2404.18001v1 [cs.SE] 27 Apr 2024

arxXiv

LLMParser: An Exploratory Study on Using Large Language
Models for Log Parsing

Zeyang Ma An Ran Chen Dong Jae Kim
Software PErformance, Analysis and Electrical and Computer Engineering Software PErformance, Analysis and
Reliability (SPEAR) Lab Department Reliability (SPEAR) Lab
Concordia University University of Alberta Concordia University

Montreal, Quebec, Canada
m_zeyang@encs.concordia.ca

Tse-Hsun (Peter) Chen
Software PErformance, Analysis and
Reliability (SPEAR) Lab
Concordia University
Montreal, Quebec, Canada
peterc@encs.concordia.ca

ABSTRACT

Logs are important in modern software development with runtime
information. Log parsing is the first step in many log-based analyses,
that involve extracting structured information from unstructured
log data. Traditional log parsers face challenges in accurately pars-
ing logs due to the diversity of log formats, which directly impacts
the performance of downstream log-analysis tasks. In this paper,
we explore the potential of using Large Language Models (LLMs)
for log parsing and propose LLMParser, an LLM-based log parser
based on generative LLMs and few-shot tuning. We leverage four
LLMs, Flan-T5-small, Flan-T5-base, LLaMA-7B, and ChatGLM-6B
in LLMParsers. Our evaluation of 16 open-source systems shows
that LLMParser achieves statistically significantly higher parsing
accuracy than state-of-the-art parsers (a 96% average parsing ac-
curacy). We further conduct a comprehensive empirical analysis
on the effect of training size, model size, and pre-training LLM
on log parsing accuracy. We find that smaller LLMs may be more
effective than more complex LLMs; for instance where Flan-T5-base
achieves comparable results as LLaMA-7B with a shorter inference
time. We also find that using LLMs pre-trained using logs from
other systems does not always improve parsing accuracy. While
using pre-trained Flan-T5-base shows an improvement in accuracy,
pre-trained LLaMA results in a decrease (decrease by almost 55%
in group accuracy). In short, our study provides empirical evidence
for using LLMs for log parsing and highlights the limitations and
future research direction of LLM-based log parsers.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE °24, April 14-20, 2024, Lisbon, Portugal

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0217-4/24/04...$15.00
https://doi.org/10.1145/3597503.3639150

Edmonton, Alberta, Canada
anran6(@ualberta.ca

Montreal, Quebec, Canada
k_dongja@encs.concordia.ca

Shaowei Wang
Department of Computer Science
University of Manitoba
Winnipeg, Manitoba, Canada
shaowei@cs.umanitoba.ca

KEYWORDS

Log parsing, log analysis, large language model

ACM Reference Format:

Zeyang Ma, An Ran Chen, Dong Jae Kim, Tse-Hsun (Peter) Chen, and Shaowei
Wang. 2024. LLMParser: An Exploratory Study on Using Large Language
Models for Log Parsing. In 2024 IEEE/ACM 46th International Conference on
Software Engineering (ICSE "24), April 14-20, 2024, Lisbon, Portugal. ACM,
New York, NY, USA, 13 pages. https://doi.org/10.1145/3597503.3639150

1 INTRODUCTION

Software logs provide developers with valuable system runtime
information to understand system execution and debugging. How-
ever, due to the sheer volume and complexity of logs, analyzing
logs manually becomes infeasible. To assist with log analysis, re-
searchers have proposed many automated approaches for various
tasks such as anomaly detection [26, 72], monitoring [5, 63], and
root cause analysis [25, 43, 67]. Among all log analysis tasks, log
parsing often serves as the first step of log analysis.

The goal of log parsing is to convert raw log data into log tem-
plates by identifying and separating static text and variable values
in the log messages. As shown in Figure 1, logs contain dynamic in-
formation such as the timestamp, log level, and log message (which
contains static message and dynamic variable values). Log parsing
first extracts consistent information among all the logs using regu-
lar expression (e.g., timestamps and log level), and then transforms
logs into a more structured format (i.e., log template) by identifying
variables in the log message [23, 37]. For instance, the log message
in Log 1 from Figure 1 has the log message Got assigned task
0 and the log can be parsed to the log template Got assigned
task <*>with an identified variable @. The variables record system
runtime information that can be in various forms (e.g., string, digits,
or symbols). Including such dynamic variable values in the logs
makes automated log analysis difficult. Hence, log parsing is an
essential first step in log analysis, and having low accuracy in log
parsing results directly impacts the performance of downstream
tasks [23, 24, 37].

https://doi.org/10.1145/3597503.3639150
https://doi.org/10.1145/3597503.3639150

ICSE °24, April 14-20, 2024, Lisbon, Portugal

Logs
Group ID|
(gtruth) Log ID Log content
1 1 17/06/09 20:10:45 INFO executor.CoarseGrainedExecutorBackend: Got assigned task 0
1 2 17/06/09 20:10:45 INFO executor.CoarseGrainedExecutorBackend: Got assigned task 2
2 3 17/06/09 20:10:45 INFO executor.Executor: Running task 0.0 in stage 0.0 (TID 0)
3 4 17/06/09 20:10:52 INFO storage.BlockManager: Found block rdd_2_4 locally
4 5 17/06/09 20:10:52 INFO python.PythonRunner: Times: total = 41, boot = 15, init = 26, finish = 1
4 6 17/06/09 20:10:52 INFO python.PythonRunner: Times: total = 40, boot = 7, init = 33, finish = 0
4 7 17/06/09 20:10:52 INFO python.PythonRunner: Times: total = 42, boot = 12, init = 30, finish = 0
l Log Parsing parsed templates
Group ID Log ID|Date [Time |Level[Component Log Template
1 1 i 10:45|INFO Jtor.C ot assigned task <*>
1 2 1 10:45|INFO Jtor.C ot assigned task <*>
| 2 | 3 |17/06/09|20‘10:45||NFO |executor.Executor |Running task <*> in stage <*> (TID 0) |
B {4 Tirsos/o90:1052]INFO [storage.BlockManager [Found block rdd_2_4 locally |
| 4 | 5 |17/ue/09|10 wvsz'lNFO |python.PythonRunner |Times: total = <*>, boot = <*>, init = <*>, finish = <*>|
5 | 6 |17/ue/09|zo wvsleNFO |python.PythonRunner |Time5: total = <*>, boot = <*>, init = <*>, finish = 0|
5 | 7 |17/06/D9 20: 10:52|INFO |python.PythonRunner himes: total = <*>, boot = <*>, init = <*>, finish = 0

Figure 1: An example of log parsing and validating the result
from Spark. The incorrectly parsed results are highlighted
in red.

Despite the importance of log parsing, effectively parsing logs
remains a challenging task. There are many prior research that
proposed various log parsers [12, 19, 24, 59, 76]. Yet, recent stud-
ies [30, 75] show that these approaches often fail to identify pa-
rameters in logs, which may affect the downstream log analysis
tasks. Recently, Large Language Models (LLMs) have demonstrated
promising results in text-related and code-related tasks, such as
code understanding and generation [35, 66]. Intuitively, log is com-
posed of both natural language and code-like variables. LLMs’
strong ability for language translation can be potentially lever-
aged for log parsing, which can also be viewed as translating from
logs to log templates.

In this paper, we investigate the potential of using LLMs for
log parsing, with a focus on studying the effect of varying LLMs,
shot sizes, and pre-training particularly when working with limited
training data. We proposed LLMParser, an innovative log parser.
LLMParsers learn from few-shot examples on how to “translate” a
log into a log template and evaluate LLMParser using four text-to-
text or text generation LLMs: Flan-T5-small [10], Flan-T5-base [10],
LLaMA-7B [58], and ChatGLM-6B [68]. We train and evaluate LLM-
Parsers using a widely-used log benchmark that contains logs data
from 16 open-source systems [27, 30]. Our evaluation shows that 1)
LLMParsers can achieve an average parsing accuracy (PA) of 0.96,
which is higher state-of-the-arts parsers Drain [24], Logram [12],
and LogPPT [33] (among them, the highest PA is 0.92). 2) Few-shot
tuning is more effective than in-context learning, where in-context
learning only results in an average PA of 0.46. 3) Increasing the
number of training examples may not always give better parsing
results; data diversity and balance may be more important. 4) More
complex LLMs may not always give better results. We find that
Flan-T5-base, which only has 240M parameters, can achieve simi-
lar results compared to LLaMA which has 7B parameters. 5) LLM
pre-trained using logs from other systems may not always help
improve PA. We find opposite findings between Flan-T5-base and
LLaMA, where LLaMA experiences a decrease in parsing accuracy
while Flan-T5-base has an improved parsing result.

We summarize the main contributions of this paper as follows:

Zeyang Ma, An Ran Chen, Dong Jae Kim, Tse-Hsun (Peter) Chen, and Shaowei Wang

e We explore the use of LLMs for log parsing, and propose LLM-
Parser, a generative LLM-based approach for log parsing. LLM-
Parser achieves a higher parsing accuracy (PA) compared to
state-of-the-arts.

e We compare in-context learning and few-shot tuning and found
that few-shot tuning achieves a much higher PA (up to 0.96 v.s.
0.46). We also found that few-shot tuning is efficient, which only
takes from one to five minutes on an NVIDIA A100 GPU.

e We found that increasing training shot sizes may not always
improve PA. Future studies should explore better sampling ap-
proaches to improve LLM-based log parsers.

e LLMs with more parameters may not always give better PA. We
find that a medium-size LLM (Flan-T5-base) achieves compara-
ble performance compared to LLaMA-7B. Future studies should
consider the trade-off between model complexity and accuracy.

o We find that using LLMs pre-trained using logs from other sys-
tems may not necessarily improve PA. We saw contradictory
results in LLaMA and Flan-T5-base, where the parsing accuracy
using LLaMA decreases. Future studies are needed to explore
the impact and effectiveness of pre-trained log models on log
parsing.

Paper Organization. Section 2 discusses background and related
work. Section 3 provides the details of LLMParser. Section 4 shows
experiment setup and our implementation. Section 5 evaluates
LLMParser. Section 6 discusses the implications of our findings.
Section 7 discusses threats to validity. Section 8 concludes the paper.

Data Availability: We made our source code and experimental re-
sults publicly available at: https://github.com/zeyang919/LLMParser

2 BACKGROUND AND RELATED WORK

In this section, we discuss the background of Large Language Mod-
els (LLMs) and how to optimize LLMs on specific tasks. We also
discuss related work, existing log parsing approaches, and applica-
tions that use LLMs to solve log-related tasks.

2.1 Background

Large Language Models. The Large Language Models (LLMs) are
mostly developed based on the transformer architecture [50, 58, 68].
LLMs have made important advancements in natural language
processing (NLP) by providing models that have an extraordinary
capacity for understanding language and producing contextually
relevant and semantically consistent text. LLMs are generally pre-
trained on a large corpus of text data from diverse sources such as
books, articles, websites, and even source code. Recent studies [35,
66] have highlighted the capability of LLMs in code recognition,
understanding, and code generation.

As logs consist of both natural language sequences and code-like
variables, prior work [6, 12, 22, 36] has leveraged language models
to analyze logs. However, it remains unclear whether LLMs can be
effectively used for log parsing due to the varying pre-training data
and model characteristics. Adopting LLMs for log parsing brings
potential advances in the research area. First, LLMs are shown to
be very powerful on text-related tasks [35, 66], which may be able
to achieve more accurate log parsing results. Second, LLMs are
generalizable on unseen data [29, 61, 73], which may be leveraged

https://github.com/zeyang919/LLMParser

LLMParser: An Exploratory Study on Using Large Language Models for Log Parsing

to parse new logs without continuous retraining. Nevertheless,
there is a need for a comprehensive study on using LLMs for log
parsing and what kinds of adaptions are needed for logs.

In-context Learning and Fine-Tuning of Large Language Mod-
els. To adapt LLMs to specific tasks, there are two main strategies:
in-context learning and few-shot tuning. In-context learning [4, 62]
is a method that incorporates task-specific demonstrations directly
into the input (i.e., prompt) during LLMs’ inference, guiding the
model to generate responses in a desired manner without the need
for retraining/changing the model’s parameters. In-context learning
relies on the model’s ability to generalize from the provided demon-
strations to understand and execute the task at hand. On the other
hand, fine-tuning [15, 20, 49] involves re-training the pre-trained
LLM on a dataset tailored to the specific task, allowing the model
to adjust its internal parameters and better align its outputs with
the desired outcomes. In particular, few-shot tuning [38, 46] is a
fine-tuning method that enables LLMs to generalize from limited ex-
amples, which may facilitate the extraction of relevant information
across diverse log formats, including log variables, log structure,
and semantic patterns.

