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Abstract

We investigated two distinct models incorporating LIV with nonminimal coupling in scattering
processes of e+e−

→ µ+µ−. We verified that employing the model with dual electromagnetic
tensor (F̃µν) led to violations of unitarity in both vector and axial scenarios. Conversely, utiliz-
ing the model with nonminimal coupling with (Fµν) preserved unitarity in both vector and axial
cases. Consequently, this could hold promising implications, considering that the nonminimal
coupling model with dual electromagnetic tensor F̃µν appeared potentially superior to the elec-
tromagnetic tensor Fµν . Hence, we anticipate that these findings might offer a valuable roadmap
for further exploration into the investigation of CPT and Lorentz breaking phenomena, with
phenomenological implications that are certainly not trivial.
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1 Introduction

In the wake of Carroll-Field-Jackiw (CFJ)
seminal work [1] and the subsequent evolution
delineated in the Standard Model Extension
(SME) by Colladay and Kostelecky [2, 3], the
scrutiny of Lorentz covariance breakdown within
the realm of Quantum Field Theory (QFT)
has undergone rigorous examination. This explo-
ration spans across a plethora of domains, encom-
passing a broad spectrum of topics ranging from
supersymmetry [4, 5] to non-commutative field
theory [6–8], and even the realm of gravity
[9]. Another significant area of inquiry inter-
sects intriguingly with the emergence of Lorentz
Invariance Violation (LIV) in string theory [10],
the resurgence of the concept of preferred ref-
erence frames—a modern reinterpretation of the
age-old notion of the ether [11], and recent devel-
opments in condensed matter scenarios [12, 13].
These diverse domains have been investigated in
our prior research endeavors (see [14] and the
references therein).

Having said that, it is imperative still to
envisage that the concept of LIV has been con-
templated as a potential solution to enduring
enigmas across various domains of physics. A par-
ticularly noteworthy instance of this lies within
the domain of cosmic ray physics [15]. While
LIV may not exclusively offer resolutions to these
complex issues, it often emerges as a highly
plausible candidate. This suggests that LIV tran-
scends mere peripheral significance in the scope
of challenging-to-explore physics, implying sub-
stantial implications beyond our current experi-
mental capabilities. Indeed, if alternative expla-
nations fail to adequately address these puzzles,
LIV could potentially emerge as an indispensable
component of the ultimate theory, surpassing
both the Standard Model (SM) of particle physics
and general relativity. Ensuring the validation of
theoretical predictions requires the corroboration
through empirical evidence. Despite recognizing
the inherent difficulties in promptly acquiring
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such evidence, the efforts delineated in the tables
[16] offer an initial insight into potential avenues
for validation.

The SME provides a comprehensive frame-
work for investigating LIV across both high and
low-energy physics domains. By augmenting the
SM lagrangian with Lorentz-violating interaction
terms, the SME encompasses various criteria,
including power counting renormalizability (i.e.
with mass dimension ≤ 4), gauge invariance1

SU(3)×SU(2)×U(1), and incorporation of fields
from the SM. However, within the realm of Quan-
tum Electrodynamics (QED), LIV studies take
on particular significance.2 Pioneered CFJ, initial
investigations in this field continue to be cen-
tral to ongoing inquiry. The CFJ model explores
modifications to electrodynamics through the
introduction of a Chern-Simons (CS) term, high-
lighting deviations from Lorentz symmetry. This
CS term, also incorporated within the SME
framework, yields measurable effects on photo-
dynamics, thereby providing avenues for investi-
gating LIV phenomena. Moreover, its induction
by radiative corrections from other sectors of the
theory underscores the intricate interplay among
different facets of the theoretical framework.

