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Abstract

Magnetic hopfions are three-dimensional localized magnetic topological solitons which can exist

in the bulk of magnetic materials. Based on a Ritz model for magnetic hopfions in a chiral

magnet, the unpolarized magnetic small-angle neutron scattering (SANS) cross section, the spin-

flip scattering cross section, and the chiral function (characterizing the imbalance between the two

spin-flip scattering amplitudes) are computed here analytically; while the real-space correlation

function is obtained numerically. Features of these functions, specific to magnetic hopfions, are

discussed. Our results enable the SANS method to be used for the detection of magnetic hopfions.

Keywords: micromagnetics; SANS; topological solitons; hopfions

I. INTRODUCTION

Hopfions are three-dimensional topological objects, embedded within vector fields [1, 2].

Magnetic hopfions exist in the vector field of the local magnetization of a magnetically

ordered material [3, 4]. There is a substantial recent theoretical [5, 6] and experimental [7–9]

progress in the search of magnetic hopfions (or parts of hopfions, such as torons) in restricted

geometry, opening new prospects for spintronics applications. Yet, the true potential of

hopfions can only be realized in a fully three-dimensional “bulk” setting.

To observe bulk hopfions, imaging of the magnetization vector field M (r) inside a mag-

net with nanometer-scale resolution is required. One of such promising new techniques is

magnetic nanotomography [10], but this method is strongly tied to the details of the x-ray

absorption edge of a particular chemical element and requires substantial readjustment to

be applicable to a wide range of magnetic materials.

Magnetic small-angle neutron scattering is another observational technique [11], which is

able to penetrate the bulk of magnetic materials and which possesses the required nanometer-

scale resolution. While SANS does not show the distribution of the magnetization vector

directly (in real space), the scattering cross section as a function of the scattering vector Q

contains plenty of information on the magnetization vector in Fourier space.

In this work, based on a variational model of hopfions in a classical helimagnet [12], we
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compute (for two stable hopfion types) their SANS images in the perpendicular and parallel

(when the incident wave vector of the neutron beam is perpendicular or parallel to the

hopfion axis, coinciding with the external magnetic-field direction) scattering geometries.

We also compute the chiral scattering function in the perpendicular geometry and analyze

the corresponding real-space correlation functions.

II. THE HOPFION MODEL

Our starting point is the model for a spherical hopfion [12], which is in turn based on the

Whitehead ansatz [13]. Consider a Cartesian coordinate system r = {X, Y, Z} such that its

OZ axis coincides with the symmetry axis of the hopfion and the direction of the externally

applied magnetic field H . The normalized (by the saturation magnetization MS = |M |)

components of the local magnetization vector m = M/MS = {mX,mY,mZ} inside the

hopfion with the Hopf index H = 1 can be expressed via a series of maps:

{mX + ımY,mZ} = {2w, 1− |w|2}/(1 + |w|2), (1a)

w = eıχu/v, (1b)

u =
2(X̃ + ıỸ )R

X̃2 + Ỹ 2 + Z̃2 +R2
, v =

R2 − X̃2 − Ỹ 2 − Z̃2 + ı2Z̃R

X̃2 + Ỹ 2 + Z̃2 +R2
, (1c)

{X̃, Ỹ , Z̃} =
{X, Y, Z}

g(
√
X2 + Y 2 + Z2/R)

, (1d)

where χ is a parameter that allows one to specify the hopfion type, R denotes the radius

of the hopfion, and g(ρ) is the hopfion profile function, such that g(0) = 1, g′(0) = 0, and

g(1) = 0. The intermediate variables are: the complex representation w of the fixed-length

|m| = 1 magnetization vector, whose end always lies on the unit sphere S2; the complex

coordinates u and v on the unit sphere S3, such that |u|2 + |v|2 = 1; and the coordinates

in the intermediate extended Euclidean space {X̃, Ỹ , Z̃}. This representation defines the

magnetization vector field m(r), which depends on the two scalar parameters χ and R,

and on the profile function g(ρ). All the model assumptions are contained within Eq. (1d),

which maps the physical space to the extended Euclidean space {X̃, Ỹ , Z̃}. The remainder

of Eq. (1) applies equally well [14] to the (yet unknown for the classical helimagnet) exact

hopfion solutions.

