
EFFICIENT LLM INFERENCE WITH KCACHE

Qiaozhi He, Zhihua Wu
qiaozhihe2022@outlook.com

ABSTRACT

Large Language Models(LLMs) have had a profound impact on AI applications, particularly
in the domains of long-text comprehension and generation. KV Cache (,)
technology is one of the most widely used techniques in the industry. It ensures efficient se-
quence generation by caching previously computed KV states. However, it also introduces
significant memory overhead. We discovered that KV Cache is not necessary and proposed a
novel KCache technique to alleviate the memory bottleneck issue during the LLMs inference
process. KCache can be used directly for inference without any training process, Our evalua-
tions show that KCache improves the throughput of popular LLMs by 40% with the baseline,
while keeping accuracy.

1 INTRODUCTION

Currently, LLMs like GPT-4 (,), PaLM (,;,), LLaMA 3
(,) dominate in numerous natural language processing, summary, code generation, question
answering, etc. However, their expensive online inference cost poses significant obstacles to the deployment of
LLM-based applications. With limited computational resources, how to maximize the overall system throughput
as much as possible, and improving the utilization rate of the GPU cluster becomes increasingly important.
LLMs inference consists of two phases: prefill phase and decode phase. The decode phase generates tokens one
by one, based on the result of prefill phase and the previous step of decode phase, which is memory bandwidth
bound. So, we need to increase the batch size to improve the system throughput, but increasing the batch size
will further occupy more GPU memory.

The memory usage of LLM inference mainly consists of 3 parts: model weights, activations, and KV Cache.
For Instance, For the LLaMA2-7B model, the weights occupy around 14GB of memory at fp16 precision.
When processing a batch size of 8 and a sequence length of 32× 1024, the KV cache occupies around 128GB
of memory, with the layer-wise memory sharing strategy, the activations only occupy 2GB of memory. KV
Cache=2× bytes× bsdl, where 2 represents K Cache and V Cache, b represents the batch size, s represents the
sequence length and d represents the embedding dimension and l represents the number of layers. As the batch
size and sequence length increase, the memory usage of the KV Cache will increase linearly.

Some optimizations have been proposed to alleviate the KV Cache bottleneck. Quantization compression algo-
rithms, (,;,;,) have been proposed to compress the KV Cache
from the bytes perspective. Context window compression algorithms, (,;,;
et al.,) have been proposed to compress the KV Cache from s perspective. Adaptive computation algo-
rithms, (,) early exit decoding to reduce compute, which from l perspective. (,;Ainslie et al.,) accelerates inference by improving the structure of the Multi-Head Attention (MHA). From

the K Cache and V Cache perspective, although simply offloading to CPU and reloading back to GPU during
inference can alleviate the pressure on GPU memory, the current Host-to-Device (H2D) and Device-to-Host
(D2H) bandwidth will become the new bottleneck for inference.

(,;,;,) have been proposed that only pivotal tokens are important
during inference, which KV Cache is compressed by deleting part of them. However, considering multi-turn
question-answering scenarios, deleting parts of the KV Cache directly without a fallback mechanism is a highly
risky action. A more flexible approach is to retain all KV states as much as possible and dynamically select
the key information for computation. This way, since all KV states are preserved, the upper bound of accuracy
can be guaranteed to be high enough. Based on this idea, an obvious method is to offload all KV states to
CPU memory. Another key issue is how to dynamically select which KV states are important and copy them
back to HBM from CPU memory for attention calculation. As long as this partial information can maximally
preserve all semantic information, the inference accuracy can approach the theoretical upper bound as much as
possible, while the partial data copying can also maximize the inference performance. We propose KCache,
During the inference process, we retain the K Cache in HBM while storing the V Cache in CPU Memory.
Simultaneously, we directly utilize the softmax results from the Attention computation to filter out the key

1

ar
X

iv
:2

40
4.