Experimental tests of Lorentz Invariance (LI)
stand as paramount endeavors, serving to scru-
tinize the fundamental symmetries underpinning
the fabric of the universe.3 Within this context,
understanding LIV becomes imperative. LIV,
rather than denoting a forfeiture of covariance,
suggests nuanced variances within specific parti-
cle sectors, potentially stemming from phenom-
ena such as quantum gravity at immensely high
energies. Despite Lorentz symmetry enduring
all experimental scrutiny within feasible energy
scales, the quest for LIV necessitates meticu-
lous precision. Detecting LIV entails remarkable
accuracy in low-energy physics experiments and
relies on discerning scaling effects in (ultra) high-
energy domains. In low-energy realms, LIV is
typified by LIV-tensors, while modified disper-
sion relations categorize it in high-energy con-

texts. The Planck energy scale EP =
√

~c5

G ≈
1.2 × 1019GeV emerges as a pivotal threshold,
modulating these relations, yet the substantial
energies observed in astrophysical phenomena
facilitate detection despite potential suppression.
Consequently, experimental inquiries into LI con-
strain parameters of modified models or LIV

functions, demanding particle-specific interpreta-
tions.

Exploring the high-energy frontier offers a
unique avenue to interrogate nature’s fundamen-
tal laws, motivating endeavors such as muon col-
liders. The potential to reach multi-TeV energy
regimes in a muon collider unlocks opportuni-
ties for probing Higgs boson properties. Projects
like LEMMA [20] investigate muon production
from e+e− annihilation, aiming to exploit the
process’s threshold for muon pair production.
Experimental data near this threshold are scarce,
urging precise measurements of production cross
sections and muon pair kinematics to validate
theoretical predictions.

While leading-order QED calculations for
e+e− → µ+µ− are robust, higher-order radiative
effects, particularly due to Coulomb interaction,
gain significance near the kinematic threshold.
Experimental setups, like those employing 45
GeV positrons on Beryllium or Carbon targets,
are devised to study muon pair production in
detail [21]. Specifically, a system comprising seg-
mented and instrumented absorbers, deployed at
CERN North Area beam lines, facilitated the
investigation of e+e− → µ+µ− near the pro-
duction threshold. Initially designed for studying
hadronic showers from LHC interactions, these
absorbers were repurposed to identify and dis-
criminate muons from other particles, contribut-
ing significantly to experimental efforts in this
domain.

The structure of this paper unfolds as follows.
In Section 2, we explore the analysis of the cross-
sectional area for e+e− → µ+µ− annihilation
within the framework of QED. Our investigation
entails examining contributions from Feynman
diagrams at the tree level. In Section 3, we exam-
ine a modified version of QED in four dimensions
with LIV where the coupling between the photon
and the fermions consists of two distinct terms: a
minimal coupling and a nonminimal coupling. In
Section 4 we present the calculations of the cross
sections with the electromagnetic tensor and the
dual electromagnetic tensor in the vector and
axial scenarios. Finally, in the Section 5, we dis-
cuss and comment on the possible implications of
the results obtained.

1By enforcing the customary SU(3)×SU(2)×U(1) gauge invariance and confining scrutiny to phenomena at low-energy lev-
els, the expansion of the standard model is adequately approximated by the conventional standard model augmented with every
conceivable Lorentz-violating expression of mass dimension equal to or below four, derived from standard-model constituents.

2In recent years, there has been significant scholarly focus on investigating the implications of Lorentz and CPT violation
within the framework of QED. This attention stems primarily from the prospect of spontaneous symmetry breaking occurring
at exceedingly high energies, specifically at the Planck scale.

3Further details can be found in [17–19] (and in references therein).
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2 Muon-pair production by
electron-positron scattering

In the realm of QED, the preeminent influence
on the determination of a cross-sectional area or
decay rate typically emanates from the Feynman
diagram boasting the scantiest array of interac-
tion vertices, distinguished as the lowest-order
diagram. For the annihilation process e+e− →
µ+µ−, a singular lowest-order QED diagram pre-
sides, elegantly depicted in Figure 1. Within
this diagram, a duet of QED interaction ver-
tices adorn its architecture, each endowing the
matrix element with a factor of ieγµ, where e
is the charge of the electron. Consequently, irre-
spective of ancillary deliberations, the squared
matrix element |M|2 exhibits a direct propor-
tionality to e4, or equivalently |M|2 ∝ α2, where
α stands as the adimensional fine-structure con-
stant, α = 1

4πǫ0
e2

~c . Broadly speaking, every QED
vertex contributes a coefficient of α to the expres-
sions dictating cross-sectional areas and decay
rates.

