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Abstract

We study the problem of testing Ck-freeness (k-cycle-freeness) for fixed constant k > 3 in graphs
with bounded arboricity (but unbounded degrees). In particular, we are interested in one-sided error
algorithms, so that they must detect a copy of Ck with high constant probability when the graph is ϵ-far
from Ck-free.

We next state our results for constant arboricity and constant ϵ with a focus on the dependence on
the number of graph vertices, n. The query complexity of all our algorithms grows polynomially with
1/ϵ.

1. As opposed to the case of k = 3, where the complexity of testing C3-freeness grows with the
arboricity of the graph but not with the size of the graph (Levi, ICALP 2021 )1 this is no longer
the case already for k = 4. We show that Ω(n1/4) queries are necessary for testing C4-freeness, and

that Õ(n1/4) are sufficient. The same bounds hold for C5.

2. For every fixed k ≥ 6, any one-sided error algorithm for testing Ck-freeness must perform Ω(n1/3)
queries.

3. For k = 6 we give a testing algorithm whose query complexity is Õ(n1/2).

4. For any fixed k, the query complexity of testing Ck-freeness is upper bounded by O(n1−1/⌊k/2⌋).

The latter upper bound builds on another result in which we show that for any fixed subgraph F , the
query complexity of testing F -freeness is upper bounded by O(n1−1/ℓ(F )), where ℓ(F ) is a parameter of
F that is always upper bounded by the number of vertices in F (and in particular is k/2 in Ck for even
k).

We extend some of our results to bounded (non-constant) arboricity, where in particular, we obtain
sublinear upper bounds for all k.

Our Ω(n1/4) lower bound for testing C4-freeness in constant arboricity graphs provides a negative
answer to an open problem posed by (Goldreich, 2021).

1 Introduction

Detecting small subgraphs with specific structures (referred to as finding network motifs) is a basic algo-
rithmic task, with a variety of applications in biology, sociology and network science (see e.g. [21, 8, 31, 11,
7, 27, 5, 18, 6, 32, 29]). Of special interest is the natural case of subgraphs that are cycles of a fixed size
k, which we denote by Ck. When the algorithm receives the entire graph as input, then by the well known
result of Alon, Yuster and Zwick [4], this task can be solved in time Õ(nω) where n is the number of graph
vertices and ω is the exponent of matrix multiplication.2 But what if we seek a sublinear-time (randomized)
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†Efi Arazi School of Computer Science, Reichman University, Israel. Email: reut.levi1@runi.ac.il.
‡School of Electrical Engineering, Tel Aviv University, Israel. Email: danaron@tau.ac.il.
1 As presented in (Levi, ICALP 2021 ), the complexity of the algorithm depends on log logn, but this dependence can be

replaced with at most a polylogarithmic dependence on the arboricity.
2The dependence on k is exponential, but k is considered a constant.
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algorithm that does not read the entire graph? Namely, the algorithm is given query access to the graph3

and should find a Ck when the graph is not Ck-free. This is clearly not possible if the graph contains only a
single copy of Ck. However, is it possible to detect such a copy in sublinear-time when the graph is relatively
far from being Ck-free? By “relatively far” we mean that it is necessary to remove a non-negligible fraction,
denoted ϵ, of its edges in order to obtain an Ck-free graph. A closely related formulation of the question is
whether we can design a one-sided error algorithm for testing Ck-freeness.

4

If the maximum degree in the graph is upper bounded by a parameter dmax, then the Ck-freeness testing
problem can easily be solved by performing a number of queries that grows polynomially with dmax and
exponentially with Θ(k) [20]. In particular, when dmax = O(1), then there is no dependence on the size of
the graph G. We are however interested in considering graphs with varying degrees, so that, in particular,
the maximum degree may be much larger than the average degree, and possibly as large as Θ(n).

For the special and interesting case where k = 3, i.e., the cycle is a triangle, Alon, Kaufman, Krivelevich
and Ron [3] gave several upper and lower bounds on the query complexity of testing triangle-freeness as a
function of the average degree d of the graph (in addition to the dependence on n and ϵ). While the upper
and lower bounds are not tight in general, they are tight for d = O(1), where the complexity is Θ(

√
n) (for

constant ϵ). The lower bound in this case is essentially based on “hiding” a small clique.
Since the aforementioned lower bound relies on the existence of a small dense subgraph, a natural question,

studied by Levi [25], is whether it is possible to obtain improved (and possibly tight) results when the
arboricity of the graph, denoted arb(G), is bounded.5 Focusing on the result under the assumption that

m ≥ n (i.e., d = Ω(1)) Levi showed that Õ(arb(G)) queries are sufficient for testing triangle-freeness (the
dependence on 1/ϵ is polynomial), and that Ω(arb(G)) queries are necessary.6 In particular, when arb(G) is
a constant, the complexity is polynomial in 1/ϵ and does not depend on the size of the graph.

In this work we seek to understand the complexity of testing Ck-freeness, in particular with one-sided
error, for fixed k > 3. Our main focus is on constant arboricity graphs and some of our results extend to
bounded arboricity graphs, as well as to F -freeness for any general subgraph F (of constant size). We note
that the problem of testing cycle-freeness without requiring the cycle to be of specific length, is different
from our problem. We further discuss this in Section 1.3. In the next subsection we state our findings.

1.1 Our results

Since our main focus is on graphs with constant arboricity, we first state our results in this setting, and
later discuss our extensions to graphs with non-constant arboricity. Throughout this paper we assume that
m = Ω(n) since even obtaining a single edge in the graph requires Ω(n/m) queries. Our algorithms use
degree and neighbor queries and our lower bounds also allow pair queries (see Footnote 3). For simplicity,
we state our results for constant ϵ. All our algorithms have a polynomial dependence on 1/ϵ, which is stated
explicitly in the corresponding technical sections.

Our first finding is that, as opposed to the case of k = 3, where the complexity of testing C3-freeness
grows with the arboricity of the graph but not with the size of the graph,7 this is no longer the case for
k = 4 (and larger k). In particular:

Theorem 1 The query complexity of one-sided error testing of C4-freeness in constant-arboricity graphs
over n vertices is Θ̃(n1/4). The same bound holds for testing C5-freeness.

3 The types of queries typically considered are neighbor queries (“what is the ith neighbor of a vertex v?”), degree queries
(“what is the degree of a vertex v?”), and pair queries (“is there an edge between a pair of vertices v and u?”).

4The problems are equivalent if the algorithm is not given access to degree queries, otherwise the algorithm might find
evidence to the existence of a Ck without actually detecting one. We note that all our algorithms do detect copies of Ck when
they reject.

5The arboricity of a graph G is the minimum number of forests required to cover its edges, and is equal (up to a factor of
2) to the maximum average degree of any subgraph of G.

6To be precise, this lower bound holds for m ≥ (arb(G))3 – if m < (arg(G))3 then the lower bound is Ω(m1/3). See also
Footnote 1 regarding the upper bound.

7We note that this is true also for other k-cliques for k > 3.
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The more detailed statements for testing C4 and C5 freeness can be found in Theorems 6–10.
Theorem 1 (together with the upper bound in [20]) answers negatively the following open problem raised

by Goldreich.

Open problem (number 3.2 in [19]): From bounded degree to bounded arboricity.
Suppose that property Π is testable within complexity Q(n, ϵ) in the bounded-degree graph model. Provide
an upper bound on the complexity of testing Π in the general graph model under the promise that the tested
graph has constant arboricity. For example, can the latter complexity be linear in Q(n, ϵ) while permitting
extra poly(logn) or 1/ϵ factors?

The Ω(n1/4) lower bound for testing C4-freeness, answers this question negatively. Indeed, testing C4-
freeness in d-bounded degree graphs can be done with poly(d, ϵ) queries [20], while our lower bound suggest
that even in constant arboricity graphs, a polynomial dependence on n is necessary.

When k ≥ 6, we show that it is no longer possible to obtain a complexity of Õ(n1/4) as is the case for
k = 4, 5.

Theorem 2 Let k ≥ 6. Any one-sided error tester for the property of Ck-freeness in graphs of constant
arboricity over n vertices must perform Ω(n1/3) queries.

While for C6 we were not able to match the lower bound of Ω(n1/3), we were able to obtain a sublinear-
time algorithm, as stated next.

Theorem 3 There exists a one-sided error algorithm for testing C6-freeness in graphs of constant arboricity
over n vertices whose query complexity is Õ(n1/2).

For general (fixed) k we prove the following upper bound.

Theorem 4 There exists a one-sided error algorithm for testing Ck-freeness in graphs of constant arboricity
over n vertices whose query complexity is O(n1−1/⌊k/2⌋).

We also prove a more general result for testing F -freeness for any constant size subgraph F . Below, ℓ(F )
is as defined in Definition 1, and is always upper bounded by the number of vertices in F .

Theorem 5 There exists a one-sided error algorithm for testing F -freeness in graphs of constant arboricity
over n vertices whose query complexity is O(n1−1/ℓ(F )).

1.1.1 Extensions for general arboricity

We state our results for general arboricity graphs assuming that the algorithm is given an upper bound α
on the arboricity of the graph (in the lower bounds the algorithm may be assumed to know the arboricity).
Alternatively, if the algorithm receives as an input the number of edges, m, (as in previous results for Ck-
freeness [3, 25]) instead of an upper bound on the arboricity, then we can estimate a notion known [25] as
the “effective arboricity” of the graph, and depend on it instead of α. This is potentially beneficial since the
effective arboricity can be much smaller than the actual arboricity of the graph, and it does not affect the
asymptotic running times of our algorithms in terms of the dependence on the size of the graph and α. For
further details see Section 2.

For C4-freeness we give both an upper bound and a lower bound for general arboricity graphs. In
particular, we show that a linear dependence on α is sufficient and a

√
α-dependence is necessary (both for

one-sided error algorithms) as stated next.

Theorem 6 There exists a one-sided error algorithm for testing C4-freeness in graphs of arboricity at most
α over n vertices whose query complexity is Õ

(
min{n1/4α, α+ n3/4}/ϵ3

)
.8

8More precisely, for values α < logn, the complexity is O(n1/4α1/2 log1/2 n/ϵ3), for values logn < α <
√
n, the complexity

is O(n1/4α/ϵ3), and for values α > n1/2, it is O((α+ n3/4)/ϵ3).
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Theorem 7 Testing C4-freeness with one-sided error in graphs over n vertices with arboricity c1 log n <
α < n1/2/c′1 for sufficiently large constants c1 and c′1 requires Ω(n1/4α1/2) queries for constant ϵ.9

For general constant size subgraphs F (and in particular Ck) our upper bound also has at most a linear
dependence on α – see Theorem 13 and Corollary 14 for a precise statement.

We comment that our lower bound of Ω(n1/3) for one-sided error algorithms, k ≥ 6 and constant arboricity
(stated in Theorem 2) also applies to graphs with non-constant arboricity (by adding a Ck-free subgraph
with higher arboricity).10

We also note that it is possible to extend our algorithms for C5 and C6 freeness so as to get a polynomial
(but not linear) dependence on α. However, these extensions do not introduce new techniques (and are most
probably not optimal), so we do not present them here.

1.2 A high-level discussion of our algorithms and lower bounds

Before discussing each of our results in more detail, we highlight some common themes. The starting point of
all our algorithms is that if a graph is ϵ-far from being Ck-free (for a constant k), then it contains Ω(ϵm) edge-
disjoint cycles.11 We next use the bounded arboricity of the graph. Specifically, if a graph has arboricity at
most α, then the number of edges between pairs of vertices that both have degree greater than θ0 = Θ(α/ϵ),
is at most O(ϵm).

Hence, there is a set of edge-disjoint Cks, which we denote by C, such that |C| = Ω(ϵm), and no Ck in C
contains any edge between two vertices with degree greater than θ0. In other words, for every k-cycle ρ in
C, and for every vertex v with degree greater than θ0 in ρ, the two neighbors of v in ρ have degree at most
θ0. In particular, when α is a constant, the two neighbors have degree O(1/ϵ).

At this point our algorithms diverge, but there are two common aspects in the case of k = 4, 5, 6 which
we would like to highlight. The first is that for the sake of “catching” one of the Cks in C, it will be useful
to consider a subset, C′, in which every vertex v that participates in one of the edge-disjoint Cks in C′

actually participate in Ω(ϵ · d(v)) Cks in C′. The existence of such a subset follows by applying (as a mental
experiment) a simple iterative process that removes Cks with vertices that do not obey this constraint.

To illustrate why it is useful to have such a set C′, consider the case of k = 4, and assume that a relatively
large fraction of the C4s in C′ contain, in addition to the two vertices of degree at most θ0 = O(α/ϵ), at
least one other vertex that has degree at most θ1 = O(n1/2/ϵ). In this case we can obtain such a vertex v
with high probability (as discussed below), and then sample roughly

√
d(v)/ϵ = O(

√
θ1/ϵ) = O(n1/4/ϵ) of

its neighbors, so that the following holds. By (a slight variant of) the birthday paradox, with high constant
probability we hit two of its neighbors, u and u′, that reside on the same C4 in C′ (and hence have degree at
most θ0). By querying all the neighbors of u and u′, we obtain this C4.

However, what if for most of the C4’s in C′ there are two vertices with degree significantly larger than√
n (that are “one opposite the other” on the C4s)? Roughly speaking, in this case we exploit the fact that

the number of such high-degree vertices is bounded, and we show how to detect a C4 by performing random
walks of length 2. A related issue arises in the case of k = 6, when there are three very high degree vertices
on most C6s in C′. In this case we show how to essentially reduce the problem to testing triangle-freeness in
a certain auxiliary graph. More precisely, the auxiliary graph is a multi-graph to which we have access only
to certain types of queries, so that we cannot apply the algorithm of [3]. However, we can still show how to
obtain a triangle in this graph, and hence a C6 in the original graph. Interestingly, our general lower bound
of Ω(n1/3) for Ck-freeness, k ≥ 6 builds on the lower bound for testing triangle-freeness of [3].

In the following subsections we assume for the sake of the exposition that ϵ is a constant.

9Note that the two-sided error lower bound of Ω(n1/4) for constant arboricity graphs (as stated in Theorem 1) also holds
for graphs with higher arboricity α, and in particular, α = O(logn). This is the case since we can simply add a small subgraph
with arboricity α and no C4s to the lower bound construction.

10For an odd k, it suffices to add a dense bipartite graph, and for even k, by the Erdős girth conjecture [16], one can add a
subgraph with arboricity n2/k.

11To verify this, let G be a graph that is ϵ-far from being Ck-free for a fixed constant k. Consider any maximal set S of
edge-disjoint k-cycles. Since by removing all k ·|S| edges on these cycles, the graph can be made cycle-free, |S| ≥ ϵm/k = Ω(ϵm).
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1.2.1 The results for C4-freeness (and C5-freeness)

We discuss our results for C4-freeness in graphs with general arboricity. The results for C5-freeness in
constant arboricity graphs are obtained using very similar techniques.

The algorithm. Our algorithm for testing C4-freeness, Test-C4-freeness, which has query complexity
Õ(n1/4α), is governed by two thresholds: θ0 = Θ(α), and θ1 = Θ(n1/2). For the sake of the current
high-level presentation, we assume that12 α ≤ n1/2, so that θ0 ≤ θ1.

The algorithm first samples O(1) edges approximately uniformly by invoking a procedure Select-an-
Edge,13 and then randomly selects one of their endpoints. For each vertex v selected, it queries its degree,
d(v). If d(v) ≤ θ1, then the algorithm selects O(

√
d(v)) random neighbors of v, and for each selected

neighbor u such that d(u) ≤ θ0, it queries all the neighbors of u. If d(v) > θ1, then the algorithm performs

Õ(n1/4α1/2) random walks of length two from v. If a C4 is observed in any one of these steps, then the
algorithm rejects, otherwise it accepts.

The analysis of the algorithm. By the above description, the algorithm will only reject a graph if it
detects a C4, implying that it never errs on C4-free graphs. Hence, consider a graph G that is far from being
C4-free. As discussed at the start of Section 1.2, the setting of θ0 = Θ(α) (together with the fact that G is
Ω(1)-far from being C4-free) implies the following. There exists a set, denoted C, of Ω(m) edge-disjoint C4s
in G, such that no C4 in C contains an edge between two vertices that both have degree greater than θ0.
Thus, for each C4 in C, there are at most two vertices with degree greater than θ0, and they do not neighbor
each other.

Considering the second aforementioned degree threshold θ1 (and recalling that θ1 ≥ θ0), we partition C
into two subsets. The first, C1, consists of those C4s in C that contain at most one vertex with degree greater
than θ1, and the second, C2, of the remaining C4s in C, which contain exactly two vertices with degree greater
than θ1. Since C = C1 ∪· C2, at least one of these subsets is of size Ω(m).

C4s with at most one high-degree vertex. Suppose first that |C1| = Ω(m). Observe that since each 4-cycle
ρ ∈ C1 contains at least two vertices with degree at most θ0 and at most one vertex with degree greater
than θ1, it must contain at least one vertex, with degree at most θ1 whose neighbors on the C4 both have
degree at most θ0. For an illustration, see the LHS of Figure 1. Furthermore, we show that there exists a
subset of C1, which we denote by C′

1, such that |C′
1| = Ω(m), and every vertex v that participates in one of

the C4s in C′
1, actually participates in Ω(d(v)) edges-disjoint C4s in C1. It follows that in this case, when the

algorithm selects a random edge (almost uniformly), with high constant probability it will obtain an edge
with (at least) one endpoint v having the above properties. Conditioned on the selection of such a vertex
v, the algorithm selects Θ(

√
d(v)) random neighbors of v. By the birthday paradox, with high constant

probability, among these neighbors there will be a pair of vertices that reside, together with v, on a common
C4 in C′

1. Once their (at most θ0) neighbors are queried, this C4 is revealed.

C4s with two high-degree vertex. We now turn to the case in which |C2| = Ω(m). Here too we can show that
there exists a subset of C2, denoted C′

2, such that |C′
2| = Ω(m), and every vertex v that participates in one of

the C4s in C′
2 actually participates in Ω(d(v)) edges-disjoint C4s in C2.

Recall that by the definitions of C and C2 and since C′
2 ⊆ C2 ⊆ C, the following holds. For each 4-cycle ρ

in C′
2, since it is in C2, there are two vertices whose degree is greater than θ1. Therefore, by the definition of

C, they are both adjacent on ρ to two vertices whose degree is at most θ0. Hence, if we consider the subgraph
induced by the vertices and edges of the C4s in C′

2, it is a bipartite graph, where on one side, denoted L,
all vertices have degree at most θ0, and on the other side, denoted R, all vertices have degree greater than
θ1. Furthermore, by the definition of C′

2, for each vertex in R, a constant fraction of its neighbors (in the

12Indeed, graphs with arboricity greater than n1/2 necessarily contain at least one C4, but since we are interested in a
one-sided error algorithm, and α is only known to be an upper bound on α, the algorithm cannot reject if it is provided with
α > n1/2.