While in-context learning provides quick adaptability, it has
several drawbacks. First, processing prompts with several demon-
strations every time the model parses logs can contribute to further
computational costs. In-context learning prompted with few-shot
demonstrations requires the model to process both the target in-
stance and all the demonstrations during each inference, leading to
an increased inference time. Second, the context size of the model’s
inputs limits the number of demonstrations that can be used. For
example, performing in-context learning with four prompts on Flan-
T5-Base [10] exceeds its context size of 512 tokens. This limitation
poses a challenge for LLMs to learn from a larger number of demon-
strations and improve their performance. Finally, selecting effective
demonstrations is also crucial for improving the performance of
in-context learning, as it is sensitive to the format and order of the
prompts [16, 44, 45].

In contrast, few-shot tuning does not demand continuous in-
context demonstrations for every inference, which can speed up
inference time. Moreover, using fine-tuning, we can provide more
diverse log examples to train the model as the tuning is already
performed during training. Prior studies [4, 20, 38] have also demon-
strated that few-shot tuning offers better accuracy at lower compu-
tational costs. Furthermore, since few-shot tuning only involves a
small number of data samples, the entire fine-tuning process can
be fast (e.g., only a few minutes for our approach). As a result,
there is no significant time overhead incurred due to fine-tuning.
Therefore, in this paper, we utilize few-shot tuning to integrate
domain-specific knowledge into LLMs.

2.2 Related Work

We discuss related work along two directions: log parsing and using
LLM for other log-related tasks.

Log Parsing. To support log parsing for large volumes of logs,
researchers have proposed many automated log parsing techniques.
Existing log parsers primarily use three approaches: frequent pat-
tern mining, log clustering, and parsing trees. (1) Frequent pattern
mining identifies static text and variables by counting the number

ICSE ’24, April 14-20, 2024, Lisbon, Portugal

of times a pattern or sequence recurs in the logs (e.g., SLCT [59],
LogCluster [76], Logram [12]). (2) Log clustering groups logs us-
ing clustering algorithms, thereby categorizing logs into different
groups (e.g., LKE [19], LogSig [56], and LenMa [53]). (3) Parsing
tree builds a parse tree with fixed depth to guide the log group
search process (e.g., Drain [24]). These studies aim to strike a bal-
ance between optimizing accuracy and the size of pre-learned data
for log parsing tasks. While the accuracy of log parsing has shown
improvement over time, recent studies [30, 75] reveal that tradi-
tional algorithm-based log parsing tools primarily emphasize log
clustering. Although these approaches achieve high grouping ac-
curacy, they often fail to accurately identify all the variables in
logs [30]. Therefore, this limitation may hinder downstream log
analysis tasks, such as missing some anomalies recorded by unrec-
ognized variables during log anomaly detection [37].

The recent rise of LLMs has brought new possibilities for im-
proving log parsing. Le and Zhang [33] proposed LogPPT, which
is a log parser based on a masked language model (RoBERTa [40]).
LogPPT improved the accuracy of log parsing compared to tradi-
tional algorithm-based log parsers. LogPPT converts the log parsing
task into a token classification task to classify whether a token in
the log is variable or static. However, this process requires more
manual effort in labelling every token in a log on whether or not
a token is a static text. Le and Zhang [32] further evaluated using
ChatGPT [4] to parse logs. Their study shows that ChatGPT can
parse the logs but the accuracy is worse than LogPPT. However,
due to the closed-source nature of ChatGPT, the monetary cost can
be high, the LLM is not fine-tunable, and the stability of the LLM is
out of the control of the developers. More importantly, logs often
contain sensitive data that cannot be sent to third parties.

In this paper, we investigate the application of text generation
and text2text generation LLMs to tackle the log parsing task. The
recent advancements and ongoing research in LLMs, particularly in
text2text and text generation, have significantly improved their text
understanding and processing capabilities [4, 9, 58]. Intuitively, log
parsing is similar to language translation, where a log is translated
into a log template. This allows us to eliminate the process of split-
ting logs and manually labeling individual tokens, and the parsed
log template is directly obtained. We leverage four open-source
LLMs (Flan-T5-Base [10], Flan-T5-Small [10], LLaMA-7B [58], and
ChatGLM-6B [68]) to generate the log template by inputting the
prompt and explore the performance of the LLMs compared with
the state-of-the-art approaches. Furthermore, we study the limita-
tions of LLM-based log parsers and explore the potential of using
pre-trained LLM-based log parsers.

Using LLMs for Other Log-related Tasks. The recent advances
in LLMs have shown success in both natural language processing
and code generation [35, 51, 66]. Since logs are semi-structured
text composed of natural language with some code elements, re-
searchers have adopted LLMs for log-related tasks [7, 34, 39]. Some
studies [34, 39] used LLMs for log anomaly detection. Lee et al. [34]
proposed LAnoBERT which is an anomaly log detector. LAnoBERT
masked the specific word in the log and then used BERT [13] to pre-
dict the masked word and calculate the predictive probability of the
origin masked word. When there are large differences between the
actual and the predicted words, the respective log is identified as an

ICSE °24, April 14-20, 2024, Lisbon, Portugal

sampld | RS Parsing result with | | £
16 system o1 LiMParsers =D 200 oG) | coeract | [Unseen logs
log data Parsing result with

logs 50-shot fine-tuning

Different -->{ LLMParsers ==I>{ Parsing result with II
different shot fine-tuning

size of

il

RQ3

(0

Sampled data

]

Model

i

Outcome of
the study

Parsing result
on target system
Parsing result
on target system

Pre-trained LLMParsers; ,ya
Pre-trained LLMParsersrsggse

i -
ﬁ LLMParsers, ;auya Sepedss | | Fine-tuned Pre-trained LLMParsers;; s
og Parsing soie-
LLMParsers sgase logs from Fine-tuned Pre-trained LLMParserssg,se
--------- > target system
Fine-tune RQ4

Figure 2: An overview of the evaluation of LLMParsers.

anomaly. Liu et al. [39] conducted a case study on logs from Huawei
Cloud and found that the effectiveness of the anomaly detected by
ChatGPT was partially consistent with that of the on-call engineers,
which suggests that LLMs could potentially reduce manual verifi-
cation efforts. Chen et al. [7] introduced RCACopilot, an on-call
system integrated with OpenAI's GPT models for automating root
cause analysis of cloud incidents.

3 APPROACH

In this section, we introduce LLMParsers, which adopts LLMs for
log parsing. LLMParsers tackle log parsing as a text2text and text
generation task using few-shot fine-tuning. Figure 2 illustrates our
overall evaluation architecture of LLMParser. In RQ1, we sample
50 logs from each system using our sampling algorithm for fine-
tuning LLMParsers, and evaluate the log parsing result. In RQ2,
we conduct a sensitivity analysis on the number of shots used for
fine-tuning. In RQ3, we evaluate the effectiveness of LLMParsers
on unseen log templates. Finally, in RQ4, evaluate the log parsing
accuracy of using a pre-trained LLMParser using 15 other systems.
Below, we present our few-shot sampling algorithm, LLM selection,
prompt selection, and fine-tuning process.

3.1 Sampling Few-Shot Data

LLMs require data samples to learn how to process different re-
quests, a task often accomplished by providing a few training exam-
ples [32, 33]. Similar to most other log parsers (e.g., Logram, Drain,
and LogPPT), LLMParser is an offline parser. Log parsers typically
need to scan all available logs to identify patterns and abstract
dynamic values, a process that is inherently offline. Access to all
necessary logs is a prerequisite for this procedure, enabling the
application of various techniques like clustering and log sampling.
Hence, we can apply our clustering and log sampling techniques to
sample a small number of logs and their associated log templates to
train the LLMs. We prioritize the sampling of more commonly-seen
logs while ensuring data diversity. Prior studies [21, 55] also suggest
that increasing the diversity of training data is effective in improv-
ing the understanding and generalization ability of deep learning
models. Therefore, we proposed a data sampling algorithm to sam-
ple logs with high frequency and variety to increase the coverage
and diversity of the training dataset.

Zeyang Ma, An Ran Chen, Dong Jae Kim, Tse-Hsun (Peter) Chen, and Shaowei Wang

Algorithm 1: Few-shot Log Sampling

Input :D: Dataset containing raw logs
Input :N: Number of logs to sample
Output: Dy, qin: Dataset with N sampled logs and log templates
/* Extract timestamps and replace numbers */
processed_logs « process_raw_logs(D);
log_clusters «—mean_shift_clustering (processed_logs);
Ditrain «— 95
foreach cluster in sorted (log_clusters, “descend”) do

log < sample_one_log(cluster);

Dirgin-add (log, find_template(log));

if length of Dtyain = N then

| break;

end if
end foreach
return Dy, gin

© o N AU R W N

oo
[.

Algorithm 1 demonstrates our log sampling process. The sam-
pling process does not require any pre-labelled data and is unsu-
pervised. Firstly, similar to other log parsers [33, 70], we process
the raw logs to separate and remove the information generated by
logging frameworks, such as dates and timestamps, and extract the
log messages. We further process the logs by using regular expres-
sions to replace all the numbers in the log with a unified character
to minimize the effect of the dynamically generated values on the
next step. Secondly, we apply the Mean Shift [8] clustering algo-
rithm to cluster the processed logs. We choose Mean Shift because,
unlike K-means, it does not need the user to specify the number of
clusters in advance. However, other clustering algorithms can also
be used. Thirdly, we sort the generated clusters in descending order
based on the cluster size. Finally, we sample one log from every
cluster and repeat the process until we reach the desired number
of samples. By sampling and iterating from the largest cluster, we
consider both diversity and coverage (i.e., possibly covering more
logs) in the sampling process. We label the log templates for all the
sampled logs to guide the LLM on how to parse logs.

3.2 LLMParser: Using LLMs for Parsing Logs

Parsing Logs Using Text2text and Text Generation LLMs.
When using text2text or text generation LLMs, we can parse a log
by simply giving them a log message. The LLMs “translate” the
log into a log template. Compared to LogPPT [33], which uses
LLMs for token classification, log parsing using text2text and text
generation LLMs eliminates the log splitting and output conversion
process. The LLMs directly use the logs for input and output, which
fully leverages LLMs’ abilities and makes the parsing result more
intuitive and easier to diagnose parsing issues.

We evaluate and compare four LLMs on their log parsing ac-
curacy: Flan-T5-small [10], Flan-T5-base [10], LLaMA-7B [58] and
ChatGLM-6B [68]. Table 1 shows the architecture of the LLMs and
the parameter size. The LLMs cover both text2text (Flan-T5) and
text generation (LLaMa and ChatGLM), vary in size (range from
80M to 7B parameters), and are pre-trained using different architec-
tures. Our goal is to explore the difference in log parsing accuracy
among LLMs with different architectures and parameter sizes. Flan-
T5-small and Flan-T5-base are the instruction fine-tuned versions
of T5 [50] with different parameter sizes. Prior research [10, 52]

LLMParser: An Exploratory Study on Using Large Language Models for Log Parsing

Table 1: Information on the Large Language Models that we
used for log parsing.

LLM Name Architecture Pre-training Objective ~ Parameter Size
Flan-T5-small ~ Encoder-decoder Text2text Generation 30M
Flan-T5-base Encoder-decoder Text2text Generation 240M
LLaMA-7B Causal Decoder Text Generation 7B
ChatGLM-6B Prefix Decoder Text Generation 6B

showed that Flan-T5 converges faster than T5 and achieves out-
standing results on fine-tuned tasks. LLaMA-7B is a publicly re-
leased state-of-the-art foundational large language model by Meta,
which offers smaller and more efficient models for researchers on
multiple NLP tasks. ChatGLM-6B was jointly built by Tsinghua
University and Zhipu AI Company [68] that enable widespread
access to researchers for question answering and information pro-
cessing. Additionally, they are open-source models, which allows
for easy in-depth analysis and fine-tuning processes, as well as the
replication of our study in future research.