Based on the analysis of the classical micromagnetic energy functional (including isotropic
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exchange, Dzyaloshinskii-Moriya, Zeeman, uniaxial anisotropy, and magnetostatic energy

terms), it can be shown [12] that there are only two stable values of χ, corresponding to

the minima of the hopfion’s total energy: χ = π/2 and χ = 3π/2. These define two stable

hopfion types, which we will consider here—type I and type II, respectively, shown in the

upper inset of Fig. 1. Both types of H = 1 hopfions are symmetric around the OZ axis. The

type I hopfions contain a circular outer antivortex tube wrapped around a circular inner

vortex tube. In the type II hopfions the tube order is reversed. The radii R and profile

functions g(ρ) can be found by solving the corresponding Euler-Lagrange equation for the

extremum of the total energy functional. This procedure is implemented as a supplemental

Mathematica code in [12] and as a Fortran program [15] in [14].

While Eq. (1) does not involve the external magnetic field H explicitly, it can describe

the magnetization process of the hopfion. The field enters the Euler-Lagrange equation [12],

coupling it to the equilibrium hopfion profile g(ρ) and radius R. Increase/decrease of the

field magnitude causes redistribution of the magnetic moments inside the hopfion, making

more/less of them aligned with the field direction. This dependence can be obtained numer-

ically using the codes in [12, 14]. In a sense, each equilibrium hopfion profile g(ρ) already

has a certain external field and anisotropy “imprinted”, along with other material constants.

In this work we focus on the qualitative features of the SANS observables and derive our

results in normalized dimensionless coordinates ρ = r/R for an arbitrary hopfion profile

g(ρ). The specific examples (unless otherwise stated) will be given for g(ρ) = 1− ρ2, which

satisfies all the boundary conditions and roughly resembles the profile of the equilibrium

type I hopfion in small magnetic fields and for negligible uniaxial anisotropy.

III. SANS CROSS SECTION AND CHIRAL FUNCTION

In a neutron-scattering experiment (see the lower inset in Fig. 1 for a basic sketch of the

scattering geometry) a sample is irradiated by an approximately monochromatic neutron

beam. An incident neutron with a wave vector k is scattered and acquires the wave vector k′.

It is then captured by a two-dimensional position-sensitive detector behind the sample, which

counts how many neutrons have arrived into each of its pixels. These counts, after some

renormalization and correction, yield the macroscopic differential scattering cross section

dΣ/dΩ (usually expressed in units of cm−1 sr−1), which is a function of the scattering vector
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Q = k − k′. In the small-angle regime we have |Q| ≪ |k|, and Q is assumed to lie in the

detector plane. For elastic scattering, the magnitude of the scattering vector is given by Q =

4π/λ sinψ, where λ is the mean neutron wavelength and 2ψ denotes the scattering angle.

The measurements are performed in a magnetic field H , coinciding in our case with the

hopfion’s axis of symmetry (see insets in Fig. 1) and the OZ axis of the Cartesian coordinate

system. The relative orientation of H and k defines a scattering geometry, of which two are

most commonly used—the perpendicular (⊥) geometry, where the magnetic field is applied

perpendicular to the incident neutron beam (H ⊥ k), and the parallel (∥) geometry, where

the field is along the incident beam (H ∥ k). It is convenient to parametrize the scattering

vector by its magnitude and the polar angle in the perpendicular (Q⊥ = q{0, sinα, cosα}/R)

and the parallel (Q∥ = q{cos β, sin β, 0}/R) scattering geometries, where q = QR is the

dimensionless scattering vector magnitude.