13 This is a fairly standard and simple procedure, where we use the fact that graph has bounded arboricity, so that most of
its edges have at least one endpoint with degree θ0.
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Figure 1: An illustration for some of the cases considered in the analysis of the algorithm for C4-freeness.
On the left side are two examples in which there is a single vertex v′ with degree greater than θ1, so that
there is a vertex v with degree at most θ1 with two neighbors whose degree is at most θ0. On the right is an
illustration when there are two such vertices with degree greater than θ1.

original graph G) belong to L, and for each vertex in L, a constant fraction of its neighbors belong to R.
For an illustration, see the RHS of Figure 1.

Hence, if we select an edge almost uniformly and pick one of its endpoints with equal probability, with
high constant probability we obtain a vertex v ∈ R. Conditioned on this event, since d(v) > θ1, the algorithm

will perform Õ(n1/4α1/2) random walks of length two from v, and with high constant probability, a constant
fraction of these walks will be of the form (v, u, v′) where u ∈ L and v′ ∈ R. If for some v′ we get two walks,
(v, u, v′) and (v, u′, v′) for u ̸= u′, then a C4 is detected.

Observe that since all vertices in R have degree greater than θ1 = Θ(n1/2), we have that |R| ≤ 2m/θ1 =
O(n1/2α). This can be used to show that the expected number of pairs of walks that induce a C4 is greater
than 1. In order to show that we actually get such a pair with high constant probability, we perform a more
careful analysis to bound the variance.

A (two-sided error) lower bound for testing C4-freeness in constant arboricity graphs. To
obtain this lower bound of Ω(n1/4), we define two distributions over graphs. In the support of the first
distribution, D0, all graphs are C4-free, and in the support of the second distribution, D1, all graphs are
Ω(1)-far from being C4-free. Furthermore, D0 is uniform over all graphs isomorphic to a specific graph G0,
and D1 is uniform over all graphs isomorphic to a specific graph G1.

We next describe a slightly simplified version of the two graphs (which cannot be used to prove the lower
bound, but gives the essence of the proof). Both graphs are bipartite graphs, where one side, Y , contains
Θ(

√
n) vertices, and the other side, X, contains Θ(n) vertices, In G0, each vertex in X has a unique pair of

neighbors in Y (so there are no C4s). On the other hand, in G1, each vertex x in X has a “twin”, x′, where
x and x′ have the same pair of neighbors in Y (thus creating Ω(n) edge-disjoint C4. See Figure 2. Observe
that the arboricity of both graphs is 2 as for any subset of vertices S, the number of edges within S is at
most |S ∩X| · 2 so the average degree in the subgraph induced by S is at most 2.

In order to prove that no (possibly adaptive) algorithm can distinguish between a graph selected according
to D0 and a graph selected according to D1, we define two processes, P0 and P1, which answer the queries
of a testing algorithm while selecting a graph from D0 (respectively, D1) “on the fly”. The lower bound of
Ω(n1/4) follows from the fact that when performing fewer than n1/4/c queries (where c is a sufficiently large
constant), for both distributions, with high constant probability, each new neighbor query is answered by a
uniformly selected vertex id.

A one-sided error lower bound for testing C4-freeness in graphs with arboricity α. We next dis-
cuss the lower bound of Ω(n1/4α1/2) for graphs with arboricity α = Ω(log n) and one-sided error algorithms.

Here we define a single distribution D which is uniform over a family of graphs with arboricity α such
that almost all graphs in this family are Ω(1)-far from C4-free.

6



Figure 2: An illustration for the lower bound construction. The graph on the left is C4-free while the graph
on the right contains Ω(m) edge-disjoint C4s and is hence Ω(1)-far from being C4-free.

Roughly speaking, the graphs in the support of D are random bipartite graphs, where one side, Y , is
of size Θ(

√
nα) and the other side, X, is of size Θ(n). Every vertex in X has α neighbors in Y , and every

vertex in Y has Θ(
√
n) neighbors in X. We need to show that if we select such a graph randomly, then on

one hand it will be Ω(1)-far from C4-free, and on the other hand, in order to detect a C4, any algorithm
must perform Ω(n1/4α1/2) queries.

We next discuss the high-level idea as to why the resulting graphs are (with high constant probability)
far from being C4-free. Consider a fixed edge (x, y) in the bipartite graph, where x ∈ X, y ∈ Y . The number
of C4s this edge participates in is determined by the number of edges between the sets of neighbors of x
and y, respectively Γ(x) and Γ(y). Recall that x has Θ(α) neighbors and y has Θ(

√
n) neighbors. Since

overall there are |X| · |Y | = Θ(n3/2α) potential pairs in the bipartite graph, and Θ(nα) edges, each pair in
X×Y is an edge with probability Θ(1/

√
n). Hence, the expected number of edges between Γ(x) and Γ(y) is

|Γ(x)| · |Γ(y)| · (1/
√
n) = Θ(α). By analyzing the variance between pairs of edges, we furthermore show that

with high constant probability, most edges do not participate in too many C4s. Combining the two insights,
it follows that with high constant probability, the graph is indeed far form being C4-free.

In order to prove that any algorithm that performs at most n1/4α1/2/c queries (for a sufficiently large
constant c), will not detect a C4 with high constant probability, we actually prove that it will not detect any
cycle. Roughly speaking, we show that by the randomness of the construction, since |Y | = Θ(

√
nα), and

the algorithm performs O(
√
|Y |) queries, each new neighbor query is answered by a uniformly distributed

vertex that has not yet been observed. Therefore, the algorithm essentially views a forest.
A central challenge that we need to overcome is that we do not want to allow parallel edges, where the

above construction might lead to their existence. One possibility is to first define the distribution over graphs
with parallel edges and then to remove them. The benefit is that due to the higher degree of independence
in the construction, it is somewhat easier to formally prove that the graphs obtained (with parallel edges)
are with high probability Ω(1)-far from C4-free, and this remains the case when we remove parallel edges.

However, this creates a difficulty when we turn to argue that no (one-sided error) algorithm can detect
a C4 unless it makes Ω(n1/4α1/2) queries. The difficulty is due to the fact that in the formal proof we
need to deal with dependencies that arise due to varying degrees (which occur because parallel edges are
removed). While intuitively, varying degree should not actually “help” the algorithm, this intuition is difficult
to formalize. Hence, we have chosen to define the distribution, from the start, over graphs that do not have
parallel edges. This choice creates some technical challenges of its own (in particular in the argument that
the graphs obtained are Ω(1)-far from C4-free), but we are able to overcome them. For the full details see
Section B.

1.2.2 The algorithm for C6-freeness

Recall that for C6 we have a (one-sided error) testing algorithm whose query complexity is Õ(n1/2). In
addition to assuming (for the sake of the exposition) that ϵ is a constant, we also ignore polylogarithmic

7



factors in n. Similarly to the algorithm for testing C4-freeness, the algorithm for testing C6-freeness, Test-
C6-freeness, in constant arboricity graphs is governed by two thresholds. The first, θ0, is of the order of the
arboricity, so that it is a constant (recall that we assume that ϵ is a constant). The second, θ2, is of the
order of

√
n.

The algorithm repeats the following process several times. It selects a vertex v uniformly at random, and
if d(v) ≤ θ0, it performs a restricted BFS starting from v to depth 4. Specifically:

1. Whenever a vertex u is reached such that d(u) ≤ θ0, all its neighbors are queried.
2. Whenever a vertex u is reached such that d(u) > θ0 and u is reached from a vertex u′ such that

d(u′) ≤ θ0, there are two sub-cases. If d(u) ≤ θ1, then all of u’s neighbors are queried. Otherwise, θ1
neighbors of u are selected uniformly at random.

3. Whenever a vertex u is reached from a vertex u′ such that both d(u) > θ0 and d(u′) > θ0, the BFS
does not continue from u.

The algorithm rejects if and only if it observes a C6.
Consider a graph that is far from being C6-free, so that it contains a set of Ω(m) = Ω(n) edge-disjoint

C6s. Furthermore, it contains such a set, denoted C for which every C6 in C contains at most three vertices
with degree greater than θ0, and furthermore, these vertices are not adjacent on the C6. We partition C
into three subsets: C1, C2, and C3, depending on the number of vertices with degree greater than θ0 that it
contains.

If either |C1| = Ω(m), or |C2| = Ω(m), then it is not hard to show that the algorithm will detect a C6

with high constant probability. The more interesting part of the proof is handling the case in which only
|C3| = Ω(m).

In this case we define an auxiliary multi-graph, denoted G′, over the set of vertices that participate in
C6s belonging to C3, and have degree greater than θ0 (in G). We denote this set of vertices by M , and the
set of vertices with degree at most θ0 that participate in these C6s, by L.

Assume for simplicity that each vertex in L has degree exactly 2 (i.e., it participates in a single C6). For
each pair of vertices in M , we put in G′ a set of parallel edges, whose size equals the number of length-2
paths between them in G that pass through vertices in L. Hence, for each C6 in C, we have a triangle in G′,
where these triangles are edge-disjoint, and we denote their set by T . See Figure 3.

Figure 3: An illustration of the auxiliary (multi-)graph G′ in the C6-freeness testing algorithm. The dashed
lines represent edges in G′, each one corresponding to a length-2 path in G that passes through a vertex
with degree at most θ0.

Observe that selecting a vertex uniformly at random from L and querying its two neighbors in M
corresponds to selecting an edge uniformly at random in G′. If we add an additional simplifying assumption
by which (in G), vertices belonging to M only neighbor vertices belonging to L, then our algorithm on G
essentially translates to picking a random edge in G′. Then depending on the degree of the endpoints, either
querying all their neighbors in G′ or θ1 random neighbors.

Let H denote the subset of vertices in M whose degree in G is greater than θ1. If relatively many triangles
in T contain at most one vertex in H, then we are done, since these triangles contain an edge for which both
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endpoints have degree at most θ1. Hence, it remains to address the case in which almost all triangles in T
have two or three vertices in H.

Roughly speaking, in this case we show that the existence of many edge-disjoint, but not vertex-disjoint,
triangles in G′ that contain such high-degree vertices implies the existence of “many more” triangles that
may be caught by our algorithm. As an illustrative extreme (but easy) special case, assume that in G′

there are only three vertices. Then the existence of some number t of edge-disjoint triangles between them,
actually implies the existence of t3 (non edge-disjoint) triangles.

1.2.3 The general lower bound for Ck-freeness, k ≥ 6

We establish our general lower bound of Ω(n1/3) for one-sided error testing of Ck-freeness when k ≥ 6 by
building on a lower bound for testing triangle-freeness that appears in [3, Lemma 2]. This lower bound on
testing triangle-freeness is based on the difficulty of detecting a triangle in graphs selected uniformly from a
family Gn′ of graphs in which almost all graphs are Ω(1)-far from being triangle-free. All graphs in the family
are d-regular tri-partite graphs over n′ vertices and the lower bound on the number of queries necessary to
detect a triangle (with constant probability), is Ω(min{d, n′/d}). By setting d =

√
n′, the lower bound is

Ω(
√
n′).
We show that, for any constant k ≥ 6, if we had a one-sided error testing algorithm A for Ck-freeness

of graphs with n vertices and constant arboricity using at most n1/3/c queries (for a constant c), then we
would be able to detect triangles in graphs selected uniformly from Gn′ using at most

√
n′/c′ queries (for a

constant c′).
To this end we define an algorithm A that, given query access to a graph G′ ∈ Gn′ , implicitly defines

a graph G for which the following holds. First, the number of vertices in G is n = Θ((n′)
3/2

), and the
number of edges is m = Θ(m′), where m′ is the number of edges in G′ (so that m′ = Θ((n′)3/2)). Second,
G has arboricity 2. Third, the distance of G to Ck-freeness is of the same order as the distance of G′ to
triangle-freeness. Fourth, there is a one-to-one correspondence between triangles in G′ and Cks in G. The
basic idea is to replace edges in the tri-partite graph G′ with paths of length k/3. See Figure 4

Figure 4: An illustration for the lower bound construction for Ck-freeness in constant arboricity graphs when
k = 9. The three circles in the middle and the dashed lines represent a graph G′ ∈ Gn′ . The outer circles
represent the additional vertices in G. Since k = 9 in this example, each edge in G′ is replaced by a path of
length 3 in G.

Assuming there existed a testing algorithm A as stated above, the algorithm A′ would use it to try and
find a Ck in G (and hence a triangle in G′). In order to be able to run A on G, the algorithm A′ must be
able to answer queries of A to G by performing queries to G′. We show how this can be done with a constant
multiplicative overhead. Hence, the lower bound of Ω(

√
n′) for testing triangle-freeness (when the degree is

Θ(
√
n′)) translated into a lower bound of Ω(n1/3) for testing Ck-freeness.
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1.2.4 The general upper bound for Ck-freeness

Recall that our starting point is that if G is Ω(1)-far from being Ck-free, then it contains a set C of Ω(m) edge-
disjoint Ck’s that do not contain any edge between vertices that both have degree greater than θ0 = Θ(α).
We refer to vertices with degree at most θ0 as light vertices, and to those with degree greater than θ0 as
heavy. Hence, each Ck in C has at least ⌈k/2⌉ light vertices, and each heavy vertex on it neighbors two light
vertices.

We present two different algorithms, where each of them is suitable for a different setting. The basic idea
of both algorithms is to take a large enough sample of vertices and edges so that the subgraph determined
by the sampled light vertices and their incident edges, as well as the sampled edges, contains a copy of Ck.
The query complexity of each algorithm is stated following its high-level description.

The first algorithm. Our first algorithm simply samples vertices uniformly, independently at random,
and then performs queries that reveal the neighbors of all light vertices in the sample. To analyze what is
the sufficient sample size for this algorithm, consider the following generalization of the birthday paradox
for k-way collisions. Assume we sample elements under the uniform distribution over [n]. Then we obtain
a k-way collision after taking Θ(n1−1/k) samples. Similarly, suppose we sample vertices uniformly from a
graph that is composed only of n/k vertex-disjoint copies of Ck. Then, after sampling Θ(n1−1/k) vertices,
we will hit all the vertices of at least one of the copies (with high constant probability). Conditioned on this
event, if we reveal the neighborhood of all the vertices in the sample, then we obtain a Ck.

The next observation is that, in fact, we only need to hit a vertex cover of a copy of a Ck (as opposed to
all its vertices). In particular we would like to hit such a cover that contains only light vertices, which we
refer to as a light vertex cover. For constant α, this yields an improved dependence on k in the exponent,
i.e., O(n1−1/⌊k/2⌋) sampled vertices suffice.

When taking into account the dependence on α (so that it is not necessarily true that m = O(n)) and
incorporating this in the analysis, we prove that the query complexity is upper bounded by O(m · (α/m)2/k)
for even k and O(m · (α/m)2/(k+1)) for odd k (up to a polynomial dependence on k). Since α ≤

√
m it

follows that the above bounds are at most O(m1−1/k) and O(m1−1/(k+1)), respectively.

The second algorithm. Our second algorithm is designed for the case in which k is odd and m =
Ω(α(k+3)/2). In particular it is preferable when α is constant. We observe that when k is odd, for each Ck

in C, there is an edge in which both endpoints are light vertices. Therefore, if we sample edges (almost)
uniformly from the graph (using a variant of the procedure Select-an-Edge), then we are likely to hit one of
these edges. This additional step reduces the number of vertices we need to hit in each copy by 2, which
results in improved complexity for some range of the parameters. In particular, the query complexity of this
algorithm is O(m · (α2/m)2/(k−1)). Specifically, when α is a constant, the query complexity of this algorithm
(which works for odd k) is O(m1−2/(k−1)) (instead of O(m1−2/(k+1))).

General subgraph F . Our first algorithm also works for any constant-size subgraph, F , where the upper
bound on the sample size is of the form m1−1/ℓ(F ) where ℓ(F ) depends on the structure of F , and is at most
k = |V (F )|. The idea is that if we want to find a copy of F , it suffices to hit a light vertex cover of this copy
and then query all neighbors of the sampled light vertices.

1.3 Related work

In this subsection we shortly discuss several related works, in addition to the two aforementioned works
regarding testing C3-freeness [3, 25].

Testing subgraph-freeness for fixed, constant size subgraphs in the dense-graphs model can be done using
a number of queries that depends only on 1/ϵ (where the dependence is a tower of height poly(1/ϵ)), as
shown by Alon, Fischer, Krivelevich and Szegedy [2]. Alon [1] proved that a super polynomial dependence
on 1/ϵ is necessary, unless the subgraph F is bipartite. Goldreich and Ron addressed the problem in the
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bounded-degree model [20], and gave a simple algorithm that depends polynomially on 1/ϵ and the maximum
degree in the graph, and exponentially on the diameter of F .

A special case of graphs that have bounded arboricity is the family of graphs that exclude a fixed minor
(a.k.a. minor-free graphs). Newman and Sohler [28] showed that for this family of graphs, in the bounded-
degree model, all properties can be tested with no dependence on the size of the graph G. Moreover, it was
recently shown [24, 26] that any property which is monotone and additive14 (and in particular F -freeness
where F is a connected graph) can be tested using a number of queries that is only polynomial in 1/ϵ and d,
where d is the degree bound (and O(dρ(ϵ)) in general (ϵ, ρ(ϵ))-hyperfinite graphs15). For minor-free graphs
with unbounded degrees, Czumaj and Sohler [10] showed that a property is testable with one sided error
and a number of queries that does not depend on the size of the graph if and only if it can be reduced to
testing for a finite family of finite forbidden subgraphs.16 The correctness of their algorithm relies on the
fact that the arboricity of minor-free graphs remains constant even after contractions of edges (which is not
the case for general constant-arboricity graphs).

In general graphs, it was shown that k-path freeness [22] and more generally T -freeness where T is a tree
of order k [17], can be tested with time and query complexity that depend only on k, assuming the edges
of the graph can be accessed uniformly at random. Testing cycle-freeness (where a no instance is a graph
that is far from being a forest) was studied in the bounded-degree model in [20], where a two-sided error
algorithm was given whose query complexity is polynomial in 1/ϵ and the degree bound. Czumaj et. al [9]
showed that the complexity of this problem for one-sided error algorithms in the bounded-degree model is
Θ̃(

√
n) (for constant ϵ – their algorithm has a polynomial dependence on 1/ϵ), and the algorithm can be

adapted to the general-graphs model.
Other sublinear-time graph algorithms for counting and sampling (rather than detecting) subgraphs that

give improved results when the graph G has bounded arboricity include [14, 12, 15, 13].

1.4 Organization

We start in Sections 2 with some preliminaries. In Section 3 we give the upper bound for testing C4-freeness.
Few details are deferred to Appendix A, and the lower bound for testing C4-freeness is given in Appendix B.
In Appendix C we provide the adaptation of the algorithm for testing C4-freeness, to testing C5-freeness (in
graphs with constant arboricity). Our algorithm for testing C6-freeness (in graphs with constant arboricity)
is given in Appendix D. Our lower bound for one-sided error testing of Ck-freeness is proved in Appendix E,
and the upper bound is given in Appendix F.

