moments.

Lemma 1. Let q ≥ 1 and φφφ ∈ Fn be an suitable K-subgaussian random vector. Then for

anyXXX ∈ Fn×n,

(E |φφφ∗XXXφφφ|q)1/q .
(
qK2

)
· ‖XXX‖F + ‖XXX‖∗ . (15)

Proof. See Appendix B.1.

Lemma 2. Let q ≥ 1 and φφφa ∈ Fn1 ,φφφb ∈ Fn2 be independent suitable K-subgaussian

random vectors. Then for anyXXX ∈ F
n1×n2 ,

(E |φφφ∗
aXXXφφφb|q)1/q .

(
qK2

)
· ‖XXX‖F . (16)

Proof. See Appendix B.2.
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2.4 Small Ball Method

Mendelson’s small ball method is a powerful method in signal processing and machine learn-

ing as it can provide a lower bound for nonnegative empirical processes. We present the

following theorem without providing a proof here, as we found other versions comparable

to ours in [15, 41].

Theorem 1. Let F be a class of functions from Rn into R and {φφφk}mk=1 be independent

copies of a random vector φφφ in Fn. Consider the marginal tail function

Qξ (F ;φφφ) = inf
f∈F

P (|f (φφφ)| ≥ ξ) (17)

and suprema of empirical process

Rm (F ;φφφ) = E sup
f∈F

(
1

m

m∑

k=1

εkf (φφφk)

)
, (18)

where {εk}mk=1 is a Rademacher sequence independent of everything else.

Then for any q ≥ 1, ξ>0 and t>0, with probability exceeding 1− exp (−2t2),

inf
f∈F

(
1

m

m∑

k=1

|f (φφφk)|q
)1/q

≥ ξQ2ξ (F ;φφφ)− 2Rm (F ;φφφ)− ξt√
m
. (19)

3 Main Results

3.1 Stability of Phaseless Operator

We first present the stability results of the phaseless operator Aℓ
Φ for both amplitude and

intensity cases on an arbitrary geometric set K. The outcome is the robust performance of

phase retrieval within the framework of empirical risk minimization.

Theorem 2. Let ℓ = 1, 2 and q ≥ 1. Suppose Φ = {φφφk}mk=1 are i.i.d. suitable (K, β)-
subgaussian random vectors and measurement number

m ≥ Lℓ · γ22 (cone (K) ∩ Sℓ2) . (20)

Then with probability exceeding 1−O (e−cℓm): For all uuu,vvv ∈ K,

∥∥Aℓ
Φ (uuu)−Aℓ

Φ (vvv)
∥∥
q
≥ Cℓm

1/qdℓ (uuu,vvv) . (21)

Besides, the model solutions xxxℓ⋆ to (5) satisfy

dℓ
(
xxxℓ⋆,xxx0

)
≤ 2

Cℓ

‖zzz‖q
m1/q

. (22)

Here, L1, L2, C1, C2, c1 and c2 are positive constants dependent only on K and β.
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Remark 1. [19] demonstrated the stability of A2
Φ in the real case and in the sense of ℓ1-norm

via an empirical process method. Our result is unified for both A1
Φ and A2

Φ, both real and

complex cases, in the sense of ℓq-norm (q ≥ 1) on an arbitrary set K. The proof only involves

the random embedding of concave lifting operator BpΦ.

Remark 2. The geometric characterization in the aforementioned theorem involves Tala-

grand’s γ2-functional, which is distinct from Gaussian width in [19]. Nevertheless, these

two are equivalent in R
n [42, Theorem 8.6.1], but the former is more convenient to represent

in the complex case.

Subsequently, we investigate some special cases of K in Theorem 2 and determine

the required measurement number m. The first case involves the entire space K = F
n.

[9, 43, 46] focused on employing ℓ2-minimization to solve model (5), whereas [8, 16] uti-

lized ℓ1-minimization. The second case is that K is a sparse set, and then model (5) can

be attributed to the sparse phase retrieval. When considering algorithms, the required mea-

surement number is quadratic scaling in sparsity [4, 5]. The following corollary indicates

that m = O (s logn) when only considering the robust performance of model (5); it is also

consistent with the results in [19, 25, 26, 45]. The final case is that K is a finite set in Fn.

Corollary 1. The required number of measurements m in Theorem 2 is:

I. K = Fn, then m &
K,β

n.

II. K = Sn,s := {xxx ∈ Fn : ‖xxx‖0 ≤ s} , then m &
K,β

s log (en/s).

III. K is a finite set that |K|<∞, then m &
K,β

log |K|.

3.2 Robust Injectivity of Structured Matrix Recovery

This subsection presents the robust injectivity results of AAAΦ on an arbitrary matrix set M
and deduces the robust performance of structured matrix recovery within the framework of

empirical risk minimization.

Theorem 3. Let q ≥ 1. Suppose Φ = {φφφa,kφφφ∗b,k}mk=1 where φφφa,k,φφφb,k are independent copies

of a suitable K-subgaussian random vector and measurement number

m & K12 · γ22 (cone (M) ∩ SF , ‖·‖F ) +K10 · γ1
(

cone (M) ∩ SF , ‖·‖op
)
. (23)

Then with probability exceeding 1− e−O( m
K8 ): For allXXX ∈ M,

‖AAAΦ (XXX)‖q &
m1/q

K8
· ‖XXX‖F . (24)

In addition, the model solutionXXX⋆ to (7) satisfies

‖XXX⋆ −XXX0‖F . K8 ·
‖zzz‖q
m1/q

. (25)

9



Remark 3. The above theorem actually applies to symmetric rank-one measurements as

well (φφφa,k = φφφb,k are i.i.d. suitable (K, β)-subgaussian ). Therefore, we can also derive the

intensity case (ℓ = 2) in Theorem 2 using a slightly different measurement number, though

it involves γ1-functional. The statement is not reiterated here.

Remark 4. As shown in [37, Lemma 2.12], the author characterizes the robust injectivity of

AAAΦ by restricting the set M to at most rank-R matrices, provided

m &
K

R · γ22 (cone (M) ∩ SF , ‖·‖F ) + γ1

(
cone (M) ∩ SF , ‖·‖op

)
. (26)

The estimate above is far from optimal and unusable, as the additional factor R appears

to be an artifact of the proof. The empirical chaos process can aid in resolving this issue

and remove this artifact, and in many cases we can acquire the near-optimal measurement

number.

We investigate some special cases of M in Theorem 3. The first case is all at most rank-R
matrices in Fn1×n2 :

SR =
{
XXX ∈ F

n1×n2 : rank (XXX) ≤ R
}
. (27)

Furthermore, the low rank plus sparse case

Srs1,s2 =
{
XXX ∈ F

n1×n2 : rank (XXX) ≤ r, ‖XXX‖2,0 ≤ s1, ‖XXX‖0,2 ≤ s2

}
, (28)

where ‖·‖2,0 and ‖·‖0,2 count the number of non-zero rows and columns, has been extensively

studied in the past few years [18, 21, 36, 37]. We offer the following corollary.

