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On some linear equations associated with
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Abstract

We use a recently proposed scheme of matrix extension of dispersion-

less integrable systems for the Abelian case, in which it leads to linear

equations, connected with the initial dispersionless system. In the exam-

ples considered, these equations can be interpreted in terms of Abelian

gauge fields on the geometric background defined by the dispersionless

system. They are also connected with the linearisation of initial systems.

We construct solutions to these linear equations in terms of wave functions

of the Lax pair for dispersionless system, which is represented in terms of

some vector fields.

Keywords: Dispersionless integrable systems; self-dual conformal struc-
tures; Einstein-Weyl geometry; Manakov-Santini system

1 Introduction

Recently we proposed a scheme of matrix extension of the Lax pairs of dis-
persionless integrable systems (see [1] and references therein), which leads to
matrix equations on the background of the initial dispersionless systems. There
are important cases in which dispersionless integrable systems describe some ge-
ometric structures (self-dual conformal structures, Einstein-Weyl geometry [2]),
and in these cases the matrix extension scheme provides equations for gauge
fields on the respective geometric background (see [3], [4], [5]).

In the present work, we would like to develop in more detail some obser-
vations made in the article [1] about the Abelian case of the matrix extension
scheme. In the Abelian case equations of extension become linear, in our ex-
amples they can be represented as an action of linear differential operators of
the second order (with the coefficients defined through the solutions of the basic
dispersionless integrable system) on the scalar function. But nevertheless these
equations could be of interest for several reasons. First, in three and four di-
mension, where we have an interpretation of equations in terms of gauge fields,
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the Abelian case corresponds to electromagnetic fields on geometric background
and could be of interest by itself. Second, the arising linear operators are con-
nected with the linearisation of basic dispersionless equations and can be useful
for the study of stability of solutions and singularities of these equations. For
example, for the second heavenly equation linear operator of Abelian extension
is exactly the linearisation of the equation. And finally, the general solution
of extension equations in the Abelian case can be found explicitly through the
wave functions of the Lax pair. In the paper [1] it was done using the dressing
scheme, but here we will not use the dressing scheme, constructing the general
solution in a rather elementary way.

Our main examples in this work include the equations of self-dual confor-
mal structure (SDCS) and the Manakov-Santini system, which describes the
Einstein-Weyl structures. For convenience of the reader, we provide some basic
information about the matrix extension scheme and geometric structures in the
Appendices.

2 Abelian extension of SDCS equations

Let us consider the Lax pair [6]

X1 = ∂z − λ∂x + Fx∂x +Gx∂y + fx∂λ,

X2 = ∂w − λ∂y + Fy∂x +Gy∂y + fy∂λ.
(1)

Commutation relations for this Lax pair give a coupled system of three second-
order PDEs for the functions F , G, f





Q(F ) = fy,

Q(G) = −fx,

Q(f) = 0,

(2)

where linear second order differential operator Q is given by

Q = (∂w + Fy∂x +Gy∂y)∂x + (∂z + Fx∂x +Gx∂y)∂y

= ∂w∂x − ∂z∂y + Fy∂x
2
−Gx∂y

2
− (Fx −Gy)∂x∂y.

(3)

System (2) can be rewritten in the form of a coupled system of third order PDEs
for the functions F , G

{
∂x(Q(F )) + ∂y(Q(G)) = 0,

(∂w + Fy∂x +Gy∂y)Q(G) + (∂z + Fx∂x +Gx∂y)Q(F ) = 0,
(4)

in this form it was introduced in [2] in connection with the self-dual conformal
structures (see Appendix 2).

Scalar extension of the Lax pair (1) (see Appendix 1)

∇X1
= ∂z − λ∂x + Fx∂x +Gx∂y + fx∂λ + a1,

∇X2
= ∂w − λ∂y + Fy∂x +Gy∂y + fy∂λ + a2
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generates a linear equation for the potential φ, a1 = ∂xφ, a2 = ∂yφ,

Qφ := (∂w∂x − ∂z∂y + Fy∂x
2
−Gx∂y

2
− (Fx −Gy)∂x∂y)φ = 0. (5)

Solution through the wave functions.