2 Preliminaries

Unless stated explicitly otherwise, the graphs we consider are simple, so that in particular they do not
contain any parallel edges. We denote the number of vertices in the graph by n and the number of edges by
m. Every vertex v in the graph has a unique id, denoted id(v), and its degree is denoted by d(v).

We work in what is known as the general graph model [30, 23]. In particular, under this model, the
distance of a graph G to Ck-freeness, denoted dist(G,Ck-free), is the minimum fraction of edges that should
be removed from G in order to obtain a Ck-free graph. As for the allowed queries, a neighbor query to the
ith neighbor of a vertex v is denoted by nbr(v, i), and to its degree by deg(v). A pair query between two
vertices v1 and v2 is denoted by pair(v1, v2). Given query access to a graph G and a parameter ϵ, a one-sided
error testing algorithm for Ck-freeness should accept G if it is Ck-free, and should reject G with probability
at least 2/3 if dist(G,Ck-free) > ϵ. If the algorithm may also reject Ck-free graphs with probability at most
1/3, then it has two-sided error.

14A property is monotone if it closed under removal of edges and vertices. A property is additive if it is closed under the
disjoint union of graphs.

15Let ρ be a function from R+ to R+. A graph G = (V,E) is (ϵ, ρ(ϵ))-hyperfinite if for every ϵ > 0 it is possible to remove
ϵ|V | edges of the graph such that the remaining graph has connected components of size at most ρ(ϵ).

16They consider a model in which they can perform only random neighbor queries.
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As noted in the introduction, we assume our algorithms for graphs whose arboricity is not promised to be
constant, are given an upper bound α on the arboricity arb(G) of the tested graph G, and their complexity
depends on this upper bound. Alternatively, if the algorithm is provided with the number of edges, m,
then it may run a procedure from [25] to obtain a value α∗ that with high constant probability satisfies
the following: (1) α∗ ≤ 2arb(G); (2) The number of edges between vertices whose degree is at least α∗/(cϵ)
for a constant c is at most (1 − ϵ/c′)m (for another, sufficiently large, constant c′). Up to polylogarithmic
factors in n, the query complexity and running time of the procedure are O(arb(G)/ϵ3) with high probability
(assuming the average degree is Ω(1)).

Throughout this work we assume, whenever needed, that ϵ is upper bounded by some sufficiently small
constant (or else it can be set to that constant).

3 An upper bound of Õ(n1/4α) for testing C4-freeness

In this subsection we prove the more general (arboricity-dependent) form of the upper bound for testing
C4-freeness which is stated as Theorem 6 in the introduction.

Recall that the assumption on α is that it is an upper bound on the arboricity arb(G) - hence, while it is
known that for graphs with arb(G) >

√
n there exists a C4, we cannot simply reject if we get α > n1/2 since

it might be that arb(G) <
√
n (and we want one-sided error). The above expression shows that in the case

that α > n1/2, the n1/4α term is replaced by n3/4 (and the additive α term is due to the edge sampling).
The algorithm referred to in Theorem 6 is described next.

Test-C4-freeness(n, ϵ, α)

1. Let θ0 = 4α/ϵ, θ1 = c1 ·
√
n/ϵ (where c1 will be determined subsequently) and θmin = min{θ0, θ1} (it is

useful to read the algorithm while having in mind that θ0 ≤ θ1 (i.e., α = O(
√
n)) so that θmin = θ0).

2. Repeat the following t = Θ(1/ϵ) times:

(a) Select an edge e by calling the procedure Select-an-Edge(α, ϵ), which is provided in Appendix A.1.
If it does not return an edge, then continue to the next iteration.

(b) Select an endpoint v of e by flipping a fair coin.

(c) If d(v) ≤ θ1, then select s1 = Θ(
√
d(v)/ϵ) (= O(n1/4/ϵ)) random neighbors of v, and for each

neighbor u such that d(u) ≤ θmin query all the neighbors of u.

(d) Otherwise (d(v) > θ1), perform s2 = Θ(
√
(nα/θ1) log n/ϵ

2) (= Õ(n1/4α1/2/ϵ2)) random walks of
length 2 starting from v.

(e) If a C4 is detected, then return it, ‘Reject’ and terminate.

3. Return ‘Accept’.

We note that the algorithm can be unified/simplified so that it only performs random walks of length-2
where the number of walks is Θ(n1/4α/ϵ2), but then the analysis becomes slightly more complicated.

We start by stating a claim concerning the procedure Select-an-Edge – where both the procedure and the
proof of the claim are deferred to Appendix A.1. We then state and prove two additional claims that will
be used in the proof of Theorem 6.

Claim 1 With probability at least 2/3 the procedure Select-an-Edge returns an edge. Conditioned on it
returning an edge, each edge incident to a vertex with degree at most θ0 is returned with probability at least
1/(2m′) and at most 1/m′, where m′ is the number of edges incident to vertices with degree at most θ0.

Claim 2 Let v be a vertex and let C(v, θmin) be a set of edge-disjoint C4’s containing v such that the
neighbors of v on these C4s all have degree at most θmin, where θmin is as defined in the algorithm.17

17Actually, we do not rely on the setting of θmin, so this claim holds for any threshold value.
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Suppose that |C(v, θmin)| ≥ 1 and let ϵ′ = |C(v, θmin)|/d(v). If we select s = 16
√
d(v)/ϵ′ random neighbors

of v, and for each selected neighbor u such that d(u) ≤ θmin we query all the neighbors of u, then the
probability that we obtain a C4 is at least 9/10.

Proof: Let E′(v) denote the set of edges incident to v that participate in the set C(v, θmin). By the premise
of the claim, |E′(v)|/d(v) = 2|C(v, θmin)|/d(v) = 2ϵ′. Let s′ be the number of neighbors of v that are
incident to edges in E′(v) among the s selected random neighbors of v. It holds that E[s′] = 2ϵ′ · s, and by
the multiplicative Chernoff bound, s′ ≥ ϵ′ · s with probability at least 1 − e−ϵ′·s/4. We first show that this
probability is at least 19/20, and then condition on this event. By the setting of s = 16

√
d(v)/ϵ′, it holds

that ϵ′ · s = 16
√
ϵ′ · d(v), and by the setting of ϵ′ = |C(v, θ)|/d(v), we get ϵ′ · s ≥ 16

√
|C(v, θmin)| ≥ 16.

Therefore, with probability at least 19/20, s′ > ϵ′ ·s = 16
√
ϵ′ · d(v). We condition on this event and consider

only those s′ selected neighbors of v that are endpoints of E′(v).
For each 4-cycle ρ ∈ C(v, θmin), let u1(ρ) and u2(ρ) be the two neighbors of v on this C4 (so that they

are endpoints of edges in E′(v)). Since the C4s in C(v, θmin) are edge-disjoint, these vertices are distinct.
Observe that the s′ selected neighbors of v are uniformly distributed in

⋃
ρ∈C(v,θmin)

{u1(ρ), u2(ρ)}, and that

s′ ≥ 16 ·
√
|C(v, θmin)|. Hence, by the “birthday paradox”, with high constant probability, the sample of

neighbors of v contains two vertices, u1(ρ), and u2(ρ) for some ρ ∈ C(v, θmin). Conditioned on this event,
once the (at most θmin) neighbors of u1(ρ) and u2(ρ) are queried, the four-cycle ρ is observed. □

Claim 3 Let G be a graph over n vertices and m edges, and let θ1, ϵ
′, ϵ′′ be parameters. Suppose that G

contains a bipartite subgraph G′ = (L,R,E(G′)) such that every vertex in R has degree at least θ1 in G. Let
v be a vertex in R such that v has at least ϵ′ · d(v) neighbors in L where each of these neighbors, u, has at
least ϵ′′ ·max{d(u), m

n } neighbors in R. If θ1 ≥ 2
√
n/(ϵ′ · ϵ′′) and we take s2 ≥ 32

ϵ′·ϵ′′ ·
√
2 log n · |R| random

walks of length 2 from v for a sufficiently large constant c′, then with probability at least 9/10 we shall detect
a C4 in G.

Proof: For a pair of vertices v and v′ ̸= v in R, let ℓ2(v, v
′) be the number of length-2 paths between v

and v′, and let ℓ2(v,R) =
∑

v′∈R ℓ2(v, v
′). Consider taking two random length-2 walks from v, and let E1 be

the event that both of them end at vertices in R. Let E2 be the event that these two paths are distinct and
end at the same vertex. Then for each single vertex v′ ∈ R, conditioned on E1, the probability that the two

walks end at v′ is exactly ℓ2(v,v
′)

ℓ2(v,R) ·
ℓ2(v,v

′)−1
ℓ2(v,R) . Therefore,

Pr[E2 | E1] =
∑
v′∈R

ℓ2(v, v
′)

ℓ2(v,R)
· ℓ2(v, v

′)− 1

ℓ2(v,R)
=

1

(ℓ2(v,R))2
·
∑
v′∈R

(ℓ2(v, v
′))2 − 1

ℓ2(v,R)
. (1)

We would like to lower bound the above probability. For the first term on the right-hand-side, by applying
the Cauchy-Schwartz inequality we get that

1

(ℓ2(v,R))2
·
∑
v′∈R

(ℓ2(v, v
′))2 ≥ 1

(ℓ2(v,R))2
· |R| ·

(
ℓ2(v,R))

|R|

)2

=
1

|R|
. (2)

By combining Equations (1) and (2) we get that Pr[E2 | E1] ≥ 1
|R| −

1
ℓ2(v,R) . Since each vertex in R has

degree at least θ1, we have that |R| ≤ 2m
θ1

. By the premise of the claim regarding v and its neighbors, v has
ϵ′d(v) ≥ ϵ′ · θ1 neighbors in L, and each of them has at least ϵ′′ · (m/n) neighbors in R. Therefore,

ℓ2(v,R) ≥ ϵ′ · θ1 · ϵ′′ ·
m

n
≥ ϵ′ · ϵ′′ · θ21 · |R|

2n
≥ 2|R|, (3)

where the last inequality is by the premise θ1 ≥ 2
√
n/(ϵ′ · ϵ′′). Therefore, Pr[E2 | E1] ≥ 1

2|R| . So far we have

shown that when taking two distinct random walks from v, and conditioned on them both ending at R (the
event E1), the two paths collide on the end vertex (and hence result in a C4) with probability at least 1/2|R|.
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We shall now prove, that when taking s length-2 random walks from v, sufficiently many of them indeed end
at R, and that with high probability, at least two of them collide, resulting in a C4.

Consider first the event E1. By the premise of the claim, v has at least ϵ′ · d(v) neighbors in L, and
each u of them has at least ϵ′′ max{d(u),m/n} ≥ ϵ′′d(u) neighbors in R. Therefore, the probability that
a single random walk from v ends at R is at least ϵ′ · ϵ′′. Hence, if we take s ≥ 32

ϵ′·ϵ′′
√
2 log n · |R| length-

2 random walks from v, and let s′ denote the number of walks that end at a vertex in R, we have that
E[s′] = 32 ·

√
2 log n · |R|, and that with probability at least 9/10, we have s′ ≥ 16 ·

√
2 log n · |R|. We

henceforth condition on this event.
Let χ′

i,j denote the event that the ith and jth random walks among the ones that end at R collide on
the ending vertex (and thus result in a C4). By the above discussion, we have that for a specific pair i ̸= j,
Pr[χ′

i,j = 1] ≥ 1/2|R|. We now lower bound the probability that at least one pair of random walks from the
s′ that end in R detects a C4, i.e. lower bound

∑
i,j∈[s′] χi,j , using Corollary 16. For that end we also need

to upper bound the variance of the sum.
Partition the vertices in R according to ℓ2(v, v

′), where Rx(v) = {v′ : 2x−1 < ℓ2(v, v
′) ≤ 2x} for

x = 0, . . . logL ≤ log n. Since
∑

v′∈R
ℓ2(v,v

′)
ℓ2(v,R) ·

ℓ2(v,v
′)−1

ℓ2(v,R) > 1
2|R| , there exists at least one setting of x for which∑

v′∈Rx

ℓ2(v,v
′)

ℓ2(v,R) ·
ℓ2(v,v

′)−1
ℓ2(v,R) ≥ 1

2|R| logn . We denote this setting by x∗ and observe that x∗ > 0 (since for every

v′ ∈ R0, ℓ2(v, v
′)− 1 = 0).

For every i, j ∈ [s′], i < j, we define a Bernoulli random variable χi,j that is 1 if and only if the ith
and the jth random walks from v (among the s′ considered) end at the same v′ ∈ Rx∗ and pass through a
different vertex in L. We next show that we can apply Corollary 16 (with s in that claim set to s′) to get
an upper bound on the probability that

∑
i,j∈[s′],i<j χi,j = 0 (which is an upper bound on the probability

that we do not detect a C4).
By the definition of the random variables, for every i1 ̸= i2, j1 ̸= j2, it holds that χi1,j1 , χi2,j2 are

independent, so that the first condition in Corollary 16 is satisfied. Next, for any pair i, j ∈ [s′], i < j we
have that

µ = Pr[χi,j = 1] =
∑

v′∈Rx∗

ℓ2(v, v
′)

ℓ2(v,R)
· ℓ2(v, v

′)− 1

ℓ2(v,R)
≥ 1

2|R| log n
. (4)

Therefore, we have that s′ ≥ 16 ·
√

2|R| log n = 16/
√
µ, and so the third condition in Corollary 16 is satisfied

(for c2 = 16, where s′ serves as the parameter s in the corollary).
It remains to verify that the second condition holds. For any four indices i1, j1, i2, j2 ∈ [s′], i1 < j1,

i2 < j2 such that exactly two of the four indices are the same,

Pr[χi1,j1 = χi2,j2 = 1] =
∑

v′∈Rx∗

ℓ2(v, v
′)

ℓ2(v,R)
·
(
ℓ2(v, v

′)− 1

ℓ2(v,R)

)2

≤ µ · 2
x∗ − 1

ℓ2(v,R)
. (5)

Since by Equation (4), µ =
∑

v′∈Rx∗
ℓ2(v,v

′)
ℓ2(v,R) ·

ℓ2(v,v
′)−1

ℓ2(v,R) ≥ 22(x
∗−1)

2(ℓ2(v,R))2 (as ℓ2(v, v
′) ≥ 2x

∗−1 for every v′ ∈ Rx∗

and ℓ2(v, v
′)− 1 ≥ ℓ2(v, v

′)/2), we get that Pr[χi1,j1 = χi2,j2 = 1] <
√
2 · µ3/2, and so the second condition

in Corollary 16 holds as well (for c1 =
√
2). Thus, the current claim follows. □

We are now ready to prove Theorem 6.

Proof of Theorem 6: Since the algorithm only rejects a graph G if it detects a C4, it will always accept
graphs that are C4-free. Hence, we focus on the case that G is ϵ-far from being C4-free.

Recall that θ0 = 4α/ϵ and let E>θ0 be the subset of edges in G where both endpoints have degree greater
than θ0. Since the arboricity of G is at most α, there are at most 2m/θ0 vertices with degree greater than
θ0, so that |E>θ0 | ≤ (2m/θ0) · α = ϵm/2 edges.

Since G is ϵ-far from C4-free, if we remove all edges in E>θ0 , then we get a graph that is at least (ϵ/2)-far
from C4-free. It follows that there exists a set of edge-disjoint C4s, denoted C, such that no C4 in C contains
an edge in E>θ0 , and |C| ≥ ϵm/8.

We next partition C into two disjoint subsets: C1 contains those C4s that have at most one vertex with
degree at least θ1 in them, and C2 contains those that have at least two such vertices (where in the case
θ0 ≤ θ1 there will be exactly two). Since C = C1 ∪ C2, either |C1| ≥ ϵm/16 or |C2| ≥ ϵm/16 (possibly both).
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The case |C1| ≥ ϵm/16. Consider first the case that |C1| ≥ ϵm/16. In order to analyze this case, we apply
a process of “coloring” vertices and edges. Initially, all vertices and edges that participate in C4s that belong
to C1 are colored green, and all other vertices and edges are colored red. We next apply the following iterative
process. As long as there is a green vertex v whose number of incident green edges is less than ϵd(v)/64,
color v and its green incident edges by red. Observe that the total number of edges colored red by this
process is at most ϵm/32. Furthermore, at the end of this process, every green vertex v has at least ϵd(v)/64
incident green edges (and if a vertex is red, then all its incident edges are red). Let C′

1 be the subset of C1
that consists of those C4s in C1 whose edges all remain green after the process (and hence they are green),
so that |C′

1| ≥ ϵm/32.
By the definition of C1, and hence also C′

1, in each C4 in C′
1 there is at most one vertex with degree

greater than θ1, and no edges such that both endpoints have degree greater than θ0. Assume without loss of
generality that for each four-cycle ρ ∈ C′

1, where ρ = (v0(ρ), v1(ρ), v2(ρ), v3(ρ)), v2(ρ) is the highest degree
vertex (where d(v2(ρ)) could be any value between 1 to n). Let V0(C′

1) =
⋃

ρ∈C′
1
{v0(ρ)} denote this set of

vertices (i.e., the ones that are across from the highest degree vertex in a (green) four-cycle in C′
1).

Observation: For every ρ ∈ C′
1, (1) d(v0(ρ)) ≤ θ1, and (2) v1(ρ) and v3(ρ) are of degree at most θmin =

min{θ0, θ1}.
To verify this observation, note that by the definition of C′

1, for every ρ ∈ C′
1, there is at most one vertex

with degree greater than θ1, and since v2(ρ) is the highest degree vertex in ρ, it follows that all three other
vertices in ρ are of degree at most θ1.

We now show that d(v1(ρ)) ≤ θ0, and the proof for v3(ρ) is identical. If d(v2(ρ)) > θ0, then it must be
the case that d(v1(ρ)) < θ0, as otherwise both have degree greater than θ0 and so they cannot be connected,
which is a contradiction to them both being incident on the four-cycle ρ. If d(v2(ρ)) ≤ θ0, then since v2(ρ)
is the highest degree vertex in ρ, d(v1(ρ)) ≤ d(v2(ρ)) ≤ θ0.