Corollary 2. The measurement number in Theorem 3 we require are:

I. M = SR, then m &
K

R (n1 + n2) .

II. M = Srs1,s2 , then m &
K

r (s1 + s2)max
{
log
(
en1

s1

)
, log

(
en2

s2

)}
.

3.3 Sharp Recovery Bound

We show that the recovery bounds
‖zzz‖q
m1/q in Theroem 2 and Theorem 3 are both sharp. We

present the following theorems.

Theorem 4. Let ℓ = 1, 2 and 1 ≤ q<∞ and suppose Φ = {φφφk}mk=1 are independent copies

of a suitable K-subgaussian random vector. For any fixed xxx0 ∈ Fn, there exists a class of

adversarial noise zzz such that with probability exceeding 1 − 1/m, the solutions xxxℓ⋆ to (5)

satisfy

dℓ
(
xxxℓ⋆,xxx0

)
&

‖zzz‖q(√
qK
)ℓ ·m1/q

. (29)
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Remark 5. [26, 45] provided the sharp recovery bound
‖zzz‖2√
m

for ℓ2-minimization, but extra

assumptions were needed for the measurement number and signal xxx0. Furthermore, their

method is not applicable for ℓq-minimization except for p = 2, due to the use of gradient de-

scent methods. Our strategy successfully tackles ℓq-minimization by constructing adversarial

noise zzz.

Theorem 5. Let 1 ≤ q<∞ and suppose Φ = {φφφa,kφφφ∗
b,k}mk=1 where φφφa,k,φφφb,k are independent

copies of a suitable K-subgaussian random vector. For any fixed XXX0 ∈ Rn1×n2 , there exists

a class of adversarial noise zzz such that with probability exceeding 1− 1/m, the solutionXXX⋆

to (7) satisfies

‖XXX⋆ −XXX0‖F &
‖zzz‖q

(qK2) ·m1/q
. (30)

Remark 6. The aforementioned theorem can be expanded to include symmetric rank-one

measurements, demonstrating that the sharpness of the recovery bounds stated in [28, Theo-

rem 1.4, Corollary 2.1].

4 Proofs of Stability Results

We first demonstrate the random embedding of the concave lifting operator BpΦ with 0<p ≤
1. The stability of phaseless operator A1

Φ then is based on operator B1/2
Φ , and we establish a

relationship between A2
Φ and B1

Φ. The robust performance of model (5) can be derived from

the stability of Aℓ
Φ. Our unified results allow us to identify several instances of K.

4.1 Random Embedding of Concave Lifting Operator Bp

Φ

Theorem 6. Let 0<p ≤ 1 and K1,K2 ⊂ Fn. Suppose Φ = {φφφk}mk=1 are i.i.d. suitable

(K, β)-subgaussian random vectors and the measurement number satisfies

m ≥ C1max{γ22 (cone (K1) ∩ Sℓ2 , ℓ2) , γ
2
2 (cone (K2) ∩ Sℓ2 , ℓ2)}.

Then the following holds with probability exceeding 1−O
(
e−C2m

)
: LetXXXuuu,vvv := uuuuuu∗−vvvvvv∗,

for all uuu ∈ K1, vvv ∈ K2, operator BpΦ satisfies

C3 ‖XXXuuu,vvv‖pF ≤ ‖BpΦ (XXXuuu,vvv)‖1 ≤ C4 ‖XXXuuu,vvv‖pF . (31)

Here, C1, C2, C3 and C4 are positive absolute constants dependent only on K, β and p.

Proof. Step 1: Moment Argument. For fixeduuu ∈ K1, vvv ∈ K2, letΨΨΨuuu,vvv :=
XXXuuu,vvv

d2(uuu,vvv)
= XXXuuu,vvv

‖XXXuuu,vvv‖F
and set random variable

Xuuu,vvv = |φφφ∗ΨΨΨuuu,vvvφφφ| .

11



Since rank (ΨΨΨuuu,vvv) ≤ 2 and ‖ΨΨΨuuu,vvv‖F = 1, using the eigenvalue decomposition of ΨΨΨuuu,vvv, we

can assume that

ΨΨΨuuu,vvv = λ1xxxxxx
∗ + λ2yyyyyy

∗,

where xxx,yyy ∈ Fn satisfy ‖xxx‖2 = ‖yyy‖2 = 1, 〈xxx,yyy〉 = 0 and λ1, λ2 ∈ R satisfy λ21 + λ22 = 1.

On the one hand, we can obtain that

EXp
uuu,vvv = E

∣∣λ1 |φφφ∗xxx|2 + λ2 |φφφ∗yyy|2
∣∣p

≤
∣∣|λ1| · E |φφφ∗xxx|2 + |λ2| · E |φφφ∗yyy|2

∣∣p

= ||λ1|+ |λ2||p ≤ 2,

(32)

where in the second line we use Jensen’s inequality. On the other hand, by Hölder’s inequal-

ity,

EX2
uuu,vvv ≤

(
EXp

uuu,vvv

) 2
4−p ·

(
EX4

uuu,vvv

) 2−p
4−p .

Thus we have

EXp
uuu,vvv ≥

(
EX2

uuu,vvv

) 4−p
2

(
EX4

uuu,vvv

) 2−p
2

. (33)

By direct calculation, we can get that

EX2
uuu,vvv = E |φφφ∗ΨΨΨuuu,vvvφφφ|2 = E

(
λ1 |φφφ∗xxx|2 + λ2 |φφφ∗yyy|2

)2

= λ21E |φφφ∗xxx|4 + λ22E |φφφ∗yyy|4 + 2λ1λ2E |φφφ∗xxx|2 E |φφφ∗yyy|2

= (β + 1)
(
λ21 + λ22

)
+ 2λ1λ2

≥ β
(
λ21 + λ22

)
= β>0.

(34)

By Lemma 1, we also have

EX4
uuu,vvv .

(
K2 + ‖ΨΨΨuuu,vvv‖∗

)4
. K8, (35)

where we use the fact that rank (ΨΨΨuuu,vvv) ≤ 2 and K & 1. Therefore, from (34) and (35), it can

be concluded that

EXp
uuu,vvv &

β
4−p
2

K4(2−p)>0. (36)

Step 2: Fixed Point Argument. We claim that Xp
uuu,vvv have finite ψ1-norm. We have that

‖Xuuu,vvv‖ψ1
=
∥∥λ1 |φφφ∗xxx|2 + λ2 |φφφ∗yyy|2

∥∥
ψ1

≤ |λ1| ·
∥∥|φφφ∗xxx|2

∥∥
ψ1

+ |λ2| ·
∥∥|φφφ∗yyy|2

∥∥
ψ1

= |λ1| · ‖φφφ∗xxx‖ψ2
+ |λ2| · ‖φφφ∗yyy‖ψ2

. K.