In [1] we constructed a general solution to linear equation (5) using a dressing
scheme. It is easy to obtain this formula directly using the dispersionless Lax
pair. Indeed, cross-differentiating over y, x linear equations

(∂z − λ∂x + Fx∂x +Gx∂y + fx∂λ)Ψ = 0,

(∂w − λ∂y + Fy∂x +Gy∂y + fy∂λ)Ψ = 0,
(6)

we get the relation

((∂w + Fy∂x +Gy∂y)∂x − (∂z + Fx∂x +Gx∂y)∂y)Ψ = ∂λ(fx∂y − fy∂x)Ψ. (7)

Integration of the r.h.s. with respect to λ over a closed contour gives zero, thus
Q
∮
Ψdλ = 0, and

φ =
1

2πi

∮
Ψdλ (8)

gives a solution to linear equation (5) for an arbitrary wave function (analytic
in the neihborhood of the contour or given in terms of formal Laurent series).
Linear equations (6) possess three basic wave functions Ψ0, Ψ1, Ψ2 [6] and a
general wave function is represented as

Ψ = f(Ψ0,Ψ1,Ψ2),

where f is an arbitrary analytic function. Thus solution (8) possesses a func-
tional freedom of a function of three variables, corresponding to a general solu-
tion of linear equation (5).

For trivial background

(∂w∂x − ∂z∂y)φ = 0,

φ =
1

2πi

∮
f(λ, λz + x, λw + y)dλ.

This formula is easily recognised as a version of Penrose formula for solutions
of the wave equation written for the case of neutral signature.

Considering the linearization of SDCS system (2) (or (4)), we come to the
observation that operator Q is contained as a factor in the principal part of
linearised equations.

Reductions of the SDCS system

First, let us consider the volume-preserving reduction, that leads to the Dunajski
system [7]. This reduction is connected with zero divergence vector fields (1).
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In this case functions F , G can be defined through the potential Θ, F = Θy,
G = −Θx, and system (2) takes the form

Θwx +Θzy +ΘxxΘyy −Θ2
xy = f,

Qf = 0,
(9)

where the operator Q is expressed in terms of potential Θ as

Q = ∂w∂x + ∂z∂y +Θyy∂x∂x +Θxx∂y∂y − 2Θxy∂x∂y,

This operator defines an Abelian extension of the Dunajsky system, it also
represents a bivector defining a conformal structure. System (9) can be written
as one fourth-order equation

Q(Θwx +Θzy +ΘxxΘyy −Θ2
xy) = 0

Another standard reduction of SDCS system (2) is a linearly degenerate
case, which corresponds to hyper CR (Cauchy-Riemann) equations. In this
case vector fields (1) do not contain a derivative over spectral variable, f = 0,
Ψ0 = λ is a wave function of linear operators, and system (2) reads

{
Q(F ) = 0,

Q(G) = 0.
(10)

Operator Q here is of the same form as in general SDSC case, it also defines an
abelian extension. However, due to the reduction, some new special features of
solutions of this operator arise. Indeed, for the reduced Lax pair

(∂z − λ∂x + Fx∂x +Gx∂y)Ψ = 0,

(∂w − λ∂y + Fy∂x +Gy∂y)Ψ = 0,

and instead of relation (7) we now have

QΨ = ((∂w + Fy∂x +Gy∂y)∂x − (∂z + Fx∂x +Gx∂y)∂y)Ψ = 0. (11)

Thus for linearly degenerate case an arbitrary wave function of the reduced Lax
pair satisfies equation (5)! The reduction also leads to a recursion for solutions
of equation (11), defined by the relations

∂xφ
′ = (∂z + Fx∂x +Gx∂y)φ,

∂yφ
′ = (∂w + Fy∂x +Gy∂y)φ.

(12)

The compatibility condition for these relations coincide with equation (11) for
φ, and cross-action of linear operators of the r.h.s. gives (modulo equation (10))
equation (11) for φ′.

Similar observations for operators of linearisation of linearly degenerate
equations were done in the work of Segyeyev [8].
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Finally, applying both volume-preserving and linearly degenerate case re-
ductions to SDCS system (2), we obtain the famous Plebański second heavenly
equation

Θwx +Θzy +ΘxxΘyy −Θ2
xy = 0. (13)

The operator of Abelian extension is of the same form as for the Dunajski
system,

Q = ∂w∂x + ∂z∂y +Θyy∂x∂x +Θxx∂y∂y − 2Θxy∂x∂y,

it coincides with the linearisation operator for the heavenly equation (13). So-
lutions to the equation Qφ = 0 are given by arbitrary wave functions of the Lax
pair for the heavenly equation, φ = Ψ,

(∂z − λ∂x +Θxy∂x −Θxx∂y)Ψ = 0,

(∂w − λ∂y +Θyy∂x −Θxy∂y)Ψ = 0.