18
05

7v
1 

 [
cs

.C
L

] 
 2

8 
A

pr
 2

02
4



KCache Attention in Decode Stage

KCache in Prefill Stage

Q ∈ R1×H K⊤ ∈ RH×S S ∈ R1×S S ∈ R1×N V ∈ RN×H

=
×

×

...

Transformer Layer0
...

Transformer Layern

Transformer Layeri

Transformer Layeri+1

HBM CPU Memory

=

KCache Pull
VCache Pull

KCache Push

VCache push

Figure 1: Illustration of the KCache. During prefill phase, the computation results of each layer push to
the HBM. After that, the part of V Cache will be copied to the CPU asynchronously, while releasing the GPU
memory occupied by this part of the V Cache. During decode phase, K states will be pushed and pulled as KV
Cache. However, we will calculate the topN of attention scores, and based on the indices of the topN results,
we will pull the corresponding V Cache from the CPU to the HBM in real-time to complete the subsequent
computation.

information and recall the corresponding V Cache from CPU Memory for subsequent Attention calculations.
Through this simple approach, leveraging the structural characteristics of Transformer models, we effectively
utilize the idle CPU memory, increasing the capacity of HBM.

In this paper, we build InferenceEngine based on KCache that efficiently reduces the memory footprint during
LLM inference, which achieved 40% increased throughput and keeping accuracy. The main contributions of
our work include:

• We propose KCache that can be used directly for inference without any training process while improv-
ing throughput by 40% while maintaining accuracy.

• We identified the performance and accuracy challenges in offloading the VCache to CPU memory,
proposed KCache to address this challenge, and validated its effectiveness through experiments on
model inference.

• KCache is flexible and scalable, which can be applied to transformed pre-trained models.

2 BACKGROUND

In this section, we present some basic knowledge of LLMs, which include autoregressive inference, prefill and
decode.

LLMs are essentially based on a decoder-only architecture, which consists of L stacked blocks. Each block
includes two modules: a multi-head attention (MHA) (,) and a fully connected feed-forward
network (FFN). An input tensor x ∈Rb×s×d, where b represents the batch size, s represents the sequence length
of input, and d represents the hidden dimension of the model. MHA maps the input x to different subspaces
using n heads: Hi = softmax(Qi(Ki)⊤/

√
dh)V

i, MHA(x) = Concat(H1, H2, ...,Hn−1, Hn)Wo, where
Qi = xWqi , K

i = xWki , V
i = xWvi , and Wqi ∈ Rh×h, Wki ∈ Rh×h, Wvi ∈ Rh×h are trainable weights,

h represents the hidden dimension of per head. dh = d/n. FFN take SwiGLU (,) for examle,
FFNSwiGLU (x,W, V,W2) = (σ(xW )

⊗
xV )W2, where W ∈ Rd×8/3d, V ∈ Rd×8/3d, W2 ∈ R8/3d×d, σ

is unit of activation. LLMs process a sequence of words named prompt and generate some new words. The

2



autoregressive inference means that the token generated at the current moment depends on the token generated
at the previous moment. The process of handling user prompts is called prefill, and it only needs to be done
once. The process of generating all output tokens one by one in autoregression is called decode and needs to
be executed continuously. During the prefill phase, taking prompt as input and computation in parallel using
matrix-matrix multiplications. During the decode phase, which performs the same operations as prefill, but only
takes one token as input and computation with KV Cache using vector-matrix multiplications.