Therefore, for every v ∈ V0(C′
1), it has at least ϵd(v)/64 neighbors u such that (v, u) is green and

d(u) ≤ θmin. Hence, overall in the graph, the set of vertices V0(C′
1) has at least ϵm/32 green edges that

are incident to it and their second endpoint is of degree at most θmin ≤ θ0. It follows that conditioned on
an edge being returned by procedure Select-an-Edge, by Claim 1, it returns an edge incident to a vertex
v ∈ V0(C′

1) with probability at least (ϵm/32)/2m′ > ϵ/128 (since m′ > 1
2m). So the probability that in some

iteration of Test-C4-freeness a vertex v0 ∈ V0(C′
1) is selected, is at least 1 − (1 − ϵ

128 )
t > 9/10 (recall that

t = Θ(1/ϵ) so that it suffices to set t = 500/ϵ).
Conditioning on this event, we apply Claim 2. Specifically:

• θ0 = 4α/ϵ (as defined in Step 1 in Algorithm Test-C4-freeness);

• C(v0, θmin) is the set of C4s in C′
1 that are incident to v0;

• ϵ′ = |C(v0, θmin)|/d(v) ≥ ϵ/128 (since v0 has at least ϵd(v)/64 incident green edges, and they can be
partitioned into pairs such that each pair belongs to exactly one C4 in C(v0, θmin));

• d(v0) ≤ θ1 (by the above observation);

In order to apply the claim, we must ensure that s > 16
√
d(v0)/ϵ′. By the above, it is sufficient to set s1 in

Step 2c, to be s1 = 512
√
d(v0)/ϵ.

Hence, by Claim 2, if Step 2c is applied to v0, then a C4 is observed with probability at least 9/10.
The analysis for the case that |C2| ≥ ϵm/16 is similar, and due to space constraints, it is deferred to

Appendix A.2.
We next turn to analyze the query complexity. By the settings of θ0, θ1, t, s1 and s2 in the algorithm,

the query complexity of the algorithm is upper bounded as follows.

O

(
1

ϵ
·
(α
ϵ
+max{s1, s2}

))
= O

(
1

ϵ

(
α

ϵ
+max

{√
θ1
ϵ

· θmin,
1

ϵ2
·
√

nα

θ1
· log n

}))
(6)
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For the case that α ≤ (c1/4)
√
n, we have that θmin = θ0 = Θ(α/ϵ) and that θ1 = Θ(

√
n/ϵ), and so we get a

complexity of

O
(
ϵ−3 · n1/4α1/2 ·max{α1/2, log1/2 n}

)
= O(ϵ−3 · n1/4α) , (7)

where the last inequality is for α > log n, and otherwise the complexity is O(ϵ−3 · n1/4α1/2 log1/2 n).
For the case that α > (c1/4)

√
n, we have that θmin = θ1 = Θ(

√
n/ϵ). Therefore, the complexity is

O(ϵ−3 · (α+ n3/4)) . (8)

Thus, the proof is complete. □
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A Missing details for the testing algorithm for C4

A.1 The procedure Select-an-Edge and Proof of Claim 1

Select-an-edge(ϵ, α)

1. Repeat the following Θ(α/ϵ) times:

(a) Select a vertex u uniformly at random.

(b) If d(u) ≤ θ0 for θ0 = 4α/ϵ, then with probability d(u)/θ0 select an edge incident to u uniformly
at random and return it.

2. If no edge was selected, then return ‘Fail’.

Proof of Claim 1: Let L denote the set of vertices with degree at most θ0. Consider any single iteration
of the algorithm. Since m ≤ nα, the fraction of vertices not in L is at most ϵ. Hence, the probability of
selecting a vertex in L is at least 1 − ϵ > 1/2. Conditioned on this event, the probability that an edge is
returned is at least 1/θ0. Since the procedure performs Θ(θ0) iterations, for an appropriate constant in the
Θ notation, an edge is returned with probability at least 2/3.

Turning to the second part of the claim, let E1 denote the set of edges that have a single endpoint in L
and let E2 denote the set of edges that have both endpoints in L. Conditioned on an edge being selected,
an edge that has a single endpoint in L is selected with probability 1

|E1|+2|E2| ≥
1

2m′ and an edge with both

endpoints in L is selected with probability 2
|E1|+2|E2| ≤

1
m′ . □

A.2 Missing details in the proof of Theorem 6

The case |C2| ≥ ϵm/16. We now turn to the case that |C2| ≥ ϵm/16, where recall that C2 is the set of
green C4s with at least two vertices with degree greater than θ1. We again consider two sub-cases, depending
on whether θ0 ≤ θ1 or not. We start with the former case θ0 ≤ θ1 (i.e., α ≤ (c1/4)

√
n).

The sub-case α ≤ (c1/4)
√
n. Recall that by the definition of C2, for every 4-cycle ρ ∈ C2, it has no edges with

two endpoints greater than θ0. Since θ0 ≤ θ1, this also implies that ρ has exactly two vertices with degree
greater than θ1. Hence for each ρ ∈ C2, there are two vertices v, v′ with degree greater than θ1 that do not
neighbor one another on the C4, and there are two vertices u, u′ with degree at most θ0 that each neighbors
both v and v′. Thus the vertices and edges that participate in C4s belonging to C2 induce a bipartite graph
between vertices with degree greater than θ1 and vertices with degree at most θ0. Here too we run a coloring
process, where initially all vertices and edges that participate in C4s contained in C2 are colored green, but
the process is slightly modified as explained next. Let d̄ = m/n. In addition to the (re)coloring rule (green
to red) defined above, we also color red a green vertex u and its incident green edges, if the number of these
edges is less than ϵd̄/128. This process removes at most ϵm/32 + ϵm/64 edges, and therefore at the end of
the process we are still left with ϵm/64 many C4’s.

Let C′
2 be the subset of C2 that consists of those C4s in C2 whose edges all remain green, and observe

that by the above process, each vertex that belongs to a C4 in C′
2 has at least max{ϵd̄/128, ϵd(v)/64} ≥

ϵ′′ · max{d̄, ϵd(v)} many incident green edges (for ϵ′′ = ϵ/128). We have that |C′
2| ≥ ϵm/32, and if we

let R be the subset of vertices with degree at least θ1 that are colored green, and L be the subset of
vertices with degree at most θ0 that are colored green, then the premises of Claim 3 hold for every v ∈ R.
Specifically, for (1) ϵ′ = ϵ/16 and ϵ′′ = ϵ/128, (2) θ1 = c1

√
n/ϵ (where here c1 = 100 is sufficient so that

indeed θ1 > 2
√
n/(ϵ′ · ϵ′′) as required) (3) |R| ≤ 2m/θ1 ≤ 2nα/θ1, so that for an appropriate setting of

the constant in the Θ(·) notation for s2 = Θ(
√
(nα/θ1) log n/ϵ

2) in Step 2c of the algorithm, we have that

s2 ≥ 32
ϵ′ϵ′′

√
2|R| log n, as required.

The argument for why the algorithm will select a vertex v ∈ R with probability at least 9/10 is as in
the case that |C1| ≥ ϵm/16. Conditioned on this event, by Claim 3 and the setting of θ1, when Step 2d is
applied to v, a C4 is observed with probability at least 9/10.
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The sub-case α > (c1/4)
√
n. Recall that the set C2 consists of all C4s that have at least two vertices with

degree at least θ1, and no two incident vertices where both have degree greater than θ0. In the case where
α > (c1/4)

√
n, so that θ0 > θ1, it is no longer true that all C4s in C2 have exactly two vertices with degree

greater than θ1. Indeed, as θ1 < θ0, it can occur that the four-cycles in C2 have edges with both endpoints
of degrees greater than θ1. Therefore, we need a different argument in order to obtain the bipartite graph
(L,R) for which we would apply Claim 3.

Consider further partitioning C2 into two subsets: C2,2 consists of those C4s in C2 that contain exactly two
vertices with degree greater than θ0, and C2,1 of those that contain at most one vertex with degree greater
than θ0.

If |C2,2| ≥ |C2|/2, then the argument proceeds essentially the same as for the sub-case α ≤ (c1/4)
√
n

with C2 replaced by C2,2. Here we use the fact that θ0 > θ1, so that after running the “coloring” process on
the vertices and edges of C4s in C2,2, if we let R be the subset of vertices with degree greater than θ0 that
are colored green, and L be the subset of vertices with degree at most θ0 that are colored green, then the
premises of Claim 3 hold for every v ∈ R.

If |C2,1| > |C2|/2, then we do the following. First, we put in a subset L̃ all vertices with degree at most

θ1, and in a subset R̃ all vertices with degree greater than θ0. As for the vertices with degree between θ1
and θ0, consider randomly partitioning them into the two sides. Observe that for each fixed C4 in C2,1, the
probability that all its edges cross between L̃ and R̃, which we refer to as “surviving”, is at least 1/8, and

so the expected fraction that survive is at least 1/8. Therefore, there exists a partition (L̃∗, R̃∗) for which

at least this fraction survives. We denote the set of surviving C4s with respect to (L̃∗, R̃∗) by C̃2,1.
The important thing to observe is that all vertices in L̃∗ have degree at most θ0, all vertices in R̃∗ have

degree at least θ1, and all edges participating in C4s that belong to C̃2,1 have two vertices in each side, with
the edges crossing between them. The argument continues essentially as in the subcase that α ≤ (c1/4)

√
n,

where C2 is replaced with C̃2,1.

B A lower bound of Ω(n1/4α1/2) for testing C4-freeness

B.1 A two-sided error lower bound for constant-arboricity graphs

We start by proving the lower bound for constant-arboricity graphs, as stated in Theorem 1 in the introduc-
tion.

Theorem 8 Testing C4-freeness in constant-arboricity graphs over n vertices requires Ω(n1/4) queries for
constant ϵ.

We note that Theorem 8 holds for two-sided error algorithms and not only one-sided error ones.

Proof: For any (sufficiently large) n we shall define two bipartite graphs, G0 and G1, where both have
constant arboricity. The graph G0 is C4-free and the graph G1 is Ω(1)-far from being C4 free. Based on each
Gb, b ∈ {0, 1} we have a distribution, Db, whose support consists of graphs isomorphic to Gb (that differ
only in vertex and edge labelings), and each distribution is uniform over its support. We shall show that for
a sufficiently large constant c, an algorithm that performs less than n1/4/c queries, cannot distinguish with
success probability at least 2/3 between a graph selected according to D0 and a graph selected according to
D2. The lower bound stated in the theorem follows.

We start by defining G0. The vertices in G0 are partitioned into three sets: X0, Y0, Z0, whose sizes are
x0, y0 and z0, respectively. These sizes satisfy the following. First, x0 = y0(y0 − 1)/2. We set y0 to be the
largest odd integer satisfying x0 + y0 ≤ n and z0 = n− (x0 + y0). For each pair of vertices in Y0 there is a
unique vertex in X0 that neighbors exactly these two vertices. The vertices in Z0 have no incident edges.
By construction, G0 is C4-free, and we have y0 = Θ(n1/2), z0 = O(n1/2), and x0 = Θ(n).

Turning to G1, its vertices are also partitioned into three sets: X1, Y1, Z1, of sizes x1, y1 and z1, respec-
tively, where X1 is further partitioned into two equal-size sets X1

1 and X2
1 , and Y1 is partitioned into two

equal-size sets Y 1
1 and Y 2

1 (so that x1 and y1 are both even). Here x1/2 = (y1/2)
2 so that x1 = y21/2, and we
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set y1 = y0−1 and z1 = n− (x1+y1). For each pair of vertices, u1 ∈ Y 1
1 and u2 ∈ Y 2

1 there is one vertex in
X1

1 that neighbors exactly these two vertices, and one vertex in X2
1 that neighbors them. The vertices in Z1

have no incident edges. By construction, since there are x1/2 = Θ(n) edge-disjoint C4s in G1, it is Ω(1)-far
from being C4-free.

Comparing the two graphs we observe that the vertices in Z1 have degree 0, which is the same as those
in Z0, The vertices in X1 have degree 2, which is the same as those in X0, and the vertices in Y1 have degree
2 · (y1/2) = y1 = y0 − 1, which is the same as those in Y0. Comparing the sizes of the sets of vertices, since
y1 = y0 − 1, we get that

x1 =
y21
2

=
(y0 − 1)2

2
=

y0(y0 − 1)

2
− y0 − 1

2
= x0 −Θ(n1/2) ,

and
z1 = n− (x1 + y1) = n− (x0 + (1/2)(y0 − 1)) = z0 + y0/2 + 1/2 = O(n1/2) .

We next define two processes, P0 and P1, where Pb, for b ∈ {0, 1} constructs “on the fly” a graph selected
according to Db while answering the queries of a testing algorithm. We shall show that unless one of several
events occurs, the distributions induced on the sequences of queries and answers are identical. Let qt denote
the tth query of the algorithm and at the answer it gets, so that both are random variables. The query qt

may depend on the query-answer history (q1, a1), . . . , (qt−1, at−1) and possibly randomness of the algorithm.
Both processes maintain a Knowledge graph, which contains the vertices and edges that appear in these
questions and answers, where Kt = (V t, Et) is the knowledge graph after the tth query is answered. Let
Xt, Y t and Zt denote the subsets of vertices with degree 2, y0 − 1 and 0, respectively. (In principle, the
knowledge graph should also include information about the degrees of vertices and pairs of vertices that are
known not to have edges between them, but, as we discuss below, this will be implicit from the graph.) To
determine at given qt, the process Pb simply considers all graphs in the support of Db that are consistent
with Kt−1, and selects an answer with probability proportional to the number of such graphs that are also
consistent with this answer.

We assume that before asking a query concerning a vertex v that is not in the knowledge graph, the
algorithm performs a degree query qt on v (which in particular determines whether v belongs to Xt, Y t

or Zt). If the answer to this query is 2, then the algorithm performs two neighbor queries to get vs two
neighbors. Also, if the algorithm gets a new vertex v as an answer to a neighbor query from a vertex
u ∈ Y t−1, then it performs a neighbor query on v so as to gets its second neighbor. A lower bound of T
on the query complexity of the algorithm under theses restrictions translates into a lower bound of Ω(T )
without these restrictions. Note that the algorithm need not ask any further degree queries, as their answers
are determined by the knowledge graph (which is known to be isomorphic to a subgraph of G0 or G1). Also
note that because for each degree-2 vertex that is introduced into the graph, the algorithm obtains both its
neighbors, we may assume (without loss of generality) that the algorithm does not perform any vertex-pair
queries (as their answers would always be negative).

We observe that for both processes, if the algorithm performs o(n1/2) queries, then the probability that
any answer to a degree query (on a new vertex) is not 2, is o(1) (since |Yb|+ |Zb| = O(n1/2) for both b = 0
and b = 1). Let’s refer to this “bad” event as E1. In addition, by the second restriction on the algorithm (i.e.,
that each degree-2 vertex essentially “arrives with both its neighbors”), we have that for any neighbor query
qt on a vertex in Y t−1, the process Pb answers with a vertex (in Xt) whose label is uniformly selected among
all n− |V t−1| “free” labels. That is, the distribution on these answers is identical under both processes.

It remains to analyze the answers to neighbor queries for vertices v in Xt−1. If v is the answer to a
neighbor query from a vertex u ∈ Y t−1, then each of the processes needs to select a single (additional)
neighbor. Conditioned on this neighbor not belonging to V t−1, for both processes, its label is uniformly
distributed among all n− |V t−1| “free” labels. The same is true if v is introduced following a degree query
and both its neighbors are determined not to belong to V t−1. We denote the event that we get at least
one neighbor that already belongs to the knowledge graph, by E2. Observe that conditioned on E1 and E2

not occurring, the distributions on query-answer histories induced by the two processes, are identical (since,
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conditioned on these events, every degree query is answered by 2, and every neighbor query is answered by
a uniformly selected new label).

It hence remains to upper bound the probability of the event E2, under both processes, when the
algorithm performs at most n1/4/c queries, for some sufficiently large constant c. Consider any prefix
(q1, a1), . . . , (qt−1, at−1) of the query-answer history (where neither event E1 or E2 has yet occurred), and
the corresponding knowledge graph Kt−1. Suppose that qt is a degree query for a vertex v (that does not
belong to V t−1, and such that the answer to this query is 2). Consider first the process P0. Since for each
pair of vertices in Y0 there is a single vertex in X0 that neighbors them, and there are at most 2(t − 1)
vertices in Y t−1 and at most (t− 1) in Xt−1, the probability (over the distribution induced by P0) that at
least one of the neighbors of v belongs to Y t−1 is upper bounded by

2(t− 1) · (y0 − 1)

x0 − (t− 1)
=

2(t− 1) · (y0 − 1)

(y0 · (y0 − 1)/2)− (t− 1)
≤ c′t

n1/2

for a constant c′ (since y0 = Θ(n1/2) and t = O(n1/4)). A similar (slightly lower) upper bound is obtained
for P0 when v is the answer to a neighbor query from a vertex u ∈ Y t−1 (since one of v’s neighbors is already
determined to be u).

Turning to P1, we get a similar upper bound. Namely, for a new vertex v (with degree 2), the probability
that at least one of its neighbors belongs to Y t−1 is upper bounded by

2(t− 1) · (y1/2)
x1 − (t− 1)

=
2(t− 1) · (y1/2)
(y1/2)2 − (t− 1)

≤ c′′t

n1/2
,

for a constant c′′, and a similar upper bound holds when v is an answer to a neighbor query from u ∈ Y t−1.
Summing over t = 1, . . . , T = n1/4/c, we get that the probability that E2 occurs (for either processes) is a
small constant, as required. □

B.2 A one-sided error lower bound for graphs with arboricity α

We now turn to a lower bound on non-constant arboricity graphs for one-sided error algorithms as stated
in Theorem 7 in the introduction. We assume that α = O(n1/2) (recall that every graph with arboricity
greater than n1/2 must contain C4s). The lower bound holds for α = Ω(log n). Note that the lower bound
of Theorem 8 also holds for α = O(log n) that is non-constant, since, as noted in the introduction we can
add to the graphs in the lower-bound construction a subgraph with arboricity α that is C4-free.

In order to prove Theorem 7, we define a distribution over n-vertex graphs for which the following holds.
First, with high probability, a graph selected according to this distribution is Ω(1)-far from being C4-free.
Second, the number of queries necessary to observe a C4 with sufficiently high constant probability when
the queries are answered by graph selected according to the distribution is Ω(n1/4α1/2). Furthermore, if
a one-sided error algorithm performs less than n1/4α1/2/c queries for a sufficiently large c and does not
observe a C4, then it must accept, since the subgraph observed (including the degrees of the vertices) can
be extended to a C4-free graph.

The vertex set of each graph in the support of D is partitioned into five parts: X1, X2, Y1, Y2, and
Z, where |X1| = |X2| = n/4, and for d = n1/2/c2, |Y1| = |Y2| = (nα)/(4d) = Θ(n1/2α) and |Z| =
n− (|X1|+ |X2|+ |Y1|+ |Y2|). (We assume for simplicity that n is divisible by 2d and that α and d are even
integer – the more general case can be handled similarly).

The distribution D is uniform over all graphs for which the following holds:

• There is a bipartite graph, denoted Gb,b′ between Xb and Yb′ for b, b′ ∈ {1, 2}, where vertices in Xb

have α/2 neighbors in Yb′ , vertices in Yb′ have d/2 neighbors in Xb and vertices in Z have degree 0.

• There are no multiple edges.