While the neutrons (owing to their magnetic moment) are scattered by the magnetic

moments in the sample, they are also scattered by the sample’s nuclei. One of the main

challenges in magnetic SANS is to separate these two contributions. This can e.g. be accom-

plished in a uniaxial polarization-analysis experiment [16–18]. In such an experiment, four

separate scattering channels are considered, which are characterized by their respective cross

sections: dΣ↑↑/dΩ, dΣ↓↓/dΩ, dΣ↑↓/dΩ, dΣ↓↑/dΩ, where the arrows denote the two possible

neutron spin 1/2 projections, before and after scattering, onto the direction of the externally

applied magnetic (guide) field H . In the present context, the following two combinations of

dΣ↑↓/dΩ and dΣ↓↑/dΩ cross sections are particularly useful [19]:

dΣSF

dΩ
=

1

2

(
dΣ↑↓

dΩ
+

dΣ↓↑

dΩ

)
and η =

1

2ı

(
dΣ↑↓

dΩ
− dΣ↓↑

dΩ

)
. (2)

The first one of these (dΣSF/dΩ) is here simply denoted as the (polarization-independent)

spin-flip SANS cross section; it is always positive and has the advantage that it does not

contain the nuclear coherent SANS signal. The second term (η) is called the chiral function

and it characterizes the nonreciprocity in the polarized neutron scattering cross section. Such

a nonreciprocity can be expected in the presence of the Dzyaloshinskii-Moriya interaction

(required for hopfion stability), which introduces a net chirality into the system.

Neutron polarization-analysis experiments are usually time-consuming and the related

data reduction (spin-leakage correction) is challenging, so that often unpolarized measure-

ments are carried out. When the SANS setup does not take the neutron polarization into
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account (no polarizing and analyzing optics), an unpolarized SANS cross section dΣ/dΩ is

measured [19]:

dΣ

dΩ
=

1

2

(
dΣ↑↑

dΩ
+

dΣ↓↓

dΩ
+

dΣ↑↓

dΩ
+

dΣ↓↑

dΩ

)
=

dΣN

dΩ
+

dΣM

dΩ
, (3)

which consists of a nuclear (dΣN/dΩ) and a magnetic (dΣM/dΩ) part. We note that the

nuclear SANS cross section dΣN/dΩ does not depend (at least up to reasonably small values)

on the magnitude of the external magnetic field, while the unpolarized magnetic SANS

dΣM/dΩ is usually strongly field-dependent. Moreover, for many systems, the dΣN/dΩ adds

as an isotropic “background” to the anisotropic dΣM/dΩ. Therefore, in view of this and since

unpolarized experiments are faster and less complex than polarization-analysis experiments,

we find it useful to also provide results for the unpolarized magnetic SANS cross section

dΣM/dΩ.

In the following, we shall compute dΣM/dΩ, dΣSF/dΩ, and η due to the scattering by

hopfions for the perpendicular and parallel scattering geometries. The corresponding SANS

cross sections can be expressed as [11]:

dΣ⊥
SF

dΩ
=K

(
|m̃X|2 + |m̃Y|2 cos4 α + |m̃Z|2 sin2 α cos2 α− Re (m̃Ym̃Z) cos

2 α sin 2α
)
, (4a)

dΣ
∥
SF

dΩ
=K

(
|m̃X|2 sin2 β + |m̃Y|2 cos2 β − Re (m̃Xm̃Y) sin 2β

)
, (4b)

ıη⊥ =K
(
(m̃Xm̃Y − m̃Xm̃Y) cos

2 α− (m̃Xm̃Z − m̃Xm̃Z) cosα sinα
)
, (4c)

dΣ⊥
M

dΩ
=K

(
|m̃X|2 + |m̃Y|2 cos2 α + |m̃Z|2 sin2 α− Re (m̃Ym̃Z) sin 2α

)
, (4d)

dΣ
∥
M

dΩ
=K

(
|m̃X|2 sin2 β + |m̃Y|2 cos2 β + |m̃Z|2 − Re (m̃Xm̃Y) sin 2β

)
, (4e)

where K = 8π3M2
Sb

2
HV , bH = 2.906 × 108A−1m−1 is the magnetic scattering length (the

value is given for the small-angle regime, where the atomic magnetic form factor can be

approximated by 1), V = 4πR3/3 is the volume of the hopfion, a tilde over a quantity

denotes its Fourier image

Ã(Q) =
1

(2π)3/2V

∫∫∫
V

A(r)e−ıQ·r d3r, (5)

so that {m̃X(Q), m̃Y(Q), m̃Z(Q)} are the Fourier images of the magnetization vector com-