12



Proposition 2.(a) implies that
∥∥Xp

uuu,vvv

∥∥
ψ1/p

= ‖Xuuu,vvv‖pψ1
. Therefore, by Proposition 2.(b), Xp

uuu,vvv

is sub-exponential with ψ1-norm:
∥∥Xp

uuu,vvv

∥∥
ψ1

.
∥∥Xp

uuu,vvv

∥∥
ψ1/p

. Kp . K.

Bernstein-type inequality in [42] then yields that for a fixed pair (uuu,vvv) and any ε1>0,

β
4−p
2

K4(2−p) − ε1 .
1

m

m∑

k=1

Xp
uuu,vvv ≤ 2 + ε1 (37)

with probability exceeding 1− 4 exp
(
−cmmin

{
ε21
K2 ,

ε1
K

})
.

Step 3: Tangent Space Conversion. We set hhh = uuu + vvv ∈ K1 + K2 and ggg = uuu − vvv ∈
K1 −K2. A simple calculation yields

ΨΨΨuuu,vvv =
uuuuuu∗ − vvvvvv∗

d2 (uuu,vvv)
=

hhhggg∗ + ggghhh∗

‖hhhggg∗ + ggghhh∗‖F
:= Ψ̃ΨΨhhh,ggg. (38)

By homogeneity, we can assume that hhh,ggg ∈ Sℓ2 . Thus we have

hhh ∈ cone (K1 +K2) ∩ Sℓ2 := K+ and ggg ∈ cone (K1 −K2) ∩ Sℓ2 := K−.

Let K+
ǫ and K−

ǫ be the ǫ-net of K+ and K−. Then for all hhh ∈ K+, ggg ∈ K−, there exist

hhh0 ∈ K+
ǫ and ggg0 ∈ K−

ǫ such that ‖hhh− hhh0‖2 ≤ ǫ, ‖ggg − ggg0‖2 ≤ ǫ. We then claim that

∥∥∥Ψ̃ΨΨhhh,ggg − Ψ̃ΨΨhhh0,ggg0

∥∥∥
F
≤ 16ǫ. (39)

Firstly,

‖hhhggg∗ + ggghhh∗‖2F = 2 + hhh∗ggghhh∗ggg + ggg∗hhhggg∗hhh = 2 + 2 |hhh∗ggg|2 ∈ [2, 4].

Then

‖hhhggg∗ + ggghhh∗ − hhh0ggg
∗
0 − ggg0hhh

∗
0‖F

= ‖hhh (ggg − ggg0)
∗ + ggg (hhh− hhh0)

∗ + (hhh− hhh0)ggg
∗
0 + (ggg + ggg0)hhh

∗
0‖F

≤ 4ǫ.

Finally, we have that
∥∥∥Ψ̃ΨΨhhh,ggg − Ψ̃ΨΨhhh0,ggg0

∥∥∥
F

=
‖(hhhggg∗ + ggghhh∗) · ‖hhh0ggg∗0 + ggg0hhh

∗
0‖F − (hhh0ggg

∗
0 + ggg0hhh

∗
0) · ‖hhhggg∗ + ggghhh∗‖F‖F

‖hhhggg∗ + ggghhh∗‖F · ‖hhh0ggg∗0 + ggg0hhh∗0‖F
≤
∣∣ ‖hhhggg∗ + ggghhh∗‖F − ‖hhh0ggg∗0 + ggg0hhh

∗
0‖F

∣∣ · ‖hhh0ggg∗0 + ggg0hhh
∗
0‖F

+ ‖hhhggg∗ + ggghhh∗ − hhh0ggg
∗
0 − ggg0hhh

∗
0‖F · ‖hhhggg∗ + ggghhh∗‖F

≤ ‖hhhggg∗ + ggghhh∗ − hhh0ggg
∗
0 − ggg0hhh

∗
0‖F · (‖hhhggg∗ + ggghhh∗‖F + ‖hhhggg∗ + ggghhh∗‖F )

≤ 4ǫ · 4 ≤ 16ǫ.
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Subsequently, as Ψ̃ΨΨhhh,ggg − Ψ̃ΨΨhhh0,ggg0 is at most rank-4, similar to the decomposition in Step 1, we

can assume

Ψ̃ΨΨhhh,ggg − Ψ̃ΨΨhhh0,ggg0∥∥∥Ψ̃ΨΨhhh,ggg − Ψ̃ΨΨhhh0,ggg0

∥∥∥
F

=
4∑

k=1

λkxxxkxxx
∗
k,

where xxxk ∈ Fn satisfy ‖xxxk‖2 = 1, 〈xxxi,xxxj〉 = δi,j and λk ∈ R satisfy
∑4

k=1 λ
2
k = 1. Then

similar to the argument in Step 2,

E

∣∣∣∣∣∣
〈φφφφφφ∗,

Ψ̃ΨΨhhh,ggg − Ψ̃ΨΨhhh0,ggg0∥∥∥Ψ̃ΨΨhhh,ggg − Ψ̃ΨΨhhh0,ggg0

∥∥∥
F

〉

∣∣∣∣∣∣

p

≤
∣∣∣∣∣

4∑

k=1

|λk| · E |φφφ∗xxxk|2
∣∣∣∣∣

p

=

∣∣∣∣∣

4∑

k=1

|λk|
∣∣∣∣∣

p

≤ 4. (40)

Then by Bernstein-type inequality,

1

m

m∑

k=1

∣∣∣〈φφφφφφ∗, Ψ̃ΨΨhhh,ggg − Ψ̃ΨΨhhh0,ggg0〉
∣∣∣
p

≤ (4 + ǫ2) ·
∥∥∥Ψ̃ΨΨhhh,ggg − Ψ̃ΨΨhhh0,ggg0

∥∥∥
F
≤ (4 + ǫ2) · 16ǫ (41)

with probability exceeding 1− 2 exp
(
−cmmin

{
ε22
K2 ,

ε2
K

})
.

Step 4: Uniform Argument. To achieve consistent result, we choose ε1, ε2 small enough

(ε1, ε1 ≤ K) and ε1 = ǫ = O
(

β
4−p
2

2K4(2−p)

)
. By (37) and (41), for any uuu ∈ K1, vvv ∈ K2:

‖BpΦ (ΨΨΨuuu,vvv)‖1 =
1

m

m∑

k=1

∣∣∣〈φφφφφφ∗, Ψ̃ΨΨhhh,ggg〉
∣∣∣
p

≥ 1

m

m∑

k=1

∣∣∣〈φφφφφφ∗, Ψ̃ΨΨhhh0,ggg0〉
∣∣∣
p

− 1

m

m∑

k=1

∣∣∣〈φφφφφφ∗, Ψ̃ΨΨhhh,ggg − Ψ̃ΨΨhhh0,ggg0〉
∣∣∣
p

&

(
β

4−p
2

K4(2−p) − ε1

)
− (4 + ε2) · 10ǫ &

β
4−p
2

K4(2−p)

and

‖BpΦ (ΨΨΨuuu,vvv)‖1 ≤
1

m

m∑

k=1

∣∣∣〈φφφφφφ∗, Ψ̃ΨΨhhh0,ggg0〉
∣∣∣
p

+
1

m

m∑

k=1

∣∣∣〈φφφφφφ∗, Ψ̃ΨΨhhh,ggg − Ψ̃ΨΨhhh0,ggg0〉
∣∣∣
p

≤ (2− ε1) + (4 + ε2) · 10ǫ ≤ 4.

