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QUANTUM U-CHANNELS ON S-SPACES
PRIYABRATA BAG, AZAD ROHILLA", AND HARSH TRIVEDI

ABSTRACT. If the symmetry, (an operator J satisfying J = J* = J~1) which defines
the Krein space, is replaced by a (not necessarily self-adjoint) unitary, then we have the
notion of an S-space which was introduced by Szafraniec. In this paper, we consider
S-spaces and study the structure of completely U-positive maps between the algebras
of bounded linear operators. We first give a Stinespring-type representation for a
completely U-positive map. On the other hand, we introduce Choi U-matrix of a linear
map and establish the equivalence of the Kraus U-decompositions and Choi U-matrices.
Then we study properties of nilpotent completely U-positive maps. We develop the
U-PPT criterion for separability of quantum U-states and discuss the entanglement
breaking condition of quantum U-channels and explore U-PPT squared conjecture.
Finally, we give concrete examples of completely U-positive maps and examples of
3 ® 3 quantum U-states which are U-entangled and U-separable.

1. INTRODUCTION

The Gelfand-Naimark-Segal (GNS) construction for a given state on a C*-algebra
provides us a representation of the C*-algebra on a Hilbert space and a generating
vector. A linear map 7 from a C*-algebra B to a C*-algebra C is said to be completely
positive (CP) if szzlcﬁ(bjbi)ci > 0 whenever by,by,....b, € B; ¢1,¢9,...,¢, € C
and n € N. Stinespring’s theorem (cf. [I8, Theorem 1]), which characterizes operator-
valued completely positive maps, is a generalization of the GNS construction. Choi
decomposition (cf. [6]) for completely positive maps is a pioneering work in Matrix
Analysis.

Dirac [10] and Pauli [14] were among the pioneers to explore the quantum field theory
using Krein spaces, defined below. For our study, we require the following important
definitions:

Definition 1.1. Assume (IC,(-,-)) to be a Hilbert space and J to be a symmetry, that
is, J = J* = J71. Define a map [-,-] : K x K — C by

[z, y]; = (Jx,y) for all x,y € K. (1.1)

The tuple (IC, J) is called a Krein space (cf. [3]).
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Definition 1.2. For each V € B(K), there exists an operator V' := JV*J € B(K) such
that

Va,yly = {(JVa,y) = (2, V' Jy) = (z, J"JV"]y)
= (Ju, JV*Jy) = (Jx, Viy) = [x,V?y],.

The operator V* is called the J-adjoint of V.

In the definition of the Krein space, if we replace the symmetry J by a (not neces-
sarily self-adjoint) unitary U, then we arrive at the following generalized notion due to
Szafraniec [19]:

Definition 1.3. Let (H, (-,-)) be a Hilbert space and let U be a unitary on H, that is,
U* =U~L. Then we can define a sesquilinear form by

[z, Yl = (x,Uy) for all z,y € H. (1.2)
In this case, we call (H,U) as an S-space.

The following definition is given by Phillipp, Szafraniec and Trunk, see [15, Definition
3.1]:

Definition 1.4. For each V € B(H), there exists an operator V# := UV*U* € B(H)
such that

[z, Vyly = (x,UVy) = (V*U"z,y) = (UUV*U"z,y)
= <UV*U*ZL', Uy> = [V#x>y]U~

The operator V¥ is called the U-adjoint of V.

Phillipp, Szafraniec and Trunk [I5] investigated invariant subspaces of self-adjoint op-
erators in Krein spaces by using results obtained through a detailed analysis of S-spaces.
Recently, in [16], Felipe-Sosa and Felipe introduced and analyzed the notions of state and
quantum channel on spaces equipped with an indefinite metric in terms of a symmetry
J. This study was further taken up by Heo, in [11], where equivalence of Choi J-matrices
and Kraus J-decompositions was obtained and applications to J-PPT criterion and J-
PPT squared conjuncture were discussed. The notion of completely U-positive maps
was studied by Dey and Trivedi in [8, 9]. Motivated by these inspiring works, in this
paper, we develop structure theory of quantum U-channels and its applications to the
entanglement breaking.

The plan of the paper is as follows: In Section 2, we give Stinespring-type repre-
sentation for a completely U-positive map. In Section B Choi U-matrix is introduced
and the equivalence of Kraus U-decompositions and Choi U-matrices is established. In
Section 4] some properties of nilpotent U-CP maps are discussed. In Sections [{ and
6] we develop U-PPT criterion for separability of quantum U-states and discuss the
entanglement breaking condition of quantum U-channels and explore U-PPT squared
conjecture. Finally, in Section [7l we give concrete examples of completely U-positive
maps and examples of 3 ® 3 quantum U-states which are U-entangled and U-separable.
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1.1. Background and notations. Let (H,U) be an S-space. Then, H" is the direct
sum of n-copies of the Hilbert space H, and we denote by (H",U™) the S-space with
the indefinite inner-product

n n

b, K]im = (b, U"k) = (hy, Uky) = > [hy, kilu (1.3)

J=1 J=1

where U" = diag(U,U,...,U) € M,(B(H)) and h = (hy,...,h,), k = (k1,...,k,) €
H".

Definition 1.5. Let (H,U) be an S-space with the indefinite inner-product [-,-|y. We
denote by B(H)VT the set of all U-positive linear operator V on H, that is,

0 < [Vh, hly == (Vh,UL) = (U*Vh,h), for all he H.

Hence V' is U-positive if and only if U*V s positive with respect to the usual inner
product (-, -).

