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Abstract
Efficient and robust anisotropic mesh adaptation is crucial for Com-
putational Fluid Dynamics (CFD) simulations. The CFD Vision 2030
Study highlights the pressing need for this technology, particularly
for simulations targeting supercomputers. This work applies a fine-
grained speculative approach to anisotropic mesh operations. Our
implementation exhibits more than 90% parallel efficiency on a multi-
core node. Additionally, we evaluate our method within an adaptive
pipeline for a spectrum of publicly available test-cases that includes
both analytically derived and error-based fields. For all test-cases,
our results are in accordance with published results in the literature.
Support for CAD-based data is introduced, and its effectiveness is
demonstrated on one of NASA’s High-Lift prediction workshop cases.

1 Introduction

The goal of mesh adaptation is to modify an existing mesh so that it can accu-
rately capture features of the underlying simulation. Metric-based methods
guide the process of mesh adaptation through the use of metric fields. Metric
fields control the orientation and size of the elements individually for each
direction, thus enabling the creation of anisotropic meshes. Metric-based meth-
ods have been utilized in a breadth of applications, including solving neutron
transfer problems in nuclear physics [1], efficiently applying diffusion tensor
calculus on medical imaging data [2] and topology optimization in structural
mechanics [3]. In the CFD field, metric-based methods are capable of resolving
both inviscid [4] and viscous flows over complex geometries [5].
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The CFD 2030 Vision [6] study identifies efficient and robust mesh adap-
tation as one of the key areas that need improvement to advance CFD
simulations. In [7], the authors present an overview of mesh adaptation and
offer suggestions for achieving the objectives outlined in the CFD Vision study.
One of the recommendations is to optimize existing adaptive techniques to
function effectively on current and future systems. An example of these archi-
tectures is Frontier, the world’s first public exascale machine [8] that can
provide the platform for simulation analyses at high fidelity. As of today Fron-
tier is composed out of 74 cabinets, each cabinet holds 64 blades, and each
blade has two 64-core nodes for a total of 60,6208 CPU cores.

Handling these kind of hardware efficiently starts by using an efficient
shared memory implementation of mesh adaptation operations. CDT3D is
a scalability-first approach to mesh adaptation that implements a scalable
software an initially incomplete functionality and the intention of completing
functionality as it is needed.

CDT8D uses the speculative method that explores concurrency at a fine-
grain (element) level by executing in parallel multiple meshing kernels that
attempt to capture their dependencies upon runtime. If any of the kernels fail
to capture its dependencies, due to conflicts with another kernel, it will release
its acquired dependencies and proceed to a different element.

In previous work [9] we compared an earlier version of the method of this
paper against state-of-the-art anisotropic mesh adaptation methods from both
the industry and academia that included both scalability- and functionality-
first approaches. The analysis of the paper shows that CDT3D provides
comparable mesh quality to the other methods for the cases studied in the
paper.

In this work, we describe the implementation of the speculative fine-grained
scheme for anisotropic mesh generation and adaptivity of CDT3D in detail and
evaluate the generated meshes in a number of CFD applications. In particular,
the contributions of this work include:

e Application of the speculative fine-grained scheme to a family of metric-
aware mesh operations applicable to volume and boundary adaptation
(Section 3). As seen in previous work [9] this combination is highly effec-
tive. As of today and to the best of the authors knowledge, it offers
on shared memory machines the highest strong scaling speedup among
scalability-first approaches and better weak scaling speedup than state-of-
the-art functionality-first approaches. This is achieved via the low startup
cost of our methods and the nature of the optimistic/speculative approach
that exploits parallelism as soon as possible. Moreover, the ability to adapt
both surface and volume elements at the same time yields better robustness
and offers more than 3 orders of magnitude improvement when compared
to adapting only the volume.

e Extension of the above operations in order to support for geometrical
(CAD-based) models (Section 4). Access to a geometrical kernel allows to
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interrogate the underlying domain an recover information about its cur-
vature and local feature size which could be absent in a coarse mesh
representation which is often the starting point of the adaptation procedure.
Handling of CAD data gives access to well-known verification examples like
the ONERA-M6 wing and the JAXA highlift model.

e Evaluation of the method in an adaptive pipeline that includes a CFD solver
and real-world geometry cases and comparison of the computed quantities
with values present in the literature (Section 5). In contrast to our previous
work that focused mainly on element quality measures, we compiled a suite
of publicly available cases and bring our attention to the main goal of mesh
adaptation: capturing features of the underlying simulation. At the same
time, we test how well CDT3D operates as a part of an adaptive pipeline
composed of open-source components.

In the next couple of sections, we review related methods in the literature
(Section 2). Appendix A provides a short introduction on the use of metric
spaces for mesh adaptation.

2 Related work

The method presented in this work belongs to the wider class of Tightly Cou-
pled methods for parallel mesh generation [10, 11]. Tightly Coupled methods
are characterized by intense communication. Communication can be direct
through messages or indirect through accessing regions of shared memory
which due to false sharing and cache invalidation creates overheads. Moreover,
synchronization primitives and constructs such as locks and barriers add to
the overall overhead.

One of the first speculative tightly coupled methods for mesh generation is
presented in [12, 13]. This method is designed for distributed-memory archi-
tectures and it uses the Delaunay kernel [14, 15] for introducing new points
into the mesh. The main idea is to allow multiple cavity expansions (i.e. depen-
dency resolutions) to take place in parallel, however, in this approach, the
data dependencies are evaluated and acquired at run-time and not in any
pre-processing step. This characteristic gives this method the name specula-
tive or optimistic. If the dependency acquisition is successful the operation is
applied otherwise, the process “rollbacks” to the previous state by releasing
any acquired data dependencies. Although the amount of rollbacks is low, the
intense communication incurs many messages, resulting in sub-optimal results.
Still, by acting directly upon touched data, this approach improves cache uti-
lization and allows tolerating more than 80% of system latencies [13]. Later
efforts extend this approach to a tightly-coupled Parallel Delaunay Triangula-
tion algorithm in [16] and an image-to-mesh method [17, 18] optimized for
Distributed Shared Memory machines (DSM).

A more complete review of parallel mesh generation methods categorized
by communication intensity appears in [11]. Due to length constraints, we limit
our review section to parallel metric-based mesh adaptation methods instead



Springer Nature 2021 BTEX template

4 Parallel Adaptive Anisotropic Meshing on cc-NUMA Machines

of parallel mesh generation methods in general. All the presented methods uti-
lize a mix of the same elementary mesh operations: Point Insertion for refining
larger than the target elements, edge collapse for suppressing small edges and
elements attached to them, Edge-Face swapping for improving the quality of
small clusters through topological operations as well as Vertex Smoothing to
improve the quality of the elements attached to a vertex. There are, however
significant differences in the implementation of each operation across the vari-
ous mesh adaptation approaches/strategies which we present below. Adopting
the characterization of methods followed in [11], we organize the related work
into two categories based on the workload decomposition method.

Data decomposition methods decompose the data that corresponds to the
given domain into datasets that can be safely accessed and updated. This
category includes Pragmatic as presented in [19, 20] and Omega-h [21]. Both
methods are based on coloring the dependency graph of the cavities of their
mesh operations in order to exploit parallelism. Once coloring is in place the
methods evaluate the quality of the elements in a cavity before and after apply-
ing the mesh operation. The optimal configuration between the two is then
picked and the mesh is updated. Pragmatic defers the connectivity updates
until the end of the mesh iteration to allow for updating the data structure
in parallel. Omega_h on the other hand is based on data structures designed
specifically for mesh adaptation [22] and offers a unique approach where dur-
ing each adaptation pass the mesh becomes read-only and a new updated copy
is derived.

Another method based on data decomposition is described in [23, 24]. This
method deals with parallelism by creating mesh-specific data structures [25]
designed to handle concurrent read and write access in a distributed memory
environment resembling distributed databases. Moreover, it has been extended
for metric-based adaptation in [26]. Each mesh operator pass is coupled with
a global synchronization step where all the processes commit and receive
modifications of the boundary elements.