3 METHOD

3.1 KCACHE

Submodule FLOPs I/O(byte) Arithmetic Intensity

MHA

Q = xWq , K = xWk, V = xWv 6bd2 12bd+ 6d2 1
2
d
+ 1

b

≈ b

S = softmax(QK⊤/
√
dh) 2bsd 2bnh+ 2bnhs+ 2bns 1

1+ 1
h
+ 1

s

≈ 1

A = SV 2bsd 2bns+ 2bsd+ 2bd 1

1+ 1
h
+ 1

s

≈ 1

O = AWo 2bd2 4bd+ 2d2 1
2
d
+ 1

b

≈ b

KCache MHA

Q = xWq , K = xWk, V = xWv 6bd2 12bd+ 6d2 1
2
d
+ 1

b

≈ b

S̃ = TopN(softmax(QK⊤/
√
dh)) 2bsd 2bnh+ 2bnhs+ 2bnN 1

1+ N
sh

+ 1
s

≈ 1

Ã = S̃Part(V ) 2bNd 2bnN + 2bNd+ 2bd 1

1+ 1
h
+ 1

s

≈ 1

Õ = ÃWo 2bd2 4bd+ 2d2 1
2
d
+ 1

b

≈ b

Table 1: MHA FLOPs and I/O(byte) in decode phase. N denotes that the value of N selected for the TopN
operation.

In long-context scenarios, users typically ask multiple rounds of questions based on a long sequence, with
each question potentially focusing on different segments of the long context. To maximize the accuracy of
results in each round, we avoid reducing or compressing the KV states, thus ensuring the upper bound of model
effectiveness. However, simply offloading KV states to CPU memory and reloading them to the GPU during
inference would significantly increase the end-to-end inference time. Therefore, to balance model effectiveness
and inference latency, we must find a way to reload only the necessary information back to HBM, which implies
the need for a module to determine which information is important. Fortunately, considering the meaning of the
Key and Value pairs in the Attention mechanism, where Key is used to compute the relevance with Query and
Value represents the actual information associated with Key, it inspires us to offload a portion of the K Cache
and V Cache to CPU memory.

Figure shows the method of KCache. We keep K Cache and first of 0...i layers V Cache in HBM and
keep other V Cache in CPU memory. During computation, The attention computation is adjusted from
softmax(QK⊤/

√
dh) to TopN(softmax(QK⊤/

√
dh)). Since the K Cache is still stored in HBM, the com-

putation of QK⊤ is not affected. After the softmax operation, TopN selects the N most relevant results. We
dynamically and flexibly move the corresponding vectors of the V Cache to HBM in real-time based on the
attention scores, to participate in subsequent calculations.

Based on the proposed KCache method, intuitively, as N increases, the model’s inference accuracy will ap-
proach that of the full KV Cache, but it will also increase the data copying overhead, leading to performance
degradation. Whether there exists a perfect balance between inference performance and inference accuracy
requires quantitative analysis. In the following sections, we provide an analysis from both the accuracy and
performance perspectives.

3.2 ANALYSIS OF KCACHE PERFORMANCE

During the prefill phase, the part of V Cache needs to be asynchronously copied to the CPU memory. We
hope that the computation time for each layer can overlap the data copying time of the previous layer. There
are 2bsd bytes data needed to transmit from Device to Host for each transformer block, and 22bsd2 + 4bs2d
floating point operations(FLOPs) for each Transformer Block. Let:

22bsd2 + 4bs2d

FLOPS
>

2bsd

BandwidthD2H
(1)

3



11d+ 2s >
FLOPs

BandwidthD2H
(2)

Take NVIDIA A100 (80GB) GPU for instance, d = 4096 for LLaMA2-7B, which means computation will
overlap the transmission.

During the decode phase, the Multi-Head Attention (MHA) module is a typical memory-bound task, as evi-
denced by its Arithmetic Intensity shown in Table. The Arithmetic Intensity is defined as the ratio of floating-
point operations (FLOPs) to I/O bytes. This indicates that the computation time of the MHA module during
decoding is strongly dependent on the amount of memory access. Notably, the performance of the MHA module
in the decode phase is independent of the hidden size and sequence length and is solely influenced by the batch
size. This observation leads to an expectation: the computation time and data transfer time of the proposed
KCache MHA module can be less than the conventional KV cache MHA implementation. Let:

bnNh

BandwidthH2D
<

(2bns+ 2bsd+ 2bd)− (2bnN + 2bNd+ 2bd)

BandwidthGPU
(3)

s

N
>

BandwidthGPU

BandwidthH2D
(4)

Take NVIDIA A100(80GB) GPU (2039GB/s GPU Memory Bandwidth and 32GB/s H2D Bandwidth) for in-
stance, which means KCache performance will not decrease when s/N > 64.