Recursion relations for coefficients of expansion of wave functions into the powers
of the spectral variable lead to the recursion for solutions of the linearized second
heavenly equation Qφ = 0,

∂xφ
′ = (∂z +Θxy∂x −Θxx∂y)φ,

∂yφ
′ = (∂w +Θyy∂x −Θxy∂y)φ.

This type of recursion was introduced in [8].

3 Abelian extension of the Manakov-Santini sys-

tem

The Manakov-Santini system [9] is a two-component integrable generalisation
of the dispersionless Kadomtsev-Petviashvili (dKP) equation,

uxt = uyy + (uux)x + vxuxy − uxxvy,

vxt = vyy + uvxx + vxvxy − vxxvy
(14)

It correspons to arbitrary vector fields in the Lax pair, instead of Hamiltonian
vector fields for the dKP equation,

X1 = ∂y − (λ− vx)∂x + ux∂λ,

X2 = ∂t − (λ2
− vxλ+ u− vy)∂x + (uxλ+ uy)∂λ

(15)

For v = 0 this system reduces to the dKP (or Khohlov-Zabolotskaya) equation

uxt = uyy + (uux)x,
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reduction u = 0 (linearly degenerate case) gives the equation (Mikhalev [10],
Pavlov [11])

vxt = vyy + vxvxy − vxxvy .

Abelian extension of the Lax pair (15) (see also Appendix 1)

∇X1
= ∂y − (λ− vx)∂x + ux∂λ + κx,

∇X2
= ∂t − (λ2

− vxλ+ u− vy)∂x + (uxλ+ uy)∂λ + λκx + κy,
(16)

leads to linear equation for the scalar function κ

Qκ := (∂t∂x − ∂y∂y − (u− vy)∂x∂x − vx∂x∂y − ux∂x)κ = 0.

Any wave function Ψ(λ) of linear operators (15) given on the contour defines a
solution to this equation by the formula analogous to (8).

To derive this formula directlly from the Lax pair (15), we rewrite equations
for the wave functions in the form

(∂y − λ∂x + vx∂x + ux∂λ)Ψ = 0,

(∂t − λ∂y − (u− vy)∂x + uy∂λ)Ψ = 0.

Cross-differentiating by respectively y and x and taking the difference, we get

QΨ = ∂λ(ux∂y − uy∂x)Ψ, (17)

then integration over the contour cancels the r.h.s., and we obtain the formula

κ =
1

2πi

∮
Ψ(µ)dµ. (18)

In terms of the basic wave functions of the Lax pair (15) Ψ = F (Ψ0,Ψ1), and
we have a solution with functional freedom of a function of two variables.

The dKP equation case

The case of the dKP equation corresponds to Hamiltonian vector fields in the
Lax pair (15), leading to v = 0 and

uxt = uyy + (uux)x. (19)

Commutation relations for the extended Lax pair (reduced extended Lax pair
(16))

∇X1
= ∂y − λ∂x + ux∂λ + κx,

∇X2
= ∂t − (λ2 + u)∂x + (uxλ+ uy)∂λ + λκx + κy

imply the dKP equation (19) and linear equation for κ,

Qκ := (∂t∂x − ∂y∂y − u∂x∂x − ux∂x)κ = 0.
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The operator Q doesn’t coincide with the linearisation operator for dKP equa-
tion (19), which reads

P = ∂t∂x − ∂y∂y − u∂xx − 2ux∂x − uxx

However, the two operators are connected via a simple identity ∂xQ = P∂x,

which implies that Qκ = 0 ⇒ P∂xκ = 0. In other words, the operator Q

corresponds to the linearisation of the potential dKP equation for the function
w, u = wx. For κ we have a formula (18),

κ =
1

2πi

∮
F (Ψ0,Ψ1)dµ,

it gives a symmetry of potential dKP equation. The symmetry for the dKP
equation (solution of linearised equation) is defined by ∂xκ. This is a rather
familiar formula for the symmetries of the dKP equation, in standard dKP
hierarchy notations Ψ0 = L (Lax-Sato function), Ψ1 = M (Orlov function).