Domain decomposition methods decompose the initial mesh into subdo-
mains in order to exploit parallelism. A few methods of this category are refine
(27, 28] EPIC [29] Feflo.a [30], avro [31, 32], and the method presented in [33].

refine, EPIC, avro and [33], decompose the mesh using graph-based meth-
ods and “freeze” the elements along subdomain boundaries during adaptation.
Mesh operations are applied only to internal elements. Several element migra-
tion passes allow the fixed elements to become internal and also give the
opportunity of load balancing.

Feflo.a [30] approaches the discrete domain decomposition problem using a
hierarchical partitioning technique combined with a region-grow greedy algo-
rithm. In particular, the initial mesh is partitioned based on a breadth-first
approach. The internal elements are adapted while the subdomain boundary
elements remain fixed. In the next iteration the fixed elements are partitioned
and become the new subdomain while their common boundaries become fixed
etc.
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When it comes to the repertoire of operations, refine and EPIC utilize
edge-split, edge-collapse, edge-face swap, and vertex smoothing. On the other
hand, Feflo.a, avro and [33] use a cavity-based approach that allows using a
single operator to express all the above mesh operations. This feature not only
simplifies implementation and maintenance but in the case of avro it enables
performing mesh adaption in higher dimensions [34]. When it comes to [33]
the cavity-based criterion combines both element size and element quality into
a single criterion instead of utilizing separate operator passes.

Our method, CDT&8D, utilizes the same elementary operations but employs
no domain decomposition or intensive data decomposition like the above adap-
tive methods. Instead, it applies the speculative approach to exploit parallelism
and decompose data on the fly. Also, in contrast to previous speculative meth-
ods that arose from the telescopic approach such as [13, 17] the proposed
approach includes a variety of different mesh operations instead of just the
Delaunay kernel. To the authors’ best knowledge, the method of this work
is the first tightly-coupled speculative fine-grained method for anisotropic 3D
mesh adaptation for shared-memory architectures.

3 Metric-based Adaptation within the CDT3D
library

The metric-based approach of this work builds on top of CDTS3D [35], a mesh
generation toolkit developed at the CRTC lab! of Old Dominion University.
CDT38D has demonstrated significant improvements in end-user-productivity
compared to state-of-the-art isotropic advancing front mesh generator [36].
Its modular design allowed the addition of refinement zones for the isotropic
method that enable its use in Large Eddy Simulations as presented in [37].
When faced with the challenge of introducing metric-based adaptation capa-
bilities, we opted to decompose each mesh operation into topological and
geometrical components. Topological steps access and modify only the connec-
tivity information (a 2-3 flip, for example, see Figure 2a) and as such, there is
no need for modifications for metric adaptation. On the other hand, geometri-
cal steps, such as evaluating a predicate that decides whether a flip should be
performed, will need to incorporate the metric information. Figure 1 depicts
the metric-adaptive pipeline built and evaluated throughout this work. In the
rest of the section we iterate through the diagram discussing the most sig-
nificant contributions required to enable metric adaptation in CDT38D and
introduce support for handling CAD-based information. Moreover, to improve
the end-user-productivity of CDT38D the speculative fine-grained scheme pre-
sented in [36] is adapted to handle all the mesh operations utilized in the
pipeline. The next sections present technical details of each of the parallel
operations.

Lhttps://crte.cs.odu.edu (Accessed 2023-03-30).
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Mesh Adaptation

Edge Collapse

Point Creation

Point Insertion (Seq.) Quality Improvement
Local Reconnection

1..LAD projection : Vertex Smoothing

Edge Collapse

Fig. 1: Pipeline of the presented approach. Dotted modules are utilized only
when CAD data are available.

3.1 Parallel Speculative Local Reconnection in Metric
Spaces

The fine-grained speculative scheme for local reconnection employed by
CDT3D has been already presented in detail in [36]. We provide here only the
contributions pertinent to metric-based mesh adaptation.

A local reconnection pass consists of four types of flips [38] depicted in
Figure 2. The flip operations are purely topological transformations, however,
the criteria they use are based on geometrical quantities, and as such, they need
to be substantially enhances in order to incorporate metric-based information.
The first criterion used in conjunction with a 2-3/3-2 flip is Delaunay-based:
face abc will be replaced with edge ed if d is in the circumsphere of abce
(see Figure 2a). Extensions of the Delaunay criterion for metric spaces has
been suggested in reference [39] where the authors provide approximations of
the criterion based on the Delaunay measure which is defined as follows: Let
K = (%1, %2, x3,14) be a tetrahedron, the Delaunay measure of a point p with
respect to K is defined as:

dm(Ok,p)
) = g (Oneon) .
where, Of is the circumcenter of K evaluated in metric M. If axm(p, K) < 1
then p is in the circumsphere of K. Notice that we did not specify M explicitly.
In fact, by incorporating the metric from 1, 2 or even all 4 points of K one
can get better approximations of the Delaunay criterion [39]. In this work, we
adopt the criterion presented in [40], that uses not only metric information of
K put also of the point p itself:

am,(p, K) <1

iOéMmi(P,K)+aMp(p,K)<5 (2)

i=1
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Wee

(¢) 2-2 Flip, abd and abe are
) The three configurations of a 4-4 flip.  boundary faces.

Fig. 2: Topological Flips utilized by CDT3D for local reconnection.

In practice, this criterion consists of evaluating the traditional Delaunay
criterion in 5 different spaces equipped with a different (but constant each
time) metric and averaging the results. Similarly, in order to optimize the
connectivity on the surface of the mesh, a 3D in-circle test is coupled with a 2-2
Flip. In particular, a surface edge ab is flipped for ed if d is in the circumcircle
of abe (see Figure 2¢).

The second criterion used is the maximization of the minimum Laplacian
edge weight of an element K [41]. This criterion is combined with the 2-3/3-
2 and the 4-4 Flips (see Figure 2a and 2b). In isotropic mesh generation it
consists in evaluating the following quantity:

. <nFi,1’nFi,2>
QUE) = max, =67

where F; 1, F; o are the two faces attached to the i-th edge of a tetrahedron K,
N, ,, N, , the respective face normals and |K| the volume of K. The algorithm
performs a flip only if the new configuration increases this quantity. For the
anisotropic case, the formula is adapted using a metric tensor M interpolated
at the centroid of K. Moreover, in order to avoid the numerically expensive
evaluation of the normals, the formula is replaced with an equivalent formula
presented in [42] that uses only inner products between the edge vectors of
each face:

Qm(K) = max (ei,e5) m - (€ir ex) m — (€is ei) m - (€5, ex) m (3)

i=1...6 6] K| m
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3.2 Parallel Point Creation for Anisotropic Mesh
Adaptation

The parallel implementation of the point creation kernel is structured in a sim-
ilar fashion to the local reconnection kernel. Each thread iterates a subset of
elements that do not satisfy the local length criteria in order to generate candi-
date points for insertion. New candidate points are compared against existing
mesh vertices and other candidates for proximity (in the metric space). This
check allows to avoid the creation of points too close to each other that will
impact the quality and the local size requirements. A similar approach named
Anisotropic Filtering is presented in [43]. Once a point passes all proximity
tests it is stored in a list assigned to the contained element. Storing the can-
didate points in the contained element gives a significant advantage; both the
proximity checks and the subsequent point insertion step (see Figure 1) can be
performed in constant time since the point location step of the direct insertion
kernel will only require constant time to execute.

In contrast to local reconnection, the point creation step does not perform
any topological modification and thus no cavity locks are required. Moreover,
vertices are allocated into thread-local memory pools [44] and thus vertex
allocation can be performed concurrently. The only step that requires synchro-
nization is adding the candidate point to the list of the contained element. Our
experiments showed that this lock is short-lived and the use of spinlocks is a
sufficiently efficient solution to handle concurrent accesses.

Our approach uses a centroid-based point-creation method. This method
will check the edge lengths of an element that does not meet the quality cri-
teria in the metric space, and if any of them does not satisfy the spacing
requirements, it will generate its centroid as an initial candidate point. If the
tetrahedron has a boundary face, or if any of its edges is a ridge (i.e., lays
between two different surface markers) encroachment rules similar to those
used in Constrained Delaunay refinement [45] are utilized. In particular, the
candidate point will be checked for encroachment (in the metric space) against
the boundary face, and if encroachment occurs, the candidate is rejected and
the centroid of the boundary face becomes the new candidate. The same pro-
cedure is applied to the new point which is checked for encroachment against
any ridge edges, see Figure Bl in Appendix B for more details. Once a candi-
date is created, the metric is interpolated using formula (A3). Inspired by [46],
we store alongside the metric value at a point M(p) its logarithm log(M(p)).
Although this requires more space, it reduces significantly the time required
for metric interpolation.