Definition 1.6. Let (H;,U;) (i = 1,2) be an S-space with the indefinite inner-product
[-,-Ju,. Let ¢ : B(H1) — B(Hz) be a linear map. Then ¢ is called (Uy, Uy)-Hermitian if
o(UWV*UY) = Uyp(V*)U5 for V€ B(Hy). We say that a (Uy, Us)-Hermitian linear map
o s
(1) (Uy, Us)-positive if $(B(H1)V ") C B(H2)V™, that is, if V € (B(H1))V™ (or V is
Uy -positive), then ¢(V') is Us-positive. In simple words, if UV is positive with
respect to the usual inner product (-, -)y,, then Usp(V') is positive with respect to
the usual inner product (-, -)3,.
(2) completely (Uy, Us)-positive or (Uy, Us)-CP if for each | € N the I-fold amplifica-
tion @' : [} @ ¢ : M(C) @ B(H1) — M;(C) @ B(Hs) defined by

¢ ([Vig]) = [0(Viy)l,  for [Vij] € My(B(H.))
satisfies
¢ (My(B(H1))"") € My(B(Hz))"™,

that is, if V. = [Vili; € My(B(H1)Y* (i.e., V is Ul-positive), then ¢'(V) is
Ul-positive. Here M;(B(H;))V" = B(HY)Y* is the set of all Ul-positive linear
operators on S-spaces (H',U!), and Ul = diag(U,U,...,U) € M(B(H;)) for
i=1,2.

(8) U-positive (and completely U-positive (U-CP) )if H1 = Hy = H and Uy = Uy =
U and it is (Uy, Us)-positive (and (Uy, Us)-CP, respectively).

2. COMPLETELY U-POSITIVE AND COMPLETELY U-CO-POSITIVE MAPS

Our main objective in this section is to obtain Stinespring-type theorem for completely
U-positive maps. Let (H;,U;) (i = 1,2) be an S-space with the indefinite inner product
[-,-]u,- Suppose ¢ : B(H;1) — B(Hs) is a linear map. Define a linear map ¢ from B(H;)
to B(Hsz) by ¥(X) = Usp(Uf X ) where X € B(H;). For any | € N and V = [Vj;] €
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M,;(B(H1)), we obtain

Upp(UiVii) -+ Usd(UiVi)
P(V) = [ (Vij)lis = [U20(Uy Vij)lij = ( : : )
Usp(UfVin) -+ Usp(UfViy)

Us 0\ /oUiVi) - o(UfVi)
= ( ) ( : ; ) = Uy¢' (UL V).
0 U, o(U Vi) - o(UViy)

Similarly, we can easily show that ¢'(V) = UL ¢(ULV) where ¢(V;;) = Usp(UyVij).
The following result is a generalization of |16, Theorem 20] and [L1], Proposition 2.2]
in the setting of S-spaces:

Proposition 2.1. Let (H;,U;) (i = 1,2) be an S-space with the indefinite inner product
[, -]u,. Suppose ¢ : B(H1) — B(Hsz) is a linear map, then ¢ is CP if and only if the
corresponding linear map 1 from B(Hy) to B(Hz) defined by ¥(X) = Usp(UfX) is
(Uy,Us)-CP, where X € B(H,).

Proof. Let ¢ be a linear map from B(H;) to B(H3). First assume that ¢ is CP. We have
to prove that ¢ is (Uy, Uy)-CP. For this purpose, let V = [V;;] € M;(B(H,))V*, that is,
UV € M(B(H,)) is positive, that is,

0 < [Vh,h]yn = (Vh,Uth) = (U] Vh, h),
where h € H'. Consider
[ (V)W W]y = (' (V)W Ush') = (U ¢ (V)R 1)
= (U3¢' (U7 V)W, Ush') = (¢'(U7 V)W, 1) > 0,
where b/ € 3'. Therefore (UL pH(V)h', h') > 0, that is, UL (V) is positive. This proves
that (V) is Us-positive. Thus v is (Uy, Us)-CP.
Conversely, suppose that ¢ is (Uy, Uz)-CP. Since ¢(-) = Uxp(Uy-), we get ¢(Uy-) =

Us1(-). Therefore ¢(-) = Usp(Uy-). Let V = [V;] € M;(B(H4))", then we have to show
that ¢'(V) = [¢(Vi;)] € My(B(H2))*. Now

0 < (Vh,h) = (U{Vh,Ujh) = [U}Vh, h];,
where h € 3', it means, UV € M;(B(H,))V*. Therefore
(¢ (V)W W) = (U & (UiV)h', 1) = ((U{V)h', Uph')
= [W(OV)N, W]y >0,

where h’ € 3" and the last inequality follows from the fact that UV € M;(B(H1))U+
and hence 1 is (Uy, Us)-CP.
0

Theorem 2.2. Let (H;,U;) (i = 1,2) be an S-space. Assume that a linear map 1 from
B(H,) to B(Ha) defined by (V') := Usp(UFV') for allV € B(H,) is (Uy,Us)-CP. Then
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there exist an S-space (H,U), a x-representation m of B(H1) on the Hilbert space H and
a bounded linear operator R : Hy — H such that

W(V) = RFn(V)R
where U = w(Uy), and R* := Uy R*U*. Moreover, if 1(Uy) = Us, then R*R = I4,.

Proof. Suppose a linear map v is (Uy, Us)-CP. Then with the help of Proposition 2.1 we
get that ¢ defined by ¢(V) = Us¢(U,V) is CP. Then using Stinespring’s theorem [18]
Theorem 1], there exist a Hilbert space H, a representation (a unital *-homomorphism
) m of B(H1) on the Hilbert space H and a bounded linear operator R : Ho — H, such
that ¢(V) = R*n(V)R for every V € B(H;).