Observe that there exists at least one such graph: Let each Xb consist of n/4
d/2 subsets, each of size d/2, and

let each Yb consist of
nα/(4d)

α/2 subsets, each of size α/2. For the edges, let there be a complete bipartite graph
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between the ith subset in each Xb to the ith subset of both Y1 and Y2. One can verify that indeed both
conditions above hold. We stress that this graph is not a good candidate for a lower bound, as it contains
many C4s. However, as we prove below, when choosing uniformly over all graphs in the (non-empty) support
of D, detecting a C4 requires Ω(n1/4α1/2) queries.

Lemma 4 With probability at least 9/10, a graph selected according to D is Ω(1)-far from being C4-free.

In order to establish Lemma 4, we define the following “bad events” (taken over the random choice
of a graph according to D). Let α′ = Θ(α) (where the constant in the Θ notation will be determined
subsequently). First, E0 is the event that the fraction of edges between X1 and Y1 that participate in less
than α′/2 C4s is larger than 1/2. Second, for each b, b′ ∈ {1, 2} and ℓ ≥ 1, let Dℓ

b,b′ be the set (bucket) of

edges between Xb and Yb′ that participate in a number of C4s that is in the range [(2ℓ+1) ·α′, (2ℓ+1+1) ·α′).
The event Eℓ

b,b′ is the event that |Dℓ
b,b′ | > (2−2ℓ/c3) · |Xb| · (α/2) for some constant c3.

Claim 5 For a sufficiently large α = Ω(log n), the probability that either E0 occurs or some Eℓ
b,b′ occurs

(for b, b′ ∈ {1, 2} and ℓ ≥ 1) is at most 1/10.

We prove Claim 5 momentarily, and first show how it implies Lemma 4.

Proof of Lemma 4: Assume that neither E0 nor any Eℓ
b,b′ occur, which by Claim 5 holds with probability

at least 9/10. Conditioned on E0 not occurring, there are at least |X1| · (α/2) · (α′/2) (= Ω(nα2)) C4s in a
graph selected according to D. Suppose we mark the edges that participate in any one of the buckets Dℓ

b,b′

for b, b′ ∈ {1, 2} and ℓ ≥ 1 by “red” and all other edges by “green”. By our assumption on the sizes of the
buckets (the events Eℓ

b,b′ not occurring), the total number of C4s that contain at least one red edge is upper
bounded by∑

b,b′

∑
ℓ

|Dℓ
b,b′ | · (2ℓ+1 + 1) · α′ ≤ 4 · (2−2ℓ/c3) · |Xb| · (α/2) · (2ℓ+1 + 1) · α′ ≤ |X1| · (α/2) · (α′/c′3) . (9)

By ensuring the c′3 ≥ 4, the number of C4s residing on green edges (only) is at least

|X1| · α · α′

4
− |X1| · α · α′

8
= Ω(nα2) . (10)

Hence, with probability at least 9/10 over the choice of a graph according to D, the following holds.
There exists a set of green edges, such that the number of C4s that reside on green edges is Ω(nα2), and
each green edge participates in O(α) C4s. This implies that there are Ω(nα) edge-disjoint C4s. To verify this
consider running an iterative procedure, starting from the graph restricted to green edges. In each iteration,
until there are no remaining C4s, a C4 is selected from the current graph and put in the set of edge-disjoint
C4s. Then all O(α) C4s that include one of the edges in the selected C4 are removed from the graph (i.e.,
their other edges are removed from the graph). Since we start with Ω(nα2) C4s and in each iteration remove
O(α) C4s, the final set of edge-disjoint C4s we get is of size Ω(nα), implying that the graph is Ω(1)-far from
C4-free. □

We next prove Claim 5.

Proof of Claim 5: We start by noting that in the selection of a random graph according to D, the four
graphs Gb,b′ , b, b

′ ∈ {1, 2} are generated independently from each other (recall that Gb,b′ is a bipartite graph
between Xb and Yb′ , where each vertex in Xb has α/2 neighbors in Yb′ , and each vertex in Yb′ has d/2
neighbors in Xb).

For simplicity of notations, let b = 1, b′ = 1. The analysis below can be applied to any pair b, b′ ∈ {1, 2}.
Fix any choice of bipartite graph G2,2. We shall show that for any fixed edge (x, y) between x ∈ X1 and
y ∈ Y1, the following holds over the random choice of G1,2 and G2,1. The expected number of C4s that reside
on (x, y) is α′, and furthermore, with sufficiently high probability, the actual number does not deviate by
too much from its expectation.
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For a fixed edge (x, y) ∈ X1 ×Y1, Let Γ2(x) denote the set of α/2 neighbors of x in Y2 (as determined by
the choice of G1,2), and let Γ2(y) denote the set of d/2 neighbors of y in X2 (as determined by the choice of
G2,1). Since we are considering a single vertex x ∈ X1 and a single vertex y ∈ Y1, these sets are uniformly
distributed in Y2 and X1, respectively.

For i ∈ [d/2] and j ∈ [α/2], let χi,j be a Bernoulli random variable that is 1 if there is an edge between
the ith neighbor of y and the jth neighbor of x (and is 0 otherwise). Let µ = Pr[χi,j ] = 1], so that

µ =
α/2

|Y2|
= Θ

(
n1/2

n

)
= Θ

(
1

n1/2

)
. (11)

Therefore, if we let α′ = (d/2) · (α/2) · µ (so that α′ = Θ(α)), then

E

 ∑
i∈[d/2]
j∈[α/2]

χi,j

 =
d

2
· α
2
· µ = α′ . (12)

We turn to analyze the variance of the sum.

V

 ∑
i∈[d/2]
j∈[α/2]

χi,j

 = E


 ∑

i∈[d/2]
j∈[α/2]

χi,j


2−

E

 ∑
i∈[d/2]
j∈[α/2]

]

χi,j




2

(13)

= E

 ∑
i∈[d/2]
j∈[α/2]

(χi,j)
2

+ E

 ∑
i∈[d/2]

j1 ̸=j2∈[α/2]

χi,j1χi,j2

+ E

 ∑
i1 ̸=i2∈[d/2]

j∈[α/2]

χi1,jχi2,j



+ E

 ∑
i1 ̸=i2∈[d/2]
j1 ̸=j2∈[α/2]

χi1,j1χi2,j2

−
(
d

2
· α
2
· µ
)2

. (14)

We analyze each of the terms separately. Since the χi,js are Bernoulli random variables, (χi,j)
2 = χi,j so

that
Pr[(χi,j)

2 = 1] = Pr[χi,j = 1] = µ . (15)

For every i ∈ [d/2] and j1, j2 ∈ [α/2] such that j1 ̸= j2,

Pr[χi,j1 = χi,j2 = 1] ≤
(
α/2

|Y2|

)2

= µ2 , (16)

and for every i1, i2 ∈ [d/2] and j ∈ [α/2] such that i1 ̸= i2,

Pr[χi1,j = χi2,j = 1] ≤
(

d/2

|X2|

)2

=

(
α/2

|Y2|

)2

= µ2 . (17)

Finally, for i1 ̸= i2 ∈ [d/2] and j1 ̸= j2 ∈ [α/2], we have that

Pr[χi1,j1 = χi2,j2 = 1] = Pr[χi1,j1 = 1] · Pr[χi1,j1 = 1 |χi2,j1 = 1] =
α/2

|Y2|
· |X2|(α/2)− 1

(|X2| − 1)(|Y2| − 1)
, (18)

where the second term on the right-hand-side of Equation (18) is the fraction of pairs in X2 × Y2 that have
an edge between them, among all pairs with the exception of one pair that is an edge in G2,2. It is not hard
to verify that

|X2|(α/2)− 1

(|X2| − 1)(|Y2| − 1)
≤ α/2

|Y2|
·
(
1 +

2

|Y2|

)
= µ ·

(
1 +

2

|Y2|

)
(19)
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By combining Equations (14)–(19) (and recalling that α′ = (d/2)(α/2)µ), we get that

V

 ∑
i∈[d/2]
j∈[α/2]

χi,j

 ≤ d

2
· α
2
· µ+

d

2
·
(α
2

)2
· µ2 +

(
d

2

)2

· α
2
· µ2

+

(
d

2

)2

·
(α
2

)2
· µ2 ·

(
1 +

1

|Y2

)
−
(
d

2
· α
2
· µ
)2

= α′ ·
(
1 +

α

2
· µ+

d

2
· µ+

d

2
· α
2
· 2

|Y2|
· µ
)

≤ 4α′ , (20)

where in the last inequality we used the following facts: α ≤ d, |Y2| > α, and (d/2)µ ≤ 1.
By Chebishev’s inequality, for any choice of t > 0,

Pr

∣∣∣∣∣∣
∑

i∈[d/2],j∈[α/2]

χi,j − α′

∣∣∣∣∣∣ < t · α′

 ≤
V
[∑

ı∈[d/2],j∈[α/2] χi,j

]
t2 ·
(
E
[∑

i∈[d],j∈[α] χi,j

])2 (21)

≤ 4α′

t2 · (α′)2
=

4

t2 · α′ (22)

By setting t = 1/2 we get that for any fixed edge (x, y) ∈ X1 × Y1, the probability that (x, y) participates
in less than α′/2 C4s is at most 16/α′. By Markov’s inequality and the definition of the event E0, we have
that Pr[E0] ≤ 32/α′.

By applying the same argument to any other b, b′ ∈ {1, 2} (i.e., not necessary b = b′ = 1), we get that for
any fixed edge (x, y) ∈ Xb × Yb′ and for any choice of t = 2ℓ, ℓ ≥ 0, the probability that (x, y) participates
in more than (2ℓ + 1) · α′ C4s is at most 4

22ℓ·α′ . Therefore, the expected number of such edges is at most

|Xb| · (α/2) · 4
22ℓ·α′ . By Markov’s inequality, the probability that there are more than |Xb| · (α/2) · 1

c3·22ℓ such

edges is at most 4c3
α′ .

By the definition of the bucket Dℓ
b,b′ (which contains a subset of the aforementioned edges) and the event

Eℓ
b,b′ , we have that Pr[Eℓ

b,b′ ] ≤
4c3
α′ . Since α′ = Θ(α) and α ≥ c1 log n, for a sufficiently large constant c1, if

we take a union bound over all bad events, we get a total probability of at most 1/10, and the claim follows.
□

Lemma 6 Let A be an algorithm that performs less than n1/4α1/2/c queries for a sufficiently large constant
c. The probability that A detects a C4 in a graph selected according to D is at most 1/10.

Proof: Similarly to the proof of Theorem 8, consider a process P that answers the query of a testing
algorithm while constructing a graph from Sup(D) (the support of D) on the fly. Here too we define a
knowledge graph Kt following the query-answer history (q1, a1), . . . , (qt, at) and we require the algorithm to
perform a degree query on each vertex v that is not yet in the knowledge graph before performing any other
query involving it. The algorithm also receives the subset to which the new vertex belongs (as this is not be
implied by the degree of the vertex). Let Xt

1, X
t
2, Y

t
1 , Y

t
2 and Zt denote the corresponding subsets in the

knowledge graph Kt.
The set of edges in Kt is denoted by Et, where for each e ∈ Et there are two associated labels, ϕt

X(e) for
its endpoint in Xt = Xt

1∪Xt
2, and ϕt

Y (e) for its endpoint in Y t = Y t
1 ∪Y t

2 . We assume that a neighbor query
(xb,i, j) is answered by a pair (yb′,i′ , j

′) where yb′,i′ is the jth neighbor of xb,i and xb,i is the j′th neighbor
of yb′,i′ . Similarly, if a vertex-pair query (xb,i, yb′,i′) is answered positively, then the algorithm also gets the

corresponding edge labels ϕX and ϕY for this edge. The knowledge graph also includes a set E
t
of non-edges

(corresponding to negative answers to vertex-pair queries).
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Similarly to the proof of Theorem 8, in order to determine at given qt, the process P considers all graphs
G ∈ Sup(D) that are consistent with Kt−1, It then selects an answer with probability proportional to the
number of such graphs G for which G is also consistent with this answer.

Consider any knowledge graph Kt−1 for t < n1/4α1/2/c. We would like to bound the probability that
either a neighbor query or a vertex-pair query adds to the knowledge graph an edge (x, y) that creates a C4

in the knowledge graph. We shall actually bound the probability that a neighbor query is answered with
some vertex that already belongs to the knowledge graph or a vertex-pair query is answered positively (even
if this does not reveal a C4). We shall refer to such an answer as a collision.

Let G(Kt−1) denote the subset of graphs G ∈ Sup(D) such that G is consistent with Kt−1. For a query
qt (either a neighbor query or a pair query), let Gc(K

t−1, qt) denote the subset of graphs G ∈ G(Kt−1) for
which the answer to qt according to G results in a collision, and similarly define Gnc(K

t−1, qt) for the case
in which the answer is not a collision.

Subclaim Let Kt−1 be any knowledge graph where t < n1/4α1/2/c, and let qt be a neighbor or pair query.
Then

|Gnc(K
t−1, qt)|

|Gc(Kt−1, qt)|
= Ω(n1/4α1/2) .

Proof: In order to prove the subclaim we define an auxiliary bipartite graph B(Kt−1, qt). Each node in
B(Kt−1, qt) corresponds to a graphG ∈ G(Kt−1). Nodes on the left side correspond to graphs in Gc(K

t−1, qt),
and nodes on the right side to graphs in Gnc(K

t−1, qt). There is an edge between two nodes corresponding to
graphs G1 and G2, if G2 can be obtained from G1 by a certain “swap” modification (which will be explained
precisely below). We shall show that the number of nodes on the left is smaller by a factor of Ω(n1/4α1/2)
than the number of nodes on the left by appropriately lower bounding the degree of the former and upper
bounding the degree of the latter. From this point on we use the shorthand notations B, G, Gc and Gnc for
B(Kt−1, qt), G(Kt−1), Gc(K

t−1, qt) and Gnc(K
t−1, qt), respectively.

For a graph G ∈ G and an edge e in G we shall use the notation ϕG
X(e) and ϕG

Y (e) for its label with
respect to its endpoint in X and in Y , respectively. Let qt be a neighbor query nbr(v, i) where v ∈ Xt−1,
and let Gc be a graph in G for which the answer to qt results in a collision. That is, the answer at is (u, j) for
some u ∈ Y t−1. The neighbors of node Gc in Gnc are nodes representing graphs that can be obtained from
Gc by swapping the edge (v, u) with a different edge (v, u′) where u′ /∈ Y t−1, and such that the resulting
graph belongs to G. We prove that there are Ω(n1/2α) such graphs.

In order to modify the graph Gc ∈ Gc to obtain a graph Gnc ∈ Gnc, we proceed as follows. We choose
a vertex u′ ∈ Y \ Y t−1 (where the constraints on this choice are explained momentarily), and let v′ denote
the jth neighbor of u′ in the graph Gc. Note that v′ is in X. Let i′ = ϕGc

X ((v′, u′)). Now we swap the pair
of edges (v, u) and (v′, u′) with the pair (v, u′), (v′, u) while maintaining the original edge-labels. That is,
ϕGnc

X ((v, u′)) = i, ϕGnc

Y ((v, u′)) = j and ϕGnc

X ((v′, u)) = i′, ϕGnc

Y ((v, u′)) = j′. Since u′ /∈ Y t−1, if Gnc is in G,
then it is in Gnc. In order to ensure that Gnc ∈ G, it is sufficient (and necessary), that there is no edge in

Gc between v and u′ and no edge between v′ and u and that (v′, u) /∈ E
t−1

.
Observe that the selection of u′ uniquely determines v′. There are |Y t−1| ≤ t = O(n1/4α1/2) “illegal”

choices of u′ ∈ Y t−1 and 2α = O(n1/4α1/2) illegal choices of u′ that are neighbors of v. There are at most

t choices of v′ such that (v′, u) ∈ E
t−1

, and d choices of neighbors of u. For each of these d + t choices of
v′ there are at most 2α neighbors u′ such that v′ may be the jth neighbor of u′. This rules out at most
2(d + t) · α choices of u′. Since |Y | = |X|α/d = nα/(2d) and d = n1/2/c2, for a sufficiently large constant
c2, the number of choices of u′ for which Gnc ∈ G is Ω(n1/2α).

We now upper bound the number of neighbors of each node in B that corresponds to a graph Gnc ∈ Gnc.
Assume that the answer to qt = nbr(v, i) in Gnc is at = (u′, j′). That is, u′ is the ith neighbor of v in Gnc,
and v is the j′th neighbor of u′. By the definition of B, every neighbor of Gnc in B is a graph Gc where
the ith neighbor of v is a vertex u′′ ∈ Y t−1. Furthermore, by the definition of the swap process, if the edge
(v, u′′) ∈ Gc was replaced by a swap process and resulted in an edge (v, u′) where ϕGnc

Y ((v, u′)) = j′, it must

be the case that ϕGc

Y ((v, u′′)) = j′ (since the swapping process involves only two edges such that both have
the same ϕY value). Hence, for each choice of u′′ ∈ Y t−1, the graph Gc from which Gnc was obtained by a
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swap process is uniquely defined: Let v′′ denote the j′th neighbor of u′′ in Gc. The graph Gc is a graph where
(v, u′′) is an edge with ϕGc

X ((v, u′′)) = i, ϕGc

Y ((v, u′′)) = j′ and (v′′, u′) is an edge with ϕGc

Y ((v′′, u′)) = j′ (and

ϕGc

X ((v′′, u′)) = i′′ for some i′′). Since there are at most |Y t−1| = O(n1/4α1/2) options to choose u′′, it holds
that Gnc has O(n1/4α1/2) neighbors in B (it might be the case that some of the resulting graphs Gc are not
in G but the upper bound still holds).

Since each node corresponding to a graph in Gc has Ω(n
1/2α) neighbors and each node corresponding to a

graph in Gnc has O(n1/4α1/2) neighbors, the subgraph follows for any neighbor query nbr(v, i) for v ∈ Xt−1.
We next consider the case in which qt = nbr(u, j) for u ∈ Y t−1. The swap operation and analysis are

very similar to the case in which qt = nbr(v, i) for v ∈ Xt−1, and so we emphasize only the differences. Let
Gc ∈ Gc be a graph for which qt is answered by (v, i) where v ∈ Xt−1. To perform a swap operation and
obtain a graph in Gnc we select a vertex v′ /∈ Xt−1 such that v′ is not a neighbor of u in Gc, and for the ith

neighbor of v′, denoted u′ we have that u′ is not a neighbor of v in Gc, but (u′, v) /∈ E
t−1

. For each such
legal choice of v′ we can perform a swap operation between the edges (u, v) and (u′, v′) while maintaining
the edge labels as in the case that qt = nbr(v, i) for v ∈ Xt−1. The constraints on v′ rule out at most
t+ 2d+ (t+ α) · 2d vertices, and so the number of legal choices of v′ is Ω(|X|) = Ω(n). On the other hand,
for any graph Gnc ∈ Gnc, for which the answer to qt = nbr(v, j) is (v′, i′) for v′ /∈ Xt−1 there are at most t
choices of v′′ ∈ Xt−1 such that a swap operation between the edges (v′′, u) and (v′, u′) resulted in the graph
Gnc. Hence, here the ratio between |Gnc| and |Gc| is Ω(n/t) = Ω(n3/4/α1/2) = Ω(n1/4α1/2), as required.