3.3 Speculative Edge Collapse for Metric-based
Adaptation

The goal of the edge collapse operation is to suppress edges with lengths smaller
than a target value. In this work, the edge collapse operation is utilized as

!Parallel implementation was developed in collaboration with Fotis Drakopoulos.
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a pre- and post-refinement operation (see Figure 1). The pre-refinement step
removes short edges present in the input mesh. By default an edge is considered
short if it is smaller than 1/1/2 as measured by (A1)). Depending on the input
mesh, the user may increase this value in order to create a coarser initial mesh
which can lead to a better quality of the final mesh as we demonstrated in
[9]. The post-refinement use of the operation allows the removal of any short
edges created during refinement.

The parallel implementation of the edge coarsening the algorithm iterates
through the vertices allocated by each thread and exploits parallelism utilizing
a #pragma omp parallel for schedule(guided) OpenMP construct. Each
thread picks and locks (speculatively) the vertex (a in Figure 3) corresponding
to the iterator value. Then it speculatively locks its adjacent vertices (blue
in Figure 3). If any of the locks fail, the thread will release any acquired
locks and it will proceed to the next vertex. Notice that locking the vertices
implicitly grants exclusive access to all their adjacent tetrahedra (red elements
of Figure 3). Once the required locks have been acquired, the edge lengths
between the vertex a and the rest of the vertices of its cavity are evaluated.
If an edge with a length less than a user-defined value is found then the edge
will be collapsed. Additional criteria such as not applying edge collapse in
cases that will increase the surface deviation (see Section 4) are also applied
for edges on the surface of the mesh. Finally, the edge is collapsed by moving
the second point to the first. The guided scheduler was selected because it
performs on average better for cases that require different levels of coarsening
[9]. More sophisticated parallel iteration and tasking schemes are out the scope
of this work but have been explored in [47].

Fig. 3: Steps of speculative edge collapse.

3.4 Vertex Smoothing

During the Quality Improvement step of the isotropic mesh generation pipeline
of CDT3D the user can use a combination of Laplacian [48] and optimal point
placement smoothing [35]. Utilizing these methods for metric-based adaptation
did not yield a substantial improvement in mesh quality while, on the other
hand, adding a significant overhead in the running time. As an alternative,
a different vertex relocation strategy was employed. First, only vertices with
at least one attached element that has a mean ratio shape measure (equation
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(A6)) below 0.1 are considered. This value is based upon common practices
present in the literature [49, 9]. Moreover, a non-smooth optimization method
similar to the one presented in [50] was employed by optimizing the minimum
value of the mean ratio measure among all the elements attached to the ver-
tex. For simplicity, the current implementation does not utilize the integer
programming-based solution presented in [50] or the computation of the active
set of the gradients used in [51] in order to determine the optimal search direc-
tion. Instead, it uses a reduced search space comprised by the segments that
connect the vertex to be relocated with the centroids of the faces of its cavity
(see Figure 4 left). This search space was found to be sufficient for the cases
of this study. Once the search space is determined, the vertex will be moved
incrementally along all the search directions and the position that optimizes
the quality will be selected.

P

Fig. 4: Search Space for Smoothing Operation.

For vertices lying on the surface, the search space is constrained to the
segments that connect the moving vertex to the midpoints of the edges of the
corresponding surface cavity (see Figure 4 right). If the vertex lies on a ridge
the search directions are only two; toward either end of the ridge. Along with
the optimization criterion, the method always ensures that no elements are
inverted and thus no subsequent untangling step is needed. When it comes
to speculative execution, vertex smoothing follows a similar approach to edge
collapse.

3.5 Effect of the complete set of operations

During the process of developing metric-based adaptation in CDT3D we often
wondered if the full suite of operations was indeed required in order to achieve
reasonable results. Figure 5 compares an early implementation of the method
presented in [52] along with the current version compared with other state-of-
the-art mesh adaptation methods [9]. The earlier attempt utilized an external
tool for surface adaptation and created an initial mesh by means of boundary
recovery. The mesh was then adapted using metric-based local reconnection
only for the inner volume elements with no other metric-aware operation.
During the procedure, the surface mesh was kept fixed. The ability to adapt
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the boundary of the mesh at the same time as the volume mesh, along with
the vertex smoothing operation and the addition of a metric-based edge col-
lapse enhanced the quality of the generated mesh by 3 orders of magnitude(as
measured by the mean ratio shape measure (A6)) with respect to our initial
attempt.

—e- CDT3D (Scitech 2019)

100 4 —*- CDT3D + boundary ref. (O1)
~e«- CDT3D + (01) + quality impr. (02)
—e CDT3D + (02) + Edge Collapse

-e- refine (NASA)
1004 —*- EPIC (Boeing)
—«- Feflo.a (INRIA)
—e=- CDT3D (SciTech 2019)

== CDT3D (latest)

1071 4 107!

10724 1072

Normalized count
Normalized count

1073 4

107 4 1074

1075 1073

B = 10°
Mean Ratio (log scale) Mean Ratio (log scale)

Fig. 5: Left: The effect of adding more metric-aware operations. Right: The
improved approach versus our previous results presented in [52].

4 Handling Geometry through metric spaces

Industrial applications as well as several high-quality research-focused work-
shops such as the High-Lift prediction workshop?, the International Workshop
on High-Order CFD Methods?, the Sonic Boom Prediction Workshop?, and the
Geometry and Mesh Generation workshop® make extensive use of analytical/
geometrical descriptions of the domain. These descriptions are of particular
importance since many flow quantities of interest depend on the exact shape
characteristics of the components which could be lost in a discrete model. Thus
building a mesh based on the geometrical description of the domain is essential
for these studies. Moreover, accessing geometrical information while adapt-
ing the mesh leads to better domain discretization and thus more accurate
solution.

There are many methods that can be used to build this representation
but traditionally CFD simulations, and the engineering community in general,
leaned towards the use of the Boundary Representation method (BREP or B-
rep) [53]. The B-rep method uses a combination of topological entities (Faces,
Edges, and Vertices) along with their geometrical description as (analytic)
surfaces, curves, and points. B-rep data can also hold boolean operations such
as intersection and union between entities as well as higher-level operations

2https://hiliftpw.larc.nasa.gov (Accessed 2023-04-25).

3https://how5.cenaero.be (Accessed 2023-04-25).

“https://Ibpw.larc.nasa.gov (Accessed 2023-04-25).

Shttp://www.gmgworkshop.com (Accessed 2023-04-25),Internet Archive https://web.archive.
org/web/20230407233207 /https://www.gmgworkshop.com/ (Accessed 2024-04-06).
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such as extrusion and sweeping [54]. B-rep data are usually handled by a
Computer-Aided Design (CAD) kernel which is responsible both for generating
B-rep data and performing queries to them.

The authors of [55] describe in detail two approaches that can be used to
incorporate geometrical information to a meshing procedure. The first option
is to build a surrogate geometry by constructing a discrete, often high-order,
surface mesh that captures all the features of the input geometry at a desired
resolution. This approach has the advantage of controlling the fidelity of the
constructed representation. Also, it allows fixing inconsistencies of the continu-
ous representation that can occur due to different tolerances of each continuous
patch. One can construct a surrogate geometry even when a geometrical
description is not available based on the input surface mesh. This approach
is currently utilized by the Feflo.a and EPIC mesh adaptation software [55]
(among others).

The second approach, which is used in this work, is to maintain an asso-
ciation between each boundary vertex of the mesh and its adjacent geometric
entities. This approach allows querying the appropriate Geometrical entity
through the CAD kernel. It has the disadvantage of inheriting the issues
present in the B-rep model but, it provides access to the CAD kernel in a
simple manner. Moreover, it aligns better with our goal which is to introduce
preliminary support for B-rep data to our mesh adaptation method. Currently,
this approach is also favored by the refine mesh mechanics suite [56] and
avro [32]. In practice, we introduced at each mesh vertex a pointer to the low-
est dimension geometric entity that is adjacent. This information together with
topological and geometrical queries to the geometry kernel allows to evaluate
uv (or t) parametric coordinates for any mesh vertex. The current implemen-
tation makes use of the EGADS geometry kernel [57] through a generic API
which could be adapted for another CAD kernel in the future.