Let U = w(U;) € B(H), where U is a fundamental unitary, that is, U* = U™!, so that
(H,U) becomes an S-space. Define R := Uy R*U*, then

(V) = Usp(UFV) = U R*7(USV)R = Uy R°U*x(V)R = R¥x(V)R.
Furthermore, if (U;) = Us, then
Uy = (Uy) = Usp(UUy) = Uy R*n(Uy Uy )R = Us R*R,
hence R*R = Iy,. O

Theorem 2.3. Suppose ¢ : B(H1) — B(Hz) is a linear map. If ¢ satisfies the following
conditions for all V € B(H,) :

o(UIV) =U30(V) and  ¢(UhV) = Usgp(V),
then ¢ is a CP map if and only if ¢ is (Uy, Us)-CP.
Proof. First assume ¢ to be a CP map. Let V = [V};] € M;(B(H1))Y". Observe that
o(UiVin) -+ o(UiVa)
¢ (U1 V) = [6(UtVi)lis = : : )
oUTVa) -+ o(UiVa)

Us 0\ (6(Va) -+ (Vi)
( g )(5 - ;)@wwy
0 Us) \o(Var) - (Vi)

Similarly, we obtain ¢'(UlV') = Ul¢'(V'). Now consider
(o' (V) W]y = (6! (V)W Ush') = (Uy ¢' (V)W'. 1)
= (¢'(Ur V)W, W) >0,

where h' € H},. Therefore (UL ¢'(V)h', h') > 0, that is, UL ¢!(V) is positive with respect
to the usual inner product (-, -). This proves that ¢(V) is Us-positive. Thus ¢ is (Uy, Us)-
CP.

Conversely, suppose that ¢ is (Uy, Us)-CP. Let V' = [Vi;] € M;(B(H1))". Then we
have to show that ¢'(V) = [¢(Vi;)] € Mi(B(Hs))*. Since

0 < (Vh,h) = (U1Vh,Ulh) = [U}Vh, by,
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where h € H', it means U'V € M;(B(H,))V*. Then

(o' (V)W h') = (Uyp(V)I', Ush') = (p(U; V)W, Uph')

= [¢(U1V)N', W]y >0,

where b’ € ' and the last inequality follows from the fact that UV € M;(B(H,))V*
and ¢ is (Uy, Uy)-CP. O
Remark 2.4. In particular, if Hy = Ho = H and Uy = Uy = U, and if a linear map
¢ : B(H) — B(H) satisfies o(U*V) = U ¢(V) and $(UV) = U(V) for all V € B(H,),
then ¢ is CP if and only if ¢ is U-CP.
Definition 2.5. Let (H;,U;) (i = 1,2) be an S-space. Assume that v is a linear map
from B(H,) to B(Hz). Then

(1) for eachl € N, ¢ is I-(Uy, Uy)-co-positive if ; @ ¢ : M;(C) ® B(H1) = M;(C) ®
B(Hs) is (I; @ Uy, I; @ Us)-positive where 1; is the transpose map on M;(C).

(2) 1 is completely (Ui, Us)-co-positive if it is [-(Uy, Us)-co-positive for each | € N.

(8) ¢ is (Uy, Uy)-positive partial transpose ((Uy, Us)-PPT) if it is (Uy, Us)-CP and
completely (Uy, Uy)-co-positive.

(4) In particular, if Hi = Ho = H and Uy = Uy = U, then we simply call it com-
pletely U-co-positive (and U-positive partial transpose (U-PPT)) if it is com-
pletely (Uy, Us)-co-positive (and (Uy, Us)-positive partial transpose, respectively).

Proposition 2.6. Let (H;,U;) (i = 1,2) be an S-space. Suppose ¢ : B(Hi) — B(H2)
s a linear map, then ¢ is completely co-positive if and only if the corresponding linear
map ¥ from B(H1) to B(Ha) defined by (X)) := Usp(UfX) is completely (Uy, Us)-co-
positive, where X € B(H;).

Proof. Let V = [V;;] € M;(C) ® B(H;) be such that ({; ® U{)V > 0. Then
(Vi) - ¢(%1)) U20(UiVin) - Ua(UVin)

¢(Vu) ¢<i/2l) (U2¢(vau) U2¢(vau))
U 0) (Cb(UfVll) ¢(vall))

o o) \ewvy e

= (L ®@Us)(n ®¢)([; ® UT)V.

Hence ([; ® U3)(1 ® ¢)(V) is positive as ¢ is completely co-positive map.
Conversely, for any V' = [Vj;] € M;(B(H;), we have

0 < (Vh,h) = (U;Vh,Uth) = [UjVh, h],
where h € H', it means U'V € M;(B(H,))V*. We obtain

(mey)(V) =

Usv(UiVin) -+ Usy(UiVi)

(Vi) --- ¢(Vh)> ( )
Usb(UVi) - U3o(UhVa)

(n®¢)(V)( : - :
o(Vu) -+ o(Va)
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Us 0 Y(UVi) -+ (UiVi)

0 Us Y(ULVy) - (Ui V)
= Uy (n ® ¢)(U1V).
Therefore (1;®¢)(V) = UL (n@¢)(UV). Since ULV € M;(B(H;))Y+ and v is completely

(U1, Uy)-co-positive, ¢ is co-positive.
O

3. KrRAUS U-DECOMPOSITION AND CHOI U-MATRIX

In this section, we derive Kraus U-decomposition and Choi U-matrix and establish
their relation with the completely U-positive maps. Let M,,(C) denote the set of all
m X m-complex matrices. Kraus proved that ¢ : M,,(C) - M, (C) is a CP map if and
only if

¢(V)=> RVR; (3.1)

where V' = [V;];; € M,,(C) and for each i, R, € M,,,(C). The expression in above
equation is called a Kraus decomposition.