By Sudakov’s minoration inequality (13) and the subadditivity of γ2-functional in Proposi-

tion 1,

logN
(
K+, ℓ2, ǫ

)
. ǫ−2γ22

(
K+, ℓ2

)

. ǫ−2max
{
γ22 (cone (K1) ∩ Sℓ2 , ℓ2) , γ

2
2 (cone (K2) ∩ Sℓ2, ℓ2)

}
.

(42)
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Similarly, we have

logN
(
K−, ℓ2, ǫ

)
. ǫ−2max

{
γ22 (cone (K1) ∩ Sℓ2 , ℓ2) , γ

2
2 (cone (K2) ∩ Sℓ2 , ℓ2)

}
.

Thus, provided m obeys condition of the theorem, the successful probability exceeding

1−
[
4 exp

(
−cmε21/K2

)
+ 2 exp

(
−cmε22/K2

)]
· N

(
K+, ℓ2, ǫ

)
· N

(
K−, ℓ2, ǫ

)

≥ 1− 6 exp
(
−cmε21/K2 + logN

(
K+, ℓ2, ǫ

)
+ logN

(
K−, ℓ2, ǫ

))

≥ 1−O
(
e−cmε

2
1/K

2
)
.

4.2 Proof of Theorem 2

The distance between xxxℓ⋆ and xxx0 in model (5) can be bounded through the following propo-

sition, which indicates that we only need to determine the stability condition (4) for Aℓ
Φ.

Proposition 3. If Aℓ
Φ is C-stable with respect to ℓq-norm, then we have

dℓ
(
xxxℓ⋆,xxx0

)
≤ 2 ‖zzz‖q /C. (43)

Proof. The optimality of xxxℓ⋆ yields

0 ≥
∥∥Aℓ

Φ

(
xxxℓ⋆
)
− bbb
∥∥
q
−
∥∥Aℓ

Φ (xxx0)− bbb
∥∥
q

=
∥∥Aℓ

Φ

(
xxxℓ⋆
)
−Aℓ

Φ (xxx0)− zzz
∥∥
q
− ‖zzz‖q

≥
∥∥Aℓ

Φ

(
xxxℓ⋆
)
−Aℓ

Φ (xxx0)
∥∥
q
− 2 ‖zzz‖q

≥ Cdℓ
(
xxxℓ⋆,xxx0

)
− 2 ‖zzz‖q .

Case I: Intensity Measurement. We set p = 1 and K1 = K2 = K in Theorem 6, then

with certain probability and provided m &
K,β

γ22 (cone (K) ∩ Sℓ2 , ℓ2) , we have

‖A2
Φ (uuu)−A2

Φ (vvv)‖q
m1/q

≥ ‖A2
Φ (uuu)−A2

Φ (vvv)‖1
m

=
1

m

m∑

k=1

|〈φφφφφφ∗,uuuuuu∗ − vvvvvv∗〉|

=
∥∥B1

Φ (XXXuuu,vvv)
∥∥
1
& d2 (uuu,vvv) .

Case II: Amplitude Measurement. We first declare the following three facts.

Fact 1. The first one establishes the correlation between d2 (uuu,vvv) and d1 (uuu,vvv):

2d2 (uuu,vvv) ≥ (‖uuu‖2 + ‖vvv‖2) · d1 (uuu,vvv) . (44)
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Indeed, we choose θ := Phase (uuu∗vvv) and set v̄vv = exp (iθ)vvv, then 〈uuu, v̄vv〉 ≥ 0 and

d21 (uuu,vvv) = d21 (uuu, v̄vv) = ‖uuu‖22 + ‖v̄vv‖22 − 2〈uuu, v̄vv〉.
We have that

d22 (uuu,vvv) = d22 (uuu, v̄vv)

= ‖uuuuuu∗ − v̄vvv̄vv∗‖2F = ‖uuu‖42 + ‖v̄vv‖42 − 2 |〈uuu, v̄vv〉|2

=

(√
‖uuu‖42 + ‖v̄vv‖42 −

√
2〈uuu, v̄vv〉

)
·
(√

‖uuu‖42 + ‖v̄vv‖42 +
√
2〈uuu, v̄vv〉

)

≥ 1

2

(
‖uuu‖22 + ‖v̄vv‖22 − 2〈uuu, v̄vv〉

)
·
(
‖uuu‖22 + ‖v̄vv‖22 + 2〈uuu, v̄vv〉

)

≥ 1

4
d21 (uuu,vvv) · (‖uuu‖2 + ‖vvv‖2)2 .

Fact 2. Furthermore, we set p = 1/2, K1 = K and K2 = ∅ in Theorem 6, then with certain

probability and if m &
K,β

(cone (K) ∩ Sℓ2 , ℓ2), we have

1

m

m∑

k=1

|〈φφφ,uuu〉| =
∥∥∥B1/2

Φ (uuuuuu∗)
∥∥∥
1
. ‖uuu‖2 , for all uuu ∈ K. (45)

Fact 3. We then set p = 1/2, K1 = K2 = K in Theorem 6, then with certain probability and

if m &
K,β

γ22 (cone (K) ∩ Sℓ2 , ℓ2),

1

m

m∑

k=1

|〈φφφφφφ∗,uuuuuu∗ − vvvvvv∗〉|1/2 =
∥∥∥B1/2

Φ (XXXuuu,vvv)
∥∥∥
1
& d

1/2
2 (uuu,vvv) , for all uuu,vvv ∈ K. (46)

Finally, provided m &
K,β

γ22 (cone (K) ∩ Sℓ2 , ℓ2), we have that

‖A1
Φ (uuu)−A1

Φ (vvv)‖q
m1/q

≥ ‖A1
Φ (uuu)−A1

Φ (vvv)‖1
m

=
1

m

m∑

k=1

∣∣ |〈φφφk,uuu〉| − |〈φφφk, vvv〉|
∣∣

≥

(
1
m

∑m
k=1

√∣∣|〈φφφk,uuu〉|2 − |〈φφφk, vvv〉|2
∣∣
)2

1
m

∑m
k=1 (|〈φφφk,uuu〉|+ |〈φφφk, vvv〉|)

=

∥∥∥B1/2
Φ (XXXuuu,vvv)

∥∥∥
2

1∥∥∥B1/2
Φ (uuuuuu∗)

∥∥∥
1
+
∥∥∥B1/2

Φ (vvvvvv∗)
∥∥∥
1

&
d2 (uuu,vvv)

‖uuu‖2 + ‖uuu‖2
≥ 1

2
d1 (uuu,vvv) .