Mikhalev-Pavlov equation

Considering the linearly degenerate case of the MS system, for which u = 0, we
get the equation

vxt = vyy + vxvxy − vxxvy (20)

with the Lax pair

X1 = ∂y − λ∂x + vx∂x,

X2 = ∂t − (λ2
− vxλ− vy)∂x.

(21)

The Abelian extension of the Lax pair

∇X1
= ∂y − λ∂x + vx∂x + κx,

∇X2
= ∂t − (λ2

− vxλ− vy)∂x + λκx + κy

(22)

implies linear equation

Qκ := (∂t∂x − ∂y∂y + vy∂x∂x − vx∂x∂y)κ = 0. (23)

Similar to linearly degenerate case of the SDCS equations (11), any wave func-
tion of linear operators (21) Ψ(λ), X1Ψ(λ) = 0, X2Ψ(λ) = 0, satisfies this
linear equation. Indeed, the r.h.s. of the formula (17) in the linearly degenerate
case is equal to zero, then QΨ(λ) = 0. In terms of the basic wave functions of
linear operators (21), Ψ = F (λ,Ψ1).

Linear operator Q in this case does not coincide with the linearisation oper-
ator for equation (20), which is

P = ∂t∂x − ∂y∂y + vy∂x∂x − vx∂x∂y + vxx∂y − vxy∂x

= Q+ vxx∂y − vxy∂x. (24)
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In the work [8] it was demonstrated that the linearised equation is satisfied by
the function Ψ−1

x , PΨ−1
x = 0, where Ψ(λ) is a wave function of the Lax pair

(21). The recursion for the linearised equation was also constructed.
To derive linearisation operator and solutions for it in terms of the Lax pair,

we will use a parametric deformation of the Lax pair described in Appendix 3,

X1α = ∂y − λ∂x + vx∂x + αvxx,

X2α = ∂t − λ∂y + vy∂x + αvxy.
(25)

This deformation takes us out of the class of vector fields, however, the com-
patibility conditions remain the same. For α = 0 this is a standard Lax pair in
terms of vector fields, and α = 1 corresponds to the formally adjoint Lax pair.
The deformed Lax pair implies a special solution for Abelian extension equation
(23) κ = vx, that is easily checked by differentiating Mikhalev-Pavlov equation
(20). A general wave function of deformed Lax pair (25) in terms of the basic
functions of the Lax pair (21) reads (see Appendix 3)

Ψ̃α = (Ψ1
x)

αF (λ,Ψ1).

Instead of formula (17) we obtain

∂y(∂y + vx∂x + αvxx)Ψ̃α(λ) = ∂x(∂t + vy∂x + αvxy)Ψ̃α(λ),

thus

QαΨ̃α := (∂t∂x − ∂y∂y + vy∂x∂x − vx∂x∂y + α(vxy∂x − vxx∂y)) Ψ̃α = 0.

For solutions of linear equation Qαφ = 0 we have a recursion

φ′

x = (∂y + vx∂x + αvxx)φ,

φ′

y = (∂t + vy∂x + αvxy)φ.

The compatibility condition given by cross-differentiation over y, x is the equa-
tion Qαφ = 0, while cross-action of linear operators of the r.h.s. leads (modulo
equation (20)) to the equation Qαφ

′ = 0. The case of linearisation operator
P corresponds to α = −1, P = Q−1. Symmetries for the Mikhalev-Pavlov
equation are given by the expression

Ψ̃−1 = (Ψ1
x)

−1F (λ,Ψ1),

and recursion for the symmetries is

φ′

x = (∂y + vx∂x − vxx)φ,

φ′

y = (∂t + vy∂x − vxy)φ.
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The interpolating reduction

Let us consider also the interpolating reduction of the Manakov-Santini system
(14), which is defined by the condition

au = vx,

where a is a parameter (see [13], [14]). Under this condition, the Manakov-
Santini system can be written as one equation for the function v,

vxt = vyy + a−1vxvxx + vxvxy − vxxvy . (26)

A remarkable property of this equation, justifying the name ‘interpolating’ [13],
is that its limit for a → 0 leads to the dKP equation, while for a → ∞ it gives
the Mikhalev-Pavlov equation. The linear equation of Abelian extension in this
case reads

Qκ := (∂t∂x − ∂y∂y − (a−1vx − vy)∂x∂x − vx∂x∂y − a−1vxx∂x)κ = 0,

and its solution can be obtained using an arbitrary wave function of Lax oper-
ators (15) (taking into account reduction condition) by formula (18).