Denote My := M,,(C) and Mp := M,(C). Let Uy and Up be the fundamental
unitaries in M4 and Mp, respectively. Define a linear map ¢ : M4 — Mp by

I
Y(V) =Y RIPVR, (3.2)
i=1
where RI*® = UgR:U%. Then v is (Us,Ugp)-CP. Indeed, for any k € N, take a
UK -positive matrix V = [Vi;] € My(Ma)U*. Since V = [V;;] € M(Ma)VF, UKV €
Mk(MA)+, that iS,

Us 0\ (Vi - Vi
UiV = 3 P
0 Uiy \Vih - Vi
UiVin -+ UV
= 1] e My(Ma)*.
Ur\Vii - UjVig
Consider
Vit - Vi (Vi) - Y (Vig)
VY=t o s =
RI“PVLR, -+ RI“PViR

= \RPVR, - RIMPViR,
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1 (UpRUAVLR; --- UpR;U}VikR;
; (UBR UAVklR <o UpRIUMVik R,
l R: 0 R 0
) ( E ukv
= 0 R 0 R
= Z . UA*V I )
=1 \ 0 R 0 R

and since UX V' € M;(M4)*, by using the Kraus decomposition

l

> RIUEVRE € My(Ma)*,

i=1
we obtain U% ¢ (V') > 0. Hence 1*(V) is a Up-positive matrix, that is, v is (Ua, Ug)-CP
map.
Theorem 3.1. Let Uy and Ug be the fundamental unitaries in My and Mg, respectively.
A linear map 1 : Ma — Mp is a (Ua, Ug)-CP map if and only if it has a decomposition
of the form (33).

Proof. Assume that ¢ is a (Us, Up)-CP map. Since a linear map ¢ : M4 — Mp defined
by (V) = Ugp(UaV) is CP, ¢ has a Kraus decomposition, that is,

l
=Y RVR,
1=1

where V' € M,,(C) and for each i, R; € M,, ,(C). Thus we have

I I !
W(V)=Upd(UsV) =Up > RIUVR =Y UsRjU\VR; = > RI'VR,.
i=1 i=1 i=1
Therefore 1 is a (Uy, Up)-CP map if and only if ¢ has the expression ¢ (V) = S>'_| RFVR;,
we call ¥ has a Kraus U-decomposition in this case. O

Suppose {e;; | 1 < i,j < m} are the matrix units of M,,(C). We observe that
D = [Uaéijli<ij<m is Im @ Ua-positive. Indeed,

Uj 0 Usern -+ Uaéin
(I, @U})D = : :
0 U; Usemi -+ Uslmm
€11 Cim
= : . | eML(O),
emi €

It implies from the above proposition that [¢)(Uae;;)|i<ij<m 1S I ® Up-positive.
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Theorem 3.2. Let v : My — Mg be a linear map. Then v is (Ua, Up)-CP if and only

if [Upt(Uaeij)]i<ij<m is positive.

Proof. The proof directly follows from [0, Theorem 2]. O
Let ¢ : M,,(C) — M,(C) be a linear map. Choi [6] defined Cy = 3 °7_, ei; ® ¢(e;5),

called the Choi matriz, and proved that it is positive if and only if ¢ is a CP map.

Definition 3.3. Let ¢ : M, (C) — M,(C) be a linear map. We define C := 37" _ €;;®

Y(Uaeij). The matriz CJ) is called the Choi U-matrix.

Theorem 3.4. Let Uy and Ug be the fundamental unitaries in M4 and Mg, respectively,

where My = M,,(C) and Mg = M, (C). Then a linear map ¢ : My — Mp is a (Ua, Up)-
CP map if and only if CJJ is Iy ® Ug-positive in My @ Mp.

Proof. Let ¢ : My — Mg be the linear map defined by ¢(V) := Ui (UasV) where
V € My. Then by Proposition 2] ¢ is CP if and only if ¢ is a (Us, Up)-CP map. It
is known from [6] that ¢ is CP if and only if Cj is positive semi-definite. Since, for any
h,h' € C"™, we have
[Cf/{ha h/]Ug? = <C1lpjha Uth/> = <UgL*Cf/{ha h/>
Uptp(Uaenn) -+ Upp(Uaeim)
: : h, 1)
UE¢(UAem1) T UE¢(UA€mm)
plenn) -+ ¢leim)
. . . h, hl>

em) - Oemm)
= <C¢>h7 h/>7

that is, Cy is positive if and only if C’g is I4 ® Upg-positive in M4 ® Mg, which completes
the proof. O

4. NILPOTENT U-CP MAPS

Nilpotent CP maps were studied by Bhat and Mallick in [2]. Let H be a finite
dimensional Hilbert space and ¢ : B(H) — B(#H) be a CP map. Suppose ¢ is a
nilpotent map of order p, that is, ¢» = 0 and ¢P~! # 0. Define H; := ker (¢p(U))
and Hy, = ker (¢*(U)) © ker (¢*1(U)), where 2 < k < p. Then M{_,H;, = 0 and
H=H1SH2@ - -DH, Let b; :=dim (H;) for 1 <1i < p. Then (b1, bs,...,b,) is called
the CP nilpotent type of ¢. In this section, we introduce U-CP nilpotent type of U-CP
maps.

Proposition 4.1. Let H be a finite dimensional Hilbert space and (H,U) be an S-space
with the indefinite inner product [-,-|y. Suppose ¢ : B(H) — B(H) is a CP map, then
the corresponding linear map ¢ from B(H) to B(H) defined by ¥(X) := Up(U*X) is
U-CP, with the Kraus U-decomposition ¥(X) = 22:1 R¥XR;, where X € B(H) and
RZ# = UR;U* for each 1 <11 < 1. Then

(1) ker (¥(U)) = NMi_ ker (UR;),
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(2) For U-positive X, (X) = 0 if and only if ran(X) C Ni_ ker (R;U*),
(3) {h € H | ¥(|UR)(h|) = 0} = Ni_ ker (R;U*),
(4) ran(v(U)) = span{URh | he H, 1 <i<I}.

Proof. (1) Consider
ker (P(U)) = {h e H | ¢(U)h =0}

l
={heH | > RIURh=0}
=1
l
={heH | > [RFURh,h]y =0}
i=1
l
={heH | > [URh, Rih]y =0}
=1
l
={heH | > (URh URh) =0}

i=1

1
={hen | > [lURM|*=0}
i=1

={heH | URh=0, foreach 1 <i<I}

l
= [ ker (UR)).
i=1

(2) Suppose ¥(X) = Up(U*X) = 0 where X is U-positive. It follows that ¢(U*X) =
0, and since ¢ is a CP map, using the Kraus decomposition, we obtain Eé:l R'U*XR,; =
0. As X is U-positive (U*X is positive), we get RfU*XR; = 0 for each i. Note that
R:(U*X)z = 0. It implies that R:U*X = 0. Let hy € ran(X), then there exists hy € H
such that X (he) = hy. Now by applying R;U* on both the sides, we get RfU*h; = 0 for
each 4. Hence ran(X) C N'_ ker (R;U*).