Geometry information is used throughout the mesh adaptation procedure
in several ways. First, newly introduced boundary points are projected to the
surface using a dedicated module (see Figure 1) right after vertex insertion.
The projection of a mesh vertex p is evaluated by first querying the kernel for
the closest point p’ of the B-rep. The mesh vertex p is then relocated to p’
only if this operation does not create any inverted elements attached to vertex
p. If it does, we try to move p to (p + p’)/2, i.e., the midpoint between the
two points. This procedure is applied iteratively until we find a valid position
or reach a recursion limit which we set to 5. Mesh vertices that were placed
in an intermediate position are recorded and they are included for projection
in the next iteration of the algorithm. The local reconnection that will be
applied in the vicinity of point p may enable moving the point closer to its
projection in a subsequent iteration. Projecting a mesh vertex to the B-rep
involves a Newton-Raphson root finding method and therefore its speed and
final solution depend heavily on the initial guess of the projected point. To
speed up the procedure, we approximate the uv (or t) parameters of a newly
created point during the point creation module based on the average of the
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uv (or t) values of the vertices belonging to the triangle or edge being split.
These approximate uv (or ¢) parameters are then cached for this point and it
is used as an initial guess during the next projection stage.

Information on the analytic expression of the underlying surface is also
used to minimize the deviation of the discrete surface mesh from its analytic
description. In practice, the deviation is evaluated as the dot product between
the normal of a discrete triangle and the normal of the geometry surface evalu-
ated at the centroid of discrete triangle [55], (see also Figure 6). The deviation
is minimized as part of the local reconnection pass (see Figure 1) using 2-2
Flips (see Figure 2¢). The Edge Collapse operation can also use deviation of
the surface cavity from the analytic surface as an extra quality criterion when
deciding whether a surface edge should be collapsed. Controlling the deviation
not only produces a mesh that approximates the surface better, but makes the
operations more robust avoiding cases that will lead to a tangled mesh.

Fig. 6: Deviation Improvement. A flip of the edge bd for ac reduces the devia-
tion between the discrete normals (red solid vectors) and the analytic normals
computed at the centroids of the triangles (blue dashed vectors).

When utilizing CAD projection, we also found it beneficial to perform
vertex smoothing at the end of the adaptive iteration (see Figure 1) allowing
to improve the quality of the vicinity of the projected vertices.

5 Evaluation

CDT8D has been already compared in the literature to state-of-the-art meth-
ods in terms of both mesh quality and scalability. In particular, the analysis
presented in [9] indicates that CDT3D offers competitive mesh quality and
scales well within a single shared-memory node.

In contrast to our previous work that focused mainly on element quality
measures, we compiled a suite of cases that help re-focusing on the main goal
of mesh adaptation: capturing features of the underlying simulation. At the
same time, we test how well CDT3D operates as a part of an adaptive pipeline
composed of open-source components that include a CFD solver and publicly
available test cases enabling thus future comparisons with other methods.

Section 5.1 describes the setup of our adaptive pipeline in terms of software
as well as data flow between the various components. The test cases are of
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increasing difficulty and focus on different aspects of CDT3D. First, in section
5.2 the adaptation procedure is verified by adapting meshes based on analytic
scalar fields. Then, section 5.3 presents results of CDT3D with a CFD solver
and a laminar flow case that involves a piece-wise linear geometry. Section 5.4
increases the difficulty by introducing curved geometry and solving an inviscid
flow. As a stress test in section 5.5 we use CDT3D to perform an analysis of
a turbulent flow over a complex geometry. To provide a complete picture of
CDT8D characteristics we perform a detailed speedup and efficiency analysis
of each operation in section 5.6.

The adaptation is performed using the multiscale metric [4] which is a
feature-based approach that controls the LP norm of the interpolation error
of a user-defined scalar variable. The metric field is evaluated using the L?
projection scheme provided by refine [28] software suite. The final step in
constructing a metric field is the application of gradation. The gradation
aims at putting constraints over the largest size deduced from a metric and
smoothing the metric transition between edge-connected vertices. In this work
we adopt the mized-space-gradation method presented in [58] and utilize its
implementation in refine [56].

The cases that utilize a CFD solver use SU2 7.0.6 [59], version 1.18 of
EGADS is used while for refine we used version 1.9.4-d3ffb79d28. ParaView
was used to visualize results that involve meshes, FreeCAD was used to
visualize geometry, and matplotlib was used for the 2D plots.

5.1 Experimental Setup

In order to meet the ever-evolving and growing demands of the CFD com-
munity, a simulation pipeline should be able to integrate a plethora of
different tools. The T-infinity project [60] demonstrates a series of different
use cases where a high-level Python interface can be used to build sophisti-
cated pipelines. In this work, we focus on a single pipeline depicted in Figure 7
which is pertinent to mesh adaptation.

Initial Mesh

G;S; [Satisfies| G.S, [Error-Based Metric
bound ? Construction

G181
S 6 (e
i'f‘?‘?f??'?_ti_qr]: G.S, Mesh Adaptation G, M,
Fig. 7: Mesh Adaptation pipeline. G; denotes the mesh at the i-th iteration.
S;, 5! is the solver solution and the interpolated solution at the vertices of Gj,

respectively. M, corresponds to the metric field associated with the vertices
of G; and derived from S;.




Springer Nature 2021 BTEX template

Parallel Adaptive Anisotropic Meshing on cc-NUMA Machines 15

In Figure 7, the process is initialized with a (usually coarse) mesh Gy
that captures all the geometrical features of the input model at some user-
defined accuracy. The solver then evaluates a discrete solution of the problem
of interest and stores it in each mesh element. For simplicity, we assume that
the solver in this case is vertex-based and the solution is stored at each vertex
of the mesh S;. The next block captures a user-defined condition that controls
the exit of the iterative process. It can be based on some target simulation
quantity or on the total number of iterations of the adaptive loop. The Metric
Construction step creates a metric field M; at each vertex of G; using S;
that drives the adaptation process. Mesh Adaptation modifies the mesh based
on the provided metric field and generates a new mesh G;; 1. Optionally, one
can interpolate the solution of the previous iteration to the new mesh thus
producing Sj ;. This step allows the solver to restart the calculation from
a state closer to the converged solution instead of the freestream conditions
which is the default. Finally, the new mesh (and optionally the interpolated
solution Sj_ ;) are passed to the solver for the next iteration of the loop.

NASA/refine

solution.dat

solution-mach.solb

ef_metric_test

solution-metric.solb

new_mesh.su2 interpolated| solution.dat

solution-field.solb

new_mesh.meshb ref_translate

new_mesh.meshb

interpolated_solution-field.solb -
Fig. 8: Software pipeline utilized in the adaptive pipelines of this study.

ref_intrep_test

The corresponding software pipeline can be seen in Figure 8. For the
cases of this study, the input volume mesh is either given or created out of
a CAD file using ref bootstrap which is part of the refine mesh mechan-
ics suite[56]. ref bootstrap uses the EGADS [57] kernel in order to generate
an initial surface triangulation of the input CAD file. The surface mesh is
then adapted based on the curvature and other geometrical features. Adapt-
ing the surface in the absence of a volume mesh gives greater flexibility
since the software is not constrained by the requirement of conformity to
a volume after each operation. A volume mesh is then generated using an
external tool such as TetGen [61] or AFLR [62] and finally the volume mesh
is adapted based on a metric field derived by the geometrical features of
the CAD input. SU2 will then produce a solution file that holds values of
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the discrete solution at each vertex of the input mesh. dat2solb is used to
convert the solution to a libMeshb-compatible file [63]. The extracted Mach
field (solution-mach.solb) is then passed to ref metric_test that creates
a multiscale metric field based on it (solution-metric.solb). The multiscale
metric field can be optionally intersected with a curvature- and feature-based
metric built based on the geometrical features of the input model. CDT3D
will then use the metric field along with the mesh used by SU2 to gener-
ate an adapted mesh (new_mesh.meshb). If solution interpolation is utilized,
we pass the new mesh along with a .solb version of the SU2 solution to
ref_intrep_test which we then convert using solb2dat to an SU2-compatible
file (interpolated_solution.dat). The values of the previous solution are
interpolated using linear interpolation. Finally, the adapted mesh is passed
to SU2 after being converted to a .su2 mesh file along with the interpolated
solution if this was generated.