There is one tree diagram for this process

e−

e+ µ+

µ−

−igµν

(p1+p2)2

ieγµ • • ieγν

u(p1, s)

v̄(p2, s
′) v(p4, r

′)

ū(p3, r)

γ

Figure: 1 Scattering e+ + e− → µ+ + µ−.
white line
In the Figure 1 u(p) represents the elec-

tron spinor, v̄(p) = v†(p)γ0 the adjoint
spinor positron, v(p) the anti-muon spinor
and ū(p) = v†(p)γ0 the adjoint spinor
muon. The indices r, r′, s, s′ represent the
spins of particles and antiparticles. In the
center-of-mass frame, the momentum vectors
are chosen such that p1,2 = (Ee, 0, 0,±p),
p3,4 = (Eµ,±Eµ sin θ, 0,±Eµ cos θ)

4, E =
√

(pc)2 + (m0c2)2 represents the total energy,
and m0 denotes the particle rest mass (∼ 0.5
MeV/c2 for the electron and 106MeV/c2 for the
muon). Using the Feynman rules of QED, we can

now write the amplitude for this process.

iM = v̄s
′

(p2)(−ieγµ)us(p1)×
(−igµν

s

)

ūr(p3)(−ieγν)vr
′

(p4), (1)

where −ieγµ is vertex factor usual and
√
s =

p1+p2 = p3+p4
5 is the photon momentum. The

amplitude of the Eq. (1) depends on the spins
of all four particles involved. But in this work
we shall focus on the unpolarized cross-section.
Therefore, the unpolarized cross section in the
centre-of-mass frame can be written in terms of
the scattering angle this way6

(

dσ

dΩ

)

QED

=
α2

4s

√

1−
m2

µ

E2
×

[

1 +
m2

µ

E2
+

(

1−
m2

µ

E2

)

cos2 θ

]

, (2)

where α ≈ 1/137 is fine-structure constant. In
the high-energy assume that the beam energy E7

is much greater than either the muon mass mµ,
so we found

(

dσ

dΩ

)

QED

=
α2

4s

(

1 + cos2 θ
)

. (3)

The total cross section is obted integrating over
dΩ, so

(

dσ

dΩ

)

total

=
4πα2

3s
. (4)

3 Models with nonminimal
coupling

The Lorentz violation terms are generated as vac-
uum expectation values of tensors defined in a
high energy scale. We propose the investigation
of nonminimal coupling terms in the calcule of
cross section in the scatering e++e− → µ++µ−.
In this section four models will be presented that
induce the violation of Lorentz and CPT symme-
try from the presence of a background vector field
that couples the fermion field to the electromag-
netic field. This background four-vector indicates
a preferred direction in spacetime, thus violating
Lorentz symmetry.

4θ is the scattering angle. The azimuth angle φ cancels out in scattering calculations.
5s = E2

cm
, Ecm is the total energy in the center-of-mass frame.

6In this result it was used using the experimental fact that the muon is much heavier than the electron, mµ ≈ 207me.
7E = |p1| = |p2| = |p3| = |p4| = Ecm/2.
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3.1 Nonminimal coupling with

electromagnetic tensor

3.1.1 Vectorial nonminimal coupling

The vectorial nonminimal coupling model is built
from a modification in the covariant derivative of
the QED:

Dvect
µ = ∂µ + ieAµ + ig(kAF )

νFµν , (5)

where g is a effective coupling constant (real)

with mass dimension −2, (kAF )
µ = (b0,~b) = bµ

is the Carroll-Field-Jackiw 4-vector responsible
for that breaks the Lorentz symmetry and CPT
its has dimensions [bµ] = −1 and assuming that
it couples to the electromagnetic field strength
Fµν ≡ ∂µAν − ∂νAµ corresponding to the gauge
field Aµ and whose components are F0i = −Fi0 =
−Ei and Fij = −Fji = ǫijkB

k. This CPT-odd
modification in the covariant derivative above
affects all electron-photon interactions already at
tree level. This LIV scenario with the dimension
operator 5 has been proposed in Ref. [22] in the
context of topological phases. The gauge invari-
ant modified Dirac equation is written in the
form

(iγµDvect
µ −me)ψ = 0, (6)

whereme is electron mass, γµ is the Dirac matrix
and ψ is a Dirac electron spinor. In the Eq.
(5) the term ieAµ is called minimum coupling
while the term igbνFµν of nonminimal coupling
both terms are gauge invariant, however the non-
minimal coupling is not renormalizable. Per the
analysis in [23], the background vector bµ can be
written as

bµ = −1

3
aF .