Conversely, let ran(X) C Ni_ ker (R:U*), then )(X) =Y\ RFXR, =Y\ | UR:U*XR; =
0.

(3) One can easily see that |Uh)(h| is U-positive. Indeed, U*|Uh)(h| = |h){(h| > 0.
Also, we have ¥(|[Uh)(h|) = 0, and ran(|Uh)(h|) = Ch, therefore it directly follows from
(2) that {h € H | (|UR)(h|) =0} = Nl_ ker (RFU*).

(4) Let hy € ran(¢(U)) = ran(Y.._, R¥UR;) = ran(>\_, URFR;). Then 3\, URR;hy =
hy for some hy € H. Therefore hy € span{URh | h € H, 1 < ¢ < l}. Hence
ran(y(U)) Cspan{URh | he H, 1 <i<I}.

Conversely, let h € span{URh | h € H, 1 < i < [}. Then h = 22:1 a;UR!h;
where a; € C, h; € H. We have to show that h € ran(¢)(U)) = ran(U 22:1 RIR;).
It is equivalent to show that h € ker (Zi.:l RiR,U*)*, that is, (h,h')3y = 0 for all
W € ker (XL, RER,UY).
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Consider b’ € ker (Y.\_, R*R;U*), then we have
0= i[RfRiU*h’, g = i(RZRiU*h’, U*“h'y.
i=1 i=1
It follows that R;U*h' = 0 for each i. Observe that
(h,h') = iai<UR;‘hi, B’y = i%’(hi, R,U*N) =0,
i=1 =1

which proves that ran(y(U)) =span{UR;h | he H, 1 <i<I}. O

Proposition 4.2. Let (H,U) be an S-space with the indefinite inner product [-,-|y.
Suppose ¢ : B(H) — B(H) is a CP map, then the corresponding linear map ¢ from
B(H) to B(H) defined by ¥(X) := Up(U*X) is U-CP, with the Kraus U-decomposition
P(X) = 22:1 R¥XR;, where X € B(H) and R¥ = UR:U* for each 1 < i < I. Then
the followings are equivalent:

(1) YP(X) =0 for all X € B(H);

(2) RilR’iz cee Rip =0 fOT all il, ig, e ,ip.

Proof. (1) = (2) : Let us assume for each X € B(H), we have
I

0= P(X) = Z Rz-i . XRy Ry, Ri,

11,8250y ip=1

, =UR; R}  ---R;U". Therefore

ip—1

where Ri

----- ?

0=y?(I)= Y RI ,RiRi- R,

Now observe that

{heHn| > Rf ,RiR, - Ryh=0}

—{heH | Y [Rl ., RiyRi--Ryhhly=0}
i1 yig,ip=1
!
={heH | Z [Ri,Ri, - - R h, R; Ry, - - 'Rz‘ph]U = 0},

11,82,--05 ip=1

which concludes the desired equality (2).
(2) = (1) : Trivial. O

Suppose ¢ is a U-CP map from B(H) to B(H) defined by ¢(X) = Ugp(U*X). Let
¥ be a nilpotent map of order p. Define K; := ker (¢(U)) and K, := ker (¢*(U)) ©
ker (*=1(U)), where 2 < k <p. Then M,_ Ky =0 and H=K; &K ®--- & K,.
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Definition 4.3. Let ¢; := dim (K;) for 1 < i < p. Then (c1,¢,...,¢p) is called the
U-CP nilpotent type of 9.

5. QUANTUM U-CHANNELS AND QUANTUM U-STATES

The U-states and the quantum U-channel, which are the S-space versions of the
states and quantum channel, respectively, are introduced in this section. Together,
we introduce U-separable and U-entangled states and present the U-PPT criterion for
U-separability of U-states.

Definition 5.1. Let ¢ : My — Mpg be a linear map and Uy and Ug be the fundamental
unitaries in M and Mg, respectively. Then

(1) ¢ is a quantum channel if it is CP and trace preserving, that is, Tr(p(V)) =
Tr(V') where V € My.
(2) alinear map ¢ from B(H,) to B(Hz) defined by (V') := Usp(U{ V) is a quantum
(Ua, Up)-channel if it is (Ua, Ug)-CP and trace preserving.
Remark 5.2. [t is well known that ¢ is a quantum channel if and only if there exist
m X n-matrices Ry, ..., Ry such that

! l
¢(V)=> RVR, and Y RRj=1I
i=1 i=1

where V€ My. Indeed, if ¢ is a quantum channel, then it is a CP map and trace preserv-
ing. Therefore by Kraus decomposition (31l), there exist m x n-matrices Ry, ..., Ry such

that o(V) = S°._| RV R;, and if ¢ is a trace preserving map, then ¢*(V) = S.\_ R,V R:
is unital (Tr(X) = (Ix,X) = Tr(¢(X)) = (Ix,0(X)) = (¢*(Ix), X)) which implies
SRR =1

Similarly, if ¢ is a quantum (Uga, Up)-channel, then by Kraus U-decomposition (3.2))
we have (V) = 321 RF*PVR;, where RI** = UzR:U3;. Since ¢ is trace preserving,
it means ¢* is unital and we obtain Ip = ¥*(14) = 22:1 RiRZ#A’B. Moreover,

> RURRI*? = RURURR;US = U,

A quantum state p € M, (C) is a positive semi-definite matrix with Tr(p) = 1.
Definition 5.3. Let U be a fundamental unitary in M,(C), then a matriz p € M,(C)
is called a quantum U-state if the following conditions hold:

(1) p is U-positive, that is, U*p is positive and

(2) Tr(Urp) =1
Example 5.4. Let U be a fundamental unitary in M,;(C), where | € N. Define p € M;(C)
as p = |Ue)(e| where e € C' with ||e|| = 1. Then

U'p =U[Ue)(e| = [UUe){e| = |e)(e].