It should be noted that the metric field can be built using any solution
variable besides the local Mach number®. However, the use of the local Mach
number is favored in the literature, since it provides a “compound” scalar
variable that varies in most flow regions, thus allowing us to capture most of
the flow features [64, 65].

Since the solver, a major part of the pipeline is an external and sophis-
ticated project, fine-tuning its parameters and detailed convergence and
error-analysis is outside the scope of this work. Instead, the goal of this section
is to show the capability of our method to function as part of an adaptive
pipeline.

5.2 Analytic scalar fields

The adaptation pipeline of Figure 7 has many components and the errors in
each one can have accumulative and unpredictable effects in the final calcula-
tion. In an effort to mitigate these issues, we first test CDT3D by replacing the
CFD solver with analytic metric fields. In particular, instead of solving a flow
problem at each iteration, we evaluate an analytic function at the vertices of
the mesh. The adaptive iterations will create a mesh that is expected to drive
the interpolation error down. For this test, we will be using the three analytic
cases of the benchmark described in [66] and implemented in the refine suite.
The multiscale metric implementation of refine has been combined with sev-
eral mesh adaptation tools and verified separately in [66] and thus, we will
only focus on the verification of the adaptation procedure in CDTS3D.

For each of the three analytic scalar fields ((4),(5),(6)) the adaptation
pipeline starts with a uniform tetrahedral mesh of the unit cube domain
[0,1] x [0,1] x [0, 1] with 64 vertices. In each subsequent iteration, a multiscale
metric field is computed using F(z,y, z) as a scalar field. The metric is com-
puted in the 2-norm and the gradation value is set to 3. The metric is then

SThe local Mach number is defined as the ratio of the local flow speed over the local speed of
sound.
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passed to our method along with the mesh of the previous iteration with the
goal of adapting the previous mesh to the new metric field.

sinfun3 =F
tanh3 =F
sinatan3 :=F

(z,y,2)

(
(

T,Y,
z,Y,

. . _1
0.1sin(502yz) if 2yz < 57

sin(50xyz) if zyz < 27

0.1sin(50xyz) else

where zyz = (¢ — 0.4)(y — 0.4)(z — 0.4)
z) = tanh ((z 4+ 1.3)*°(y — 0.3)°2)) (5)
z) = 0.1sin(50z2) + tan™' (0.1/(sin(5y) — 222))

)

(6)

For each field, 90 adaptive iterations are performed with the metric com-
plexity (see equation (A4)) increased at every 10 iterations. The convergence
plots in Figure 9 show the interpolation error of the last 5 iterations at each
complexity with respect to the finest generated mesh. Since, the multiscale
metric approximates linear interpolation error via a Hessian reconstruction, all
results are expected to exhibit second-order convergence rate. For comparison,
the same adaptation procedure was performed using refine.

"1 —— CDT3D-sinfun3
—— refine-sinfun3
first order

---- second order

1 —— CDT3D-tanh3

—=— refine-tanh3
first order
---- second order

—e— CDT3D-sinatan3
—— refine-sinatan3
first order

-- second order

0.01 0.02 0.04

h = |vertices| 1

0.08

0.01 0.02 0.04

h = |vertices| 1

0.08

0.01 0.02 0.04

h = |vertices| ™3

0.08

Fig. 9: Convergence rates for CDT3D and refine for the three scalar fields.

Figure 9 indicates that the convergence rate of CDT3D matches closely the
rate of refine and they both exhibit 2nd-order convergence. Figure 10 presents
the adapted meshes. CDT3D is able to recover the features of the scalar fields
at both small and large scales.

5.3 Laminar Subsonic Flow over a Delta Wing

For the next case, CDT3D is coupled with an adaptive pipeline that includes
a CFD solver. The input geometry is a delta wing with planar faces. The 3D
delta wing simulation conditions have been set so that they match the case
used in the first three High-Order Workshops [67]. This case is well studied
in the literature and it is preferred due to its simple geometry and yet non-
trivial flow features. Adaptive results in terms of multiblock meshes appear
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Fig. 10: Adapted meshes for the three fields. Top: sinfun3, tanh3 and
sinatan3 fields. Bottom: Corresponding CDT3D adapted meshes at 256,000
target complexity.

in [68], verification results for the multiscale, MOESS and output-based metrics
appear in [66] and [69].

The freestream conditions are 0.3 Mach, 4000 Reynolds number based on a
unit root chord length and 12.5° angle of attack. The wing surface is modeled
as an isothermal no-slip boundary with the freestream temperature equal to
273.15K. The Prandtl number is 0.72 and the viscosity is assumed constant.
SU2 is configured with an initial CFL number of 1 and a final value of 5
with a ramping of 1.001. As a linear solver, FGMRES is used with the ILU
preconditioner. The error for the linear solver is set to 1071 and the number
of the linear iterations to 10. The Roe convective scheme is used with MUSCL
reconstruction and the Van Albada edge limiter.

For each iteration except the first, we also supplied an interpolated solu-
tion on the new mesh based on the solution of the previous iteration. The
metric is constructed based on the local Mach field of the solution and the
metric gradation value is set to 2.0. The complexity of the metric (as defined
by (A4)) is doubled every 5 iterations. The solution-based metric is inter-
sected also with a curvature- and feature-based metric built based on the
geometrical features of the wing. Although the geometry, in this case, is
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planar, the CAD kernel is utilized to validate its implementation and cou-
pling with CDT3D. We considered 7 metric complexity values for this study:
[50 000, 100 000, 200 000, 400 000, 800 000, 1 600 000, 3 200 000].

Figure 11 depicts the initial surface mesh of the delta wing as well as
adapted meshes at 100,000 and 800,000 complexity respectively. The ini-
tial mesh has 901 vertices, the middle corresponds to the 15th iteration
with 377,569 vertices and the last corresponds to the 25th iteration and has
1,467,922 vertices. Figure 12 depicts streamlines and contour slices of the final
solution.

n AN

Fig. 11: Adapted mesh at three different complexities. Left: Initial mesh,
Middle: mesh at 100,000 complexity, Right: mesh at 800,000 complexity.

To access the quality of the results of the adaptation procedure and its
coupling with CDT3D, drag and lift coefficients are compared against the
results presented in [68, 70], and [66]. Figure 13 presents the results. Both the
drag and the lift coefficients are within less than 0.55% of all the reference
values. The final values as evaluated by SU2 on the 35th iteration are Cp =
0.165396 and C, = 0.346937.

When it comes to execution time, we collected the time required for the
solver and CDTS8D which are the dominant components of the adaptation
pipeline. Table 1 presents performance data for every 5 iterations of the adap-
tive pipeline. SU2 is deployed on the ODU’s turing cluster’ that houses nodes
with a variety of different specifications. The number of cores used by the
solver was set so that it corresponds to about 10,000 vertices per core and it
was constrained to 300 to reduce the waiting time in the job scheduler queue
of the cluster. CDT3D is using one of turing’s nodes with two sockets each
one with a Intel®Xeon®CPU E5-2698 v3 @ 2.30GHz (16 cores) for a total of
32 cores.

Thttps://wiki.hpc.odu.edu/en/Cluster/Turing (Accessed 2023-05-06).
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Fig. 12: Streamlines and Contour slices of the Mach number of the solution.
(Simulation performed on the half model).
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Fig. 13: Lift and drag coefficients as evaluated by SU2 compared against
results presented in [66](ATAA2020) [68](JCP2010) and [70](ADIGMA2010).

To ease the comparison that involves different core counts and hardware
specifications, we include a core-hours® column. Using core-hours allows the
evaluation of the performance of the application with respect to the cost of

8core-hours = the number of cores used by application * hours required for the execution.