Prompt Templates for Log Parsing. Prompts are user-provided
inputs, such as queries, instructions, or questions, that guide LLMs
and instruct their behaviour for specific tasks. Specifically, prompts
are incorporated into the model’s embedding layer to guide its
decision-making process. Prompting involves priming an LLM by
using prompts to demonstrate examples of the downstream task.
Previous studies [20, 65, 74] have demonstrated that the quality
of input prompts plays a crucial role in the performance of LLMs,
influencing the generated output quality.

A prompt template is often used to generate prompts in a con-
sistent and reproducible way. As an example, in the case of log
parsing, one possible prompt template can be formulated as “The
log [X] belongs to the log template [Y]”, where the objective is
to generate the corresponding log template for the input log [X],
with [Y] representing the answer. In this paper, we investigate the
effectiveness of LLMs in log parsing using hard prompts, which are
fixed natural language instructions. We use hard prompts [64] to
minimize the variability caused by the prompts, and focus our study
on examining the impact of different LLMs and varying training
sizes on parsing performance. Below, we discuss the prompts that
we used in LLMParsers.

In the design of its prompt, T5 leverages the colon symbol “” to
separate instructions and input data. Since our task shares similari-
ties with the machine translation task, which involves transforming
input data to output data, we leverage T5’s default prompt struc-
ture (i.e., “instruction + input type + output type:") to build our
LLMParsertsg,,q11 and LLMParseryspgse prompt template as:

“Parse the raw log to log template: {Raw log}"”
“Log template}”

We feed the log and log template pairs as examples during training.
When parsing logs, we only give instructions about the raw log.
LLaMA-7B and ChatGLM-6B are two large text generation mod-
els that have been extensively studied and fine-tuned for various
tasks [1, 69, 71]. One notable optimized version of LLaMA is Al-
paca [57], which is highly regarded for its performance. The prompt
template used by Alpaca has been widely adopted, consistently
delivering excellent performance. In this paper, we use Alpaca’s
prompt template (defined below) to train and generate output for
the log parsing task using LLaMA-7B and ChatGLM-6B models.

ICSE ’24, April 14-20, 2024, Lisbon, Portugal

“Below is an instruction that describes a task, paired with an input
that provides further context. Write a response that appropriately
completes the request.

Instruction: Parse the input log to the log template.
Input: {Raw log)’
Response: {Log Template}’

We give the task description, instruction, input, and response to the
LLMs during training. When parsing, we only give the description,
instruction, and input, and ask the LLMs to generate the response.

Applying Few-shot Tuning on the LLMs. When the training
dataset is the same, the fine-tuning efficiency of a model is directly
related to its parameter size, as larger models with more parameters
require more computational resources and a longer time to con-
verge [11]. Due to the small parameter size of the Flan-T5-small and
Flan-T5-base, fine-tuning can be efficiently done without additional
optimization mechanisms. For the larger models, LLaMA-7B and
ChatGLM-6B, we used LoRA [28] to accelerate the fine-tuning pro-
cess. LoRA is an efficient parameter fine-tuning technique, which
only trains a very small portion of ADDITIONAL parameters while
freezing the original parameters of the model. LoRA uses low-
rank parameterization and focuses on the most important layers of
models, reducing both computational and memory requirements.
Consequently, the model converges faster with minimal impact on
performance, enabling faster fine-tuning for various tasks, which
achieves comparable speed to fine-tuning Flan-t5-base (even with
more than 25 times more parameters). Our fine-tuning process
takes from several seconds to less than five minutes.

4 EXPERIMENT SETUP AND
IMPLEMENTATION

In this section, we discuss our experiment setup to answer our
research questions and the implementation details.

Studied Dataset. We conduct our experiment on the log parsing
benchmark provided by He et al. [27]. This benchmark contains
logs from 16 open-source systems and is widely used to evaluate
and compare the accuracy of log parsers [12, 17, 24]. Each system
includes 2,000 log messages along with their respective log tem-
plates and parameters (the ground truth for evaluating log parsers).
The studied systems included in the dataset range from various
domains, such as distributed systems, operating systems, mobile
systems, supercomputers, server applications, and standalone soft-
ware. However, recent studies [12, 30] have identified instances
of incorrectly labelled log templates in the dataset. As a result,
we adopted the corrected benchmark dataset released by Khan et
al. [30], following recent research [31, 33].

Environment and Implementation. Our experiments were con-
ducted on a server with an NVIDIA Tesla V100 GPU using CUDA
11.0. For the fine-tuning process of the model, we used a maximum
learning rate of 5e-4 and use the AdamW [42] optimizer with a
linear learning rate decay schedule for optimization. For single sys-
tem fine-tuning, we uniformly set the batch size to 5 and trained
30 epochs for LLMParsers. For the cross-system scenario (RQ4),
we trained 20 epochs and boost the batch size to 20 in order to
shorten the training time. We used OpenPrompt [14] to fine-tune

ICSE °24, April 14-20, 2024, Lisbon, Portugal

LLMParserrsgm,qr; and LLMParserrspgse. We used LoRA [28] with
PEFT v0.3.0 to fine-tune LLMParsery 4314 and LLMParsercpa:GLM
Note that, fine-tuning with 50 data samples took from only a few
seconds to less than five minutes for all the studied LLMs, so the
cost of few-shot fine-tuning is small. For log parsing, we set the
temperature to 0 and num_beams to 2 in the generation configura-
tion in order to generate consistent and stable parsed results. Due
to the difference in the length of the prompt template, we set the
max_length to 256 (LLMParserysg;,q1; and LLMParserspgse) and
512 (LLMParseryj ,p4 and LLMParsercpq:crm) as the generation
parameter, respectively.

Evaluation Metrics for Log Parsing. Following prior studies [12,
30, 33, 41, 48, 75], we use two metrics to evaluate the effectiveness
of LLMs in log parsing: Group Accuracy and Parsing Accuracy.
Group Accuracy (GA): Group Accuracy [75] does not directly
evaluate the correctness of the parsed logs. Instead, GA assesses the
accuracy of the automatically grouped logs (e.g., GroupID4rseq
shown in Figure 1). GA is calculated as the ratio between the number
of correctly grouped logs and the total number of logs. Specifically,
GA first groups logs based on the parsed logs (i.e., generated by
a log parser), and compares the resulting groups with grouping
results from the ground truth (e.g., GroupIDgy;p,). For instance,
the log parsing result in Figure 1 has a GA of 4/7. Once the raw logs
are parsed, they are grouped into different groups, as illustrated in
Figure 1. We can see that Log 1 and 2 are grouped together, Log
6 and 7 are grouped together, and Log 3, 4, and 5 form a separate
group by themselves. The grouping results (GroupIDpgyseq) for
group 1 to group 3 match the grouping results obtained by using
the ground truth log template (GroupIDy;:p,). However, Log 5 to
7 form two groups (GrouplD,4;seq 4 and 5) when using the parsed
log template, whereas there is only one group (GroupIDy;ysp, 4) if
using the log template from the ground truth. As a result, the GA
for this example is 4/7.

Although GA is commonly used, prior studies [12, 30, 41] high-

lighted its limitations. For instance, even if the logs are perfectly
grouped with a GA of 100%, the parsed log template may not fully
match the ground truth template due to the misidentified parame-
ters in the parsed templates. As a result, GA cannot show whether
or not the logs are parsed correctly. Furthermore, if the logs are not
parsed correctly but are still grouped in a cluster (e.g., Log 3 and 4
in Figure 1), GA will still be 100%.
Parsing Accuracy (PA): Parsing Accuracy [41] within the log
template must match with the ground truth template. For example,
the log parsing result in Figure 1 has a PA of 3/7 because there are
missed variables in Log 3, 4, 6, and 7 (highlighted in red). Hence, PA
is a stricter metric compared to GA and aligns more closely with
practical requirements [30, 33, 41]. Prior studies also found that
parsing the variables can help downstream log analysis tasks [31,
43, 54], which further shows the importance of PA over GA.

5 EVALUATION

RQ1: What is the accuracy of LLMParsers?

Motivation. A recent work by Le and Zhang [33] proposed us-
ing Large Language Models (LLMs) to learn from labelled logs
and accurately identify parameters in logs. However, their study
only provided initial evidence on the feasibility of using LLMs

Zeyang Ma, An Ran Chen, Dong Jae Kim, Tse-Hsun (Peter) Chen, and Shaowei Wang

for log parsing, as they solely utilized one masked-language LLM
(RoBERTa-base). Yet, there is a lack of research exploring the impact
of different types (e.g., text2text or text generation LLMs) and sizes
of LLMs on log parsing accuracy. Hence, in this RQ, we aim to inves-
tigate the differences among various types of LLMs and the impact
of distinct LLM parameter sizes on log parsing. Such comparisons
can assist practitioners in identifying the most effective LLM for
log parsing, while also enabling researchers to identify potential
future directions on LLM-based log parsing.

Approach. For each system, we fine-tune the four LLMParsers
using 50 logs sampled using the sampling algorithm (Algorithm 1).
Then, similar to prior studies [33, 37], we use each fine-tuned model
to generate the log templates for all 2,000 logs for each of the 16 sys-
tems. We compare the grouping and parsing accuracy against state-
of-the-art approaches: Drain [24], Logram [12], and LogPPT [33].
We selected the state-of-the-art approaches based on their high
accuracy and efficiency [12, 75].

Results. LLMParsers have a higher (4.25% to 78.69% higher
for LLMParsery [014) parsing accuracy compared to state-of-
the-arts log parsers. Table 2 shows both the grouping accuracy
(GA) and parsing accuracy (PA) of the state-of-the-art and LLM-
Parsers. We find that, in general, LLMParsers have a higher GA
(0.7546~0.8873) and PA (0.9076~0.9587) compared to the traditional
log parsers (GA of 0.5513 and 0.8605, and PA of 0.3353 and 0.1718, for
Drain and Logram, respectively). LLMs such as LLMParseryy,pa
and LLMParseryspgse achieve a GA of 0.88 and a PA of almost 0.96.
LogPPT, on the other hand, achieves a high GA (0.9229) and PA
(0.9162). Compared to LogPPT which uses a masked language model,
we find that our parsers that are based on text2text and text gener-
ation models achieve a better PA (except for LLMParsercpqa:GLm)-
For example, LLMParsery 434 achieves a PA of 0.9587, which is
4.6% higher than that of LogPPT.
The probabilistic nature of text generation and text2text LLMs
may have an impact on the grouping accuracy (GA) of LLM-
Parsers. Nevertheless, the differences in GA between LogPPT
and two LLMParsers are not statistically significant. Unlike
traditional algorithms, text generation and text2text models have
a small probability of generating erratic output that leads to pars-
ing errors [3], which has a larger impact on GA. For example,
we observed that when we parsed 2,000 logs from Spark using
LLMParseryssmaiis 1,999 logs were parsed correctly, resulting in a
PA 0f 0.9995. Only one log was parsed incorrectly (one of the dy-
namic variables was not parsed correctly). However, this log shares
the same template with 299 other logs in the system. Although
299/300 logs were correctly parsed, these 300 logs were not grouped
together because that one incorrectly parsed log forms a group by
itself. As a result, the GA for Spark becomes 0.85 (1,700/2,000). Note
that, we set the temperature of the LLMParsers to zero to ensure the
consistency in the parsed logs (i.e., given the same input prompt, the
output will be the same) [60]. However, logs contain dynamically
generated values, so even if two logs have the same template, they
are considered two distinct inputs and may have a small probability
of resulting in parsed logs with small differences.

Nevertheless, compared to state-of-the-art parsers, the PA of both
LLMParserrspgse and LLMParserprapma showed a statistically sig-
nificant increase using paired t-test (p-value<0.05), while GA did not

LLMParser: An Exploratory Study on Using Large Language Models for Log Parsing

ICSE ’24, April 14-20, 2024, Lisbon, Portugal

Table 2: A comparison of the grouping accuracy (GA) and parsing accuracy (PA) for the state-of-the-art (first three columns)

and the LLMParser (the last four columns) parsers.