We used the Cauchy-Schwarz inequality for the first two inequalities, Fact 2 and Fact 3 for

the third inequality, and Fact 1 for the final inequality.
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4.3 Proof of Corollary 1

We only need to determine γ2-functional for various K.

Case I. If K = F
n, then cone (Fn) ∩ Sℓ2 = Sℓ2 . By N (Sℓ2 , ℓ2, u) ≤

(
1 + 2

u

)n
[42, Corollary

4.2.13] and Dudley integral in (12), we have

γ2 (Sℓ2 , ℓ2) ≤ C

∫ 1

0

√
logN (Sℓ2 , ℓ2, u)du

= C
√
n

∫ 1

0

√
log (1 + 2/u) du ≤ C̃

√
n.

Case II. If K = Sn,s, let Dn,s = {xxx ∈ Fn : ‖xxx‖2 = 1, ‖xxx‖0 ≤ s}. The volumetric argument

yields

N (Dn,s, ℓ2, u) ≤
s∑

k=1

(
n

k

)
·
(
1 +

2

u

)s
≤
(en
s

)s
·
(
1 +

2

u

)s
,

so that

γ2 (cone (Kn,s) ∩ Sℓ2 , ℓ2) = γ2 (Dn,s, ℓ2)

≤ C
√
s

(√
log (en/s) +

∫ 1

0

√
log (1 + 2/u)du

)
= C̃

√
s log (en/s).

Case III. If |K|<∞, we can restrict n to satisfy that |An| ≤ 22
n ≤ |K|. Thus 2n ≤ log |K|.

By the definition of γ2-functional,

γ2 (cone (K) ∩ Sℓ2 , ℓ2) ≤ diam (cone (K) ∩ Sℓ2) ·
log log|K|∑

n=0

2n/2

≤
log log|K|∑

n=0

2n/2 .
√
log |K|.

5 Proofs of Robust Injectivity Results

We first investigate the suprema of chaos process and its empirical form with subgaussian

random vectors. Combining this with the small ball method, we characterize the robust

injectivity of AAAΦ and the robust performance of model (7) on an arbitrary matrix set M.

Some special cases, such as M being a low rank plus sparse matrix set can be investigated.

5.1 Suprema of Chaos Process

Let φφφa,φφφb be independent suitable K-subgaussian random vectors and M be a matrix set,

we will first found the upper bound for the quantity

S (M) = E sup
XXX∈M

〈φφφaφφφ∗
b ,XXX〉.
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Besides, let φφφa,k,φφφb,k (k = 1, · · · , m) be independent suitable K-subgaussian random vec-

tors, then we consider the empirical form for S (M):

S (M) = E sup
XXX∈M

〈
m∑

k=1

φφφa,kφφφ
∗
b,k,XXX〉.

We would like in fact to understand the values of S (M) and S (M) as function of the

geometry of M.

Theorem 7. For a symmetric matrix set M, we have

S (M) . K2 · γ2 (M, ‖·‖F ) +K2 · γ1
(
M, ‖·‖op

)
(47)

and

S (M) .
√
mK2 · γ2 (M, ‖·‖F ) +K2 · γ1

(
M, ‖·‖op

)
. (48)

Remark 7. Theorem 7 is also suitable for symmetric measurement such that φφφa = φφφb.

Proof. Our proof is based on [40, Theorem 15.1.4].

Step1: Preliminary. We denote by ∆1 (A) and ∆2 (A) the diameter of the set A for norm

‖·‖op and ‖·‖F , respectively. We then consider an admissible sequence (Bn)n≥0 such that

∑

n≥0

2n∆1 (Bn (XXX)) ≤ 2γ1

(
M, ‖·‖op

)
, ∀XXX ∈ M (49)

and an admissible sequence (Cn)n≥0 such that

∑

n≥0

2n/2∆2 (Cn (XXX)) ≤ 2γ2 (M, ‖·‖F ) , ∀XXX ∈ M.

HereBn (XXX) is the unique element of (Bn) that containsXXX (etc.). The definition of partitions

An of M is as follows: we set A0 = {M}, and for n ≥ 1, we define An as the partition

generated by Bn−1 and Cn−1, i.e., the partition that consists of the sets B ∩ C for B ∈ Bn−1

and C ∈ Cn−1. Thus |An| ≤ |Bn−1| · |Cn−1| ≤ 22
n

and the sequence (An)n≥0 is admissible.

Step2: Chaining Method. We construct a subset Mn of M by taking exactly one point

in each set A of An and thus |Mn| ≤ 22
n
. For anyXXX ∈ M, we consider πn (XXX) ∈ Mn such

that πn (XXX) are successive approximations of XXX . We assume that M0 consists of a single

element XXX0, which means that π0 (XXX) = XXX0. Let random variable YXXX = 〈φφφaφφφ∗
b ,XXX〉, then

we have that

YXXX − YXXX0 =
∑

n≥1

(
Yπn(XXX) − Yπn−1(XXX)

)
.
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By Hanson-Wright inequality, there exists numerical constant c>0 and for v>0

P
(∣∣Yπn(XXX) − Yπn−1(XXX)

∣∣ ≥ v
)

≤ 2 exp

(
−cmin

{
v2

K4
∥∥Yπn(XXX) − Yπn−1(XXX)

∥∥2
F

,
v

K2
∥∥Yπn(XXX) − Yπn−1(XXX)

∥∥
op

})
.

(50)

We reformulate the above inequality as follows: when u ≥ 0, we have

P

(∣∣Yπn(XXX) − Yπn−1(XXX)

∣∣ ≥ u ·K22n/2
∥∥Yπn(XXX) − Yπn−1(XXX)

∥∥
F
/
√
c+ u2 ·K22n

∥∥Yπn(XXX) − Yπn−1(XXX)

∥∥
op
/c
)

≤ 2 exp
(
−u22n−1

)
.

We define the event Ωu,n by

∣∣Yπn(XXX) − Yπn−1(XXX)

∣∣ ≤ u ·K22n/2
∥∥Yπn(XXX) − Yπn−1(XXX)

∥∥
F
/
√
c

+ u2 ·K22n
∥∥Yπn(XXX) − Yπn−1(XXX)

∥∥
op
/c, ∀XXX ∈ M.

The number of possible pairs (πn (XXX) , πn−1 (XXX)) is bounded by

|Mn| · |Mn−1| ≤ 22
n+1

.

Thus, we have

P
(
Ωcu,n

)
≤ 2 · 22n+1

exp
(
−u2 · 2n−1

)
.