ponents, and the overline refers to the complex conjugate (ı = −ı). It is assumed that

|Q| > 0 strictly, which allows us to ignore the constant magnetization background that only

contributes at |Q| = 0. Note that the chiral function vanishes for the parallel geometry.
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The next step is to compute the Fourier images {m̃X, m̃Y, m̃Z}. In real space, the Carte-

sian magnetization vector components inside the hopfion can be expressed from the Eq. (1)

as: 
mX

mY

mZ

 =


0

0

1

− 4ρg sin θ

(ρ2 + g2)2


cos(φ+ χ) − sin(φ+ χ) 0

sin(φ+ χ) cos(φ+ χ) 0

0 0 1



ρ2 − g2

2ρg cos θ

2ρg sin θ

 , (6)

where we have used a spherical coordinate system {X, Y, Z} = Rρ{cosφ sin θ, sinφ sin θ, cos θ}

and omitted the argument g = g(ρ). Outside of the hopfion the magnetization is uniform

and directed along the OZ axis.

For computing the Fourier image of Eq. (6), it is most convenient to take the Fourier

integral [Eq. (5)] in spherical coordinates (with volume element R3ρ2 sin θ dρ dθ dφ), while

expanding the exponent in spherical harmonics:

e−ıQ·r = 4π
∞∑
l=0

l∑
m=−l

ıljl(qρ)Y m
l (θ, φ)Y m

l (θq, φq), (7)

where jl denotes the spherical Bessel function of the first kind, Y m
l are the spherical har-

monics, φq and θq are the polar and azimuthal angles of the scattering vector q = QR.

Neglecting the uniform background [first term in Eq. (6)], which is irrelevant in SANS, we

get: 
m̃X

m̃Y

m̃Z

 =


−ı cos(φq + χ) − sin(φq + χ) 0

−ı sin(φq + χ) cos(φq + χ) 0

0 0 1





i1 sin θq

i2 sin 2θq

−i2 cos 2θq

− 1

3


0

0

i2 + 4i3


 , (8)

where the special functions i1,2,3 = i1,2,3(q) are given by:

{i1, i2, i3} =
3
√
2

π3/2

∫ 1

0

{ρ3g(g2 − ρ2)j1(qρ), ρ
4g2j2(qρ), ρ

4g2 sinc(qρ)}
(ρ2 + g2)2

dρ, (9)

with sincx = sinx/x. The special functions depend on the hopfion profile g(ρ) and for

a simple illustrative case g(ρ) = 1 − ρ2 are displayed in Fig. 1. Substituting the Fourier

images Eq. (8) into Eq. (4) with χ = π/2 and χ = 3π/2 for, respectively, type I and type II

hopfions, we obtain:

1

K

dΣ⊥,I
SF

dΩ
=

(
i21 +

4

9
(i2 − 2i3)

2 cos2 α

)
sin2 α, (10a)

1

K

dΣ⊥,II
SF

dΩ
=

(
i21 +

4

9
((2 + 3 cos 2α) i2 + 2i3)

2 cos2 α

)
sin2 α, (10b)
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i3(q)

i2(q)

i1(q)

sp
ec
ia
l	f
un
ct
io
ns
,	i
1(q
),	
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3(q
)

−0.01

0

0.01

0.02

0.03

normalized	wave	vector,	q=QR
0 2.5 5 7.5 10 12.5 15

Type	I Type	II

FIG. 1. Illustration of the special functions Eq. (9) (main plot). The upper inset shows the

magnetization distribution Eq. (6) inside type I and type II hopfions for g(ρ) = 1 − ρ2. The axis

OZ is vertical in the plane of the drawing. Note that the chirality of the type II hopfion in the

inset is reversed [12] by reversing the sense of the magnetization circulation around the hopfion

axis. This makes both hopfions in the inset correspond to a material with the same chirality (the

sign of the Dzyaloshinskii-Moriya interaction constant). The lower inset depicts a sketch of the

SANS setup.