(5)αµ
α. (7)

In the Ref. [16] the estimated value of bµ is
about 10−32GeV . The Lagrangian density for
this model is given by

Lvect = ψ̄
(

i/∂ − e /A−me − gbµγνFµν

)

ψ

−1

4
FµνF

µν . (8)

where ψ̄ ≡ ψ†γ0 is the conjugate spinor. The last
term corresponds to the Lagrangian of Maxwell’s
theory. The presence of nonminimal coupling in
lagrangian modifies the vertex involving electron-
photon of QED in the following way [24]

ieγµ −→ ieγµ + /qb
µ − (b · q)γµ, (9)

where q represents the four-momentum of the
photon. In section 4, the calculations of the cross
sections were obtained by replacing this vertex
in the scattering amplitude of Eq. (1), as well as
the modified vertices that will appear in the next
models that will be presented below.

3.1.2 Axial nonminimal coupling

Another possible is the axial non-minimal cou-
pling. In this model the modified Dirac equation
is written as [25]

Daxial
µ = ∂µ + ieAµ + igaγ

5bνFµν , (10)

with the chiral Dirac matrix γ5 = γ5 ≡
iγ0γ1γ2γ3. The Lagrangian density of this model
is given by

Laxial = ψ̄
(

i/∂ − e /A−me − gab
µγνγ5Fµν

)

ψ

−1

4
FµνF

µν . (11)

The five-dimensional non-renormalizable axial
term gab

µγνγ5Fµν violate C parity and preserve
PT, therefore violates CPT. Differently the vec-
torial term in Eq. (8) preserve C parity and
violate PT, so it too violates CPT.

3.2 Nonminimal coupling with dual

electromagnetic tensor

3.2.1 Vectorial nonminimal coupling

In this model the covariant derivative with vecto-
rial nonminimal coupling is chosen to be [25, 26]

D̃vect
µ = ∂µ + ieAµ + ig̃b̃νF̃µν , (12)

where the term CPT-odd ig̃b̃νF̃µν is gauge invari-
ant and g̃ is the coupling constant with mass
dimension -2, b̃µ has similar characteristics to bµ

and F̃µν = 1
2ǫ

µναβFαβ is the usual dual field-
strength electromagnetic tensor with ǫ0123 = 1
(Levi-Civita symbol). VSL parameters associ-
ated with other nonminimal derivative couplings
involving the dual electromagnetic tensor have
been limited in Ref. [27] to values ≤ 10−3GeV −1.
A direct consequence of the non-minimal cou-
pling introduced in Dµ is that scalar particles
display a non-trivial magnetic moment. This
terms have been used for the perturbative induc-
tion of the CFJ see [28, 29]. Per the analysis in
[23], the background vector bµ can be written as

b̃µ =
1

6
ǫµναβ a

(5)ναβ
F . (13)
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The Lorentz-violating Lagrange density for
this model is given by

L̃vect = ψ̄
(

i/∂ − e /A−me − g̃b̃µγνF̃µν

)

ψ

−1

4
FµνF

µν . (14)

The vectorial nonminimal coupling can be
written

g̃b̃νF̃
µν = g̃b̃0~γ · ~B+ g̃~̃b · ~Bγ0− g̃~γ · (~̃b× ~E), (15)

where b̃0 and
~̃
b are the time-like and space-

like components of the coefficient b̃µ respectively.
We also have that γ0 is hermitian, ~γ is anti-
hermitian, and are related to the β̂ and ~α matri-
ces through: γ0 = β̂, ~γ = β̂~α. We choose the
Dirac matrices in the form,

β̂ = γ0 =

(

1 0
0 −1

)

and ~γ =

(

0 ~σ
−~σ 0

)

. (16)

The presence of nonminimal coupling in Eq.
(14) generates a modification in the vertices as
follows (see Ref. [24]),

ieγµ −→ ieγµ − ǫµανβγ
αb̃νqβ , (17)

where qµ is the photon momentum pointing into
the vertex.