It follows that U*p is positive and also note that Tr(U*p) = Tr(le){e|]) = (e,e) = 1.
Hence p is a quantum U -state.
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Proposition 5.5. A quantum (Uya, Ug)-channely : Ma — Mp maps quantum U 4-states
into quantum Upg-states.

Proof. Let V be a quantum Uyx-state, that is, V' is Ua-positive and Tr(U3V') = 1. Since
¥ is a quantum (Uy, Up)-channel, we have

l l
=Y RI**VR; =) UpRU;VR,
i=1 i=1
for some m x n-matrices Ry, ..., R;. Since V is Uy-positive, we have U3V > 0. Therefore
Usp(V) =S REULVR; > 0, that is, (V) is Ug-positive. Furthermore, we obtain

1 l !
Tr(Upp(V) = Tr(>_ RIUAVR:) = Te() UAVRR}) = Te(U3V Y RiR;)
=1 i=1 =1

= Ty (ULV) =1
which proves that (V) is a quantum Upg-state. O

A bipartite quantum state p € Ma®Mp is a product state if p = pa®pp with pa € M}
and pp € M3 and is separable if it is a convex combination of product states. Moreover,
it is entangled if it is not separable. We define 7 := t®id : My® Mp — M ® Mp where t
is the transpose on M 4. We call the 7 map the partial transpose or the blockwise transpose
and a bipartite quantum state p is positive partial transpose (PPT) if p™ := t ® id(p)
is positive. The positive partial transpose criterion says that if p is separable, then p is
positive partial transpose.

Definition 5.6. Let Uy and Ug be the fundamental unitaries in My and Mg, respec-
tively. Let Uy @ Up be the fundamental unitary in M4 ® Mp and p € My ® Mg be a
bipartite quantum Uy ® Ug-state. Then
(1) p is a product Us @ Up-state if p = pa @ pp where ps € MY and pp € M5+.
(2) p is Uy ® Upg-separable if it is a convexr combination of product U, @ Up-states.
(3) p is Uy @ Ug-entangled if it is not Uy @ Ug-separable.
(4) p is Uy @ Upg-positive partial transpose if the partial transpose p” is Uy @ Up-
positive, that is, (U4 ® Ug)(p") is positive.

Proposition 5.7. If a bipartite quantum Uy ® Ug-state p € My @ Mp is Uy ® Up-
separable, then p is Usy @ Ug-positive partial transpose.

Proof. Consider that p is U4 ® Upg-separable, it means we can write it as a convex
combination of product Uy ® Upg-states, that is,

p= sz (Ua @ Ug)(|2:)(2l) sz (Ua @ Up)(Jz:) @ [yi)) ({z:] @ (uil)

=1 =1
l l

= sz (Ua @ Up)(|zi){(xil @ |ys) (vil) ZPZUA |z3)(@s]) @ Up(|yi) (wil),

=1 =1
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with Y0, pi = 1, and |2;) = |7;) ® |ys) € Ma ® Mp. Since (Ua(|z:)(z:]))! = [72)(%:| U3,
we obtain

pr=t@id(p) =Y pil@) (@] U; © Us(lys) (yil)-

i=1

Since U4 |7;)(Z;|U% is a positive matrix in M4, (Ua @ Ug)(p7) is positive. O
6. U-ENTANGLEMENT BREAKING MAPS

In this section, we consider the special class of quantum channels which can be sim-
ulated by a classical channel in the following sense: The sender makes a measurement
on the input state p, and send the outcome k via a classical channel to the receiver who
then prepares an agreed upon state Rj. Such channels can be written in the form

3(p) = D _ RTr(Exp),

where each Ry, is a density matriz (density matrices, also called density operators, which
conceptually take the role of the state vectors, that is, Ry is a positive semi-definite
matrix with Tr(Ry) = 1) and the Ej, form a positive operator valued measure ({Ej}
form a positive operator valued measure means for each k, E) is positive semi-definite
and ), Ey = id4). We call this the “Holevo form” because it was introduced by Holevo
in [13]. In this context, it is natural to consider the class of channels which break
entanglement.

Definition 6.1. Let ¢ : My — Mp be a quantum channel. If (id, ® ¢)(S) is always sep-
arable for all bipartite quantum states S € M, (C)® M4, then we call it an entanglement
breaking map.

Let U4 and Ug be the fundamental unitaries in M4 and Mp, respectively. The family
{Fy}r is a Ua-positive operator valued measure if each Fj,U, is positive semi-definite and
Y FrUa =idy (or ), Fj, = U}) and D is called Ua-density matriz if D is a Ua-positive
semi-definite matrix, that is, U} D is positive semi-definite matrix with Tr(U;D) = 1.
Definition 6.2. Let ¢ : My — Mg be a (U, Up)-quantum channel.

(1) v is said to be (U4, Up)-entanglement breaking if (id, ®1)(S) is I, @Ug-separable

for any I, ® Ua-density matriz S € M, (C) @ M.
(2) 1 is in (Uga,Ug)-Holevo form if it can be expressed as

V() = 3 DT Fep),

where Dy, is a Ug-density matriz, that is, Uj; Dy is positive semi-definite matriz
and Tr(U}Dy) = 1 and Fy, is a Ua-positive operator valued measure in My, that
is FrUpy is positive semi-definite and »_, Fi,Us = id4.