We define Ωu = ∩n≥1Ωu,n. Then

P (u) = P (Ωcu) ≤
∑

n≥1

P
(
Ωcu,n

)
≤
∑

n≥1

2 · 22n+1

exp
(
−u2 · 2n−1

)

≤
∑

n≥1

2 · 22n+1

exp
(
−u2/2− 2n+1

)

≤
∑

n≥1

2 ·
(
2

e

)2n+1

exp
(
−u2/2

)
≤ 4 exp

(
−u2/2

)
,

where in the second line we use u2 · 2n−1 ≥ u2/2 + 2n+1 for any n ≥ 1, u>0. Thus when

Ωu occurs, we have

|YXXX − YXXX0 | ≤u ·K2
∑

n≥1

2n/2
∥∥Yπn(XXX) − Yπn−1(XXX)

∥∥
F
/
√
c

+ u2 ·K2
∑

n≥1

2n
∥∥Yπn(XXX) − Yπn−1(XXX)

∥∥
op
/c

:= u ·K2S1 + u2 ·K2S2,
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so that

P

(
sup
XXX∈M

|YXXX − YXXX0 | ≥ 2max
{
u ·K2S1, u

2 ·K2S2

})

≤ P

(
sup
XXX∈M

|YXXX − YXXX0 | ≥ u ·K2S1 + u2 ·K2S2

)

≤ P (u) ≤ 4 exp
(
−u2/2

)
.

(51)

There exists constant c such that cmin
{

t
K2S2

, t2

K4S2
1

}
≤ u2/2, thus we can rewrite (51) as

P

(
sup
XXX∈M

|YXXX − YXXX0| ≥ t

)
≤ 4 exp

(
cmin

{
t

K2S2
,

t2

K4S2
1

})
. (52)

Step3: Expectation Form. In particular, we have that

S (M) = E sup
XXX∈M

YXXX

= E sup
XXX∈M

(YXXX − YXXX0) ≤ E sup
XXX∈M

|YXXX − YXXX0 |

≤
∫ ∞

0

P

(
sup
XXX∈M

|YXXX − YXXX0 | ≥ t

)
dt

≤
∫ ∞

0

4 exp

(
cmin

{
t

K2S2

,
t2

K4S2
1

})
dt

.
(
K2S1

) ∫ ∞

0

P

(
sup
XXX∈M

|YXXX − YXXX0 | ≥ u ·K2S1

)
du

+
(
K2S2

) ∫ ∞

0

P

(
sup
XXX∈M

|YXXX − YXXX0| ≥ u2 ·K2S2

)
du

. K2S1 +K2S2.

Besides, we have that

S1 =
∑

n≥1

2n/2
∥∥Yπn(XXX) − Yπn−1(XXX)

∥∥
F
/
√
c

≤
∑

n≥1

2n/2
∥∥YXXX − Yπn−1(XXX)

∥∥
F
/
√
c+

∑

n≥1

2n/2
∥∥YXXX − Yπn(XXX)

∥∥
F
/
√
c

.
∑

n≥0

2n/2∆2 (Cn (XXX))

. γ2 (M, ‖·‖F ) .

Similarly, we have S2 . γ1

(
M, ‖·‖op

)
. These lead to (47).
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Step4: Empirical Form. We then use (47) to prove (48). Let random variable YXXX =
〈∑m

k=1φφφa,kφφφ
∗
b,k,XXX〉. We can rewrite it as

YXXX =
(
φφφ∗
b,1 · · · φφφ∗

b,m

)


XXX

. . .

XXX






φφφa,1

...

φφφa,m


 := φ̃φφ∗

bZZZφ̃φφa,

where φ̃φφa, φ̃φφb ∈ Rmn,ZZZ ∈ Rmn×mn. As ‖ZZZ‖F =
√
m ‖XXX‖F and ‖ZZZ‖op = ‖XXX‖op, we can

rewrite (50)

P
(∣∣Yπn(XXX) − Yπn−1(XXX)

∣∣ ≥ v
)

≤ 2 exp

(
−cmin

{
v2

mK4
∥∥Yπn(XXX) − Yπn−1(XXX)

∥∥2
F

,
v

K2
∥∥Yπn(XXX) − Yπn−1(XXX)

∥∥
op

})
.

We can then obtain (48) by following the above steps.

5.2 Proof of Theorem 3

We set

F = {〈φφφaφφφ∗b ,XXX〉 :XXX ∈ cone (M) ∩ SF}.
Since φφφa and φφφb are independent and suitable random vectors, we have

E |φφφ∗
aXXXφφφb|2 = ‖XXX‖F = 1.

Note that by Paley-Zygmund inequality [14],

P
(
|φφφ∗
aXXXφφφb|2 ≥ ξ ‖XXX‖F

)
= P

(
|φφφ∗
aXXXφφφb|2 ≥ ξE |φφφ∗aXXXφφφb|2

)

≥ (1− ξ)2
(
E |φφφ∗

aXXXφφφb|2
)2

E |φφφ∗
aXXXφφφb|4

.

Besides, by Lemma 2,

E |φφφ∗
aXXXφφφb|4 . K8.

Thus we can determine that the marginal tail function

Qξ (F ;φφφaφφφ
∗
b) & (1− ξ)2 /K8. (53)

Giné–Zinn symmetrization principle [42, Lemma 6.4.2] and empirical chaos process in The-

orem 7 imply the suprema of empirical process satisfies

Rm (F ;φφφaφφφ
∗
b) ≤

2

m
S (M)

. K2 · γ2 (cone (M) ∩ SF , ‖·‖F )√
m

+K2 ·
γ1

(
cone (M) ∩ SF , ‖·‖op

)

m
.

(54)
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Finally, we use the small ball method. We set ξ =
√
2/4, t = C

√
m

K8 in Theorem 1, then with

probability exceeding 1− e−C
m
K8 , we have

‖AAAΦ (XXX)‖q
m1/q

=

(
1

m

m∑

k=1

|〈φφφaφφφ∗b ,XXX〉|q
)1/q

&
1

K8
, (55)

provided m obeys the condition of the theorem.

The proof of (26) then follows from similar augument to Proposition 3.

5.3 Proofs of Corollary 2

We determine the upper bounds of the γ1-functional and γ2-functional in Theorem 3.

Case I : M = SR. [10, Lemma 3.1] provided the entropy number of cone
(
SR
)
∩ SF with

respect to ‖·‖F :

logN
(
cone

(
SR
)
∩ SF , ‖·‖F , ǫ

)
≤ R (n1 + n2 + 1) · log

(
9

ǫ

)
. (56)

Thus, by Dudley integral we have

γ2
(
cone

(
SR
)
∩ SF , ‖·‖F

)
.

∫ 1

0

√
logN (cone (SR) ∩ SF , ‖·‖F , ǫ)dǫ

≤
∫ 1

0

√

R (n1 + n2 + 1) · log
(
9

ǫ

)
dǫ

.
√
R (n1 + n2)

(57)

and due to ‖·‖op ≤ ‖·‖F

γ1

(
cone

(
SR
)
∩ SF , ‖·‖op

)
≤ γ1

(
cone

(
SR
)
∩ SF , ‖·‖F

)

.