Springer Nature 2021 BTEX template

Parallel Adaptive Anisotropic Meshing on cc-NUMA Machines 21

running it on a shared cluster where charging is common to take place in terms
of core-hours. The running time of CDT8D occupies only a small fraction of
the adaptive pipeline. As mentioned in section 5.1 we used regular files to
exchange data between CDTS3D and the solver for simplicity but also to allow
the solver and CDT3D to run on different jobs on the cluster which minimizes
the total time of the experiment. The overhead of using files is small, for exam-
ple in iteration 5 SU2 and CDTS8D spent 0.18 and 0.71 seconds respectively
for writing out the results, while for the last iteration the respective times are
11.16 and 86.13 seconds.

Table 1: Performance data of adaptive iterations.

iter. vertices tetrahedra solver solver CDT8D CDTS8D
(s) core-hours (s) core-hours

0 901 3,444 57.55 0.16 - -

5 97,896 563,930 2,833.51 7.87 63.53 0.56

10 192,098 1,114,412 3,301.11 18.34 49.26 0.44
15 377,569 2,203,660 2,897.73 32.20 111.95 1.0
20 749,290 4,391,974  3,865.75 85.91 207.08 1.84
25 1,467,922 8,641,694 3,476.85 154.53 392.55 3.49
30 2,897,903 17,108,219 2,777.01 232.96 808.27 7.18
35 5,726,724 33,883,975 3,281.82 273.49  1622.15 14.32

5.4 Inviscid Onera M6 case

The next case introduces CAD data to the adaptation pipeline. We use an
inviscid flow based on the description of a turbulent case included in NASA’s
Turbulence Modeling Resource (TMR)?. As mentioned in NASA’s website!?
“The ONERA M6 wing is a classic CFD wvalidation case for external flows
because of its simple geometry combined with complexities of transonic flow [..]
It has almost become a standard for CFD codes because of its inclusion as a
validation case in numerous CEFD papers over the years.” The flow conditions
for this study are 3.06° angle of attack, 0.84 Mach number, and freestream
temperature equal to 300K. This case utilizes the ONERA M6 wing geometry
Figure B2a depicts the initial mesh generated by ref bootstrap.

SU2 is configured similarly to the previous case but using the JST as the
convective scheme which we found to converge faster for this case. For each
iteration except the first, we also supplied an interpolated solution on the
new mesh based on the solution of the previous iteration. The metric is con-
structed based on the local Mach field of the solution and the metric gradation
value is set to 10. The complexity of the metric (see equation (A4)) is dou-
bled every 5 iterations. The solution-based metric is intersected also with a

9https://turbmodels.larc.nasa.gov/onerawingnumerics_val.html (Accessed 2023-05-06).
Ohttps://www.grc.nasa.gov/www/wind /valid/m6wing/m6wing.html (Accessed 2023-05-06).
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curvature- and the feature-based metric is built based on the geometrical fea-
tures of the wing. We considered 3 metric complexity values for this study:
[50 000, 100 000, 200 000].

These flow conditions produce the typical “lambda” shock along the upper
surface wing. Figure B2b depicts the mesh as well as the corresponding contour
plot of the local Mach number for the final iteration of the adaptive loop.

To verify our results, we compare the pressure coefficient against two dif-
ferent datasets from the literature. First, the experimental values of Case 2308
of [71] acquired from the TMR website!! that corresponds to our configura-
tion. Also, we executed SU2 with the same configuration on a structured grid
generated using a custom publicly available mesh generation code [72] using
the input parameters suggested by the TMR website!'?. In particular, we used
the level 2 mesh (L2) that has 36,865 points across the surface of the wing.
For comparison, the final mesh of our pipeline has 6,898 points across the
surface of the wing. The top left subfigure in Figure 14 depicts the 7 sections
along which the experimental and numerical results are compared. The rest of
the plots in Figure 14 compares the results generated using CDT3D and the
pipeline of Figure 8, the structured mesh, and the experimental values. The z
axis denotes the z-coordinate of the cross-section normalized by the local cord
length of the wing. The y axis represents the local pressure coefficient which
measures the pressure at a point relative to the freestream conditions. The com-
bination of CDT3D with SU2 generates results very close to the experiment
and the numerical solution obtained on the structured mesh. The differences
with the experimental values are in part due to the inviscid method used in
this simulation. We attempted to perform a viscous simulation using the same
configuration but we did not succeed in obtaining converged results. Still, these
results indicate that the meshes produced by CDT3D in the presence of simple
curved geometries supplied as CAD data are suitable for inviscid calculations
and the results are close to the reference values.

5.5 Inviscid flow over the JAXA Standard Model

As a final stress test, we use the Japan Aerospace Exploration Agency (JAXA)
Standard Model (JSM). JSM was built as an attempt to study flow effects
over a fairly complete configuration instead of isolated aircraft components
that were commonly used. There are several experimental data available, see
for example [73, 74, 75] but, we will focus on the use of the JSM in the context
of the 3rd ATIAA CFD High-Lift Prediction Workshop'3. A summary of the
workshop’s results appears in [76]. In particular, we will study the case 2b
which excludes the pylon and the nacelle of the original model and uses an
angle-of-attack equal to 4.36° and a Mach number of 0.172. The JSM geometry
is combined out of 200+ surfaces, modeling details of the aircraft including
brackets, flaps and slats (see Figure B3).

Hhttps://turbmodels.larc.nasa.gov/onerawingnumerics_val.html (Accessed 2023-05-06).
2https:/ /turbmodels.larc.nasa.gov/onerawingnumerics_grids.html (Accessed 2023-05-06).
Bhttps://hiliftpw.larc.nasa.gov/index-workshop3.html (Accessed 2023-05-06).
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Fig. 14: Values of the pressure coefficient as evaluated by the solver versus
the experiment across the 7 sections of the ONERAMG6 wing. The location of
the sections are depicted in the first figure.

SU2 is configured similarly to the inviscid ONERA M6 case of the previous
section. For each iteration except the first, we also supplied an interpolated
solution on the new mesh based on the solution of the previous iteration.
For the first iteration, we used the coarse mesh of Figure B4 of appendix
B created by ref bootstrap of the refine mesh mechanics suite [56]. The
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metric is constructed based on the Mach field of the solution and the met-
ric gradation value is set to 1.5. The complexity of the metric (see equation
(A4)) is doubled every 5 iterations. The solution-based metric is intersected
also with a curvature- and feature-based metric built based on the geometri-
cal features of the model. We considered 8 metric complexity values for this
study: [50 000, 100 000, 200 000, 400 000, 800 000, 1 600 000, 3 200 000, 6 400 000].
The final mesh contains 13, 227,952 vertices, 478, 518 triangles and 78,479, 450
tetrahedra.

Figure B6 in appendix B depicts the upper surface of the wing of the
final iteration along with the distribution of the local Mach number around
it. Notice that the method inserts more points around the regions of higher
variability of the local Mach number as expected. In particular, the wakes of
the slat brackets are resolved on the upper surface. These wakes are initiated
at the sharp edges of the brackets. Figure B7 depicts the final mesh along with
the final solution colored my the local Mach number. Zoom-in views of one of
the generated vortices are also provided.

To verify our results we compare the pressure coefficient values as evaluated
by the solver against experimental results acquired from High-lift workshop
website!®. Figure 15a depicts the locations of C)p extraction along the wing
of JSM. The rest subfigures of Figure 15 present results generated using our
approach and the pipeline of Figure 8. In general, the obtained results are close
to the experimental values. Notice, however, that our results overpredict the
C)p values on the upper surface of the wing which corresponds to the upper
section of the blue datapoints. This is in part attributed to the fact that we
used an inviscid simulation instead of a viscous one. Viscous simulations were
attempted starting from a coarse mesh but we didn’t succeed in obtaining a
converged solution. Even though we didn’t investigate the reasons in depth
and we are not familiar with the internal workings of SU2, we believe that
these failed attempts were due to a combination of factors. First, the numerical
schemes used in SU2 in combination with the complex geometry of this case
might require a mesh better aligned to the geometrical features of the problem.
Also, a boundary layer mesh might be required to achieve convergence for
this configuration. A different solver configuration might yield better results
but exploring the configuration space of the solver is out of the scope of this
work. Still, this case indicates that the new functionality of CDT3D allows the
method to handle fairly complicated CAD data in combination with solution-
based metric derived from inviscid calculations.