Finally we turn to the case in which qt is a pair query between two vertices v ∈ Xt−1 and u ∈ Y t−1.
Consider a graph Gc ∈ Gc for which the answer is positive. We can perform a swap with any edge (v′, u′) in

Gc such that (v′, u′) /∈ E(Kt−1) and in addition, (v′, u) /∈ E(Gc), (v, u
′) /∈ E(Gc) and (v′, u), (v, u′) /∈ E

t−1
.

The number of edges in Gc on which a swap cannot performed with (u, v) is hence upper bounded by
t + (d + t) · α + d · (t + α) = O(dα). This leaves Ω(nα) edges with which a swap can be performed (each
resulting in a different graph in Gnc). On the other hand, for a graph Gnc ∈ Gnc, for which there is no edge
between u and v, the number of graphs in Gc for which a swap operation resulted in Gnc is at most dα (the
number of pairs of vertices (u′, v′) such that (u, v′), (u′, v) ∈ E(Gnc)). Hence the ratio between |Gnc| and
|Gc| is Ω((nα)/(dα) = Ω(n/d) = Ω(n1/2) = Ω(n1/4α1/2). ♢

By the above, the probability that the algorithm detects a C4 following any one of its at most n1/4α1/2/c
queries is upper bounded by a small constant (e.g., 1/10). □

Theorem 7 follows by combining Lemmas 4 and 6.

C Results for C5

The results for C5 when the graph has constant arboricity are very similar to those for C4 (when the arboricity
α is a constant), and hence we only provide a sketch in this section.

We start with the upper bound (as stated in Theorem 1 in the introduction).

Theorem 9 There exists a one-sided error algorithm for testing C5-freeness in graphs with arboricity at
most α = O(1) over n vertices whose query complexity is Õ(n1/4/ϵ4).

The algorithm is an adaptation of the algorithm for testing C4-freeness. While the algorithm for testing
C4-freeness attempted to find a C4 by obtaining two length-2 edge-disjoint paths from a vertex v to a vertex
v′, the algorithm described next attempts to find a C5 by obtaining two edge-disjoint paths from a vertex v
to a vertex v′ such that one of these paths is of length 2 and the other of length 3.

Test-C5-freeness(n, ϵ, α)

1. Let θ0 = 4α/ϵ and θ1 = c1
√
n/ϵ (for a sufficiently large constant c1).

2. Repeat the following t = Θ(1/ϵ) times:
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(a) Select an edge e by calling the procedure Select-an-edge(α, ϵ) (as provided in Section 3). If it does
not return an edge, then continue to the next iteration.

(b) Select an endpoint v of e by flipping a fair coin.

(c) If d(v) ≤ θ1, then select s1 = Θ(
√

d(v)/ϵ) random neighbors of v, and for each neighbor u such
that d(u) ≤ θ0, query all the neighbors of u, and all the neighbors u′ of u for which d(u) ≤ θ0.
That is, from each of the s1 selected neighbors of v, perform a restricted BFS of depth 2, where
only vertices with degree at most θ0 are further explored.

(d) Otherwise (d(v) > θ1), perform s2 = Θ(ϵ−3 ·
√
n log n/θ1) (= Θ̃(n1/4/ϵ3)) random walks of length

3 starting from v.

(e) If a C5 is detected, then return it, ‘Reject’ and terminate.

3. Return ‘Accept’.

Since the algorithm rejects a graph only if it observes a C5, it always accepts C5-free graphs. Hence, consider
a graph G that is ϵ-far from being C5-free. Similarly to the analysis of the algorithm for testing C4-freeness,
we let C be a maximal set of edge-disjoint C5s such that no C5 in this set contains an edge between two
vertices with degree greater than θ0. We then define C1 and C2 to be the subsets of C containing C5s with no
edge between two vertices with degree greater than θ0 and at most one (respectively, exactly two) vertices
with degree greater then θ1. Here too, either |C1| ≥ ϵm/16 or |C2| ≥ ϵm/16.

If |C1| ≥ ϵm/16, then by applying a coloring process as in the proof of Theorem 6, we obtain a set C′
1 ⊆ C1

in which every vertex v participating in some C5 in C′
1 actually participates in Ω(ϵd(v)) such C5s. Since

every 5-cycle ρ ∈ C′
1 contains at most one vertex of degree greater than θ1, we can label the vertices in ρ by

vi(ρ), i = 0, 1, . . . , 4 where v2(ρ) is the highest degree vertex, such that the following holds. First, v0(ρ) ≤ θ1,
and second, v1(ρ), v3(ρ) and v4(ρ) all have degree at most θ0. This implies that if the algorithm selects a
vertex v ∈ V0(C′

0) =
⋃

ρ∈C′
1
{v0(ρ)} (which occurs with high constant probability), then with high constant

probability the algorithm will detect a C5 in Step 2c.
If |C2| ≥ ϵm/4, then we apply a similar coloring process to obtain a set C′

1 ⊆ C2 in which every vertex
v participating in some C5 in C′

2 actually participates in Ω(ϵd(v)) such C5s. Since every 5-cycle ρ ∈ C′
2

contains two vertices, v and v′ of degree greater than θ1, there is one length-2 path between v and v′ that
passes through a vertex with degree at most θ0, and one length-3 path that passes through two vertices with
degree at most θ0. An analysis similar to the given in the proof of Claim 3 shows that in this case (that
|C2| ≥ ϵm/4), with high constant probability, a C5 will be detected in Step 2d of the algorithm.

We now turn to the lower bound.

Theorem 10 Testing C5-freeness in constant-arboricity graphs over n vertices requires Ω(n1/4) queries for
constant ϵ.

The high-level idea of the proof of Theorem 10 is very similar to that of Theorem 8. The main difference
is that in both G0 and G1 (based on which the distributions D0 and D1 are defined), some of the vertices in
Xb (for b ∈ {0, 1}) are connected by an edge (so that the graphs are not bipartite), and for each such edge
(v1, v2), there are two vertices u1 and u2 in Yb, such that u1 neighbors v1 and u2 neighbors v2.

In G0, every pair of vertices u1, u2 in Y0 either neighbor a unique vertex v0 in X0 or there is a unique
edge (v1, v2) between a pair of vertices in X0 such that u1 neighbors v1 and u2 neighbors v2. On the other
hand, in G1, edge-disjoint C5s are created by having the same pair u1, u2 in Y1 neighbor both a single vertex
v0 and the endpoints of an edge (v1, v2) as described above, so that (v0, u1, v1, v2, u2) is a C5.

D An upper bound for C6

In this section we prove Theorem 11, which is restated next.

Theorem 11 There exists a one-sided error algorithm for testing C6-freeness in graphs of constant arboricity
whose query complexity and running time are Õ(n1/2 · poly(1/ϵ)).
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The algorithm referred to in Theorem 11 is presented next.

Test-C6-freeness(n, ϵ, α)

1. Let θ0 = 4α/ϵ, and θ1 = c1 · n1/2 log2 n/ϵ2 (for a sufficiently large constant c1).

2. Repeat the following t = poly(log n/ϵ) times:

(a) Select a vertex v uniformly at random and query its degree. If d(v) > θ0, then continue to the
next iteration.

(b) Perform a restricted BFS starting from v to depth 4, where the BFS is restricted in the following
sense.

i. Whenever a vertex u is reached such that d(u) ≤ θ0, all its neighbors are queried.

ii. Whenever a vertex u is reached such that d(u) > θ0 and u is reached from a vertex u′ such
that d(u′) ≤ θ0, there are two sub-cases. If d(u) ≤ θ1, then all of u’s neighbors are queried.
Otherwise, θ1 neighbors of u are selected uniformly at random.

iii. Whenever a vertex u is reached from a vertex u′ such that both d(u) > θ0 and d(u′) > θ0,
the BFS does not continue from u.

(c) If a C6 is detected, then return ‘Reject’ (and terminate).

3. Return ‘Accept’.

Since the algorithm rejects only when it detects a C6, it always accepts when the graph G is C6-free,
and hence, from this point on, we focus on the case that G is ϵ-far from C6-free. Let C be a maximal set
of edge-disjoint C6s in G where for every C6 in C, there are no edges in which both endpoints have degree
greater than θ0 (where θ0 = 4α/ϵ, as defined in the algorithm). Since the arboricity of G is at most α, we
have that |C| ≥ ϵm/12.

Let L denote the set of vertices with degree at most θ0, let M denote the vertices with degree greater
than θ0, and let H denote those with degree greater than θ1 (where L stands for low, M for medium, and
H for high). We partition the C6s in C into three subsets: C1 contains those with at most one vertex in M ,
and for b ∈ {2, 3}, Cb contains those with exactly b vertices in M . For each b ∈ {1, 2, 3}, we consider the case
that |Cb| ≥ ϵm/36, where for at least one of the three this lower bound should hold.

Claim 7 If |C1| ≥ ϵm/36, then the algorithm will detect a C6 with probability at least 2/3.

Proof: Consider the following set of useful vertices U . For each ρ ∈ C1, if all vertices on ρ belong to L, then
they all belong to U . If there is a vertex u on ρ that belongs to M , then the vertex v ∈ L at distance 3 from
u (on ρ), belongs to U (that is, the vertex v that is opposite to u on ρ). Since |C1| ≥ ϵm/36, and each vertex
in L belongs to at most θ0/2 edge-disjoint C6s in C1, we have that |U | = Ω(ϵn). Therefore, with probability
at least 2/3, some vertex v ∈ U is selected in at least one of the iterations of the algorithm. Conditioned on
this event, the restricted BFS starting from v will detect a C6. □

Claim 8 If |C2| ≥ ϵm/36, then the algorithm will detect a C6 with probability at least 2/3.

Proof: Recall that C2 is the set of C6s in C with exactly two vertices in M , i.e., that have degree greater
than θ0. We consider several sub-cases depending on the number of these vertices that are also in H. Let
C2,1 consists of those C6s in C2 that contain at most one vertex in H, and C2,2 those that contain two vertices
in H, and note that C2 = C2,1 ∪· C2,2 so that at least one of these subsets is of size at least |C2|/2.

If |C2,1| ≥ |C2|/2, then let U denote those vertices in L that reside on C6s in C2,1 that either do not have
any vertex in H, or are at distance at least two from the single vertex in H on the C6. Similarly to the
proof of Claim 7, the algorithm selects a vertex from U with probability at least 2/3, and conditioned on
this event, a C6 is detected.
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We now turn to the case that |C2,2| ≥ |C2|/2. We further partition the C6s in C2,2 according to the
distance on the C6 between the two vertices in H, which is either 2 or 3, and denote the two subsets by
C2,2,2 and C2,2,3, respectively. In what follows we analyze the case that |C2,2,2| ≥ |C2,2|/2. The case that
|C2,2,3| ≥ |C2,2|/2, is analyzed similarly.

For each pair of vertices u, u′ ∈ H, let C(u, u′) denote the subset of C6s in C2,2,2 on which u and u′ reside.

We shall say that the set C(u, u′) is useful if |C(u, u′)| ≥ (ϵ/600)·max{d(u),d(u′)}
|H| , otherwise it is un-useful. By

this definition, the number of C6s in C2,2,2 that belong to un-useful sets is at most∑
u∈H

∑
u′∈H:d(u′)≤d(u)

(ϵ/600) · d(u)
|H|

≤ ϵm/300 . (23)

Let C′
2,2,2 denote the subset of C6s in C2,2,2 that belong to useful sets, so that |C′

2,2,2| ≥ ϵm/300.
The algorithm “tries” to detect C6s of this form by starting from a vertex v that is at distance 2 from

both u and u′ on some C6 in C(u, u′), and obtaining a path of length 2 and a path of length 4 that collide
on either u or u′. Assume w.l.o.g. that d(u′) ≤ d(u). Recall that except for u and u′, all other vertices on
the C6s in C(u, u′) are in L. Therefore, a restricted BFS starting from v will surely reach both u and u′ at
depth 2. Then, for the algorithm to reach u from u′ in two more steps, it suffices that one of their common
neighbors in L is selected in Step 2(b)ii among the θ1 sampled random neighbors of u′. In such a case the
restricted BFS will surely reach u via u′, and thus obtain a C6. Since the number of common neighbors of
u and u′ is at last |C(u, u′)|, the probability of this event is at least

1−
(
1− (ϵ/600) ·max{d(u), d(u′)}

|H| ·min{d(u), d(u′)}

)θ1

.

Since |H| ≤ 2m/θ1, by the setting of θ1 (for a sufficiently large constant c1 and recalling that the graph
has constant arboricity, so that m = O(n)), this probability is at least 9/10. Combining this with the
probability of the selection of some vertex v in L as defined above (which occurs with probability Ω(ϵ2)),
the claim follows. □

Claim 9 If |C3| ≥ ϵm/36, then the algorithm will detect a C6 with probability at least 2/3.

Proof: Recall that by the definition of C3, for each C6 in C3 there are three vertices that belong to M , and
three that belong to L, where each vertex in M neighbors two vertices in L. We start by selecting a subset
of C3, denoted C′

3, such that each vertex in L belongs to at most a single C6 in C′
3. Since each vertex in L has

degree at most θ0 = O(1/ϵ), if we select C′
3 in a simple iterative greedy manner, then we get that |C′

3| ≥ ϵ3m,
where ϵ3 = Ω(ϵ2). Let M ′ ⊆ M be the subset of vertices in M that reside on C6s in C′

3 and let L′ ⊆ L be
the corresponding subset of vertices in L. Let the edges on the C6s in C′

3 be colored green in G.
We next define an auxiliary multi-graph G′ where (some of the) triangles in G′ correspond to C6s in G.

For each vertex in M ′ we have a vertex in G′. In addition, there is a special ground vertex, which we denote
by vg. For each pair of vertices, u1, u2 ∈ M ′ and for each length-2 green path (u1, v, u2) (where v ∈ L′),
there is an edge in G′. We think of this edge as being colored blue in G′ and labeled by the vertex v in L′.
In addition, for each u ∈ M ′, and each non-green incident edge that it has in G, there is an (“uncolored”)
edge between u and vg. By this construction, there are |C′

3| blue edge-disjoint triangles in G′ (and the degree
of every vertex u ∈ M ′ in G′ is the same as its degree in G).

Claim 10 Let G′ be a multigraph over m′ ≤ m edges, with m′
b blue edges, and at least ϵ3m edge-disjoint

blue triangles. Let D be any distribution over edges in G′ such that for each blue edge in G′, the probability
that it is selected according to D is Ω(1/m′

b). Consider the following process. First we select a blue edge
(u, u′) according to D. Next, for each of u and u′, if its degree is at most θ1, then we query all its neighbors
in G′, and otherwise we select θ1 random neighbors in G′. The probability that the process obtains a triangle
(u, u′, u′′) in G′ where u′′ ∈ M ′ is Ω(ϵ3/ log

4 n).
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Proof: Let T denote a maximal set of edge-disjoint triangles in G′ whose edges are all colored blue, so
that |T | ≥ ϵ3m. Let T1 denote the subset of triangles in T that contain at most one vertex in H, and let
T2 denote those that contain at least two vertices in H. If |T1| ≥ |T |/2, then we are done: conditioned on
selecting an edge between two vertices in M ′ \H that belongs to a triangle in T1, the procedure will detect
this triangle, as it queries all neighbors of the selected edge’s endpoints, and the probability of selecting such
an edge is Ω(ϵ3).

From this point on we address the case that |T2| ≥ |T |/2. For a vertex u ∈ M ′ we use d(u) to denote
its degree in G′. For each pair of vertices u1, u2 ∈ M ′, let E(u1, u2) denote the set of edges between u1 and
u2 that reside on triangles in T2 (so that in particular, they are all blue), and let e(u1, u2) = |E(u1, u2)|.
Suppose the procedure described in the claim selects an edge (a, b) ∈ E(u1, u2) where a, b ∈ H. Recall that
in such a case, θ1 random neighbors of a and θ1 random neighbors of b are sampled. For i ∈ [θ1] and j ∈ [θ1],
let χi,j(a, b) be a Bernoulli random variable that is 1 if and only if the ith randomly selected neighbor of a
equals the jth randomly selected neighbor of b, where this neighbor is not vg (thus detecting a blue triangle).
Note that by this definition, the expected number of triangles detected (conditioned on selecting (a, b)) is∑

i,j∈[θ1]
χi,j(a, b), where

Pr[χi,j(a, b) = 1] =
∑
c∈M

e(a, c)

d(a)
· e(b, c)

d(b)
. (24)

A simple but important observation is that, since each of the e(a, b) edges in E(a, b) participates in some trian-
gle (a, b, c) in T2 where these triangles are edge-disjoint, e(a, b) is upper bounded by

∑
c∈M min{e(a, c), e(b, c)},

which in turn is upper bounded by
∑

c∈M e(a, c) · e(b, c). That is,∑
c∈M

e(a, c) · e(b, c) ≥
∑
c∈M

min{e(a, c), e(b, c)} ≥ e(a, b) .

Therefore,

Pr[χi,j(a, b) = 1] ≥
∑
c∈M

e(a, b)

d(a) · d(b)
. (25)

We next show that there exists a relatively large set of edges between pairs (a, b) where a, b ∈ H, for which
Pr[χi,j(a, b) = 1] = Ω̃(1/n). We shall refer to such pairs a, b as useful pairs. This will imply that the expected

number of triangles detected when selecting an edge between one of these pairs is Ω̃(θ21/n). By the setting
of θ1, this is greater than 1. Our definition of this set of useful pairs will also ensure that the variance is
bounded, allowing us to deduce that a triangle is detected with sufficiently high probability. Details follow.

We start by partitioning the set T2 into subsets as follows. First, for each triangle ∆ ∈ T2, we denote it
by (a∆, b∆, c∆), where, without loss of generality, a∆, b∆ ∈ H. For every four integers xA, xB , yA,C , yB,C ,
the subset T2(xA, xB , yA,C , yB,C) consists of all triangles ∆ ∈ T2 for which the following holds. d(a∆) ∈
[2xA−1 ·θ1, 2xA ·θ1), d(b∆) ∈ [2xB−1 ·θ1, 2xB ·θ1), e(a∆, c∆) ∈ [2yA,C−1, 2yA,C ), and e(b∆, c∆) ∈ [2yB,C−1, 2yB,C ).