Drain Logram LogPPT LLMParserrsgmaqi; LLMParserrspgse LLMParserr,ma LLMParsercpq:GLm

GA PA GA PA GA PA GA PA GA PA GA PA GA PA
Android 0.8305 0.5475 0.7420 0.2780 0.8845 0.7665 0.8015 0.9005 0.8680 0.9375 0.8485 0.9455 0.8315 0.8395
Apache 1 0.6935 0.3125 0.0065 1 0.9940 1 1 1 1 1 1 1 1
BGL 0.9625 0.3420 0.5870 0.1245 0.9535 0.9695 0.5040 0.9745 0.4985 0.9770 0.9415 0.9805 0.9440 0.9640
Hadoop 0.9475 0.2690 0.4510 0.1125 0.9935 0.8950 1 0.9140 0.8055 0.9125 0.9805 0.9825 0.6440 0.8375
HDFS 0.9975 0.3545 0.9300 0.0045 1 0.9025 1 1 1 1 0.9575 0.9880 0.9575 0.9965
HealthApp 0.7800 0.2305 0.2665 0.1120 1 0.7885 0.8025 0.9560 0.8085 0.9010 0.8550 0.9955 0.5540 0.8190
HPC 0.8870 0.6355 0.9105 0.6430 0.9430 0.9470 0.9685 0.9835 0.9740 0.9895 0.9700 0.9935 0.9700 0.9855
Linux 0.6900 0.1835 0.3610 0.1240 0.9335 0.9485 0.1785 0.8515 0.8190 0.9385 0.5455 0.8385 0.8785 0.9495
Mac 0.7865 0.2175 0.5680 0.1685 0.7800 0.6725 0.7325 0.6725 0.7750 0.7090 0.7390 0.6765 0.6505 0.5205
OpenSSH 0.7890 0.5080 0.6105 0.2980 0.6275 0.9795 0.8870 0.9860 1 1 0.7095 0.9935 0.5840 0.9450
OpenStack 0.7325 0.0185 0.3255 0 0.9890 0.9065 0.9890 0.9895 1 0.9885 0.9785 0.9960 0.3125 0.8725
Proxifier 0.5265 0 0.5035 0 1 1 1 1 1 1 1 1 0.0310 0.9150
Spark 0.9200 0.3595 0.2820 0.2585 0.9990 0.9910 0.8500 0.9995 0.8500 0.9905 0.9850 0.9850 0.7750 0.9585
Thunderbird 0.9550 0.0465 0.5540 0.0040 0.6790 0.9255 0.9630 0.9595 0.9705 0.9730 0.6925 0.9675 0.9560 0.9375
Windows 0.9970 0.4620 0.6940 0.1405 0.9910 0.9830 0.7155 0.9885 0.7155 0.9950 0.9985 0.9965 0.9920 0.9880
Zookeeper 0.9665 0.4970 0.7235 0.4735 0.9935 0.9895 0.9945 0.9995 1 0.9995 0.9945 0.9995 0.9935 0.9930
Average 0.8605 0.3353 0.5513 0.1718 0.9229 0.9162 0.8367 0.9484 0.8803 0.9570 0.8873 0.9587 0.7546 0.9076

Note: The highest values of GA and PA for each system are highlighted in bold. The results of Drain and Logram are based on the evaluation conducted by Khan et al. [30] on

the corrected log dataset.

Table 3: Grouping accuracy (GA) and parsing accuracy (PA)
for logs outside the training dataset.

LLMParseryss,, ;| LLMParseryspgse] LLMParser;,yva | LLMParsercy ;cLm
GA PA GA PA GA PA GA PA

Android 0.7716 0.8452 0.9058 0.8647 | 0.8789 0.8680 0.8148 0.8329
Apache 1 1 1 1 1 1 1 1

BGL 0.3798 0.9720 0.3709 0.9752 0.9349 0.9758 0.9375 0.9585
Hadoop 1 0.8517 0.6914 0.8526 0.9768 0.9662 0.3443 0.8501
HDFS 1 1 1 1 0.9605 0.9892 0.9605 0.9979
HealthApp | 0.7547 0.9457 0.7622 0.8770 0.8192 0.9944 0.4426 0.7765
HPC 0.9040 0.9584 0.9200 0.9744 | 0.9154 0.9789 0.9106 0.9610
Linux 0.0474 0.8456 0.9465 0.9569 0.4392 0.7996 0.8834 0.9504
Mac 0.6583 0.5782 0.7106 0.6247 | 0.6651 0.5857 0.5678 0.4335
OpenSSH 0.8500 0.9848 1 1 0.5129 0.9889 0.3036 0.9082
OpenStack | 0.9865 0.9878 1 0.9865 0.9737 0.9955 0.1432 0.8504
Proxifier 1 1 1 1 1 1 0.0137 0.8901
Spark 0.8443 0.9995 0.8443 0.9901 0.9854 0.9854 0.7695 0.9629
Thunderbird | 0.9550 0.9498 0.9648 0.9667 0.6638 0.9579 0.9487 0.9303
Windows 0.5271 0.9825 0.5271 0.9925 0.9983 0.9975 0.9882 0.9891
Zookeeper | 0.9886 0.9989 1 1 0.9886 0.9989 0.9886 0.9874
Average 0.7917 0.9313 0.8527 0.9413 0.8570 0.9426 0.6886 0.8925

exhibit a statistically significant difference compared to LogPPT (p-
value>0.05). Prior studies [12, 30, 33] stated that PA evaluates the
practical goal (i.e., correctly parsing logs) of log parsing, which
makes PA a better evaluation metric than GA. In short, LLMParsers
can better identify the variables of logs and generate correct log
templates matching the ground truth.

After we remove the logs used for few-shot fine-tuning during
evaluation, the average GA and PA of LLMParser on the re-
maining logs decrease slightly but are still higher than other
baselines. Previous studies on log parsers usually evaluate and
compare the effectiveness of log parsers on the entire data set (i.e.,
all 2,000 logs) [24, 33, 75]. However, such evaluation approaches
may include the training data in the evaluation process, causing
potential data leakage issues. Hence, we re-evaluated the GA and
PA of all four LLMParsers only on the logs by removing all the
logs from the test set that were exactly the same as those in
the training set and showing the results in Table 3. Compared
with the baseline result in Table 2 (evaluated using all the logs),
all four LLMParsers * average GA and average PA experienced a
slight decrease, with the average PA decreasing by less than 1%.

Nevertheless, LLMParserrsgase and LLMParseryy a4 still have
higher average PAs (0.9413 for LLMParseryspgse and 0.9426 for
LLMParserrpma) compared to LogPPT (PA is 0.9162, but LogPPT
included the training data in the evaluation, having a potential
data leakage issue). Our findings show that, after removing the log
samples used for training in the evaluation process, LLMParsers
can still achieve higher PA than all the baselines.

While more complex LLMParsers (more parameters) generally
give better parsing results, simpler models already give promis-
ing results. Future studies should consider the trade-off be-
tween parsing accuracy and the complexity of LLMs. In general,
more complex models give better parsing results, with the exception
of LLMParsercpq:grm- One reason that LLMParsercp :gLm has
a worse accuracy may be that it is a bilingual model and the logs
are written in English. Another possible reason is that ChatGLM
is engineered as a chatbot, which is fine-tuned to give human-like
responses. Between LLMParserysg,q; and LLMParserrspgse, the
GA and PA increased by 5.21% and 0.9%, respectively. We see a
further improvement when using LLMParsery 414 compared to
LLMParserrspgse, although the improvement is small (0.8% and
0.17% in GA and PA).

However, more complex models may require more resources and
time to parse the logs. We randomly selected 100 logs from Spark’s
log dataset, and measured the average parsing time by repeating
the process 20 times. Under the same hardware environment, com-
plex LLMParsers require a longer parsing time. LLMParserrsgmai;
and LLMParserrsp,se could parse 100 logs in an average of 1.27
seconds and 4 seconds, respectively, while LLMParsercpq;cry and
LLMParseryrapma require 19.87 and 28.93 seconds, respectively.
Therefore, future studies should encompass a trade-off between the
accuracy and efficiency of using LLMs on log parsing.

LLMParsers achieve better PA than state-of-the-art and similar
GA compared to LogPPT. Although LLMParsery,a14, which
has a larger number of model parameters, achieves the best GA
and PA, the difference is small compared to smaller LLMs like

LLMParserrsgase-

ICSE °24, April 14-20, 2024, Lisbon, Portugal Zeyang Ma, An Ran Chen, Dong Jae Kim, Tse-Hsun (Peter) Chen, and Shaowei Wang

Table 4: Grouping accuracy (GA) and parsing accuracy (PA) for different numbers of training shots.

LLMParseryssmalr LLMParseryspgse LLMParsery ma LLMParsercpq:GLm
25 shots | 50 shots | 75 shots [100 shots| 25 shots | 50 shots | 75 shots | 100 shots| 25 shots | 50 shots | 75 shots |100 shots| 25 shots | 50 shots | 75 shots | 100 shots
GA PA|GA PA|GA PA|GA PA|GA PA|GA PA|GA PA|GA PA|GA PA|GA PA|GA PA|GA PA|GA PA|GA PA|GA PA|GA PA

Android 0.90 0.88]0.80 0.90(0.97 0.93|0.86 0.93]0.95 0.91|0.87 0.94]0.98 0.96 [0.96 0.97]0.95 0.91|0.85 0.95[0.98 0.98|0.97 0.99]0.78 0.68|0.83 0.84|0.93 0.96|0.83 0.93
Apache 1 1 1 1 1 1 1 1 1 1 1 1|1 1 1 1 1 1 1 1 1 1 1 1 1 099 1 1 1 1 1 1
BGL 0.56 0.93]0.50 0.97]0.51 0.98]0.56 0.98]0.60 0.94|0.50 0.98/0.60 0.98|0.60 0.99]0.74 0.84|0.94 0.98]0.85 0.99|0.96 0.99{0.84 0.90|0.94 0.96|0.35 0.92|0.96 0.98

Hadoop 0.80 0.87| 1 0.91]/0.98 0.90|0.97 0.92]0.99 0.89|0.81 0.91| 1 0.99]0.97 0.99]0.99 0.96|0.98 0.98|0.98 0.99/0.96 0.98]0.95 0.61|0.64 0.84/0.96 0.97|0.79 0.83

HDFS 0.70 0.98| 1 1 1 1 1 1 1 1 1 1|1 1 1 1]0.92 0.92/0.96 0.99/0.96 1 1 1]0.84 0.94/0.96 1 [0.84 0.99(0.80 0.99
HealthApp |0.67 0.77|0.80 0.96|0.80 0.93|0.67 0.94]0.66 0.85|0.81 0.90|0.81 0.99|0.81 0.99]0.86 0.99|0.86 1 |0.87 1 1 1]0.66 0.73]0.55 0.82|0.68 0.86|0.73 0.86
HPC 0.95 0.98]0.97 0.98]0.97 0.99/0.98 0.99]0.97 0.9810.97 0.99/0.97 0.99| 1 1]0.99 0.99/0.97 0.99/0.98 1 [0.99 1 |0.77 0.91(0.97 0.99|0.95 0.99|0.93 0.99
Linux 0.36 0.89(0.18 0.85[0.36 0.89|0.18 0.87]0.94 0.97|0.82 0.94/0.88 0.91/0.36 0.89] 1 0.99|0.55 0.84|0.76 0.98]0.24 0.95]0.42 0.87|0.88 0.95|0.48 0.96|0.69 0.92
Mac 0.64 0.52|0.73 0.67]0.77 0.76 |0.82 0.80]0.70 0.59|0.78 0.71|0.82 0.73 |0.84 0.83]0.77 0.58|0.74 0.68(0.79 0.78|0.82 0.80]0.70 0.44|0.65 0.52(0.70 0.53|0.83 0.79

OpenSSH 0.63 0.92|0.89 0.99]0.64 0.98/0.94 1 |033 088 1 1 {081 1 1 1 |0.44 0.99|0.71 0.99|0.94 1 |0.75 1]0.58 0.90(0.58 0.95]|0.58 0.98|0.75 0.99
OpenStack |0.96 0.94|0.99 0.99(0.99 1 |0.99 0.99]0.97 0.95| 1 0.99/0.99 1 1 1]052 084|098 1 (099 1 1 1]0.31 0.51(0.31 0.87]0.47 0.83/0.99 1

Proxifier 053 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1]052 1 1 1 /005 1 |053 1 J0.50 0.95/0.03 0.92/0.53 1 |0.98 1

Spark 0.36 0.95/0.85 1 [0.85 1 (066 1 |0.85 1 |0.850.99| 1 1 1 11081 1 (099099 1 099 1 1]0.78 0.79]0.78 0.96|0.79 0.97|0.87 0.94
Thunderbird|0.96 0.93|0.96 0.96(0.68 0.97|0.68 0.98]0.96 0.92|0.97 0.97|0.70 0.98(0.70 0.98]0.68 0.96]0.69 0.97|0.68 0.97|0.68 0.97]0.64 0.570.96 0.94|0.67 0.95|0.67 0.95
Windows 0.71 0.98]0.72 0.99| 1 1 1 1 10.99 099|072 1 1 1 1 1 1 1 1 1 1 1 1 1]0.99 0.84]0.99 0.99(0.99 0.99|0.99 0.99
Zookeeper 1 099099 1 |09 1 1 11099 1 1 1(09 1 (099 1]0.990991099 1 (099 1 (099 1]0.99 0.99]/0.99 0.99/0.99 0.99|0.97 0.97
Average 0.73 0.91]0.84 0.95]0.84 0.96|0.83 0.96]0.87 0.93|0.88 0.960.91 0.97 [0.89 0.98]0.82 0.93|0.89 0.96|0.86 0.98|0.87 0.98]0.73 0.79|0.75 0.91[0.75 0.93|0.86 0.95

Note: The highest values of GA and PA for each LLM for each system are highlighted in bold.
RQ2: How does the accuracy of log parsing vary
under different shot sizes?