5.6 Parallel Evaluation

In this section, we discuss the efficiency of our parallel implementation for the
metric-based operations presented in the previous sections as well as for the
end-to-end mesh adaptation process.

Mhttps://hiliftpw.larc.nasa.gov/Workshop3/pressures.html (Accessed 2021-06-17).
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Fig. 15: Values of the pressure coefficient as evaluated by the solver versus
the experiment across the 7 sections of Figure 15a.
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As input, we use a mesh of a delta wing with planar faces and 800, 000 met-
ric complexity. The input mesh has 1,439, 310 vertices and 8,470, 523 tetrahe-
dra while the target metric has a complexity (as defined by (A4)) of 1,600, 000.
The difference in complexity causes the mesh size to double during adapta-
tion. The experiments were performed on the wahab cluster of Old Dominion
University using dual-socket nodes equipped with two Intel®Xeon® Gold 6148
CPU @ 2.40GHz (20 slots) and 368 GB of memory. The compiler is gcc 7.5.0
and the compiler flags -03 -DNDEBUG -march=native. Each run was repeated
5 times and the results were averaged using the geometrical mean [77]. For the
base case, we ran the parallel code using one core.
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Fig. 16: Speedup and efficiency of the two main modules of CDT3D (see also
Figure 1).

AT

—e— Quality Improvement (Total)
—e— Local Reconnection 98
~—&— Vertex Smoothing
ideal

1.00

1.00

efficiency

—#— Mesh Adaptation (Total)
~&— Point Creation
—#- Local Reconnection

4| ~#- Edge Collapse

ideal

12 5 10 15

20 25 30 35 40
cores

(a)

10 15 20 25 30 35 40
cores

(b)

Fig. 17: Efficiency breakdown of the mesh adaptation and quality improve-
ment modules of CDT3D (see also Figure 1).

Figure 16 depicts the total efficiency of the method as well as its break-
down with respect to the two main modules of CDT3D (see also Figure 1). The
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end-to-end efficiency is 92.3% at 40 cores. The efficiency of the Mesh Adapta-
tion and Mesh Quality Improvement modules are 90.5% and 94% respectively.
Figure 17a presents a breakdown of the efficiency of the Mesh Adaptation mod-
ule. The Local Reconnection operation performs the best with more than 98%
efficiency. The super-linear speedup is caused by the “buckets”. Splitting the
list of active elements into buckets and repeatedly performing reconnection
over the same bucket improves the cache locality. Point Creation benefits from
the same construct but its spin-lock implementation for updating the internal
list of the contained element (see subsection 3.2) results in a lower efficiency.
Edge Collapse exhibits a lower speedup in comparison to the other two oper-
ations due to the generic OpenMP implementation that was used to exploit
parallelism. Still, this implementation of Fdge Collapse delivers 80 — 85% effi-
ciency for up to 20 cores and 75 — 80% efficiency for more cores. At 25 cores
the edge collapse efficiency drops significantly. This is in part attributed to
the dual-socket nature of the host machine. At 25 cores the code uses one and
a half sockets and the OpenMP back-end of the operation does not have any
special treatment for accessing memory from a different socket. For Quality
improvement (see Figure 17b) the super-linear performance of Local Recon-
nection is more prominent due to the (approximately) constant size of the
mesh during the Quality Improvement phase (no vertices are introduced). The
Vertex Smoothing operation exhibits 93.4% efficiency on 40 threads. Notice
also that the efficiency curve of the Quality Improvement stage (black) follows
the trends of the smoothing operation. This is due to the fact that smooth-
ing is the dominant operation in terms of time and also because the efficiency
of Local Reconnection is approximately constant. Figure B8 presents a break-
down of the mesh adaptation module of CDT3D. Local Reconnection accounts
for more than 75% of the total mesh adaptation time. The other two major
parallel mesh operations Point Creation and Edge Collapse, are responsible for
less than 10% of the mesh adaptation time. The effect of the sequential point
insertion is becoming increasingly higher as expected by Amdahl’s law [78] but
still, it is less than 4% of the total time.

Figure B9 depicts the percentage of the total time that corresponds to each
operation. The time to smooth the vertices corresponds to about 60% of the
total running time while, Mesh Adaptation takes about 12% of the total time.

6 Conclusion

In this work, we introduced a new parallel metric-based mesh adaptation
method that can serve as the parallel optimistic mesh adaptation module of
the Telescopic Approach in the context of CFD simulations. In particular, we
extended the CDT3D library by adding new parallel mesh operations, incor-
porating metric adaptivity (Section 3) and the ability to interface with a CAD
kernel (Section 4). The combination of these methods along with the simulta-
neous adaptation of surface and volume improve the quality of the mesh (as
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measured by element-based measures) by 3 orders of magnitude (see Figure 5)
over our initial attempt [52] that used external software for surface adaptation.

These improvements are not implemented in the void by just adding new
capabilities in the mesh generation toolkit. Instead, they allow us to put the
adapted meshes into use and verify that are really suitable for a class of sim-
ulations. To verify our implementation and its capability to function as a
component of an adaptive pipeline - a crucial part of many real-world appli-
cations - in Sections 5.2-5.5 we tested CDT3D through a series of cases of
increasing difficulty.

Section 5.2 served as a verification test leaving the solver outside the setup.
The results match the theoretical expected values and other state-of-the-art
mesh adaptation software. The solver is then introduced back in the adaptive
pipeline in section 5.3 where the evaluated quantities are within less than
0.55% of the reference values in the cited literature. At the same time, Table
1 indicates that the mesh adaptation stage of our adaptive pipeline takes
only a small fraction of the total core-hours required by the simulation. In
section 5.4 we increased the complexity of the problem by adding a curved
geometry model based on one of the most cited CFD cases. The results closely
matched the experimental data as well as the ones obtained by using the solver
with a carefully crafted structured mesh which is often treated as the best-
case scenario in terms of mesh quality. Our last test case in the section 5.5
increased the difficulty once more by utilizing a well-known complex simulation
configuration. Although our numerical results were not as close as the other
cases (mainly due to the lower fidelity inviscid configuration we used), CDT3D
was able to handle the fairly complicated CAD data in combination with the
solution-based metric.

Finally, the data of section 5.6 indicate that CDT3D still follows a
scalability-first [9] approach offering a well-optimized implementation attaining
more than 92% end-to-end efficiency on a single node.

7 Future work

In this work we presented a software that uses shared memory as a basis to
create a building block for scalable parallel mesh generation and adaptivity.
A promising path toward extracting concurrency of mesh adaptation methods
on HPC systems, the Telescopic Approach (see Figure 18) was proposed in
[79]. The Telescopic Approach handles the software and hardware complexity
by defining different work decomposition methods at each level of the mem-
ory hierarchy. Each method is designed to exploit the concurrency at multiple
levels in parallel and adaptive simulations. However, there are some more chal-
lenges to overcome [80] and outside the scope of this paper. The next layer is
the Parallel Data Refinement layer which has been already implemented with
both Delaunay-based [81, 82] and Advancing-front based methods [83]. The
potential scalability of these approaches were hindered by challenges related to
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Fig. 18: The Telescopic Approach [79].

minimizing the amount of data movement as identified by [84, 82] and reduc-
ing the effect of the constrained faces on the final mesh quality as discussed
in [85]. An alternative approach would be to revisit the distributed speculative
approach presented in [13] and adapt it for CDT3D. This approach would ben-
efit from the asynchronous message passing, automatic work-load balancing,
and migration (based on data dependencies) capabilities provided by the run-
time system, PREMA 2.0[86, 87] which is designed to support the Telescopic
Approach.

The vertex smoothing operation can be further improved by incorporating a
more complete search space for the optimal node position such as the methods
presented in [50, 51]. Moreover, it could be extended to all vertices and not
just the ones attached to low-quality elements providing an overall smoothed
result which may provide better convergence rates for the solver. Also, CAD
information such as local curvature and local feature size could be incorporated
in order to optimize the quality of curved surfaces.