Let T ∗
2 = T2(x∗

A, x
∗
B , y

∗
A,C , y

∗
B,C) be the largest subset, so that |T ∗

2 | ≥ ϵ3m/ log4 n. Let A∗ def
= {a∆ : ∆ ∈ T ∗

2 }
and B∗ def

= {b∆ : ∆ ∈ T ∗
2 }. For each pair of vertices a ∈ A∗ and b ∈ B∗, let E∗(a, b) be the subset of edges

between a and b such that there exists ∆ ∈ T ∗
2 for which a = a∆ and b = b∆, let e

∗(a, b) = |E∗(a, b)| and let

C∗
a,b

def
= {c∆ : a = a∆, b = b∆,∆ ∈ T ∗

2 }. We have:

s∗
def
=

∑
a∈A∗,b∈B∗

e∗(a, b) ≥ ϵ3m

log4 n
, (26)

and for every a ∈ A∗ and b ∈ B∗, similarly to what was argued before regarding e(a, b),∑
c∈C∗(a,b)

e(a, c) · e(b, c) ≥ e∗(a, b) . (27)

Let

P ∗ def
=

{
(a, b) : a ∈ A∗, b ∈ B∗, e∗(a, b) ≥ s∗

2 · |A∗| · |B∗|

}
. (28)
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Since ∑
(a,b)∈A∗×B∗\P∗

e∗(a, b) ≤ |A∗| · |B∗| · s∗

2 · |A∗| · |B∗|
= s∗/2 , (29)

by Equation (26), ∑
(a,b)∈P∗

e∗(a, b) ≥ ϵ3m

2 log4 n
. (30)

By Equation (30) and the premise of the claim regarding D, if we select an edge according to D, then
the probability that we obtain an edge in E∗(a, b) for (a, b) ∈ P ∗ is Ω(ϵ3/ log

4 n). Fixing any such pair (a, b),
we slightly modify the definition of the random variables χi,j(a, b) so that χi,j(a, b) = 1 if and only if the
ith random sampled neighbor of a and the jth random sampled neighbor of b are both a common neighbor
c ∈ C∗(a, b) (the original definition allowed any common neighbor c (other than vg)). We next upper bound
the probability that

∑
i,j∈[θ1]

χi,j(a, b) = 0. Let

µ(a, b)
def
=

∑
c∈C∗(a,b)

e(a, c)

d(a)
· e(b, c)

d(b)
, (31)

so that E[χi,j(a, b)] = Pr[χi,j(a, b) = 1] = µ(a, b). Since (a, b) ∈ P ∗, by Equations (26)–(28),

µ(a, b) ≥ e∗(a, b)

d(a) · d(b)
≥ ϵ3m

2 log4 n · d(a) · d(b) · |A∗| · |B∗|
≥ ϵ3

8 log4 n ·m
, (32)

where we have used the fact that d(a) · |A∗| ≤ 2m′ ≤ 2m and d(b) · |B∗| ≤ 2m′ ≤ 2m. From this point on we
shall use the shorthand χi,j for χi,j(a, b) and µ for µ(a, b).

At this point we would have liked to apply Corollary 16 to upper bound the probability that
∑

i,j∈[θ1]
χi,j =

0, but it does not exactly meet our needs, and hence we give a direct proof. First we observe that

E

 ∑
i,j∈[θ1]

χi,j

 = θ21 · µ . (33)

By applying Claim 15 (see Appendix G), with s1 = s2 = θ1 and using the notation µ1,2 = Pr[χi,j1 = χi,j2 = 1]
(for every i, j1, j1 ∈ [θ1]) and µ2,1 = Pr[χi1,j = χi2,j = 1] (for every i1, i2, j ∈ [θ1]) from that claim, we have
that

V

 ∑
i,j∈[θ1]

χi,j

 ≤ θ21 · µ+ θ31 · µ1,2 + θ31 · µ2,1 +

(
θ1
2

)2

· µ2 − (θ21 · µ)2 . (34)

By Chebishev’s inequality and the above two equations,

Pr

 ∑
i,j∈[θ1]

χi,j = 0

 ≤
V
[∑

i,j∈[θ1]
χi,j

]
(
E
[∑

i,j∈[θ1]
χi,j

])2 ≤ 1

θ21µ
+

µ1,2

θ1 · µ2
+

µ2,1

θ1 · µ2
. (35)

We next upper bound each of the three terms on the right-hand-side of Equation (35).
By Equation (32) and the setting of θ1 = c1 · n1/2 log2 n/ϵ2, the first term contributes at most 1/6 (for a

sufficiently large constant c1).
Turning to the second term,

µ1,2 = Pr[χi,j1 = χi,j2 = 1] =
∑

c∈C∗(a,b)

e(a, c) · (e(b, c))2

d(a) · (d(b))2
. (36)
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By the definition of µ in Equation (31) and again using Equations (26)–(28), the second term is upper
bounded by

1

θ1
·
d(a) ·

∑
c∈C∗(a,b) e(a, c) · (e(b, c))2(∑

c∈C∗(a,b) e(a, c) · e(b, c)
)2 ≤ 1

θ1
· d(a) · |C∗(a, b)| · 2y

∗
A,C · 22y

∗
B,C

|C∗(a, b)|2 · 22(y∗
A,C−1) · 22(y∗

B,C−1)
(37)

=
1

θ1
· 16d(a)

|C∗(a, b)| · 2y∗
A,C

(38)

≤ 1

θ1
· 16d(a)

e∗(a, b)
(39)

≤ 1

θ1
· 8 log

4 n · d(a) · |A∗| · |B∗|
ϵ3m

(40)

≤ 16 log4 n · |B∗|
ϵ3θ1

. (41)

Since |B∗| ≤ 2m/θ1 (as B∗ ⊆ H), by the setting of θ1, the contribution of this term is at most 1/6 as well.
For the third term we have that

µ2,1 = Pr[χi1,j1 = χi1,j2 ] =
∑

c∈C∗(a,b)

(e(a, c))2 · e(b, c)
d(a) · d(b)

. (42)

By essentially the same argument as the one bounding the second term (replacing the roles of a and b (A∗

and B∗), this term contributes at most 1/6 as well.
We have thus shown that, conditioned on selecting an edge between a pair (a, b) ∈ P ∗, the probability

that we obtain a triangle is at least 1/2, and Claim 10 follows. □

In order to complete the proof of Claim 9 by applying Claim 10, we make the following observations.
First, by the construction of G′, each vertex in L′ corresponds to exactly one blue edge in G′. In particular,
if we select a vertex in L′ and query all its neighbors (as done in the algorithm), then we effectively obtain
an edge in G′. Since |C′

3| = Ω(ϵ2m), we have that |L′| = Ω(ϵ2n). Therefore, the probability in each iteration
that the algorithm selects a vertex in L′, and hence an edge in G′, is Ω(ϵ2).

Next, consider each of the endpoints u of such an edge. If d(u) ≤ θ1, then our algorithm queries all the
neighbors of u, and for each neighbor v of u such that d(v) ≤ θ0, the algorithm queries all the neighbors of
v. This implies that the algorithm reaches all of the neighbors u′ ∈ M ′ of u in G′ (as in the corresponding
case described in Claim 10). Similarly, if d(u) > θ1, then our algorithms samples θ1 random neighbors of u,
and for each sampled neighbor v such that d(v) ≤ θ0, it queries all the neighbors of v. This implies that for
every u′ ∈ M ′, the probability that it is reached from u by such a length-2 path in G, is at least as large as
the probability that it is reached in one random step from u in G′. Since blue triangles in G′ correspond to
C6s in G, Claim 9 follows. □

The proof of Theorem 11 follows directly from Claims 7–9 (together with the description of the algorithm
for obtaining the upper bound on the complexity of the algorithm).

E A lower bound of Ω(n1/3) for all constant-length cycles

For the ease of readability, we first restate Theorem 2

Theorem 2 Let k ≥ 6. Any one-sided error tester for the property of Ck-freeness in graphs of constant
arboricity over n vertices must perform Ω(n1/3) queries.

As noted in the introduction, the lower bound stated in Theorem 2 also applies to graphs with non-
constant arboricity by adding a Ck-free subgraph with higher arboricity. For an odd k, it suffices to add
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a dense bipartite graph, and for even k, by the Erdős girth conjecture [16], one can add a subgraph with
arboricity n2/k.

To prove the theorem we shall reduce (in a non black-box manner) from the following result:

Theorem 12 ([3, Lemma 2]) Every one-sided error algorithm for testing triangle-freeness in graphs with
n′ vertices and average degree d must perform Ω(d, n′/d) queries. This lower bound holds even when the
maximum degree is O(d).

Lemma 11 (Implicit in the proof of Lemma 2 in [3]) There exists a family of (multi-)graphs Gn′ such
that the following holds.

• The graphs are tripartite and have n′ vertices in each part

• The graphs are d-regular for d = Θ(
√
n′),

• All but at most a small constant fraction of graphs in the family are Ω(1)-far from triangle-free.

Every algorithm that uses neighbor and/or vertex-pair queries on a graph selected uniformly at random
from Gn′ must perform Ω(

√
n′) queries before it views a triangle with sufficiently high constant probability.

Furthermore, this holds even when the algorithm knows in advance which vertex belongs to which of the three
parts.

Proof of Theorem 2: To prove the theorem, assume towards a contradiction that there exists a one-sided
error algorithm A for testing Ck-freeness using at most n1/3/c queries (for some constant c) in graphs with
n vertices and arboricity 2. We shall prove that there exists an algorithm A′ that finds, with high constant
probability, a triangle in graphs selected uniformly from Gn′ using at most

√
n′/c′ queries for some constant

c′, thus reaching a contradiction to Lemma 11.
Algorithm A′ will operate as follows. Given query access to a graph G′ ∈ Gn′ , algorithm A′ (implicitly)

defines a graph G and invokes algorithm A on it, where each query to G is answered using a constant number
of queries to G′ (in expectation). Once A terminates its execution on G, if it found a Ck in G, then A′

returns a corresponding triangle in G′, where there is a small probability (o(1)) that A′ terminates early
(before A makes its decision).

We shall show that if G′ is ϵ′-far from triangle-free, then G is ϵ = Ω(ϵ′)-far from Ck-free. In such a case
(when executed with a distance parameter ϵ), A must reject G with high constant probability. Since A has
one-sided error, when it rejects, it must have evidence in the form of a Ck.

18

For every graph G′ in Gn′ , we consider an orientation of its edges so that for edge (u, v) if id(u) < id(v),
then the edge is oriented from u to v. For ease of presentation, assume for now that k is divisible by 3. The
graph G is constructed in two steps where the first is deterministic and the second is randomized. First a
graph G+ is obtained by replacing each oriented edge e = (u, u′) in G′ with a path of length k/3, where the
original endpoints are kept in G+, and ℓ = k/3− 1 new vertices v1e , . . . , v

ℓ
e are added along the path (where

u = v0e and u′ = vℓ+1
e ). We refer to the set of vertices in G+ that originated from endpoints of edges in G′ as

“original vertices”, and to the set of new vertices as “path vertices”. See Figure 4 for an illustration. (Note
that even if the graph G′ has parallel edge, since every edge in G′ is replaced by a distinct path in G+, the
resulting graph G+ has no parallel edges.)

In the second step, the graph G is obtained by applying a random permutation on the ids of the vertices
of G+, where the permutation is applied separately to the ids of the original vertices and to the ids of the
path vertices. That is, the algorithm A′ knows at the beginning of its execution, what is the set of ids of
the original vertices and of path vertices. If k is not divisible by 3, then to obtain G+ from G′, a similar
process to the above is done with either ⌈k/3⌉, ⌈k/3⌉, ⌊k/3⌋ or ⌈k/3⌉, ⌊k/3⌋, ⌊k/3⌋, where all edges between
the same two parts in the original graph G′, are replaced by a path of the same length in G+.

18This statement holds for the graphs constructed, and assuming the number of queries performed by A is indeed at most
n1/3/c. The reason is that if after performing these many queries the algorithm did not detect a Ck, then the algorithm’s
“knowledge graph” (which includes all queried edges as well as degrees) can be completed to a graph that is Ck-free.
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Recall that all graphsG′ in Gn′ havem′ = Θ(n′·d) = Θ(n′3/2) edges so thatG has n = Θ(k·m′) = Θ(n′3/2)

vertices and m = Θ(n′3/2) edges (recall that k is a constant). Also note that G has arboricity 2, as for any
subgraph of G, its average degree is at most 2.

Observe that by the above construction, every triangle in G′ is transformed into a k-cycle in G, and every
k-cycle inG originates from a triangle inG′. Therefore, if a k-cycle is detected inG, then a triangle is detected
in G′. We also claim that the distance is preserved (up to a constant factor), i.e., that dist(G,Ck-free) =
Ω(dist(G′, C3-free)). To verify this, let R be a minimum-size set of edges so that if we remove R from G,
then it becomes Ck-free. Map each edge e ∈ R that resides on some path in G to the edge e′ ∈ E(G′) that
this path replaced, and let R′ be the set of edges that R maps to. Then |R′| = |R|, and removing R′ from
G′ will make G′ triangle-free.19 Therefore,

dist(G′, C3-free) ≤
|R′|
m′ =

|R|
m′ ≤ |R|

m · ⌊3/k⌋
= Ω(dist(G,Ck-free)) , (43)

as claimed.
Hence, given access to G′ in Gn′ , we shall invoke A on G. If G′ is ϵ′-far from being triangle-free (for some

constant ϵ′, as almost all graphs in Gn′ are), then G is ϵ′/c′-far from being Ck-free for some constant c′.
Therefore, by the assumption on A, we can, with high constant probability, using at most n1/3/c ≤

√
n′/c′

queries on G, obtain a triangle in G′. Thus we get a contradiction to Lemma 11.
It remains to show that the invocation of A on G can be simulated by giving A′ query access to G′, with

the same order of query complexity.
To answer queries to G using queries to G′, A′ constructs uniform permutations σ1 ∈ Πn′ and σ2 ∈ Πn−n′

“on the fly”, so that σ1 maps original vertices in G to original vertices in G+ and σ2 maps path vertices in
G to path vertices in G+.

Let I1,t ⊂ [n′] and I2,t ⊂ [n′ + 1, n] be the set of indices, for which σ1 and σ2, respectively, were not
yet decided on by the tth query. Further let σ(I1,t) and σ(I2,t) be the set of indices in [n′] and [n′ + 1, n],
respectively, that were not yet mapped to by σ by the tth query. For any t ≥ 0, the t+ 1 query is answered
by A as follows.

Degree queries deg(u): Recall that every G′ ∈ Gn′ is d-regular, so that all the original vertices in G have
degree d. Also, by construction, all path vertices in G have degree exactly 2. Finally, by construction, the
set of ids of each group of vertices is known in advance. Hence, we can assume without loss of generality
that no degree queries are performed.

Neighbor queries nbr(u, p): The query is answered differently depending on whether u ∈ [n′] or u ∈
[n′+1, n]. If u ∈ [n′], then A′ first selects σ1(u) by choosing an index in [n′]\σ1(It) u.a.r.. Then A′ performs
a neighbor query on the original vertex σ(u) in G′. That is, A′ performs the query nbr(σ(u), p) on G′. Let
e′ = (σ(u), v) denote the returned edge. If v was not previously discovered (i.e., was not previously queried
or was returned as an answer to a previous query), then A′ decides on its id in G , i.e., σ−1

1 (v), by choosing
uniformly from the indices in [n′] \ I1,t. A′ also performs a path labeling process on the path that replaces
the edge e′ in G: Let v1e′ , . . . , v

ℓ
e′ be the path vertices in G+ that on the path that replaced the edge e′ in G′

(where σ(u) = v0e′ and v = vℓ+1
e′ ). A′ labels the path vertices by choosing for each vre′ a value σ−1

2 (vre′) u.a.r.
in [n′ + 1, n] \ I2,t. Finally, A′ answers the query with all the vertices of the path and their ids. We refer to
this as a “path answer”.

We turn to the case that the neighbor query is performed on a path vertex. That is, u ∈ [n′ + 1, n]. In
this case we would like to map u ∈ G to an edge e′ ∈ G′. Recall that the id u not only specifies that u
is a path vertex, but also to which two parts its path belongs to. Assume without loss of generality that
u belongs to the set of path vertices that reside on paths between parts 1 and 2. In order to map u to an
edge between parts P1, P2, we need to first sample an edge e between P1 and P2 uniformly at random (we

19Assume the contrary, i.e., that after removing R′ from G′, there exists a triangle in G′. Then the three paths in G that
replaced this triangle are disjoint from R, as otherwise this path would not have survived. Therefore, G after removing R is
not Ck-free which is a contradiction to the definition of R.
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shortly explain how). If the edge e′ ∈ G′ has already been discovered, then A′ terminates and returns that
G′ is triangle free. This only happens with negligible probability O(Q/m) = o(1), where Q is the number of
queries performed by A. Otherwise, A′ draws a uniform index r ∈ [ℓ], and lets σ(u) = vre′ . Then A′ performs
a path labeling process on the remaining path vertices and returns a path answer for e′.

To sample a uniform edge in G′ between two specific parts, say P1 and P2, A′ samples w in the set of
indices of P1 and r′ ∈ [d] u.a.r. and performs neighbor queries nbr(w, r′) on G′ until the returned neighbor
belongs to the desired part, in this case P2. Since G

′ is d-regular, this results in a uniformly distributed edge
e′ in E(P1, P2). Note that since every vertex v ∈ G has exactly half of its neighbors in each of the other
two parts, the above process returns an edge in the desired part with probability 1/2. Hence, the expected
number of queries per one query simulation is constant.

Pair queries pair(u1, u2): If the two queried vertices are original vertices in G′ then the answer to the
query is no. If at least one of them is a path vertex, then A maps it to an edge, as described above for
neighbor queries, and answers accordingly.

Finally, as each query to G can be simulated in a constant number of queries to G′ in expectation, it
follows that with high probability 1 − o(1) (over the randomness of A′), the total number of queries does
not exceed that of A by more than a constant factor, and otherwise A′ may terminate. This concludes the
proof. □

F A general upper bound for testing Ck-freeness (and F -freeness
in general)

In this we section describe and analyze our algorithms for testing Ck-freeness, for even and odd k, and more
generally for F -freeness, for any fixed subgraph F . We shall use k to denote the number of vertices in F
(which is consistent with the special case that F = Ck). In order to present the result for F -freeness, we
introduce a measure that extends the notion of the size of a minimum vertex cover.

Definition 1 For a graph F = (VF , EF ) let VC(F ) denote the set of all vertex covers of F . For a vertex
cover Z of F we denote by VC′(Z) the set of vertex covers of F that are subsets of Z. We define ℓ(F ) =
maxZ∈VC(F )

{
minB∈VC′(Z) (|B|)

}
.

Observe that by Definition 1, we have that ℓ(F ) is lower bounded by the size of a minimum vertex cover of
F and is upper bounded by k = |VF |.