3.2.2 Axial nonminimal coupling

A axial nonminimal coupling model is obtained
by writing the covariant derivative in the form

D̃axial
µ = ∂µ + ieAµ + ig̃aγ

5b̃νF̃αβ , (18)

this model is called torsion-like nonminimal cou-
pling and the Lorentz-violating Lagrange density
is is written as

L̃axial = ψ̄
(

i/∂ − e /A−me − g̃aγ
5b̃νγµF̃αβ

)

ψ

− 1

4
FµνF

µν . (19)

Similar to the previous model, the axial term
g̃aγ

5b̃νγµF̃αβ violate C parity and preserve PT,
therefore violates CPT. Differently the vectorial
term in Eq. (14) preserve C parity and violate
PT, so it too violates CPT.

4 Results

In this section, we proceed with the calcula-
tions by employing Feynman’s rules, where we

introduce a vertex modified by the nonminimal
CPT-odd coupling term. Specifically, we investi-
gate the unpolarized scattering process e+e− →
µ+µ−. Furthermore, we examine the behavior
of the scattering process in the limit of high
energy, where p21,2 = p23,4 = m2 = 0. In all our
results in this work we consider the scalar prod-
ucts involving the background field up to second
order.

4.1 Vectorial nonminimal coupling

with Fµν

As we said previously, we calculated the scat-
tering amplitude by modifying the vertex of the
QED in Eq. (1) by the vertex presented in Eq.
(9), the result we obtained for the cross section
obtained was

(

dσ

dΩ

)vect

=

(

dσ

dΩ

)

QED

+
α2g2

2s

(

1 + cos2 θ
)

× (b · p1 + b · p2)
2
. (20)

In the case of a purely time-like background, i.e,
bµ = (b0,0), the Eq. (20) will be
(

dσ

dΩ

)vect

t

=

(

dσ

dΩ

)

QED

+
α2g2

2s

(

1 + cos2 θ
)

× (b0 · p1 + b0 · p2)
2
. (21)

In the case of a purely space-like background, i.e,
bµ = (0, b), the Eq. (20) will be8

(

dσ

dΩ

)vect

s

=

(

dσ

dΩ

)

QED

+
α2g2

2s
(b · p1 + b · p2)

×

[

(b · p1 + b · p2)
(

2 + cos2 θ
)

− (b · p3 + b · p4)] . (22)

Note in cross sections of the Eqs. (20), (21) and
(22) that when s → ∞ the results obtained
preserve the unitarity.

4.2 Axial nonminimal coupling

with Fµν

Now, we present the result of the cross section
from the modification of the scattering amplitude
Eq. (1), we obtained

(

dσ

dΩ

)axial

=

(

dσ

dΩ

)

QED

+
α2g2a
s

cos θ

× (b · p1 + b · p2)2 . (23)

In the case of a purely time-like background, the
Eq. (23) will be

8In this result we do not consider terms of the type 1/s2 and 1/s3.
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(

dσ

dΩ

)axial

t

=

(

dσ

dΩ

)

QED

+
α2g2a
s

cos θ

× (b0 · p1 + b0 · p2)2 . (24)

In the case of a purely space-like background, the
Eq. (23) will be

(

dσ

dΩ

)axial

s

=

(

dσ

dΩ

)

QED

+
α2g2a
2s2

×
{

(b · p4)(b · p1 + b · p2)(p
2
1 − p22)

+ s (3b · p1 + b · p2 + b · p3 + b · p4)

×(b · p1 + b · p2) cos θ

}

. (25)

As in case of vectorial nonminimal coupling,
the cross sections of the Eqs. (23), (24) and (25)
that when s → ∞ the results obtained preserve
the unitarity.