Theorem 6.3. Let 1 : My — Mp be a (Ua, Ug)-quantum channel. Then the following
statements are equivalent:

(1) ¢ is (Ua, Up)-entanglement breaking;
(2) ¢ is in (Ua, Up)-Holevo form .
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Proof. (1) = (2) : Suppose ¢ is (Ua, Up)-entanglement breaking. The map ¢ given
by ¢(V) = Uip(UaV) is a quantum channel and we have for each n € N,

id, @ ¢ =1id, @ (Usp(Ua)) = (I, ® Up) (id,, @ V) (L, @ Uy). (6.1)

Let S € M,(C) ® My be a density matrix. One can easily verify that (I, ® Us)S is a
(I, ® Uga)-density matrix, that is, (I, @ U}) (I, ® U4)S is positive and Tr((1, @ U}) (1, ®
Ua)S) = 1 which trivially hold as (I,, ® U})(I, ® Us)S = S. Since (id,, ® ¥)(I, ® Us)S
is (I, ® Up)-separable, (id, ® ¢)(S) is separable. This implies that ¢ is an entanglement
breaking map. Now using [12], Theorem 4], we can write ¢ in the Holevo form, that is,

3(p) = > _ RTr(Exp),

where each Ry is a density matrix and { E} } is a positive operator valued measure with
>« B = id 4. Observe that

v(p) = Upd(Uhp) = Y UpRiTe(E Ukp) = Y DTe(Fip),
k k

where Dy, := UpRy, and F}, := E,U}. Note that Dy, is a Up-density matrix since U; Dy, =
UyUpRy, = Ry and Ry is already a density matrix in Mp and also {Fj}y is a Ua-
positive operator valued measure in My as EpU3 Uy = Ej is positive semi-definite and
Yo ExURUA = ida.

(2) = (1) : Assume that ¢ has the (Ua,Up)-Holevo form, it means ¥ (p) =
> DiTr(Fyp), where Dy, is a Up-density matrix and {F}y is a Ua-positive operator
valued measure in M 4. Define ¢ by ¢(p) = Us(Uap), where p € M 4. We obtain

$(p) = Upth(Uap) = Ush(Uap) = Uy, > DyTr(FpUap)
k
= UpDyTr(FUap).
k

Since Dy is a Up-density matrix and {F}}x is a Ua-positive operator valued measure in
Ma, ¢ has a Holevo form and by [12, Theorem 4] ¢ is an entanglement breaking map
and hence Equation (6.I]) implies that v is a (Ua, Up)-entanglement breaking map. [

Remark 6.4. Let ¢, : My — Mp be linear maps such that ¢(p) = Upp(U}p), where
p E My. As we know ¢ is positive if and only if ¥ is a (Uga, Ug)-positive map. Suppose
¢ is a quantum channel, that is, 1 is a (Ua,Upg)-quantum channel. Note that 0 o ¢ is
a CP map for any CP map 0 : Mg — Mc¢ if and only if w o1 is (Ua,Uc)-CP for
any (Ug,Uq)-CP w : Mg — M. Therefore, it follows from Theorem [G.3 that ¢ is an
entanglement breaking map if and only if 1 is a (Uga, Up)-entanglement breaking map.

7. EXAMPLES OF FUNDAMENTAL UNITARY AND U-CP MAPS

In this section, we provide concrete examples of completely U-positive maps and
examples of 3 ® 3 quantum U-states which are U-entangled and U-separable. It is easy
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to observe that the 2 x 2 identity matrix I and the Pauli matrices

(01 (0 — (1 0
9%2=\10) %=\, o) %27 \o -1

form a basis for My(C). That is, for any A € M5(C), we have A = al + bo, + co, + do,
where a,b,c,d € C. Any fundamental unitary on the 2-dimensional complex S-space

has the form
a b
U= (—e“ﬁa e‘¢6) (7.1)

where ¢ € R and a,b € C such that |a|? + |b|> = 1. For example, if we choose a = 1 and
b = 0, then we have the unitary
1 0
b &)

which is called a Phase Gate (see [17]) that represents a rotation about the z-axis by an
angle ¢ on the Bloch sphere.

If we define an S-space with respect to the fundamental unitary U as in (Z1]), then
U*A = aU* + bol + coll + do¥, where 0 = U*o,, 0] = U*o,, and 67 = U0, and we

call these matrices U-Pauli matrices.
(10 (1 -1 L .
Let Uy = <0 , and Uy = ACEE] ) be two unitaries which are not symmetries,

where U, is the Phase gate for ¢ = 7.
(1) Consider the S-space (C?,U;). For any A € M,(C), we have

ialo(y 2) o (i §) (o) +2(Y)
(U;*A)*:{EG) (L))H?((l] 6)+5<(L] (1))+E((1) _OL)

Comparing Uy A and (UfA)*, one may easily find out that A is U;-self adjoint if

and only if @ = d, —tc = and —tb = b , that is, A has the form
. at+d b—w) [(a+a b+c\ [(2R(a) b+
-~ \b+w a—-d) \b—¢ a—a) \b—t 28a)
and Uy A has the form
U A — a+d b—uw \_ (at+a b+T \ _ (2R(a) b+T
" \e—wb —la—=d))  \e+b a—a)) \c+b 23(a)

where a,b, c € C. Further, Uy A is positive, that is, A is U;-positive if and only if
0<R(a) and 4R(a)I(a) > (b+72)(b+c)

and

Also, U A is a quantum state, that is, A is a quantum U;-state if and only if

R(a) + S(a) = %
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In particular, if a = % €R, b=t and ¢ = —t for all ¢t > 0, then all the above
relations are trivially satisfied. In other words, for ¢t > 0,

10
AZPF(% 0)

provides a one parameter family of quantum Uj-states in My(C). Similarly, the
following provides a one parameter family of quantum U; ® U;-states

1 000
12t 000

62t 00 0f°
4% 0 0 0

where t > 0.