1

K
η⊥,I = −4

3
i1 (i2 − 2i3) cosα sin2 α, (10c)

1

K
η⊥,II = −4

3
i1 ((2 + 3 cos 2α) i2 + 2i3) cosα sin2 α, (10d)

1

K

dΣ⊥,I
M

dΩ
=

(
i21 +

4

9
(i2 − 2i3)

2

)
sin2 α =

1

K

dΣ
∥
M

dΩ
sin2 α, (10e)

1

K

dΣ⊥,II
M

dΩ
=

(
i21 +

4

9
((2 + 3 cos 2α) i2 + 2i3)

2

)
sin2 α, (10f)

8



1

K

dΣ
∥
M

dΩ
= i21 +

4

9
(i2 − 2i3)

2,
1

K

dΣ
∥
SF

dΩ
= i21, (10g)

where the roman superscripts I and II label the respective type of the hopfion. The parallel

cross sections [Eq. (10g)] (both unpolarized and spin-flip) are independent of the hopfion

type. Moreover, we note that the parallel spin-flip SANS signal differs from the unpolarized

paralled SANS cross section only by a term ∝ |m̃Z|2 [compare Eq. (4b) and (4e)], which only

affects its q dependence. The chiral function for the parallel scattering geometry is zero.

These expressions are analyzed in the next section.

IV. RESULTS AND DISCUSSION

The spin-flip and unpolarized SANS cross sections [Eq. (10a), (10b), (10e), (10f), (10g)]

for a particular simple g(ρ) = 1−ρ2 hopfion profile are plotted in Fig. 2, and the correspond-

ing chiral functions [Eq. (10c) and (10d)] are displayed in Fig. 3. While the hopfion profile

g(ρ) is integrated inside the special functions i1,2,3 [compare Eq. (9)], in this way influencing

their dependence on the magnitude q of the scattering vector, the expressions (10) are fully

explicit with respect to the cross-section’s angular (α or β) dependence.

The unpolarized and spin flip parallel SANS cross sections [Eq. (10g)] are isotropic and

hopfion-type independent. The perpendicular unpolarized cross section for type I hopfions

[Eq. (10e)] is particularly simple: it equals the (isotropic) parallel cross section multiplied by

a sin2 α factor. Such an angular dependence is similar to the SANS cross section from a uni-

form sphere of reduced magnetization (relative to the constant background), but the radial

dependence on q is different (of course). The unpolarized perpendicular SANS cross sec-

tion of type II hopfions [Eq. (10f)] has additional terms with cos 2α sin2 α and cos2 2α sin2 α

angular dependencies, which distinguish it from the type I hopfion. The spin flip perpendic-

ular cross sections [Eq. (10a) and (10b)] generally display a dominating fourfold anisotropy

visible in Fig. 2.

Unlike uniformly magnetized spheres, the hopfions are chiral, rendering their neutron-

scattering response nonreciprocal, which results in a nonzero chiral function η⊥ and in

an antisymmetric dependency on the momentum-transfer vector. The chiral functions for

hopfions of both types are plotted in Fig. 3; η⊥,I [Eq. (10c)] features a cosα sin2 α angular

anisotropy, while η⊥,II [Eq. (10d)] has an additional sin 4α sinα term.
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1.5×10−3

(1/K)	dΣ⊥,IM /dΩ
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−10

−5

0

5
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qZ
−10 −5 0 5 10

2.5×10−4
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7.5×10−4

10−3
1.25×10−3
1.5×10−3

(1/K)	dΣ⊥,IIM /dΩ
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−5 0 5 10
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7.5×10−4

10−3
1.25×10−3
1.5×10−3

(1/K)	dΣ||M/dΩ

qX
−10 −5 0 5 10

FIG. 2. Spin-flip and unpolarized perpendicular and parallel magnetic SANS cross sections

[Eq. (10a), (10b), (10e), (10f), (10g)] (in units of K) for type I and type II hopfions (see in-

sets) with the profile function g(ρ) = 1− ρ2.

It is interesting that from Eq. (10) one can establish a universal relation between different

spin-flip hopfion cross sections:

4 sin2 α
dΣ

∥
SF

dΩ

dΣ⊥
SF

dΩ
= (η⊥)2 + 4 sin4 α

(
dΣ

∥
SF

dΩ

)2

, (11)

which is equally valid for both hopfion types. It is expressed directly in terms of measurable

quantities and does not involve explicitly the hopfion radius R or its profile g(ρ).