3.3 ANALYSIS OF KCACHE ACCURACY

During the prefill phase, the Value tensors are asynchronously offloaded to CPU memory, which does not affect
the inference accuracy and performance. During the decode phase, it is necessary to reduce the amount of data
transferred from host to device. Based on Sb,i = softmax(Qb,i(Kb,i)⊤/

√
dh) ∈ R1×s, Ab,i = Sb,iVb,i ∈

R1×d, where b represents one instance of batch and i represents one of head. If the result of Sb,i is sparse
enough, the impact of the corresponding value of Ab,i on the final result will be negligible. In, The accuracy
of KCache will be further verified.

LLaMA2-7B LLaMA2-13B LLaMA3-8B Mistral-13B

Config
BBH

3-shot

GSM

8-shot

TriQA

5-shot

BBH

3-shot

GSM

8-shot

TriQA

5-shot

BBH

3-shot

GSM

8-shot

TriQA

5-shot

BBH

3-shot

GSM

8-shot

TriQA

5-shot

Baseline 39.87 15.09 64.24 47.69 25.78 70.64 62.39 47.61 71.71 56.21 40.33 70.94

N = 32 L = 0 33.19 5.46 63.57 40.73 10.84 70.67 56.46 46.7 71.67 46.54 34.5 70.84

N = 32 L = 1 36.94 12.59 64.16 45.97 25.32 70.53 56.38 46.32 71.72 52.08 36.62 70.85

N = 32 L = 2 37.08 14.25 64.12 46.17 26.31 70.49 56.43 46.17 71.7 52.17 37.38 70.85

N = 32 L = 3 36.63 14.33 64.14 45.68 25.93 70.49 56.41 45.87 71.69 52.37 36.85 70.82

N = 64 L = 0 35.75 6.14 62.48 45.4 14.4 69.73 60.99 47.54 71.67 54.19 38.29 70.87

N = 64 L = 1 38.03 13.42 64.18 46.52 26.84 70.61 61.23 48.67 71.66 54.52 37.15 70.88

N = 64 L = 2 37.97 15.31 64.18 46.98 27.22 70.61 61.1 47.99 71.68 54.38 38.44 70.88

N = 64 L = 3 38.07 15.16 64.22 46.89 25.55 70.59 61.1 47.84 71.73 54.72 39.04 70.88

N = 128 L = 0 37.26 8.49 64.07 45.54 18.12 70.63 62.69 47.84 71.72 56.18 37.83 70.94

N = 128 L = 1 38.57 14.25 64.24 47.23 25.78 70.66 62.79 48.07 71.7 56 37.91 70.93

N = 128 L = 2 39 15.01 64.24 47.18 25.17 70.67 62.79 48.98 71.72 55.89 37.98 70.92

N = 128 L = 3 38.89 15.09 64.25 47.17 25.55 70.67 62.52 48.52 71.72 56.26 38.44 70.92

Table 2: KCache results for LLaMA2-7B, LLaMA2-13B, LLaMA3-8B and Mistral-13B. GSM denotes
GSM8K, and TriQA denotes TriviaQA. BBH, GSM8K and TriviaQA are measured in accuracy. N denotes
that the value of N selected for the TopN operation. L denotes that the layer of VCache allocated on HBM,
which means VCache of layer0 and layer1 was allocated on HBM and other layers on CPU memory when
L = 2. We provide the score of LLaMA3-8B with KCache where N = 128 and L = 1 on each subject of BBH
in Table.