Since M(C) is a unital *-algebra, any *-homomorphism 7 from M;(C) into
M,(C) has the form 7(A) = W*AW for some unitary matrix W € My(C).
If ¢ is a U;-CP map defined on M;(C), then by Theorem there exist a *-
homomorphism 7w on My(C) and a matrix V' € M,(C) such that

¢(A) = VFr(A)V,
where V# = U, V*U;. For example, if we consider V = (g 2) and a unitary

W = <g g) , then we get U;-CP ¢ in the following form:

O(A) = VER(AV = (LVUT) (W AW)V = (ﬁ %) ( o %5) (3 2)

5a2w 22
. (_504&11 04_155%2)
Boyoaz  BBags

a1 Q22

where A = (au a12) € M,(C). Furthermore, if |a| = |B] = 1, then ¢(A) is of
the form
an aydfars
A) == :
o4 (557%!21 22 )

(2) Consider the S-space (C?,Us). For any A € M,(C), we obtain

1 T A () R ) A )

Comparing Uy A and (U5 A)*, one may easily find out that A is Us-self adjoint if
and only if b and d are reals and ¢ = —.a, that is, A has the form

at+d —a-+b
a+b a-—d
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where a € C and b,d € R. Further, Uj A is positive, that is, A is Uy-positive if
and only if

—(b+d) <2R(a) and b+ d* < 2((R(a))* — (3(a))?).
Also, U; A is a quantum state, that is, A is a quantum Us-state if and only if

2 2 1
R(a) = £ —(b+d) < g and b+ d* < i 2(3(a))?.
In particular, if @ = v/2/4 € R and b = d = t/4, with —v/2 < t < /2, then all
the above relations are trivially satisfied. In other words, for —V2 <t <WV2,

L t+V2 =2
pt—i(tJr\/i —t+\/§)

provides a one parameter family of quantum Us-states in M,(C). Similarly, the
following provides a one parameter family of quantum Us; ® Us-states

242242 2-2 t2—-2 2-22t42
T | 2242V2t+2 —2+42 2-2 —2422t—2
16| 2+2v2t+2 2—2 —2+2 24222’
24H2V/2A+2 —t242 —t242 2 —22t+2

where —v/2 <t < /2.
Also, similar to the earlier example, we get any Us-CP map ¢ in the following
form:

p(A) = VER(A)V = (ULV*U3)(W*AW)V
1 (a—i—ﬁ a —B) <_a11 7&125) <Oé 0)
2\@—8 a+p3) \dany axn 0 B
1 ((a + B)aarn + (@— B)dyaasn (@ + B)70fars + (@ — E)ﬁam)
2 \(@— B)aa; + (@+ B)oyaay (@ — B)yéBain + (@ + B)Bax )’

where A = (ZH a12) € My(C). Also if |a| = |B] = 1, then ¢(A) is of the form

21 Q22

¢(A) _ 1 ((1 + Ea)all + (1 — Ea)?vagl (65 + 1)75&12 + (aﬁ - 1)&22)
2 \(1 = Ba)an; + (1 + Ba)dyas (@B — 1)Foars + (@B + 1)ag )
(3) Let C? be a 3- dimensional S-space with an indefinite metric induced by Us, where
1 -1
Us = \% 1 1 0 . It is easy to observe that the matrices
0 0 V2
100 010 0 01
=110 0 010, pus=1{0 0 1]},
000 000 000
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-1 0 0 0 -1 0 00 —1
pi=11 00), pw=|(0 1 0], w=(00 1],
0 00 0 0 0 00 0

0 00 0 0 0 00 0
pr=10 00|, us=[0 0 0}, w=|[(00 0
V2 0 0 0 V2 0 00 V2

9
form a basis for M3(C). Thus, for any A € M3(C), we have A = > a;j1;, where
=1

7

a; € C. Then, we get

a; —a4 a2 —as az — Gg
A=la+as as+as as+ag|. (7.2)
a2 agV2  agV/2
Since
a1 G2 as
U;A = \/5 as Qas Qg
a7 ag Gy

Y

after comparing Ui A and (Uj A)*, one may easily find out that A is Us-self adjoint
if and only if aq, as and ag are reals and ay = @y, a3 = a7 and ag = ag, that is,
U; A has the form
ay as as
U;A = \/5 a2 as Qg
az G Qg

Further, U A is positive, that is, A is Us-positive if and only if the following
conditions hold:

aj > O, (73)
ajas — ‘CLQP Z 0 (74)
and a9 — a1|a6\2 — ‘CL2|2CL9 - ‘CL3|2CL5 + 2§R<CLQCL_3(L6> Z 0. (75)

Also, U5 A is a quantum state, that is, A is a quantum Us-state if and only if

a] +as + ag = —.

V2

0 0 0
1 1
In particular, if we choose a; = —~= in (Z.2)), then the matrix A = = [ V2 V2 V2

3v2 S\1 o1
is a Us-state, where
1 111
UjA=-1111
3\1 11
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Using this example we give the following quantum separable Us ® Us-state:

o
n Qo
o
N o
o
o
N Qo
o

@\l N
(o] o —

— |

In [7], Choi gave the following entangled state which has positive partial trans-

pose:

10001O0O0O0T1

0100
0000
1 00 01

00000
000O0O0Z2°O01

— O —=HNO

O —HNO O

N O - O

SO O

Consider

1'0001O00O0T1

OO O —HO OO
OO OO H O AHND
S —H O OO NO O
S o oo NOoO —H O
DO O H OO O H
— O —HNO O O O O
O —HNO O O — O O
NO O OO oo
SO O H OO O H

~[F

I

O

Note that

SO O O O N

N
o O o O

_ — o O O
— — O O O
o O ﬂ o O

_ — O O O

— - O O O

1
U3®U3:§
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One may easily check that

2 -3 0 =22 0 0 0 2

01 0 %+ 0 o0 0 0 0

0 0 % 0 0 —2v2 V2 —vV2 0

) 0 -1 0 -0 o0 0 0 0
A=(Us@Us)C==—|2 3 0 5 2 0 0 0 2
2100 &% 0 0 2v2 V2 V2 0

00 v2 0 0 —v2 2v2 —55 0

00 v2 0 0 V2 2v2 & o0

2 0 0 0 2 0 0 0 2

is a Uz ® Us-entangled state.
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