Let us now consider more closely the radial dependence of the SANS cross section. A

convenient tool for this is the real-space correlation function of the azimuthally-averaged

cross section [11, 20]:

C(ρ) =

∫ ∞

0

(
1

2π

∫ 2π

0

f(q, α) dα

)
sinc(2qρ)q2 dq, (12)

where the function f(q, α) stands for either one of the expressions (10). The correlation
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0

10−4
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−10

−5
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−2×10−4

−1×10−4

0

10−4

2×10−4
-η⊥,II/K

qZ
−10 −5 0 5 10

FIG. 3. Chiral functions [Eq. (10c) and (10d)] (in units of K) in the perpendicular scattering

geometry for both hopfion types (see insets). Note that the chirality (the sign of η⊥) is reversed

for type II hopfions, as explained in Fig. 1.

function for the parallel unpolarized magnetic SANS cross section for both hopfion types

follows C
∥
M(ρ) = 2C⊥,I

M (ρ); this can be directly seen from Eq. (10e). The azimuthal average of

the chiral function is zero, hence Cη = 0. For the perpendicular cross sections, the correlation

function Eq. (12) is evaluated numerically and the quantity ρ2C(ρ) is plotted in Fig. 4 for

both hopfion types and for several selected hopfion profiles. Note that ρ2C(ρ), compared to

the pure C(ρ), more directly reveals the spatial correlations, which will be otherwise masked

by the growth of C(ρ) towards ρ = 0. This growth happens because C(ρ) expresses the

correlations in a spherical coordinate system, whose infinitesimal volume element scales as

r2.

One can see that all the dependencies in Fig. 4 contain, in general, a combination of two

peaks. The peaks (regions of enhanced spin correlations) correspond to the magnetization

outside of the vortex and antivortex tubes in a hopfion, while the minima between the peaks

correspond to the tubes themselves, where the magnetization vector rotates fast. Note also

that the constant magnetization background was neglected in our consideration (as it is

usual in the SANS cross-section analysis), making the values of the correlation function zero

at ρ = 0 and for ρ > 1. There are also zero-crossings in the correlation-function profiles,

which were noted earlier in vortex-type spin structures [20, 21].
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g(ρ)
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1-ρ3/2
1-ρ3

Type	II

ρ=r/R
0 0.25 0.5 0.75 1 1.25 1.5

FIG. 4. Correlation functions (in units of K) of the azimuthally-averaged unpolarized magnetic

and spin-flip SANS cross sections in the perpendicular scattering geometry, ρ2CSF(ρ) and ρ2CM(ρ),

respectively. The correlation functions are normalized by the spherical coordinate system volume

element prefactor. Shown are results for hopfions of both types and for several hopfion profiles

g(ρ) (see insets).

V. CONCLUSION

For the relevant cases that the externally applied magnetic field (coinciding with the

symmetry axis of the hopfion) is either perpendicular or parallel to the wave vector of the

incident neutron beam, we have obtained analytical closed-form expressions for the unpolar-

ized magnetic SANS cross section, the spin flip SANS cross section, and the chiral function

of two types of stable hopfions. The latter can be used to characterize the nonreciprocity

of the spin-flip scattering cross section. To analyze the dependence of the SANS cross sec-

12



tions on the magnitude of the scattering vector, we have computed the real-space correlation

function, which exhibits two peaks, produced by vortex and antivortex tubes, and a zero

crossing that are both characteristic for the hopfion texture. The two-peak structure clearly

distinguishes hopfions from localized spherical inhomogeneities of the saturation magneti-

zation. Qualitatively, a good indication of the hopfion scattering is a localized sphere-like

scattering in an otherwise uniform material with a double-peak radial correlation function

and a nonzero chiral function. Quantitatively, we establish a universal relation between dif-

ferent spin-flip SANS cross sections of hopfions. We hope that our results will make SANS

instrumental in the ongoing search for bulk magnetic hopfions.
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