Our algorithm for testing F -freeness appears next. The algorithm receives the number of edges, m, as a
parameter. We note that m can be an upper bound on the number of edges of the graph. The algorithm
also receives α as a parameter. As noted before, if m is given (and not just an upper bound) then we can
estimate the effective arboricity instead of receiving α as a parameter. Another option is to receive only α
(without m) and use αn as an upper bound on m.

Test-subgraph-freeness(F, n,m, α, ϵ)

1. Set θ0 = 4α/ϵ.

2. Sample u.a.r. s =Θ
(
k2+1/ℓ(F ) ·m ·

(
α
m

)1/ℓ(F ) ·
(
1
ϵ

)1+2/ℓ(F )
)
vertices from G (where ℓ(F ) is as defined

in Definition 1).

3. Query all the neighbors of every vertex v in the sample such that d(v) ≤ θ0 .

4. Reject if and only there is a witness for F in the resulting subgraph.
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In order to analyze the algorithm Test-subgraph-freeness, we introduce some definitions, and prove a
claim regarding sampling of tuples.

For the threshold θ0 as defined in the algorithm, let L denote the subset of vertices in G whose degree is
at most θ0, and let H denote the subset of vertices whose degree is greater than θ0. We refer to the former
as light vertices and the latter as heavy vertices. We say that a subset of subgraphs of G (in particular, that
are isomorphic of F ), are light-vertex-disjoint if they do not share any light vertex. Let G≤θ0 denote the
subgraph of G that contains all vertices of G but only edges that have at least one light endpoint.

Claim 12 Let X be a set of elements and let T = {(xj
1, . . . , x

j
ℓ)}j∈[|T |] be a set of ℓ-tuples of elements of

X such that each x ∈ X appears at most once in some ρ ∈ T (namely, the ℓ-tuples are disjoint and each
tuple contains distinct elements). Let S = {u1, . . . us} be a multi-set of s elements chosen independently,
uniformly, at random from X. If s ≥ 16ℓ|X|/(|T |1/ℓ), then with high constant probability over the choice of
S, it contains ℓ elements that belong to a common tuple in T .

Proof: We say that an ℓ-tuple of indices (i1, . . . iℓ) where ij ∈ [s] for each j ∈ [ℓ] is good with respect to S
and T if (ui1 , . . . uiℓ) belongs to T . Let r =

(
s
ℓ

)
· ℓ! denote the number of different ℓ-tuples of indices in [s].

Consider any fixed ordering of these tuples, and let χi be the indicator variable for the event that the i-th
tuple of indices is good with respect to S and T . We next upper bound the probability that

∑
i∈[r] χi = 0.

Let µ = E[χi] and χ̄i = χi − µ, so that E[χ̄i] = 0. By Chebyshev’s inequality,

Pr

∑
i∈[r]

χi = 0

 ≤
V
[∑

i∈[r] χi

]
(
E
[∑

i∈[r] χi

])2 =

∑
i,j E[χ̄i · χ̄j ]

r2 · µ2
. (44)

We first calculate:

E

∑
i∈[r]

χi

 = r · µ =

(
s

ℓ

)
· ℓ! · |T | ·

(
1

|X|

)ℓ

=
s!

(s− ℓ)!
· |T | ·

(
1

|X|

)ℓ

≥ (s/2)ℓ · |T | ·
(

1

|X|

)ℓ

≥ (8ℓ)ℓ . (45)

We next break the sum
∑

i,j E[χ̄i · χ̄j ] into several sub-sums as follows. We say that (i, j) ∈ [r]× [r] is in
Rt if the number of elements (namely, indexes of samples) that belong both to the i-th tuple and the j-th
tuple is exactly t (namely the intersection of the tuples is of size t when they are viewed as sets).

If (i, j) ∈ R0 then χi and χj are independent and so

E[χ̄i · χ̄j ] = E[χ̄i] · E[χ̄j ] = 0 . (46)

Hence, the pairs in R0 do not contribute anything to the right-hand side of Equation (44).
If i = j then

E[χ̄i · χ̄j ] = E[(χ̄i)
2] ≤ E[(χi)

2] = E[χi] = µ , (47)

where the second inequality follows from the definition of χ̄i.
Given that (i, j) ∈ Rt it holds that

E[χ̄i · χ̄j ] ≤ E[χiχj ] ≤ |T | ·
(

1

|X|

)2ℓ−t

. (48)

Since there are at most
(
ℓ
t

)
· s2ℓ−t pairs in Rt we obtain that

∑
(i,j)∈Rt

E[χ̄i · χ̄j ] ≤
(
ℓ

t

)
· s2ℓ−t · |T | ·

(
1

|X|

)2ℓ−t

≤ ℓt · |T | ·
(

s

|X|

)2ℓ−t

≤ ℓℓ · |T | ·
(

s

|X|

)ℓ

=

(
|T |1/ℓ · ℓ · s

|X|

)ℓ

≤ (16ℓ2)ℓ , (49)
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Thus, ∑
i,j E[χ̄i · χ̄j ]

r2 · µ2
≤ 1

rµ
+

ℓ(16ℓ2)ℓ

(rµ)2
≤ 1

(8ℓ)ℓ
+

ℓ(16ℓ2)ℓ

(8ℓ)2ℓ
≤ 1

8
+

ℓ

22ℓ
≤ 3

8
, (50)

which concludes the proof of the claim. □

Theorem 13 The algorithm Test-subgraph-freeness is a one-sided error tester for F -freeness whose query
complexity is

O

(
k2+1/ℓ(F ) ·m ·

( α

m

)1/ℓ(F )

·
(
1

ϵ

)1+2/ℓ(F )
)

.

Proof: The completeness of the tester follows by construction. We next prove its soundness (where we start
similarly to previous proofs). Assume G is ϵ-far from being F -free. By the setting of θ0 = 4α/ϵ, the graph
G≤θ0 is ϵ/2-far from being F -free. By the definition of G≤θ0 , every copy of F in G≤θ0 (i.e., subgraph of
G≤θ0 that is isomorphic to F ) only contains edges that are incident to light vertices. Consider an iterative
process, that constructs a set F of light-vertex-disjoint copies of F in G≤θ0 in the following greedy manner.
In each iteration it selects a new copy of F in G≤θ0 that does not share any light vertices with previously
selected copies. It follows that |F| ≥ ϵm/(2θ0k) (to see this consider a greedy process which removes all the
edges that are incident to the light vertices of previously selected copies).

From each one of these copies we pick a subset of light vertices that covers the edges of this copy (since
the copy is in G≤θ0 there exists a vertex cover which is composed of only light vertices). Moreover, by the
definition of ℓ(F ), it suffices to pick ℓ(F ) light vertices for each copy. By ordering these vertices (arbitrarily)
we obtain an ℓ(F )-tuple of light vertices for each one of these copies. Let T to be the set of ℓ(F )-tuples
corresponding to these copies. According to Claim 12, if we set s to be at least 16ℓ(F )n/((ϵm/(2θ0k))

1/ℓ(F ))
vertices, then w.h.c.p. there exists a copy of F in G such that we hit all its light vertices. Conditioned
on this event, since the algorithm queries all the neighbors of all light vertices in the sample, the copy will
be revealed. By Claim 14, w.h.p., the number of queries the algorithm needs to preform is bounded by

s · 2d̄ = O
(
k2+1/ℓ(F ) ·m ·

(
α
m

)1/ℓ(F ) ·
(
1
ϵ

)1+2/ℓ(F )
)
. If the number of queries exceeds this bound (and the

algorithm did not find a witness for rejection) the algorithm can simply accept. □

Corollary 14 There exists a one-sided error tester for Ck-freeness whose query complexity is

O

(
k2+(2/k)) ·m ·

( α

m

)2/k
·
(
1

ϵ

)1+(4/k)
)

for even k, and

O

(
k2+2/(k+1) ·m ·

( α

m

)2/(k+1)

·
(
1

ϵ

)1+4/(k+1))
)

for odd k.

We next turn to describe and analyze an algorithm for testing Ck-freeness when k is odd, where the
algorithm improves on the upper bound stated in Corollary 14 (when k is odd) for a certain range of values
of α.

We first slightly modify the algorithm Select-an-edge from Section 3 to obtain an algorithm that samples
a uniform edge from G≤θ0 . As shown in [25], the expected running time of this algorithm is O(θ0n/m).

Sample a uniform edge from G≤θ0

• Repeat until an edge is returned:

37



1. Sample u.a.r. a vertex v from V (G).

2. Pick j ∈ [θ0] and toss a fair coin b ∈ {Heads,Tails}.
3. If v ∈ L and v has a j-th neighbour, u then:

(a) If u ∈ H, then return {u, v}.
(b) If u ∈ L and b = Heads, then return {u, v}.

Claim 13 Let E′ be a set of βm edges in G≤θ0 , where β ∈ (0, 1] and let m′ denote the number of edges in
G≤θ0 . If we sample log n/β ≤ y ≤ m′/2 edges uniformly from G≤θ0 , then with high probability we sample at
least cβy different edges from E′, where c is an absolute constant.

Proof: Let Xi denote the indicator variable for the event that the i-th sample is an edge from E′. Since
the edges are sampled uniformly from G≤θ0 , E(Xi) = β. Thus, by multiplicative Chernoff’s bound, with
high probability

∑
i Xi = bβy, where b is a constant. Let Yi be the indicator variable for the event that the

i-th sample is a new edge from E′ (with respect to the (i − 1) first samples). We consider, without loss of
generality, the sampling process as if it first decides the values of Xi for each sample i and then samples the
edges one by one accordingly. Consider the j-th sample. Given the values of Xi for every i and the values of
the samples for each i < j, the probability that the j-th sample is a new edge, conditioned on the event that
Xj = 1 is constant (since y ≤ x/2). Therefore, with high probability we sample cβy different edges from E′

for some absolute constant c. □

Test-Ck-freeness when k is odd(n,m,α, ϵ)

1. Set θ0 = 4α/ϵ.

2. Sample u.a.r. s1 = Θ
(
k ·m1− 2

k−1 · (1/α)1−
4

k−1 · ϵ1−
6

k−1

)
edges from G≤θ0 (as described above). For

each edge in the sample, reveal the neighborhood of both endpoints if both are light.

3. If k > 3, then sample u.a.r. s2 = O
(
k · n · (α2/m)

2
k−1 ·

(
1
ϵ

) 6
k−1

)
vertices and reveal the neighborhood

of all the light vertices in the sample.

4. Reject iff there is a witness for Ck in the resulting subgraph.

The following bound is an improved bound for testing Ck-freeness for odd k whenever m = Ω(α(k+3)/2)
and in particular when α is a constant.

Theorem 15 There exists a one-sided error tester for Ck-freeness for odd k whose query complexity is

O

(
k ·m · (α2/m)

2
k−1 ·

(
1

ϵ

) 6
k−1

)

Proof: The completeness of the tester follows by construction. We next prove its soundness. Assume G is
ϵ-far from being Ck-free. As in the proof of Theorem 13, there exists a set C of light-vertex-disjoint copies
of Ck in G≤θ0 such that |C| ≥ ϵm/(2θ0k). For each one of the copies in C we pick a subset of light vertices
that covers the edges of this copy (since the copy is in G≤θ0 there exists a vertex cover which is composed of
only light vertices). By the structure of Ck, it suffices to pick ⌈k/2⌉ light vertices from each copy. Moreover,
exactly one pair of these vertices are on the same edge of the corresponding copy Ck. By excluding this pair
and ordering the rest of these vertices (arbitrarily) , we obtain an (k − 3)/2)-tuple of light vertices for each
one of these copies.

Let T denote the set of these tuples. We also consider the set of pairs of vertices we excluded from each
copy. Each such pair is an edge of a Ck in C. Denote this set of edges by Y , so that |Y | ≥ ϵm/(2θ0k). By
Claim 13, w.h.p., we sample at least cϵs1/(2θ0k) edges from Y (where c is a constant). Let T ′ ⊆ T be the
set of tuples corresponding to copies for which we sampled an edge from Y . By the above, w.h.p., |T ′| ≥
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cϵs1/(2θ0k). Conditioning on this event, according to Claim 12, if s2 is at least 16kn/(cϵs1/(2θ0k))
2/(k−3),

then w.h.c.p. the algorithm will find a copy of Ck. By Claim 14 the expected query complexity of the

algorithm is bounded by O(s1 · θ0 + s2 · d̄) = O
(
k ·m1− 2

k−1 · α
4

k−1 ·
(
1
ϵ

) 6
k−1

)
. Thus, by Markov’s inequality,

if the number of queries exceeds this bound (and the algorithm did not find a witness for rejection) the
algorithm can simply accept. □

Claim 14 Let d̄ be the average degree in G, and let S = {v1, . . . , vs} be a uniform sample of size at least
s = (θ0/d̄) · 12 ln(1/δ) vertices (with repetitions). Let χi = d(vi) if d(vi) ≤ θ0 and χi = 0 otherwise. Then
with probability at least 1− δ, 1

s

∑s
i=1 χi ≤ 2d̄.

Proof: It holds that E[χi] ≤ 1
n

∑
v∈V d(v) = d̄. For any ϵ < 1

2 , E[χi] ≥ 1
n

∑
v:d(v)≤t d(v) ≥

1
n ·2(1− ϵ)m ≥ d̄.

Also, for every i ∈ [s], χi ∈ [0, θ0] for every i. Let xi = χ/θ0 and X =
∑s

i=1 xi. Then the xi’s are
bounded independent random variables in [0, 1] with E[X] ≤ s · d̄/θ0. Therefore, by a coupling argument
and the multiplicative Chernoff’s bound

Pr

[
X > 2s · d̄

θ0

]
≤ exp

(
−s · d̄/3θ0

)
< δ.

□

G Some probabilistic claims

Claim 15 For integers s1 and s2 let {χi,j}(i,j)∈[s1]×[s2] be Bernoulli random variables for which the following
holds.

1. Pr[χi,j = 1] = µ for every (i, j) ∈ [s1]× [s2].

2. For every i1, i2 ∈ [s1], j1, j2 ∈ [s2] such that i1 ̸= i2 and j1 ̸= j2, the random variables χi1,j2 and χi2,j2

are independent.

3. For every i ∈ [s1], j1, j2 ∈ [s2] such that j1 ̸= j2, Pr[χi,j1 = χi,j2 = 1] = µ1,2, and for every i1, i2 ∈ [s1]
and j ∈ [s2] such that i1 ̸= i2, Pr[χi1,j = χi2,j = 1] = µ2,1.

Then

V

 ∑
i∈[s1],j∈[s2]

χi,j

 ≤ s1 · s2 · µ+ s1 ·
(
s2
2

)
· µ1,2 +

(
s1
2

)
· s2 · µ2,1 .

Proof: For each pair (i, j) ∈ [s1] × [s2], let χ̄i,j = χi,j − µ, so that χ̄i,j ≤ χi,j , and E[χ̄i,j ] = 0. By the
definition of the variance,

V

 ∑
i∈[s1],j∈[s2]

χi,j

 =
∑

(i1,j2),(i2,j2)∈[s1]×[s2]

E[χ̄i1,j1 · χ̄i2,j2 ] . (51)

We upper bound the right-hand-side of Equation (51) by breaking the sum
∑

i1,j2,i2,j2
E[χ̄i1,j1 · χ̄i2,j2 ]

into four sub-sums.

The first is over (i1, j1), (i2, j2) ∈ [s1]× [s2] such that all four indices are distinct. By the second condition
in the claim, for such quadruples of indices, χi1,j1 is independent of χi2,j2 and so

E[χ̄i1,j1 · χ̄i2,j2 ] = E[χ̄i1,j1 ] · E[χ̄i2,j2 ] = 0 . (52)
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The second is over i1 = i2 and j1 = j2, so that

E[χ̄i1,j1 · χ̄i2,j2 ] = E[(χ̄i1,j1)
2] ≤ E[(χi1,j1)

2] = E[χi1,j1 ] = µ , (53)

where the second inequality follows from the definition of χ̄i,j . There are s1 × s2 such quadruples.

The third is over i1 = i2 and j1 ̸= j2, in which case we have

E[χ̄i1,j1 · χ̄i1,j2 ] ≤ E[χi1,j1 · χi1,j2 ] = Pr[χi1,j1 = χi1,j2 = 1] = µ1,2 . (54)

There are s1 ×
(
s2
2

)
such pairs.

The fourth is over i1 ̸= i2 and j1 = j2, where similarly to the third case we get

E[χ̄i1,j1 · χ̄i2,j2 ] ≤ µ2,1 (55)

where there are
(
s1
2

)
· s2 such pairs.

The claim follows by summing all four sub-sums. □
The next claim is very similar to Claim 15, but the setting is slightly different, and will be used in our

analysis several time. In what follows, for an integer s we use Φ(s) to denote the set of pairs i, j ∈ [s] such
that i < j.

Claim 16 For an integer sl let {χi,j}(i,j)∈Φ(s) be Bernoulli random variables for which the following holds.

1. Pr[χi,j = 1] = µ for every (i, j) ∈ Φ(s).

2. For every i1, i2 ∈ [s1], j1, j2 ∈ [s2] such that i1 ̸= i2 and j1 ̸= j2, the random variables χi1,j2 and χi2,j2

are independent.

3. For every (i1, j1) ∈ Φ(s) and (i2, j2) ∈ Φ(s) such that exactly two of the four indices are the same,
Pr[χi1,j1 = χi2,j2 = 1] = µ1,2.

Then V
[∑

(i,j)∈Φ(s) χi,j

]
≤
(
s
2

)
· µ+

(
s
3

)
µ1,2.

The proof of Claim 16 is very similar to the proof of Claim 15, and is hence omitted. As a corollary of this
claim we get:

Corollary 16 For an integer s let {χi,j}(i,j)∈Φ(s) be Bernoulli random variables where Pr[χi,j = 1] = µ for
every (i, j) ∈ Φ(s). Suppose that the following conditions hold for some c1 > 0 and c2 > 4.

1. For every (i1, j1) ∈ Φ(s) and (i2, j2) ∈ Φ(s) such that the four indices are distinct, χi1,j1 and χi2,j2 are
independent.

2. For every (i1, j1) ∈ Φ(s) and (i2, j2) ∈ Φ(s) such that exactly two of the four indices are the same,
Pr[χi1,j1 = χi2,j2 = 1] ≤ c1 · µ3/2.

3. s ≥ c2/
√
µ .

Then Pr
[∑

(i,j)∈Φ(s) χi,j = 0
]
≤ 1+c1

c2
.

Proof: By Chebishev’s inequality,

Pr

 ∑
(i,j)∈Φ(s)

χi,j = 0

 ≤
V
[∑

(i,j)∈Φ(s) χi,j

]
(
E
[∑

(i,j)∈Φ(s) χi,j

])2 (56)

The denominator of the right-hand-side of Equation (56) equals
(
s
2

)2 · µ2. By Claim 16 and the first two
conditions of the current claim, the numerator of the right-hand-side of Equation (56) is upper bounded by(
s
2

)
· µ+

(
s
3

)
· c1 · µ3/2, so that the claim follows. □
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