LLMParsers have different sensitivity on the shot sizes. For exam-
ple, LLMParserrspgse is relatively stable across all shot sizes, while
LLMParsercpq:Grup has the largest improvement when the shot size
increases. When the shot size is increased to 100, the GA decreases
for all LLMParsers except for LLMParsercp,:GLm> but the improve-
ment for PA is barely noticeable. We also find that LLMParserrspgse
has better GA and the same PA compared to LLMParseryj,pr4, the
largest LLM among the four studied LLMs. Our finding shows that
more complex LLMs may not achieve better PA and GA. For in-
stance, the smallest model LLMParserysg,,,1; achieves comparable
results to the second largest model LLMParsercy,:Grm, and their
difference remains trivial even with the increased training shots.
Compared to in-context learning, few-shot tuning achieves
better parsing accuracy. Table 5 shows the accuracy for differ-
ent shots of in-context learning. However, in-context learning
yielded worse results. LLMParseryr,pa achieved only an aver-
age GA and PA of 30% and 45%, respectively, across 16 systems.
LLMParserrspgse also performed poorly, resulting in an average GA
and PA of only 22% and 1%. The finding aligns with the discussion
provided by a recent study [46] and Flan-T5 developers [10] where
few-shot tuning achieves better results than in-context learning.
Different LLMParsers may require different shot sizes to achieve
good accuracy in log parsing. For example, LLMParserrsggse
already achieves very high accuracy (87% and 93% for GA and
PA) when fine-tuned using only 25 shots. However, as the number
of shots increases further, the improvement consistently plateaus
among all systems, especially when the shot size is over 75. On the
other hand, when the shot size is 100, the accuracy of LLMParsercha:Grm
becomes comparable to the other parsers. This trend is particularly
noticeable in OpenStack and Proxifier, where both GA and PA show
substantial improvements from 25 shots to 100 shots (GA increases

Motivation. In RQ1, we ascertain that LLMs exhibit superior ac-
curacy in log parsing compared to the state-of-the-art approaches.
When using LLMs, one thing that researchers and practitioners
need to decide is the number of samples for few-shot tuning. Prior
research [2, 20] has demonstrated that the efficacy of a model fine-
tuned for an individual task is contingent upon the size and diversity
of the training dataset. However, manually labelling data can be
time-consuming and manual-intensive. Hence, in this RQ, we exam-
ine the ramifications of varying training set sizes on the accuracy
of log parsing tasks when employing distinct LLMs.

Approach. For each system, we sample 25, 50, 75, and 100 log
lines and their corresponding log template using our log sampling
algorithm (Algorithm 1). The same sets of logs are used as the fine-
tuning dataset for all LLMParsers. We then evaluate the log parsing
performance (i.e., GA and PA) of LLMParsers using different sizes of
fine-tuning datasets. We vertically compare the accuracy changes
of each LLMParser after increasing the training data size. Simulta-
neously, we also horizontally compare the accuracy differences of
different LLMParsers under the same training data size.

To compare, we also apply in-context learning on LLMParsertspgse
and LLMParseryj ,p4 without fine-tuning to investigate the log
parsing accuracy. We chose these two LLMs because of their large
size and good parsing results shown in RQ1. We use 3 and 15 shots
(in-context log parsing demonstrations), respectively for the two
LLMs, due to their limits on the size of the input tokens.

Results. Increasing the number of shots increases the accu-
racy of LLMParsers, but the difference is small (e.g., 1-2%) or
fluctuates for most LLMParsers beyond 50 shots, except for

LLMParserchq;cLm- Table 4 shows the accuracy of LLMParsers
using different numbers of shots. Although there are some im-
provements in PA and GA when the number of shots increases,
the accuracies stabilize after 50 shots. When the shot size is 25,
both GA and PA decrease (1% to 15% and 3% to 15%, respectively)
for all LLMParsers compared to using 50 shots. We also find that

from 0.31 to 0.99, and PA increases from 0.51 to 1 for OpenStack,
and GA increases from 0.50 to 0.98, and PA increases from 0.95 to 1
for Proxifier).

The variation in the accuracy of log parsing across different
LLMParsers may be attributed to the nature of LLMs as statistical
models. Each model learns to parse logs by identifying distinct

LLMParser: An Exploratory Study on Using Large Language Models for Log Parsing

ICSE ’24, April 14-20, 2024, Lisbon, Portugal

Table 5: Grouping accuracy (GA) and parsing accuracy (PA) for different shots of in-context learning.

LLMParsery pma LLMParser7sggse
5 shots 10 shots 15 shots 20 shots 1 shots 2 shots 3 shots 4 shots 5 shots
GA PA GA PA GA PA GA PA GA PA GA PA GA PA GA PA GA PA

Android 0.200 0.093 | 0.393 0.126 | 0.430 0.222 | 0.642 0.318 | 0.423 0.043 | 0.427 0.018 | 0.424 0.002 | 0.482 0.033 | 0.530 0.021
Apache 0.984 0.700 | 0.430 0.460 | 0.709 0.711 1 0.725 | 0.291 0 0.291 0 0.566 0 0.291 0 0.291 0
BGL 0.240 0.118 | 0.258 0.211 | 0.368 0.418 | 0.238 0.665 | 0.126 0 0.085 0.001 | 0.130 0.002 | 0.133 0.009 | 0.154 0.008
Hadoop 0.335 0.244 | 0.407 0.395 | 0.180 0.164 | 0.255 0.321 | 0.116 0 0.188 0.003 | 0.213 0.003 | 0.456 0.004 | 0.284 0.006
HDEFS 0.001 0.071 | 0.041 0.178 | 0.011 0.335 | 0.001 0.241 | 0.001 0 0.001 0 0.001 0 0.001 0 0.001 0
HealthApp 0.332 0.561 | 0.429 0.528 | 0.626 0.756 | 0.584 0.824 | 0.120 0.001 | 0.127 0 0.128 0 0.147 0.019 | 0.074 0.012
HPC 0.295 0.490 | 0.155 0.506 | 0.354 0.592 | 0.244 0.478 | 0.635 0.001 | 0.384 0.001 | 0.595 0 0.390 0 0.530 0.081
Linux 0.036 0.106 | 0.201 0.611 | 0.264 0.616 | 0.199 0.675 | 0.129 0.002 | 0.167 0.009 | 0.154 0.012 | 0.170 0.024 | 0.165 0.012
Mac 0.247 0.129 | 0.345 0.155 | 0.414 0.201 | 0.384 0.180 | 0.247 0.012 | 0.355 0.066 | 0.344 0.008 | 0.378 0.024 | 0.389 0.056
OpenSSH 0.002 0.182 | 0.068 0.382 | 0.074 0.361 | 0.028 0.389 | 0.095 0 0.025 0 0.255 0 0.076 0 0.094 0
OpenStack 0.041 0 0.049 0.054 | 0.083 0.025 | 0.070 0.012 | 0.194 0 0.147 0 0.102 0 0.112 0 0.097 0
Proxifier 0.050 0.627 | 0.050 0.981 | 0.050 0.980 | 0.050 0.963 0 0 0.001 0 0 0 0 0 0.003 0
Spark 0.003 0.312 | 0.023 0.440 | 0.401 0.579 | 0.215 0.494 | 0.009 0 0.023 0.002 | 0.048 0.003 | 0.064 0.001 | 0.027 0.003
Thunderbird | 0.079 0.062 | 0.118 0.326 | 0.165 0.398 | 0.019 0 0.203 0.010 | 0.178 0.004 | 0.168 0.004 | 0.123 0.004 | 0.101 0.004
Windows 0.162 0.003 | 0.398 0.567 | 0.410 0.427 | 0.181 0.309 | 0.033 0 0.132 0 0.259 0.009 | 0.139 0.006 | 0.011 0
Zookeeper 0.171 0.142 | 0.017 0.206 | 0.294 0.380 | 0.248 0.469 | 0.171 0.158 | 0.152 0.001 | 0.173 0.133 | 0.042 0.020 | 0.037 0.027
Average 0.198 0.240 | 0.211 0.383 | 0.302 0.448 | 0.272 0.441 | 0.174 0.014 | 0.167 0.006 | 0.222 0.011 | 0.187 0.009 | 0.174 0.014

patterns from the training shots. To determine the best shot size
and reduce manual effort on data creation, future studies should
investigate the relationship between the characteristics of the LLMs
(e.g., architecture and training data) and the needed data to fine-
tune the LLMs for log parsing.

For all LLMParsers except for LLMParsercp,;G1.m the accuracy
improvement in log parsing becomes small or starts to fluctuate
when the shot size is over 50. Different LLMs may also require
different shot sizes to achieve good parsing results, and more
shots do not always give the best results.

RQ3: How is the generalizability of LLMParsers
on unseen log templates?

Motivation. In RQ2, we studied the accuracy of LLMParsers using
various numbers of shots. We found that although GA and PA
improve noticeably when the shot size increases from 25 to 50,
the improvement is small or remains almost the same when the
shot size is 50 or larger. One hypothesis is that the effectiveness
of few-shot tuning is constrained by the diversity of the sampling
algorithm when presented with diverse log templates. Logs with
different variable values may still have the same log template. By
including a single log in the fine-tuning process, it is possible to
enhance the parsing accuracy for all other logs that share the same
log template. In other words, 50 shots may not capture all the unique
log templates, leading to a saturation point where the LLM fails
to generalize well to unseen examples. Therefore, our objective is
to investigate the extent to which few-shot tuning can generalize
to unseen log templates. The finding of this RQ may help future
research further improve the accuracy of LLM-based log parsers.

Approach. We use the same set of LLMParsers that are trained
using 50 log samples from prior RQs. Specifically, we want to study
if a log’s log template was not included in the training, would
such a log have lower parsing accuracy. We first identify the log

templates and the corresponding logs that were not used for few-
shot tuning (we call them logynseen). Then, we calculate the PA for
logunseen and compare it with the PA for logseen.

Results. The PA on logynseen are much lower (e.g., 0.638 for
LLMParsery,04) compared to the PA on logseen (e.g., 0.9539
for LLMParseryfgpa)- Although only 4.4% of the logs have
unseen log templates, they account for 50% of the incorrectly
parsed logs. Table 6 shows the number of total templates, the num-
ber of unseen log templates, the number of logynseen, and the PA of
logunseen and PA of logseen. We find that the PA decreases signifi-
cantly for the logynseen compared to the PA for loggeen. For example,
as shown in Table 6, the PAs for logseen of LLMParserrspgse and
LLMParseryyapa are 0.9506 and 0.9539, whereas their average PAs
for the logynseen are 0.6385 and 0.6507, respectively. After some
investigation, we find that around 50% of the incorrectly parsed logs
among all the 16 systems belong to one of the unseen log templates,
and the finding is consistent across all LLMs. Given that, only 4.4%
of the logs are logynseen (1,406 out of all 32,000 logs from all the
systems), they are disproportionately more likely to be parsed in-
correctly. Hence, our finding suggests that logynseen is one of the
bottlenecks to further improving parsing accuracy and shed light
on future research in log parsers. Nevertheless, we find that LLM-
Parsers still achieve better PA when parsing logynseen compared to
traditional state-of-the-art approaches such as Drain and Logram,
which have an average PA of 0.3353 and 0.1718, respectively.