4



4 EXPERIMENTS

4.1 SETUP

Models and Datasets. All models are based on decoder-only transformers, We evaluate KCache on four open-
source LLMs: LLaMA2-7B, LLaMA2-13B(,), LLaMA3-8B (,) and Mistral-
7B(,). We choose 3 benchmarks: BBH, GSM8K and TriviaQA. BBH (,)
is a suite of 23 challenging BIG-Bench tasks. GSM8K (,), a dataset of 8.5k high-quality
linguistically diverse grade school math word problems. TriviaQA (,), a reading comprehension
dataset containing over 650K question-answer-evidence triples.

4.2 RESULTS

Configuration KVCache KCache

Input

Output
Batch Size

Throughput

tokens/second

Throughput

N = 32

Throughput

N = 64

Throughput

N = 128

1k/1k

1 55.3 43.7 43.4 42.9

8 321.0 277.1 256.2 222.2

16 485.9 441.0 389.7 315.7

4k/1k

1 50.7 41.9 41.7 41.2

8 212.0 225.9 211.8 188.0

14 251.2 290.8 267.8 231.4

23 OOM 349.2 316.2 266.2

7k/1k

1 46.7 40.5 40.1 39.6

8 158.4 189.8 180.1 162.6

13 OOM 223.2 209.5 186.1

15k/1k

1 38.3 36.5 36.4 36.0

3 65.9 76.6 75.8 73.7

5 OOM 102.5 100.4 95.1

Table 3: KCache throughput on LLaMA2-7B. OOM denotes Out of Memory Error. KCache demonstrated
performance advantages when handling contexts longer than 4K, and this advantage further increased as the
context length grew. When reaching 15K, KCache exhibited over 40% higher throughput compared to the
baseline.

Accuracy. We run all tasks with (,) for fair comparison. Table shows experimental results
about the Few-shot performance. Fig shows prompt length on different datasets.

• KCache essentially maintained accuracy without loss, and even achieved better performance across
multiple datasets and models.

• L has a relatively small impact on the model accuracy, especially when the model performance is
sufficiently strong. If the model performance is relatively weak, it is recommended to set a larger L.

• A larger N would achieve higher accuracy. When N = 128, KCache maintained the same accuracy
as the baseline, or even higher. We believe that TopN regularized the softmax and further filtered out
noise information.

• Our experiments on three datasets validated that for context lengths around 2K or less, setting N to
either 64 or 128 did not significantly impact the accuracy.

Performance. We further evaluated the end-to-end performance of KCache in our InferenceEngine and con-
ducted experiments on GPU, which has 64GB memory with 1TB GPU memory bandwidth and 180TFLOPS.
We evaluate LLaMA2-7B. Table shows the experimental result. Overall, The experimental results further val-
idate the analysis in, where KCache demonstrates performance advantages when S >> N . Simultaneously,

5



2.
5

4.
8

7.
2

9.
5

11
.8

14
.1

16
.4

18
.7

20
.9

0

5

10

15

20

25

30

35

40

45

BBH(1E2)

12
.0

13
.2

14
.4

15
.7

16
.9

18
.1

19
.4

20
.6

21
.8

0

5

10

15

20

25

GSM8K(1E2)

1.
3

1.
5

1.
7

1.
9

2.
2

2.
4

2.
6

2.
8

3.
0

0

5

10

15

20

25

30

35

TriviaQA(1E2)

Figure 2: Prompt length of BBH, GSM8K and TriviaQA.

based on the results in, KCache achieved a 40%+ throughput improvement in inference with 15K context
length with N = 128.

5 CONCLUSION

In this work, We propose KCache, an efficient inference technique for large language models. Particularly in
long-context inference scenarios, KCache demonstrates a 40%+ throughput improvement. This approach does
not require any training and applies to various mainstream structures such as MHA and GQA. In the future, we
will further explore strategies based on KCache.

REFERENCES

AI@Meta. Llama 3 model card. 2024. URL https://github.com/meta-llama/llama3/blob/
main/MODEL_CARD.md .

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit Sanghai.
Gqa: Training generalized multi-query transformer models from multi-head checkpoints, 2023.