4.3 Vectorial nonminimal coupling

with F̃µν

Here, we calculated the scattering amplitude by
modifying the vertex of the QED in Eq. (1) by
the vertex presented in Eq. (17), the result we
obtained for the cross section obtained was

(

dσ

dΩ

)vect

=

(

dσ

dΩ

)

QED

+
α2g̃2

s

[

(

b̃ · p1 + b̃ · p2
)2

− b̃2s

]

×
(

1 + cos2 θ
)

. (26)

In the case of a purely time-like background,
the Eq. (26) will be

(

dσ

dΩ

)vect

t

=

(

dσ

dΩ

)

QED

− 3α2b̃20g̃
2
(

1 + cos2 θ
)

.

(27)
In the case of a purely space-like background,

the Eq. (26) will be

(

dσ

dΩ

)vect

s

=

(

dσ

dΩ

)

QED

+
α2g̃2

s

×
[

(

b̃ · p1 + b̃ · p2

)2

+ b̃2s
]

×
(

1 + cos2 θ
)

. (28)

Note in cross sections of the Eqs. (26), (27)
and (28) that when s → ∞ the results obtained
violated the unitarity.

4.4 Axial nonminimal coupling

with F̃µν

Now, we present the result of the cross section
from the modification of the scattering amplitude
Eq. (1), we obtained

(

dσ

dΩ

)axial

=

(

dσ

dΩ

)

QED

+
2α2g̃2a
s

cos θ ×
[

(

b̃ · p1 + b̃ · p2
)2

− sb̃2
]

. (29)

In the case of a purely time-like background the
Eq. (29) will be

(

dσ

dΩ

)axial

t

=

(

dσ

dΩ

)

QED

− 6α2b̃20g̃
2
a cos θ. (30)

In the case of a purely space-like background the
Eq. (29) will be

(

dσ

dΩ

)axial

s

=

(

dσ

dΩ

)

QED

+
2α2g̃2a
s

cos θ ×
[

(

b̃ · p1 + b̃ · p2

)2

+ sb̃2
]

. (31)

As in case of vectorial nonminimal coupling, the
cross sections of the Eqs. (29), (30) and (31) that
when s→ ∞ the results violated the unitarity.

5 Final remarks

In this paper, we have investigated the breaking
of Lorentz symmetry through the examination
of muon-pair production via electron-positron
scattering within the framework of Extended
Quantum Electrodynamics. In this study, we
tested two models involving nonminimal coupling
in the scattering process e+e− → µ+µ−, utiliz-
ing calculations of the cross-section. Our findings
reveal that when employing the dual electromag-
netic tensor, both the vector and axial scenarios
exhibited unitarity violations. Conversely, utiliz-
ing the model with the electromagnetic tensor
preserved unitarity in both scenarios, suggesting
its potential superiority over the former model.
Additionally, radiative corrections calculations
[24] in massless QED have demonstrated the
renormalizability of the model with radiative cor-
rections at 1-loop, a property not observed in
the model involving the dual field. This further
strengthens the confidence in the model with

6



Fµν coupling. In the future, we aim to explore
the prospective phenomenological implications
of this model, shedding light on its potential
applications in various contexts. Ultimately, we
anticipate that these findings may serve as a
valuable roadmap for further inquiry into the
investigation of CPT and Lorentz breaking.

Acknowledgments: We would like to
express our gratitude to Prof. J. A. Helayël-Neto
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symmetry and Lorentz violation, Phys. Rev.
D 65, 091701 (2002).

[5] Stefan Groot Nibbelink and Maxim
Pospelov, Lorentz Violation in Supersym-
metric Field Theories, Phys. Rev. Lett. 94,
081601 (2005).

[6] Michael R. Douglas and Nikita A. Nekrasov,
Noncommutative field theory, Rev. Mod.
Phys. 73, 977 (2001).

[7] M. M. Sheikh-Jabbari, C, P, and T Invari-
ance of Noncommutative Gauge Theories,
Phys. Rev. Lett. 84, 5265 (2000).

[8] Sean M. Carroll, Jeffrey A. Harvey, V. Alan
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