We observe a decrease in the performance of LLMParsers when
they encounter unseen log templates, indicating their limited ability
to generalize. This behaviour in LLMParsers may be attributed to
the limitation of the training data during fine-tuning, which pri-
marily focuses on identifying seen log templates. This limitation
becomes more apparent when log templates share high similarities.
For example, two logs with similar log templates, such as “(<*>)
CMD (<*> <x>)” and “(<*>) CMD (run-parts <x>)”, might be
mistakenly parsed as the same log template due to their textual simi-
larity, resulting in reduced accuracy. However, if both logs and their
templates were provided as training data, LLMParsers could better

ICSE °24, April 14-20, 2024, Lisbon, Portugal

Zeyang Ma, An Ran Chen, Dong Jae Kim, Tse-Hsun (Peter) Chen, and Shaowei Wang

Table 6: LLMParsers’ PA on log,seen and PA on logs.., when using 50 log samples. Note that we excluded the systems where

all the unique log templates were included in the shots.

LLMParserrsgmaqi; LLMParseryspgse LLMParserr,ma LLMParsercpa:GLm
Total Template | Unseen Template Unseen Log | PA-unseen PA-seen | PA-unseen PA-seen | PA-unseen PA-seen | PA-unseen PA-seen
Android 158 108 224 0.5536 0.9443 0.5893 0.9814 0.7009 0.9764 0.5446 0.8767
BGL 120 70 105 0.7714 0.9858 0.8476 0.9842 0.7714 0.9921 0.6762 0.9799
Hadoop 114 64 64 0.5469 0.9261 0.6719 0.9205 0.5156 0.9979 0.3906 0.8523
HealthApp 75 25 25 0.7200 0.9590 0.7200 0.9033 0.8000 0.9980 0.8400 0.8187
Linux 116 66 66 0.5152 0.8630 0.5909 0.9504 0.8182 0.8392 0.5909 0.9617
Mac 341 291 819 0.3297 0.9102 0.3993 0.9238 0.3761 0.8848 0.3907 0.6105
Thunderbird 149 99 103 0.5146 0.9837 0.6505 0.9905 0.5728 0.9889 0.5631 0.9578
Average 153 (Sum: 1073) 103 (Sum: 723) | 201 (Sum: 1406) 0.5645 0.9389 0.6385 0.9506 0.6507 0.9539 0.5709 0.8654

Table 7: Grouping (GA) and parsing (PA) accuracy of using
pre-trained LLMParsers (i.e., pt), and LLMParsers that is fine-
tuned based on the pre-trained LLMParsers (i.e., ft).

LLMParsery 1 oM A LLMParser7s5B8,s¢

GApt _PApr | GAry PAr; | GApr PApr | GAgp PAgy
Android 0.9325 0.7965 0.7655 0.6475 0.6805 0.6575 0.9455 0.9230
Apache 1 0.9940 0.7245 0.7300 1 1 1 1
BGL 0.8250 0.5565 0.4415 0.8230 0.5840 0.9480 0.9575 0.9715
Hadoop 0.9595 0.5030 0.3270 0.4105 0.9560 0.6780 0.9955 0.9810
HDFS 0.1335 0.2000 0.2710 0.7790 0.7470 0.4590 1 1
HealthApp 0.6885 0.6825 0.6250 0.7560 0.7635 0.7560 0.8005 0.9400
HPC 0.9445 0.8745 0.6490 0.8875 0.9150 0.9210 0.9780 0.9895
Linux 0.5440 0.5185 0.1755 0.7350 0.5440 0.5275 0.4870 0.9415
Mac 0.7620 0.4805 0.2065 0.5005 0.7350 0.4335 0.8910 0.7240
OpenSSH 0.2280 0.8710 0.1660 0.9105 0.3900 0.7875 0.5020 0.9745
OpenStack 0.3740 0.4235 0.0385 0.6680 0.2670 0.7950 0.9890 0.9915
Proxifier 0.0010 0 0 0.1730 0.0010 0.0005 1 1
Spark 0.9030 0.9010 0.1195 0.8755 0.7755 0.8980 1 1
Thunderbird 0.6615 0.8430 0.0825 0.1055 0.9465 0.8135 0.6955 0.9550
Windows 0.4015 0.5795 0.2780 0.8620 0.9890 0.9810 1 0.9970
Zookeeper 0.8045 0.8770 0.7470 0.8955 0.9600 0.6775 0.9935 0.9930
Average 0.6352 0.6313 0.3511 0.6724 0.7034 0.7083 0.8897 0.9613

differentiate between them and achieve higher accuracy. Future
research may consider improving the generalization of LLMParsers
by proposing sampling algorithms that can select a more diverse
sampled set of logs and templates during fine-tuning.

LLMParsers achieves bad results on logynseen compared with
results on logseen. The unseen logs, which only make up 4.4%
of all logs, form 50% of the incorrectly parsed logs. Some types
of variables may not be identified even if they appear in the
training dataset.

RQ4: Can pre-trained LLMParsers help improve
parsing accuracy?

Motivation. In the previous RQs, we investigated the log parsing
accuracy when fine-tuning the LLMs using the logs from the same
system. However, one major advantage of LLM is its ability to
generalize on new datasets [29, 61, 73]. Therefore, in this RQ, we
study if using a LLMParser that is pre-trained using logs from other
systems can further improve log parsing results.

Approach. We consider LLMParsersp,se and LLMParserrr ma
in this RQ because of their high log parsing accuracy and represen-
tative model size. For every system, we pre-train the LLM using 15
other systems by following the same fine-tuning process as done
before. For the first part of the evaluation, we apply the pre-trained
LLMParsers directly to parse the logs of the target system (the
system of which the logs are not used for pre-training). Then, we
further fine-tune the pre-trained LLMParsers using 25 log samples
from the target system and evaluate the accuracy of the parsed logs.

Results. LLMParsers pre-trained using logs from other systems
achieve considerably lower GA and PA compared to LLMParsers

10

that use few-shot tuning Table 7 shows the GA and PA of using
the pre-trained LLMParserrr,p4 and LLMParserrspgse. By pre-
training using only the logs from 15 other systems, LLMParserr 1 a4
achieves a PA and GA of 0.6352 and 0.6313, and LLMParserrsggse
achieves a PA and GA of 0.7034 and 0.7083. Compared to few-shot
tuning using logs from the same system, the PA and GA for the
pre-trained LLMParsers decrease considerably. Interestingly, de-
spite having more parameters, LLMParsery 434 achieves lower
GA and PA compared to LLMParseryspgse. The reason may be that,
compared to LLMParsery 434, LLMParserrsp,se converges faster
and is better at avoiding underfitting during fine-tuning due to its
smaller parameter size. Nevertheless, we find that the GA and PA of
the pre-trained LLMParsers are still comparable to that of the tradi-
tional log parsers (i.e., Drain and Logram), which further shows the
potential of using LLMs for log parsing. Our finding shows that logs
from different systems may have different characteristics, so using
only logs from other systems gives worse GA and PA.

Further tuning using logs from the target system shows oppo-
site results in different LLMParsers. The GA and PA improved
considerably in LLMParserrsp,se but the GA of LLMParsery pa
decreased by almost 55% compared to using only the pre-trained
LLMParsery 1 gpa. We further fine-tune the pre-trained LLMParsers
using 25 log samples from the target system. We find that few-shot
tuning the pre-trained LLMParsers improved the GA and PA of
LLMParserrspgse to 0.8897 and 0.9613, respectively (Table 7). The
improvement in GA and PA is large compared to using only the
pre-trained LLMParserrspgse (from a GA and PA of around 0.7 to
0.8897 and 0.9613 in GA and PA, respectively). The GA and PA are
also comparable to using 100 log samples from the target system
to fine-tune LLMParserrspase, which has a GA and PA of 0.89 and
0.98, as shown in Table 2. This enables us to minimize the time
cost and manual effort required for labelling training data and also
reduces the fine-tuning time. However, we see an opposite result in
LLMParseryjqpa, where further tuning using 25 log samples from
the target system results in worse GA (decreased from 0.6352 to
0.3511, a 55% decrease) and similar PA (increased from 0.6313 to
0.6724, a 6% increase).

Some studies [9, 18, 47] have shown that the amount of data and
model parameter size required to achieve optimal performance on
certain tasks are not directly correlated across models with different
parameter sizes and architectures. Sometimes, having too much or
too little amount of data can result in model overfitting and poor
model performance. The pre-trained LLMParseryj 374 may also
need more data to fine-tune due to its larger size. Future research
should explore the use of different quantities or types of log data
for pre-training models based on our study in order to build more

LLMParser: An Exploratory Study on Using Large Language Models for Log Parsing

generalized, high-accuracy log parsing models that require fewer
fine-tuning samples and better align with practical needs.

Although pre-trained LLMParsers achieves worse results com-
pared to few-shot tuning, they achieve similar results com-
pared to the prior state-of-the-art. Further tuning the pre-
trained LLMParsers shows opposite results in two LLMs, where
the result became worse for LLMParseryr,pm4 but better for
LLMParserrspgse-

6 DISCUSSION

LLMParsers achieve promising results with higher parsing accu-
racy than state-of-the-arts and comparable grouping accuracy with
LogPPT [33]. However, we also find some limitations and potential
improvements in LLM-based log parsing. In this section, we sum-
marize our observations and highlight future research directions.
LLMParsers face challenges in parsing some specific logs. More
advanced or log-tailored LLMs are needed to further improve
LLM-based log parsers. LLMParsers takes a few training samples
as input and then learns how to parse logs. However, as shown
in Table 6, even though LLMParsers achieve high accuracy (above
90% PA), there are still some logs that were not parsed correctly.
Through manual investigation, we find that LLMParsers face chal-
lenges in recognizing specific data types (e.g., datetime) as vari-
ables. For instance, LLMParsery 1,04 fails to parse the log template
“connection from <x> at <x>” correctly. Instead, the logs are
parsed as “connection from <x> at Mon Jul 25 23:24:09
2005” without recognizing the timestamp value as the second vari-
able. Due to having a limited number of samples, the LLMs are not
able to learn how to parse some variables. One potential solution is,
similar to RQ4, to use log data from other systems to help pre-train
an LLM-based log parser so that the parsers can generalize and
identify more variables. The other potential solution is to use a
more complex LLM with more parameters. However, future studies
should consider the trade-off between more complex LLMs and
higher fine-tuning and inference costs.

Since more complex LLMs may not always give better results,
future studies are needed to find the balance between accuracy
and efficiency. We find that simpler models, such as T5, can already
achieve promising log parsing results and larger models may not
give better results. There may be significant cost implications when
using larger or even commercial LLMs. More importantly, as we
found, larger LLMs also need more inference time to parse logs.
Since logs are often large in volume, having an efficient parser
is important. Future research should explore the right balance in
model size and parsing efficiency.

Future research should explore the most effective sampling
algorithms for identifying training log samples. In RQ3, we
find that LLMParsers have worse parsing results on unseen log
templates and there are cases where increasing shot sizes result
in worse parsing results. For example, when two very similar yet
different log templates (e.g., one template has one more variable) are
included in the training, the models may get confused when parsing
the corresponding logs. Hence, future research should explore the
optimal sampling strategy that can maximize diversity while also
considering the characteristics of the logs and the corresponding

11

ICSE ’24, April 14-20, 2024, Lisbon, Portugal

templates (e.g., should certain types of logs be sampled more to
distinguish the similar templates).

Fine-tuning with samples from the target system is demon-
strated as the most effective way for log parsing. In RQ2, we
find that in-context learning shows bad performance on log parsing.
Also, in-context learning is not as effective as fine-tuning due to
the token limitation and efficiency concerns. In RQ3 and RQ4, we
also find that LLMParsers face challenges in generalizing parsing
unseen logs. We found that fine-tuning LLM with samples from the
target system gives the best result. Future studies should consider
validating the findings on more complex LLMs (e.g., LLaMA 70B)
and see if such models have better generalizability on log parsing.