Similar to the case of the Mikhalev-Pavlov equation, linear operator Q does
not coincide with the linearisation operator for equation (26), which reads

P = Q+ vxx∂y − vxy∂x.

To find solutions of equation Pφ = 0 through the wave functions of Lax oper-
ators, we use the same trick as for the Mikhalev-Pavlov equation case. Intro-
ducing a parametric deformation of the Lax pair described in Appendix 3, we
arrive to the following formula for solutions of linearised interpolating equation
Pφ = 0 (symmetries of interpolating equation)

φ =
1

2πi

∮
ea(µ−Ψ0)Ψ(µ)dµ.

where Ψ is an arbitrary wave function Ψ = F (Ψ0,Ψ1), and Ψ0 is a basic wave
function with the expansion λ+ uλ−1 + . . . (corresponds to Lax-Sato function
L in standard dKP notations).

Appendix 1

Matrix and Abelian extension of multidimensional disper-

sionless integrable systems

We will give a brief description of the scheme of matrix extension of the Lax
pairs of dispersionless integrable systems (see [1] and references therein). Mul-
tidimensional dispersionless integrable systems are associated with Lax pairs in

9



terms of vector fields depending on a spectral parameter. We will consider Lax
pairs of the type

[X1, X2] = 0, (27)

X1 = ∂t1 +

N∑

i=1

Fi∂xi
+ F0∂λ, X2 = ∂t2 +

N∑

i=1

Gi∂xi
+G0∂λ. (28)

λ - ‘spectral parameter’, functions Fk, Gk are holomorphic in λ (polynomials,
Laurent polynomials) and depend on the variables t1, t2, xn. The class of equa-
tions corresponding to such Lax pairs includes dispersionless limits of integrable
equations (dKP, dispersionless 2DTL hierarchy), Plebański heavenly equations
and their generalizations, hyper-Kähler hierarchies. A scheme of matrix exten-
sion leads to gauge covariant Lax pairs of the type

∇X1
= X1 +A1, ∇X2

= X2 +A2, (29)

A1, A2 are matrix-valued functions of space-time variables holomorphic in λ

(polynomials, Laurent polynomials). Lax pairs of this structure were already
present in the seminal work of Zakharov and Shabat (1979). The commutator
of two covariant (extended) vector fields contains vector field part and matrix
(Lie algebraic) part,

[∇X1
,∇X2

] = [X1, X2] +X1A2 −X2A1 + [A1, A2]

Vector fields term of compatibility conditions gives the basic dispersionless sys-
tem,

[X1, X2] = 0,

while the matrix term provides matrix equations on the dispersionless back-
ground

X1A2 −X2A1 + [A1, A2] = 0. (30)

In several important examples the basic system corresponds to some geometric
object, and equations (30) are connected with gauge fields on the geometric
background (see Appendix 2).

For Abelian gauge fields,

∇X1
= X1 + a1, ∇X2

= X2 + a2, (31)

where a1, a2 are scalar functions, equations (30) become linear,

X1a2 −X2a1 = 0. (32)

These equations are the main object of the study in the present work.
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Extension of the SDCS equations Matrix extension of the Lax pair (1)
reads

∇X1
= ∂z − λ∂x + Fx∂x +Gx∂y + fx∂λ +Φx,

∇X2
= ∂w − λ∂y + Fy∂x +Gy∂y + fy∂λ +Φy,

it generates an equation for the matrix potential Φ on the background of the
SDCS equations,

QΦ = [Φx,Φy],

Q = ∂w∂x − ∂z∂y + Fy∂x
2
−Gx∂y

2
− (Fx −Gy)∂x∂y. (33)

In the Abelian case we have a linear equation for the scalar potential Qφ = 0.