∫ 1

0

R (n1 + n2 + 1) · log
(
9

ǫ

)
dǫ

. R (n1 + n2) .

(58)

Combining (57) and (58) we can get m &
K

R (n1 + n2).

Case II : M = Srs1,s2 . In this case, we first provide the following lemma, whose proof can

be found in [20, Lemma 7.2].

Lemma 3 (Entropy Number of Cone
(
Srs1,s2

)
∩ SF .). For all ǫ>0, the covering number of

cone
(
Srn1,n2

)
∩ SF with respect to ‖·‖F satisfies

logN
(
Cone

(
Srs1,s2

)
∩ SF , ‖·‖F , ǫ

)

≤ r (s1 + s2 + 1) log

(
9

ǫ

)
+ rs1 log

(
en1

s1

)
+ rs2 log

(
en2

s2

)
.

(59)
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Then by the above lemma and similar to Case I, we have

γ2
(
cone

(
Srs1,s2

)
∩ SF , ‖·‖F

)

.
√
r (s1 + s2 + 1) +

√
rs1 log

(
en1

s1

)
+

√
rs2 log

(
en2

s2

)

. r (s1 + s2)max

{
log

(
en1

s1

)
, log

(
en2

s2

)}
(60)

and

γ1

(
cone

(
Srs1,s2

)
∩ SF , ‖·‖op

)
≤ γ1

(
cone

(
Srs1,s2

)
∩ SF , ‖·‖F

)

. r (s1 + s2)max

{
log

(
en1

s1

)
, log

(
en2

s2

)}
.

(61)

Combining the above estimation we can get m &
K

r (s1 + s2)max
{
log
(
en1

s1

)
, log

(
en2

s2

)}
.

6 Adversarial Noise to Sharp Recovery Bound

This section will showcase the potent application of adversarial noise. We construct adaptive

adversarial noise to show that the recovery bounds
‖zzz‖q
m1/q are theoretically sharp in both phase

retrieval and structured matrix recovery.

6.1 Proof of Theorem 4

Prior to demonstrating Theorem 4, we present the subsequent lemma.

Lemma 4. Let ℓ = 1, 2 and 1 ≤ q<∞. Suppose φφφ is a suitable K-subgaussian random

vector. Then

Mℓ (K, q) := sup
uuu,vvv∈Fn

E

∣∣∣∣∣
|〈φφφ,uuu〉|ℓ − |〈φφφ,vvv〉|ℓ

dℓ (uuu,vvv)

∣∣∣∣∣

q

. (
√
qK)ℓq . (62)

Proof. See Appendix C.

Now we choose any xxx⋆ ∈ Fn such that xxx⋆ and xxx0 are not in the same equivalence class,

i.e., xxx⋆ = cxxx0 for some |c| = 1. Then we set

zzz = Aℓ
Φ (xxx⋆)−Aℓ

Φ (xxx0) . (63)

Let loss function Lq (xxx) = min
∥∥Aℓ

Φ (xxx)− bbb
∥∥
q

with bbb = Aℓ
Φ (xxx0) + zzz. Thus Lq (xxx⋆) = 0 and

Lq (xxx0) =
∥∥Aℓ

Φ (xxx⋆)−Aℓ
Φ (xxx0)

∥∥
q
= ‖zzz‖q >0.
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By Chebyshev’s inequality, with probability exceeding 1− 1/t2, we have

‖zzz‖qq
dqℓ (xxx⋆,xxx0)

=

∥∥Aℓ
Φ (xxx⋆)−Aℓ

Φ (xxx0)
∥∥q
q

dqℓ (xxx⋆,xxx0)
=

m∑

k=1

∣∣∣∣∣
|〈φφφk,xxx⋆〉|ℓ − |〈φφφk,xxx0〉|ℓ

dℓ (xxx⋆,xxx0)

∣∣∣∣∣

q

≤ m


E

∣∣∣∣∣
|〈φφφ,xxx⋆〉|ℓ − |〈φφφ,xxx0〉|ℓ

dℓ (xxx⋆,xxx0)

∣∣∣∣∣

q

+ t ·

√√√√
E

∣∣∣∣∣
|〈φφφ,xxx⋆〉|ℓ − |〈φφφ,xxx0〉|ℓ

dℓ (xxx⋆,xxx0)

∣∣∣∣∣

2q

/m




≤ m
(
Mℓ (K, q) + t

√
·Mℓ (K, 2q) /m

)
.

We choose t =
√
m and by Lemma 4, we can get

dℓ (xxx⋆,xxx0) ≥
‖zzz‖q(

Mℓ (K, q) +
√

Mℓ (K, 2q)
)1/q

·m1/q

&
‖zzz‖q(√

qK
)ℓ ·m1/q

, (64)

with probability exceeding 1− 1/m.

6.2 Proof of Theorem 5

The proof for Theorem 5 is similar to Theorem 4. For anyXXX⋆ ∈ Fn1×n2 , we set

zzz = AAAΦ (XXX⋆)−AAAΦ (XXX0) = AAAΦ (XXX⋆ −XXX0) . (65)

Then bbb = AAAΦ (XXX0) + zzz = AAAΦ (XXX⋆) and the solution to model (7) is XXX⋆. By Lemma 2 and

Chebyshev’s inequality, we have

‖zzz‖qq
‖XXX⋆ −XXX0‖qF

=
‖AAAΦ (XXX⋆ −XXX0)‖qq

‖XXX⋆ −XXX0‖qF

≤m



E

∣∣∣∣
〈φφφaφφφ∗

b ,XXX⋆ −XXX0〉
‖XXX⋆ −XXX0‖F

∣∣∣∣
q

+

√

E

∣∣∣∣
〈φφφaφφφ∗

b ,XXX⋆ −XXX0〉
‖XXX⋆ −XXX0‖F

∣∣∣∣
2q




.m
(
qK2

)q
,

with probability exceeding 1− 1/m. Thus we can get

‖XXX⋆ −XXX0‖F &
‖zzz‖q

(qK2) ·m1/q
. (66)

A Properties of ψs-Norm

(a) By definition of ψs norm and variable substitution,

‖Xq‖ψs
= inf{t > 0 : E exp (|X|qs /ts) ≤ 2}
= inf{up : u > 0 and E exp (|X|qs /uqs) ≤ 2}
= ( inf{u > 0 : E exp (|X|qs /uqs) ≤ 2} )q

= ‖X‖qψqs
.