7 THREATS TO VALIDITY

External validity. Similar to prior work [30, 32, 33], we train
and validate LLMParser using logs and log templates from public
datasets that are commonly used in log-related research, However,
recent research [30] has indicated the dataset might contain data
errors. To mitigate this potential issue, we leverage the corrected
dataset [30] to reduce such a threat. For a fair comparison, we also
compare our results with the results from the state-of-the-art based
on the corrected data [30, 33]. The log format may also affect our
result, but the used datasets cover logs from various systems with
different formats. Future studies are needed to evaluate LLM-based
parsers on logs from other systems. Internal validity. While LLM-
Parser outperforms other state-of-the-art approaches, our primary
focus in this research is on the exploration of the performance of
LLMs in log parsing tasks. Our research does not cover all LLMs and
training data sizes. Future studies may explore the optimal solution
for LLM-based log parser, enabling further advancements in this
domain. Construct validity. Our approach requires pairs of logs
and their log templates. Hence, the sampling process may affect
the parsing result. To mitigate the issue, we apply an unsupervised
data sampling algorithm that does not require any knowledge of
the ground truth. Future studies are needed to explore the effect of
such sampling algorithms on the parsing results.

8 CONCLUSION

In this study, we explore the potential of leveraging LLMs for log
parsing. We propose LLMParser, a generative LLM-based log parser,
to overcome the limitations of existing log parsers. LLMParser
leverages few-shot tuning to learn from a limited set of training
logs , which were sampled using a clustering sampling algorithm.
Our evaluation shows that LLMParsers achieve high accuracy, out-
performing state-of-the-arts log parsers. We then evaluate LLM-
Parsers under different pre-training settings. Our results show that,
compared to in-context learning, few-shot tuning achieves higher
parsing accuracy and requires less inference time. Furthermore,
our findings suggest that different LLMParser models may require
different numbers of training samples to achieve optimal perfor-
mance. Instead of increasing the training shot sizes, future studies
should investigate how training log diversity and coverage affect
log parser accuracy. Our exploratory study leverages generative
LLMs for log parsing and delivers comprehensive evaluations in
various settings (architecture, shot sizes, and pre-training), which
provides empirical evidence for future research.

ICSE °24, April 14-20, 2024, Lisbon, Portugal

REFERENCES

(1]

[2

(4]

(5]

=

[10]

[11]

[12]

[13]

[16]

[17]

[18

[19

[20

[21

[22]

Yuvanesh Anand, Zach Nussbaum, Brandon Duderstadt, Benjamin Schmidt, and
Andriy Mulyar. 2023. Gpt4all: Training an assistant-style chatbot with large scale
data distillation from gpt-3.5-turbo. GitHub (2023).

Alexandre Bailly, Corentin Blanc, Elie Francis, Thierry Guillotin, Fadi Jamal,
Béchara Wakim, and Pascal Roy. 2022. Effects of dataset size and interactions
on the prediction performance of logistic regression and deep learning models.
Computer Methods and Programs in Biomedicine 213 (2022), 106504. https://doi.
org/10.1016/j.cmpb.2021.106504

Mark Belford, Brian Mac Namee, and Derek Greene. 2018. Stability of topic
modeling via matrix factorization. Expert Systems with Applications 91 (2018),
159-169. https://doi.org/10.1016/j.eswa.2017.08.047

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877-1901.

Jinfu Chen, Weiyi Shang, Ahmed E Hassan, Yong Wang, and Jiangbin Lin. 2019.
An experience report of generating load tests using log-recovered workloads
at varying granularities of user behaviour. In 2019 34th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, IEEE, 669-681.
Song Chen and Hai Liao. 2022. Bert-log: Anomaly detection for system logs
based on pre-trained language model. Applied Artificial Intelligence 36, 1 (2022),
2145642.

Yinfang Chen, Huaibing Xie, Minghua Ma, Yu Kang, Xin Gao, Liu Shi, Yunjie
Cao, Xuedong Gao, Hao Fan, Ming Wen, et al. 2023. Empowering Practical Root
Cause Analysis by Large Language Models for Cloud Incidents. arXiv preprint
arXiv:2305.15778 (2023).

Yizong Cheng. 1995. Mean shift, mode seeking, and clustering. IEEE Transactions
on Pattern Analysis and Machine Intelligence 17, 8 (1995), 790-799. https://doi.
0rg/10.1109/34.400568

Yew Ken Chia, Pengfei Hong, Lidong Bing, and Soujanya Poria. 2023. INSTRUCTE-
VAL: Towards Holistic Evaluation of Instruction-Tuned Large Language Models.
arXiv preprint arXiv:2306.04757 (2023).

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William
Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Web-
son, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha
Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping
Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin,
Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei. 2022. Scaling Instruction-
Finetuned Language Models. https://doi.org/10.48550/ARXIV.2210.11416
Kenneth Ward Church, Zeyu Chen, and Yanjun Ma. 2021. Emerging trends: A
gentle introduction to fine-tuning. Natural Language Engineering 27, 6 (2021),
763-778.

Hetong Dai, Heng Li, Che-Shao Chen, Weiyi Shang, and Tse-Hsun Chen. 2020.
Logram: Efficient Log Parsing Using n n-Gram Dictionaries. IEEE Transactions
on Software Engineering 48, 3 (2020), 879-892.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

Ning Ding, Shengding Hu, Weilin Zhao, Yulin Chen, Zhiyuan Liu, Hai-Tao Zheng,
and Maosong Sun. 2021. Openprompt: An open-source framework for prompt-
learning. arXiv preprint arXiv:2111.01998 (2021).

Jesse Dodge, Gabriel Ilharco, Roy Schwartz, Ali Farhadi, Hannaneh Hajishirzi, and
Noah Smith. 2020. Fine-tuning pretrained language models: Weight initializations,
data orders, and early stopping. arXiv preprint arXiv:2002.06305 (2020).
Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu
Sun, Jingjing Xu, and Zhifang Sui. 2022. A survey for in-context learning. arXiv
preprint arXiv:2301.00234 (2022).

Min Du and Feifei Li. 2019. Spell: Online Streaming Parsing of Large Unstructured
System Logs. IEEE Transactions on Knowledge and Data Engineering 31, 11 (2019),
2213-2227. https://doi.org/10.1109/TKDE.2018.2875442

Ronen Eldan and Yuanzhi Li. 2023. TinyStories: How Small Can Language Models
Be and Still Speak Coherent English? arXiv preprint arXiv:2305.07759 (2023).
Qiang Fu, Jian-Guang Lou, Yi Wang, and Jiang Li. 2009. Execution Anomaly
Detection in Distributed Systems through Unstructured Log Analysis. In 2009
Ninth IEEE International Conference on Data Mining. 149-158. https://doi.org/10.
1109/ICDM.2009.60

Tianyu Gao, Adam Fisch, and Danqi Chen. 2021. Making Pre-trained Language
Models Better Few-shot Learners. In Proceedings of the 59th Annual Meeting of
the Association for Computational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers). Association
for Computational Linguistics, Online, 3816-3830. https://doi.org/10.18653/v1/
2021.acl-long.295

Zhigiang Gong, Ping Zhong, and Weidong Hu. 2019. Diversity in Machine
Learning. IEEE Access 7 (2019), 64323-64350. https://doi.org/10.1109/ACCESS.
2019.2917620

Pinjia He, Zhuangbin Chen, Shilin He, and Michael R Lyu. 2018. Characterizing
the natural language descriptions in software logging statements. In Proceedings

12

Zeyang Ma, An Ran Chen, Dong Jae Kim, Tse-Hsun (Peter) Chen, and Shaowei Wang

~
=

[24

[25

IS
S

[27

[28

[29]

'S
=

[31

(32]

(33]

[34

[36

[37

[38

[40

(41

[42

[43

[44

[45]

of the 33rd ACM/IEEE International Conference on Automated Software Engineering.
178-189.

Pinjia He, Jieming Zhu, Shilin He, Jian Li, and Michael R Lyu. 2017. Towards
automated log parsing for large-scale log data analysis. IEEE Transactions on
Dependable and Secure Computing 15, 6 (2017), 931-944.

Pinjia He, Jieming Zhu, Zibin Zheng, and Michael R. Lyu. 2017. Drain: An
Online Log Parsing Approach with Fixed Depth Tree. In 2017 IEEE International
Conference on Web Services (ICWS). 33-40. https://doi.org/10.1109/ICWS.2017.13
Shilin He, Pinjia He, Zhuangbin Chen, Tianyi Yang, Yuxin Su, and Michael R
Lyu. 2021. A survey on automated log analysis for reliability engineering. ACM
computing surveys (CSUR) 54, 6 (2021), 1-37.

Shilin He, Jieming Zhu, Pinjia He, and Michael R Lyu. 2016. Experience re-
port: System log analysis for anomaly detection. In 2016 IEEE 27th international
symposium on software reliability engineering (ISSRE). IEEE, 207-218.

Shilin He, Jieming Zhu, Pinjia He, and Michael R Lyu. 2020. Loghub: a large
collection of system log datasets towards automated log analytics. arXiv preprint
arXiv:2008.06448 (2020).

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean
Wang, Lu Wang, and Weizhu Chen. 2021. Lora: Low-rank adaptation of large
language models. arXiv preprint arXiv:2106.09685 (2021).

Hong Jin Kang, Tegawendé F. Bissyandé, and David Lo. 2019. Assessing the
Generalizability of Code2vec Token Embeddings. In 2019 34th IEEE/ACM In-
ternational Conference on Automated Software Engineering (ASE). 1-12. https:
//doi.org/10.1109/ASE.2019.00011

Zanis Ali Khan, Donghwan Shin, Domenico Bianculli, and Lionel Briand. 2022.
Guidelines for Assessing the Accuracy of Log Message Template Identification
Techniques. In Proceedings of the 44th International Conference on Software Engi-
neering (Pittsburgh, Pennsylvania) (ICSE "22). Association for Computing Machin-
ery, New York, NY, USA, 1095-1106. https://doi.org/10.1145/3510003.3510101
Zanis Ali Khan, Donghwan Shin, Domenico Bianculli, and Lionel Briand. 2023.
Impact of Log Parsing on Log-based Anomaly Detection. arXiv preprint
arXiv:2305.15897 (2023).

Van-Hoang Le and Hongyu Zhang. 2023. An Evaluation of Log Parsing with
ChatGPT. arXiv preprint arXiv:2306.01590 (2023).

Van-Hoang Le and Hongyu Zhang. 2023. Log Parsing with Prompt-based Few-
shot Learning. In 45th International Conference on Software Engineering: Software
Engineering in Practice (ICSE).

Yukyung Lee, Jina Kim, and Pilsung Kang. 2021. LAnoBERT: System log anomaly
detection based on BERT masked language model. arXiv preprint arXiv:2111.09564
(2021).

Juho Leinonen, Paul Denny, Stephen MacNeil, Sami Sarsa, Seth Bernstein, Joanne
Kim, Andrew Tran, and Arto Hellas. 2023. Comparing code explanations created
by students and large language models. arXiv preprint arXiv:2304.03938 (2023).
Heng Li, Tse-Hsun Chen, Weiyi Shang, and Ahmed E Hassan. 2018. Studying
software logging using topic models. Empirical Software Engineering 23 (2018),
2655-2694.

Zhenhao Li, Chuan Luo, Tse-Hsun Chen, Weiyi Shang, Shilin He, Qingwei Lin,
and Dongmei Zhang. 2023. Did We Miss Something Important? Studying and Ex-
ploring Variable-Aware Log Abstraction. arXiv preprint arXiv:2304.11391 (2023).
Haokun Liu, Derek Tam, Mohammed Mugqeeth, Jay Mohta, Tenghao Huang,
Mohit Bansal, and Colin A Raffel. 2022. Few-shot parameter-efficient fine-tuning
is better and cheaper than in-context learning. Advances in Neural Information
Processing Systems 35 (2022), 1950-1965.

Jinyang Liu, Junjie Huang, Yintong Huo, Zhihan Jiang, Jiazhen Gu, Zhuangbin
Chen, Cong Feng, Minzhi Yan, and Michael R Lyu. 2023. Scalable and Adap-
tive Log-based Anomaly Detection with Expert in the Loop. arXiv preprint
arXiv:2306.05032 (2023).