The MS system - extension Matrix extension of the Lax pair for the MS
system reads

∇X1
= ∂y − (λ− vx)∂x + ux∂λ +A,

∇X2
= ∂t − (λ2

− vxλ+ u− vy)∂x + (uxλ+ uy)∂λ + λA+B,
(34)

where A, B are matrix-valued functions. Vector field part of commutation
relations gives the Manakov-Santini system (14), while the matrix part gives a
matrix system on the background of the Manakov-Santini system

Ay −Bx = 0,

(∂y + vx∂x)B − (∂t + (vy − u)∂x)A+ uxA+ [A,B] = 0

For the potential K, A = Kx, B = Ky we have

QK = [Kx,Ky], (35)

where Q is a linear operator

Q = ∂t∂x − ∂y∂y − (u− vy)∂x∂x − vx∂x∂y − ux∂x.

In the Abelian case instead of equation (35) we have linear equation Qκ = 0.

Appendix 2

Geometric structures

The starting point for the geometric interpretation of the systems considered in
this work are two theorems from the article [2], we also refer the reader to this
work for more details.

We recall that a conformal structure [g] is called anti-self-dual (ASD) if the
self-dual part of the Weyl tensor of any g ∈ [g] vanishes: W+ = 1

2 (W +∗W ) = 0.
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Theorem 1 (Dunajski, Ferapontov and Kruglikov (2014)). There exist local
coordinates (z, w, x, y) such that any ASD conformal structure in signature (2, 2)
is locally represented by a metric

1
2g = dwdx − dzdy − Fydw

2
− (Fx −Gy)dwdz +Gxdz

2, (36)

where the functions F, G : M4
→ R satisfy a coupled system of third-order

PDEs,

∂x(Q(F )) + ∂y(Q(G)) = 0,

(∂w + Fy∂x +Gy∂y)Q(G) + (∂z + Fx∂x +Gx∂y)Q(F ) = 0, (37)

where
Q = ∂w∂x − ∂z∂y + Fy∂x

2
−Gx∂y

2
− (Fx −Gy)∂x∂y.

Theorem 2 (Dunajski, Ferapontov and Kruglikov (2014)). There exists a lo-
cal coordinate system (x, y, t) on M3 such that any Lorentzian Einstein-Weyl
structure is locally of the form

g = −(dy + vxdt)
2 + 4(dx+ (u− vy)dt)dt,

ω = vxxdy + (−4ux + 2vxy + vxvxx)dt,
(38)

where the functions u and v satisfy the Manakov-Santini system

uxt = uyy + (uux)x + vxuxy − uxxvy,

vxt = vyy + uvxx + vxvxy − vxxvy

Thus the background equations used in this work have a clear geometric
meaning: SDCS equations (4) define a general (anti)self-dual conformal struc-
ture in signature (2, 2), and the Manakov-Santini system (14) corresponds to a
general Lorentzian Einstein-Weyl structure.

We would also like to mention that the interpolating equation (26) was intro-
duced in [13] as ”the most general symmetry reduction of the second heavenly
equation by a conformal Killing vector with a null self-dual derivative”.

Let us consider a gauge potential A, which is a one-form taking its values
in some (matrix) Lie algebra, and the two-form F = dA+ A ∧ A (gauge field).
Matrix equation (33) represents (anti)self-dual Yang-Mills (SDYM) equations
on the background of conformal structure (36),

F = ±∗F , (39)

taken in a special gauge (see [3] for more details). In the Abelian case equations
become linear, F = dA, dA = ±∗dA.

Matrix equation (35) corresponds to the equation (taken in a special gauge,
see [4] for more details)

DΦ + 1
2ωΦ = ∗F, (40)
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where DΦ = dΦ+[A,Φ], Φ is a function taking values in the Lie algebra (Higgs
field, [16]). This equation is considered on the Einstein-Weyl background (38);
for Minkowski metric it coincides with the Yang-Mills-Higgs system introduced
by Ward [16], leading to integrable chiral model. In the Abelian case this
equation becomes linear,

dΦ + 1
2ωΦ = ∗dA.

Appendix 3

Adjoint Lax operators and a parametric deformation

To obtain linearisation operator from the Lax pair and construct its solutions,
we will use a parametric deformation of the Lax pair introduced in [14],[15].
This deformation is nontrivial only for vector fields with nonzero divergence,
and in this case we have a freedom to add some term with first derivatives
containing a parameter to the Abelian extension operator Q.