Rohan Anil, Andrew M. Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos, Siamak Shak-
eri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, Eric Chu, Jonathan H. Clark, Laurent El Shafey, Yanping
Huang, Kathy Meier-Hellstern, Gaurav Mishra, Erica Moreira, Mark Omernick, Kevin Robinson, Sebastian
Ruder, Yi Tay, Kefan Xiao, Yuanzhong Xu, Yujing Zhang, Gustavo Hernandez Abrego, Junwhan Ahn, Jacob
Austin, Paul Barham, Jan Botha, James Bradbury, Siddhartha Brahma, Kevin Brooks, Michele Catasta, Yong
Cheng, Colin Cherry, Christopher A. Choquette-Choo, Aakanksha Chowdhery, Clément Crepy, Shachi Dave,
Mostafa Dehghani, Sunipa Dev, Jacob Devlin, Mark Dı́az, Nan Du, Ethan Dyer, Vlad Feinberg, Fangxiaoyu
Feng, Vlad Fienber, Markus Freitag, Xavier Garcia, Sebastian Gehrmann, Lucas Gonzalez, Guy Gur-Ari,
Steven Hand, Hadi Hashemi, Le Hou, Joshua Howland, Andrea Hu, Jeffrey Hui, Jeremy Hurwitz, Michael
Isard, Abe Ittycheriah, Matthew Jagielski, Wenhao Jia, Kathleen Kenealy, Maxim Krikun, Sneha Kudugunta,
Chang Lan, Katherine Lee, Benjamin Lee, Eric Li, Music Li, Wei Li, YaGuang Li, Jian Li, Hyeontaek Lim,
Hanzhao Lin, Zhongtao Liu, Frederick Liu, Marcello Maggioni, Aroma Mahendru, Joshua Maynez, Vedant
Misra, Maysam Moussalem, Zachary Nado, John Nham, Eric Ni, Andrew Nystrom, Alicia Parrish, Marie
Pellat, Martin Polacek, Alex Polozov, Reiner Pope, Siyuan Qiao, Emily Reif, Bryan Richter, Parker Ri-
ley, Alex Castro Ros, Aurko Roy, Brennan Saeta, Rajkumar Samuel, Renee Shelby, Ambrose Slone, Daniel
Smilkov, David R. So, Daniel Sohn, Simon Tokumine, Dasha Valter, Vijay Vasudevan, Kiran Vodrahalli,
Xuezhi Wang, Pidong Wang, Zirui Wang, Tao Wang, John Wieting, Yuhuai Wu, Kelvin Xu, Yunhan Xu,
Linting Xue, Pengcheng Yin, Jiahui Yu, Qiao Zhang, Steven Zheng, Ce Zheng, Weikang Zhou, Denny Zhou,
Slav Petrov, and Yonghui Wu. Palm 2 technical report, 2023.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh, Kensen Shi, Sasha
Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vinodkumar Prab-
hakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James Bradbury, Jacob Austin, Michael Is-
ard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Levskaya, Sanjay Ghemawat, Sunipa Dev, Hen-
ryk Michalewski, Xavier Garcia, Vedant Misra, Kevin Robinson, Liam Fedus, Denny Zhou, Daphne Ip-
polito, David Luan, Hyeontaek Lim, Barret Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shiv-
ani Agrawal, Mark Omernick, Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor

6

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md


Lewkowycz, Erica Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang,
Brennan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas Eck,
Jeff Dean, Slav Petrov, and Noah Fiedel. Palm: Scaling language modeling with pathways, 2022.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plap-
pert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John Schulman. Training veri-
fiers to solve math word problems, 2021.

Shichen Dong, Wen Cheng, Jiayu Qin, and Wei Wang. Qaq: Quality adaptive quantization for llm kv cache,
2024.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika, Eric Tang, Anish Thite,
Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot language model evaluation, 12 2023.
URL https://zenodo.org/records/10256836 .

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and
William El Sayed. Mistral 7b, 2023.

Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly supervised
challenge dataset for reading comprehension, 2017.

Hao Kang, Qingru Zhang, Souvik Kundu, Geonhwa Jeong, Zaoxing Liu, Tushar Krishna, and Tuo Zhao. Gear:
An efficient kv cache compression recipe for near-lossless generative inference of llm, 2024.

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo Xu, Anastasios Kyrillidis, and
Anshumali Shrivastava. Scissorhands: Exploiting the persistence of importance hypothesis for llm kv cache
compression at test time, 2023.

OpenAI. Gpt-4 technical report, 2023.

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Bradbury, Anselm Levskaya,
Jonathan Heek, Kefan Xiao, Shivani Agrawal, and Jeff Dean. Efficiently scaling transformer inference,
2022.

Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani, Dara Bahri, Vinh Q. Tran, Yi Tay, and Donald Metzler.
Confident adaptive language modeling, 2022.

Noam Shazeer. Fast transformer decoding: One write-head is all you need, 2019.

Noam Shazeer. Glu variants improve transformer, 2020.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung, Aakanksha
Chowdhery, Quoc V. Le, Ed H. Chi, Denny Zhou, and Jason Wei. Challenging big-bench tasks and whether
chain-of-thought can solve them, 2022.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bash-
lykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer,
Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia
Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin
Kardas, Viktor Kerkez, Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne
Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor
Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta,
Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan,
Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov,
and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser,
and Illia Polosukhin. Attention is all you need, 2023.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming language models
with attention sinks, 2024.

7

https://zenodo.org/records/10256836


Yuxuan Yue, Zhihang Yuan, Haojie Duanmu, Sifan Zhou, Jianlong Wu, and Liqiang Nie. Wkvquant: Quantizing
weight and key/value cache for large language models gains more, 2024.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song, Yuandong
Tian, Christopher Ré, Clark Barrett, Zhangyang Wang, and Beidi Chen. H2o: Heavy-hitter oracle for efficient
generative inference of large language models, 2023.

A APPENDIX

BBH KVCache KCache

bbh cot fewshot boolean expressions 87.60 88.40
bbh cot fewshot causal judgement 47.59 54.55
bbh cot fewshot date understanding 82.40 82.40
bbh cot fewshot disambiguation qa 46.00 60.80
bbh cot fewshot dyck languages 10.00 10.80
bbh cot fewshot formal fallacies 53.60 53.60
bbh cot fewshot geometric shapes 41.20 41.20
bbh cot fewshot hyperbaton 92.80 92.00
bbh cot fewshot logical deduction five objects 44.40 44.80
bbh cot fewshot logical deduction seven objects 36.40 34.40
bbh cot fewshot logical deduction three objects 79.20 76.40
bbh cot fewshot movie recommendation 88.40 89.60
bbh cot fewshot multistep arithmetic two 31.60 37.20
bbh cot fewshot navigate 88.80 86.80
bbh cot fewshot object counting 82.80 82.40
bbh cot fewshot penguins in a table 69.18 67.81
bbh cot fewshot reasoning about colored objects 76.40 74.00
bbh cot fewshot ruin names 69.20 69.60
bbh cot fewshot salient translation error detection 54.00 52.00
bbh cot fewshot snarks 60.11 67.98
bbh cot fewshot sports understanding 96.00 96.00
bbh cot fewshot temporal sequences 71.20 66.80
bbh cot fewshot tracking shuffled objects five objects 36.80 40.40
bbh cot fewshot tracking shuffled objects seven objects 32.00 28.80
bbh cot fewshot tracking shuffled objects three objects 61.60 59.60
bbh cot fewshot web of lies 100.00 100.00
bbh cot fewshot word sorting 43.60 38.40

Table 4: The scores of each subject in BBH of LLaMA3-8B.

8


	Introduction
	Background
	Method
	KCache
	Analysis of KCache Performance 
	Analysis of KCache Accuracy

	Experiments
	Setup
	Results

	Conclusion
	Appendix