24



(b) We first claim that if ‖X‖ψs
≤ K < ∞, then P (|X| ≥ t) ≤ 2 exp (−ts/Ks) for all

t ≥ 0. This follows from the definition of ψs-norm and Markov’s inequality:

P (|X| ≥ t) = P
(
eX

s/Ks ≥ et
s/Ks) ≤ EeX

s/Ks

ets/Ks ≤ 2 exp (−ts/Ks) . (67)

Without loss of generality, we can assume ‖X‖ψl
= 1. By (67), we have

P (|X| ≥ t) ≤ 2 exp
(
−tl
)
= 2 exp

(
−ts · tl−s

)
.

When t > 1, we have tl−s ≥ 1 > log 2. When t ∈ [0, 1], we have 2 exp(−ts log 2) =
2 · 2−ts ≥ 1. These lead to that

P (|X| ≥ t) ≤ 2 exp (−ts log 2) . (68)

With a change of variable x = e
u

3/ log 2 on interval (1,∞) we have

E exp

( |X|s
3/ log 2

)
=

∫ ∞

0

P

(
e

|X|s

3/ log 2 ≥ x

)
dx

≤
∫ 1

0

1 dx+
1

3/ log 2

∫ ∞

0

P (|X|s ≥ u) e
u

3/ log 2du.

By (68), P (|X|s ≥ u) = P
(
|X| ≥ u1/s

)
≤ 2 exp (−u log 2), then we get

E exp

( |X|s
3/ log 2

)
≤ 1 +

2 log 2

3

∫ ∞

0

exp

(
−u log 2 + u

3/ log 2

)
du

≤ 1 +
2 log 2

3

∫ ∞

0

exp

(
−2 log 2

3
u

)
du = 2.

Thus, we have

‖X‖ψs
≤ 3/ log 2. (69)

(c) Without loss of generality, we can assume ‖X‖ψs
= 1. By variable substitution u = ts

and (67) we have

E |X|q =
∫ ∞

0

qtq−1
P (|X| ≥ t) dt

≤
∫ ∞

0

qu
q−1
s 2e−u

1

s
u

1
s
−1 du

=

∫ ∞

0

2q

s
u

q
s
−1e−u du =

2q

s
Γ
(q
s

)
= 2Γ

(q
s
+ 1
)
.

Note that for r > 0,

Γ (r + 1) =

∫ ∞

0

(
xre−

x
2

)
e−

x
2 dx ≤ (2r)r e−r

∫ ∞

0

e−
x
2 dx = 2

(
2r

e

)r
, (70)
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where we used the fact that xre−
x
2 attains maximum at x = 2r as

d

dx

(
xre−

x
2

)
= xr−1e−

x
2

(
r − x

2

)
.

Therefore

E |X|q ≤ 4

(
2q

se

) q
s

= 4

(
2

se

) q
s

q
q
s ≤ 4q

q
s ≤

(
4q

1
s

)q
.

B High-Order Moments

B.1 Proof of Lemma 1

Note that when q ≥ 1, the triangle inequality yields

(E |φφφXXXφφφ|q)1/q ≤ (E |φφφ∗XXXφφφ− E [φφφ∗XXXφφφ]|q)1/q + (|EφφφXXXφφφ|q)1/q

= (E |φφφ∗XXXφφφ− E [φφφ∗XXXφφφ]|q)1/q + |Tr (XXX)|
≤ (E |φφφ∗XXXφφφ− E [φφφ∗XXXφφφ]|q)1/q + ‖XXX‖∗

(71)

By Hanson-Wright inequality in [39], we have that

E |φφφ∗XXXφφφ− E [φφφ∗XXXφφφ]|q

=

∫ ∞

0

qtq−1
P (|φφφ∗XXXφφφ− E [φφφ∗XXXφφφ]|>t) dt

≤ 2q

(∫ ∞

0

tq−1 exp

(
−c t2

K4 ‖XXX‖2F

)
dt +

∫ ∞

0

tq−1 exp

(
−c t

K2 ‖XXX‖op

)
dt

)

= 2q

(
K2q ‖XXX‖qF

∫ ∞

0

xq−1 exp
(
−cx2

)
dx+K2q ‖XXX‖qop

∫ ∞

0

xq−1 exp (−cx) dx
)

≤ 2qK2qmax
{
cq/2−1, cq−1

}(
Γ
(q
2

)
+ Γ (q)

)
· ‖XXX‖qF

≤ 4qK2q (max {c, 1})q Γ (q) · ‖XXX‖qF ≤
(
4max {c, 1} qK2

)q · ‖XXX‖qF .

(72)

In the last line, we use the behavior of the Gamma function Γ (x) in (70). Thus, by (71) and

(72), we finish the proof.

B.2 Proof of Lemma 2

The proof is similar to Lemma 1. Using Hanson-Wright inequality [39] and note that

Eφφφ∗
aXXXφφφb = 0, we have

(E |φφφ∗
aXXXφφφb|q)1/q ≤ (E |φφφ∗

aXXXφφφb − E [φφφ∗
aXXXφφφb]|)1/q + |Eφφφ∗

aXXXφφφb|
= (E |φφφ∗aXXXφφφb − E [φφφ∗

aXXXφφφb]|)1/q . qK2.
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C Proof of Lemma 4

When ℓ = 1, for any uuu,vvv ∈ Fn, choosing θ := Phase (vvv∗uuu), then we have

M1 (K, q) = sup
uuu,vvv∈Fn

E

∣∣∣∣
|〈φφφ,uuu〉| − |〈φφφ,vvv〉|

d1 (uuu,vvv)

∣∣∣∣
q

≤ sup
uuu,vvv∈Fn

E

∣∣∣∣〈φφφ,
uuu− eiθvvv

d1 (uuu,vvv)
〉
∣∣∣∣
q

= sup
www∈Sℓ2

E |〈φφφ,www〉|q . (
√
qK)q .

The last inequality follows from Proposition 2.(c) as |〈φφφ,www〉| is subgaussian.

When ℓ = 2, by Lemma 1, we have

M2 (K, q) = sup
uuu,vvv∈Fn

E

∣∣∣∣〈φφφφφφ∗,
uuuuuu∗ − vvvvvv∗

‖uuuuuu∗ − vvvvvv∗‖F
〉
∣∣∣∣
q

.
(
qK2 +

√
2
)q

.
(
qK2

)q
.

We have used the facts uuuuuu∗ − vvvvvv∗ is at most rank 2 and K & 1.
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[15] Sjoerd Dirksen, Guillaume Lecué, and Holger Rauhut. On the gap between restricted

isometry properties and sparse recovery conditions. IEEE Transactions on Information

Theory, 64(8):5478–5487, 2016.

[16] John C Duchi and Feng Ruan. Solving (most) of a set of quadratic equalities: Compos-

ite optimization for robust phase retrieval. Information and Inference: A Journal of the

IMA, 8(3):471–529, 2019.

[17] Richard M Dudley. The sizes of compact subsets of hilbert space and continuity of

gaussian processes. Journal of Functional Analysis, 1(3):290–330, 1967.

[18] Henrik Eisenmann, Felix Krahmer, Max Pfeffer, and André Uschmajew. Riemannian
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