Let us consider a Lax pair of two vector fields of the form (28)

X1 = ∂t1 +
N∑

i=1

Fi∂xi
+ F0∂λ, X2 = ∂t2 +

N∑

i=1

Gi∂xi
+G0∂λ. (41)

We introduce a basic set of wave functions Ψ0, . . . ,ΨN , a general wave function
is expressed as Ψ = F (Ψ0, . . . ,ΨN), X1Ψ = 0, X2Ψ = 0. For the linearly
degenerate case the terms with ∂λ are absent, F0 = G0 = 0, Ψ0 = λ.

A formally adjoint operator to a vector field reads

X∗ = −(X + divX),

where divX = ∂λF0 +
∑N

i=1 ∂xi
Fi. We should emphasize that an adjoint op-

erator is no more a pure vector field, it contains a term divX which is a mul-
tiplication by the function. In the case of zero divergence (volume-preserving
vector field) this term is equal to zero and the vector field is anti-self-adjoint.
Compatibility conditions for adjoint vector fields remain the same. It is inter-
esting to note that a1 = divX1, a2 = divX2 give a special solution to Abelian
extension equation (32).

Let us consider linear equations corresponding to adjoint vector fields

(X1 + divX1)Ψ̃ = 0, (X2 + divX2)Ψ̃ = 0, (42)

where by Ψ̃ we denote a wave function of these equations. A special solution is
given by the Jacobian of the basic wave functions for vector fields (41) (see [15])

Ψ̃ = J :=
∂(Ψ0,Ψ1, . . . ,ΨN)

∂(λ, x1 , . . . , xN )
.
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To construct a general solution, we rewrite equations (42) as nonhomogeneous

linear equations for ln Ψ̃,

X1 ln Ψ̃ + divX1 = 0, X2 ln Ψ̃ + divX2 = 0.

Then, evidently, a general solution reads

ln Ψ̃ = ln J0 + F (Ψ0, . . . ,ΨN ),

and for equations (42)

Ψ̃ = J0f(Ψ
0, . . . ,ΨN).

Morover, it is possible to rewrite linear equations in terms of the function
Jα and obtain a parametric deformation of the Lax pair

X ln(Jα) + αdivX = 0,

for equations (42)

(X1 + αdivX1)Ψ̃α = 0, (X2 + αdivX2)Ψ̃α = 0,

a general solution to these linear equations is of the form Jαf(Ψ0, . . . ,ΨN ).
Using parametrically deformed linear problems, we can add linear term to the
operator Q, preserving the solvability. For conformal self-duality equations (2)
the parametric deformation of the Lax pair reads

X1α = ∂z − λ∂x + Fx∂x +Gx∂y + fx∂λ + α(Fx +Gy)x,

X2α = ∂w − λ∂y + Fy∂x +Gy∂y + fy∂λ + α(Fx +Gy)y.

Instead of relation (7) we have

(
(∂w + Fy∂x +Gy∂y + α(Fxy +Gyy))∂x

− (∂z + Fx∂x +Gx∂y + α(Fxx +Gxy))∂y
)
Ψ = ∂λ(fx∂y − fy∂x)Ψ,

and the parametric deformation of the operator Q looks like

Qα = Q+ α((Fxx +Gxy)∂y − (Fxy +Gyy)∂x)

For the Manakov-Santini system the deformed Lax pair reads

X1α = ∂y − λ∂x + vx∂x + ux∂λ + αvxx,

X2α = ∂t − λ∂y + (vy − u)∂x + uy∂λ + αvxy,
(43)

and the parametric deformation of the operator Q is

Qα = Q+ α(vxy∂x − vxx∂y).

For the case of interpolating equation (26) the Jacobian is connected with
the basic wave function Ψ0 having an expansion λ+uλ−1+ . . . (corresponds to
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the Lax-Sato function L in standard dKP hierarchy notations) by the relation
defining interpolating reduction [15],

J = exp(a(Ψ0
− λ)).

The general wave function for the deformed Lax pair with α = −1, which is
required to construct symmetries for the interpolating equation, is

Ψ̃−1 = ea(µ−Ψ0)Ψ,

where Ψ is an arbitrary wave function Ψ = F (Ψ0,Ψ1) of the initial Lax pair.
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