GPUs (Graphic Processing Units) are common in today’s supercomputers
however, currently, CDT3D make no use of them. Extending the presented
meshing operations so that they can take advantage of the accelerators is
expected to improve the running speed of certain operations significantly.
Figure 17 reveals that almost 95% of the total time is spent on just two oper-
ations: the local reconnection and the vertex smoothing operation. Although
they both exhibit more than 90% efficiency, they can still be improved by
the use of accelerators. In particular, porting the inner floating-point-heavy
kernels such as the predicates of the Delaunay criterion and the min-max
edge-weight measure to GPUs could potentially reduce the running time sig-
nificantly. We believe that such an implementation will benefit significantly
from heterogeneous runtime systems like the one presented in [88] since they
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allow for separating the concerns of mesh adaptation and efficient execution
on accelerators reducing thus the problem complexity significantly.

As mentioned in subsections 5.4 and 5.5 we didn’t succeed in obtaining
viscous results with our pipeline. This is in part attributed to the absence of
boundary layer mesh that many numerical methods expect. Although fully
unstructured results have been reported with other solvers (see for exam-
ple [89]), to the best of our knowledge, SU2 has not been tested thoroughly
within this context. The boundary layer can be provided as an external
procedure and integrated similarly to our work in [37]. A similar approach
that combines state-of-the-art boundary layer generation with an adaptive
anisotropic method appears in [90]. Another path to explore is the generation
of metric-aligned meshes such as the ones presented in [43, 46]. Moreover, the
use of specialized metrics may also be suitable. For example, in [91] the authors
report success by combining wall-distance to their metric creation while in
[92] the authors review various output-based metric construction schemes that
could be evaluated.
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Appendix A Metric Spaces in the context of
Mesh Adaptation

Mesh adaptation modifies an existing mesh so that it can accurately and effi-
ciently (i.e. fewer number of elements) capture features of both the solution
and the underlying domain. One of the earliest methods of mesh adaptation
appears in [93] where the authors create overset meshes of different resolutions
that are driven by estimates of the local truncation error. Other approaches
refine or regenerate a mesh based on the magnitude and the direction of the
error, utilizing an advancing front method [94] and in [95] via a Delaunay-based
method. The common goal of all these approaches is to extract information
about the error of the numerical solution and communicate it to the mesh
adaptation method.
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In this work, we adopt the unit mesh approach [58] where the error of the
numerical solution is communicated via metric tensors. This method trans-
forms the problem of creating the best mesh to creating a wunit mesh (i.e.
all edge lengths equal to 1) in a transformed space. The transformation is
built such that a unit element in the transformed space reduces the error of
the numerical solution back in the physical space. In practice, the method is
applied by incorporating metric tensors in various geometric quantities that are
used to drive decisions during mesh adaptation while staying in the physical
space.

A metric tensor in three dimensions corresponds to a 3 x 3 symmetric
positive definite matrix M2, Metric tensors in 3 dimensions can be visu-
alized using ellipsoids. For example, the identity matrix corresponds to the

. . . 200 . .
unit sphere, while the matrix M = [8 ! (1)} can be represented by an ellipsoid

aligned to the coordinate axes with axes lengths 1/2,1 and 1. For a detailed
derivation of this correspondence see [11].

Using as a starting point the fact that a positive definite matrix induces
an inner product through (u,v) s := u? Mu, one can use (u,v)r to redefine
how common geometric quantities are measured. For example:

length of a segment lp(z,y) =V {T—y,2 —Y)m
(A1)
angle between non-zero vectors cos(fr) = M, O € [0,7]
M M
(A2)

Reference [96] presents a thorough introduction to the properties of metric
tensor fields and their relation to the interpolation error of the discretized
solution.

In the context of mesh adaptation, the error metric M will vary from point
to point and so there is a need for a way to calculate the above quantities
at any point of the domain. Following the widely used approach, the Log-
Euclidean framework introduced in [2] is used as interpolation scheme which
can be formulated as follows: Given z;,¢ = 1...k be a set of vertices and
M; = (M(z;)) their corresponding metrics, then for a point = of the domain
with barycentric coordinates a; , z = Zle a; - x;, with Zle a; =1 the
interpolated metric is defined by:

k
M(z) = Mupean(z) = exp (Z a; In M,-) (A3)

i=1

Note that since M; is positive definite, it has positive eigenvalues and therefore
the exponential and logarithm of the metric are well defined and given by

15 A real symmetric n X n matrix is called positive definite if vI Mv > 0,Vv # 0
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In(M) := Pln(D)PT, exp(M) := Pexp(D)PT. Where M = PDPT is the
spectral decomposition of M. The complexity of a discrete metric M over a
mesh with n vertices is given by

C(M) = f: Vdet M, V;, (A4)
=1

where V; is the volume of the Voronoi dual element surrounding each node.

Finally, the quality measures used to report mesh quality also need to
be adapted. In this work, we adopt the mesh quality measures used by
the Unstructured Grid Adaptation Working Group'®. The edge lengths are
evaluated using:

log(La/Ly)

L —Le=Lv L. — L] > 0.001
‘< % otherwise (A5)

1 1
L, = (veTMave)Z, Ly, = (veTMbve)2

where v, is the vector along edge ab. Since the goal is to create a unit mesh,
edges of length below or above 1 are considered sub-optimal. The Mean Ratio
shape measure is also approximated in the discrete metric,

36 (|K\«/det(Mmean))%, (46

K =
313 3 e v Mieanve

e

where v, is the vector along the edge e of element K, | K| the isotropic volume
of the element and M,can is the interpolated metric tensor evaluated at the
centroid of element K. The measure is normalized by the volume of an equi-
lateral element and as such its range is [0, 1] with 1 being the optimal quality
for an element. As described in detail in [96], the first criterion is directly
related to the goal of the unit mesh approach, which is to produce edges of
length one in the transformed space. Using this criterion alone however is not
enough, since it can lead to elements of volume equal or near to zero. The
existence of these elements can create numerical issues in the mesh generation
process which operates in finite precision and it can also cause numerical sta-
bility issues to the solver that processes the generated mesh. Combining the
edge length measure with the mean ratio shape measure which achieves 1 for
equilateral elements and approaches zero as the volume of the element (in the
transformed space) approaches zero allows to avoid nearly flat elements.
Having established a way to communicate between the numerical solution
and the mesh adaptation software it remains to specify how the error met-
ric M is evaluated. There are a number of different methods including but

https://ugawg.github.io/ Retrieved 2023-03-30
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not limited to the multiscale metric [97], output-based metrics [92], and opti-
mization schemes [98]. For this work, the multiscale error metric is selected
due to its wide use, simplicity, and availability in open-source projects like
the refine adaptation mechanics [28]. This approach has been confirmed both
theoretically [96] and experimentally [99] in a number of applications.

Appendix B Supplementary figures

Function GenerateCandidatePoints(t)

Input: An active tetrahedron ¢

Result: Candidate point(s) for element ¢

candidate Points = {}

¢ + centroid(t)

for boundary face f of t do
if ¢ encroaches upon f then
if all edges of f are long then
p + centroid(f)
for ridge edge e of f do

‘ candidate Points.append(midpoint(e))
end for
if candidatePoints is empty then // no ridge was found
‘ candidate Points.append(p)
end if
else
for long edge e of f do
| candidatePoints.append(midpoint (c))
end for
end if
else
‘ candidate Points.append(c)
end if
end for
f candidatePoints is empty then
/* empty means that either there are no boundary faces or no
encroachment occurs. In either case we keep the original point.
*/

candidate Points.append(c)
end if
return candidatePoints

e

Fig. B1: Encroachment rules of the centroid-based point-creation method.
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(a) Initial mesh generated by ref bootstrap. The mesh conforms to the geometrical
features of the wing.

(b) Final iteration of the adaptive loop.

Fig. B2: First and last mesh of the adaptation pipeline.

Fig. B3: The JSM geometry.
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Fig. B4: Initial coarse mesh created by ref bootstrap. # vertices 52,265, #
triangles 57,240, # tetrahedra : 219,230.

Fig. B5: Geometry and Initial mesh of the JSM case.
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Fig. B6: Final mesh and coloring of the wing by the local Mach number for
the JSM case.
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Fig. B7: Simulation results. Top: Final mesh alongside the corresponding
solution. Bottom: Zoom-in on the blue regions of the top figure.
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Fig. B8: Breakdown of the Mesh Adaptation time into the basic operations
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Fig. B9: Breakdown of the total time of CDT3D (see also Figure 1).
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