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. RoBERTa: A
Robustly Optimized BERT Pretraining Approach. CoRR abs/1907.11692 (2019).
arXiv:1907.11692 http://arxiv.org/abs/1907.11692

Yudong Liu, Xu Zhang, Shilin He, Hongyu Zhang, Liqun Li, Yu Kang, Yong Xu,
Minghua Ma, Qingwei Lin, Yingnong Dang, et al. 2022. Uniparser: A unified log
parser for heterogeneous log data. In Proceedings of the ACM Web Conference
2022. 1893-1901.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled Weight Decay Regularization.
In International Conference on Learning Representations. https://openreview.net/
forum?id=Bkg6RiCqY7

Siyang Lu, BingBing Rao, Xiang Wei, Byungchul Tak, Long Wang, and Ligiang
Wang. 2017. Log-based abnormal task detection and root cause analysis for spark.
In 2017 IEEE International Conference on Web Services (ICWS). IEEE, 389-396.
Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus Stenetorp. 2021.
Fantastically ordered prompts and where to find them: Overcoming few-shot
prompt order sensitivity. arXiv preprint arXiv:2104.08786 (2021).

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh
Hajishirzi, and Luke Zettlemoyer. 2022. Rethinking the role of demonstrations:
What makes in-context learning work? arXiv preprint arXiv:2202.12837 (2022).

https://doi.org/10.1016/j.cmpb.2021.106504
https://doi.org/10.1016/j.cmpb.2021.106504
https://doi.org/10.1016/j.eswa.2017.08.047
https://doi.org/10.1109/34.400568
https://doi.org/10.1109/34.400568
https://doi.org/10.48550/ARXIV.2210.11416
https://doi.org/10.1109/TKDE.2018.2875442
https://doi.org/10.1109/ICDM.2009.60
https://doi.org/10.1109/ICDM.2009.60
https://doi.org/10.18653/v1/2021.acl-long.295
https://doi.org/10.18653/v1/2021.acl-long.295
https://doi.org/10.1109/ACCESS.2019.2917620
https://doi.org/10.1109/ACCESS.2019.2917620
https://doi.org/10.1109/ICWS.2017.13
https://doi.org/10.1109/ASE.2019.00011
https://doi.org/10.1109/ASE.2019.00011
https://doi.org/10.1145/3510003.3510101
https://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7

LLMParser: An Exploratory Study on Using Large Language Models for Log Parsing

[46

[47

[48

N
o

[50

(51

[52

[53]

[54

[55

[57]

[58]

[59]

[60

[61]

Marius Mosbach, Tiago Pimentel, Shauli Ravfogel, Dietrich Klakow, and Yanai
Elazar. 2023. Few-shot Fine-tuning vs. In-context Learning: A Fair Comparison
and Evaluation. arXiv preprint arXiv:2305.16938 (2023).

Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and
Ilya Sutskever. 2021. Deep double descent: Where bigger models and more data
hurt. Journal of Statistical Mechanics: Theory and Experiment 2021, 12 (2021),
124003.

Sasho Nedelkoski, Jasmin Bogatinovski, Alexander Acker, Jorge Cardoso, and
Odej Kao. 2021. Self-supervised log parsing. In Machine Learning and Knowledge
Discovery in Databases: Applied Data Science Track: European Conference, ECML
PKDD 2020, Ghent, Belgium, September 14-18, 2020, Proceedings, Part IV. Springer,
122-138.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. 2018.
Improving language understanding by generative pre-training. (2018).

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yangi Zhou, Wei Li, and Peter J Liu. 2020. Exploring the limits of
transfer learning with a unified text-to-text transformer. The Journal of Machine
Learning Research 21, 1 (2020), 5485-5551.

Md Saidur Rahaman, MM Tahmid Ahsan, Nishath Anjum, Harold Jan R Terano,
and Md Mizanur Rahman. 2023. From ChatGPT-3 to GPT-4: a significant advance-
ment in ai-driven NLP tools. Journal of Engineering and Emerging Technologies 2,
1(2023), 1-11.

Google Research. 2023. The Flan Collection: Advancing open source methods
for instruction tuning — Google Research Blog. https://ai.googleblog.com/2023/
02/the-flan-collection-advancing-open.html. (Accessed on 07/16/2023).

Keiichi Shima. 2016. Length matters: Clustering system log messages using
length of words. arXiv preprint arXiv:1611.03213 (2016).

Donghwan Shin, Zanis Ali Khan, Domenico Bianculli, and Lionel Briand. 2021. A
Theoretical Framework for Understanding the Relationship Between Log Parsing
and Anomaly Detection. In Runtime Verification: 21st International Conference,
RV 2021, Virtual Event, October 11-14, 2021, Proceedings. Springer-Verlag, Berlin,
Heidelberg, 277-287. https://doi.org/10.1007/978-3-030-88494-9_16

Lili Song, Ying Wang, Yinhe Han, Xin Zhao, Bosheng Liu, and Xiaowei Li. 2016.
C-Brain: A Deep Learning Accelerator That Tames the Diversity of CNNs through
Adaptive Data-Level Parallelization. In Proceedings of the 53rd Annual Design
Automation Conference (Austin, Texas) (DAC ’16). Association for Computing
Machinery, New York, NY, USA, Article 123, 6 pages. https://doi.org/10.1145/
2897937.2897995

Liang Tang, Tao Li, and Chang-Shing Perng. 2011. LogSig: Generating System
Events from Raw Textual Logs. In Proceedings of the 20th ACM International
Conference on Information and Knowledge Management (Glasgow, Scotland, UK)
(CIKM °11). Association for Computing Machinery, New York, NY, USA, 785-794.
https://doi.org/10.1145/2063576.2063690

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos
Guestrin, Percy Liang, and Tatsunori B. Hashimoto. 2023. Stanford Alpaca: An
Instruction-following LLaMA model. https://github.com/tatsu-lab/stanford_
alpaca.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Roziére, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023. Llama: Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971 (2023).

R. Vaarandi. 2003. A data clustering algorithm for mining patterns from event
logs. In Proceedings of the 3rd IEEE Workshop on IP Operations & Management
(IPOM 2003) (IEEE Cat. No.03EX764). 119-126. https://doi.org/10.1109/IPOM.2003.
1251233

Chi Wang, Susan Xueqing Liu, and Ahmed H Awadallah. 2023. Cost-Effective
Hyperparameter Optimization for Large Language Model Generation Inference.
arXiv preprint arXiv:2303.04673 (2023).

Peifeng Wang, Filip Ilievski, Muhao Chen, and Xiang Ren. 2021. Do lan-
guage models perform generalizable commonsense inference? arXiv preprint

ICSE ’24, April 14-20, 2024, Lisbon, Portugal

arXiv:2106.11533 (2021).

Yaqing Wang, Quanming Yao, James T Kwok, and Lionel M Ni. 2020. Generalizing
from a few examples: A survey on few-shot learning. ACM computing surveys
(csur) 53, 3 (2020), 1-34.

Zehao Wang, Haoxiang Zhang, Tse-Hsun Chen, and Shaowei Wang. 2021. Would
you like a quick peek? providing logging support to monitor data processing in
big data applications. In Proceedings of the 29th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. 516-526.

Yuxin Wen, Neel Jain, John Kirchenbauer, Micah Goldblum, Jonas Geiping, and
Tom Goldstein. 2023. Hard prompts made easy: Gradient-based discrete op-
timization for prompt tuning and discovery. arXiv preprint arXiv:2302.03668
(2023).

Jules White, Quchen Fu, Sam Hays, Michael Sandborn, Carlos Olea, Henry Gilbert,
Ashraf Elnashar, Jesse Spencer-Smith, and Douglas C Schmidt. 2023. A prompt
pattern catalog to enhance prompt engineering with chatgpt. arXiv preprint
arXiv:2302.11382 (2023).

[66] Jules White, Sam Hays, Quchen Fu, Jesse Spencer-Smith, and Douglas C Schmidt.

2023. Chatgpt prompt patterns for improving code quality, refactoring, require-
ments elicitation, and software design. arXiv preprint arXiv:2303.07839 (2023).
Ding Yuan, Haohui Mai, Weiwei Xiong, Lin Tan, Yuanyuan Zhou, and Shankar
Pasupathy. 2010. Sherlog: error diagnosis by connecting clues from run-time logs.
In Proceedings of the fifteenth International Conference on Architectural support
for programming languages and operating systems. 143-154.

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang, Hanyu Lai, Ming Ding,
Zhuoyi Yang, Yifan Xu, Wendi Zheng, Xiao Xia, Weng Lam Tam, Zixuan Ma,
Yufei Xue, Jidong Zhai, Wenguang Chen, Zhiyuan Liu, Peng Zhang, Yuxiao Dong,
and Jie Tang. 2023. GLM-130B: An Open Bilingual Pre-trained Model. In The
Eleventh International Conference on Learning Representations (ICLR). https:
//openreview.net/forum?id=- AwOrrrPUF

zero_nlp contributors. 2023. "A large collection of large language model-powered
solutions in Chinese". https://github.com/yuanzhoulvpi2017/zero_nlp/tree/main/
simple_thu_chatglmeéb. (Accessed on 06/25/2023).

Bo Zhang, Hongyu Zhang, Pablo Moscato, and Aozhong Zhang. 2020. Anomaly
Detection via Mining Numerical Workflow Relations from Logs. In 2020 Inter-
national Symposium on Reliable Distributed Systems (SRDS). 195-204. https:
//doi.org/10.1109/SRDS51746.2020.00027

Renrui Zhang, Jiaming Han, Aojun Zhou, Xiangfei Hu, Shilin Yan, Pan Lu, Hong-
sheng Li, Peng Gao, and Yu Qiao. 2023. Llama-adapter: Efficient fine-tuning of
language models with zero-init attention. arXiv preprint arXiv:2303.16199 (2023).
Xu Zhang, Yong Xu, Qingwei Lin, Bo Qiao, Hongyu Zhang, Yingnong Dang,
Chunyu Xie, Xinsheng Yang, Qian Cheng, Ze Li, et al. 2019. Robust log-based
anomaly detection on unstable log data. In Proceedings of the 2019 27th ACM
Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering. 807-817.

Xin Zhou, DongGyun Han, and David Lo. 2021. Assessing Generalizability of
CodeBERT. In 2021 IEEE International Conference on Software Maintenance and
Evolution (ICSME). 425-436. https://doi.org/10.1109/ICSME52107.2021.00044
Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis,
Harris Chan, and Jimmy Ba. 2022. Large language models are human-level
prompt engineers. arXiv preprint arXiv:2211.01910 (2022).

[75] Jieming Zhu, Shilin He, Jinyang Liu, Pinjia He, Qi Xie, Zibin Zheng, and Michael R

Lyu. 2019. Tools and benchmarks for automated log parsing. In 2019 IEEE/ACM
41st International Conference on Software Engineering: Software Engineering in
Practice (ICSE-SEIP). IEEE, 121-130.

Chen Zhuge and Risto Vaarandi. 2017. Efficient Event Log Mining with Log-
ClusterC. In 2017 ieee 3rd international conference on big data security on cloud
(bigdatasecurity), ieee international conference on high performance and smart
computing (hpsc), and ieee international conference on intelligent data and security
(ids). 261-266. https://doi.org/10.1109/BigDataSecurity.2017.26

https://ai.googleblog.com/2023/02/the-flan-collection-advancing-open.html
https://ai.googleblog.com/2023/02/the-flan-collection-advancing-open.html
https://doi.org/10.1007/978-3-030-88494-9_16
https://doi.org/10.1145/2897937.2897995
https://doi.org/10.1145/2897937.2897995
https://doi.org/10.1145/2063576.2063690
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://doi.org/10.1109/IPOM.2003.1251233
https://doi.org/10.1109/IPOM.2003.1251233
https://openreview.net/forum?id=-Aw0rrrPUF
https://openreview.net/forum?id=-Aw0rrrPUF
https://github.com/yuanzhoulvpi2017/zero_nlp/tree/main/simple_thu_chatglm6b
https://github.com/yuanzhoulvpi2017/zero_nlp/tree/main/simple_thu_chatglm6b
https://doi.org/10.1109/SRDS51746.2020.00027
https://doi.org/10.1109/SRDS51746.2020.00027
https://doi.org/10.1109/ICSME52107.2021.00044
https://doi.org/10.1109/BigDataSecurity.2017.26

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Background
	2.2 Related Work

	3 Approach
	3.1 Sampling Few-Shot Data
	3.2 LLMParser: Using LLMs for Parsing Logs

	4 Experiment Setup and Implementation
	5 Evaluation
	6 Discussion
	7 Threats to Validity
	8 Conclusion
	References

