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QUANTUM U-CHANNELS ON S-SPACES

PRIYABRATA BAG, AZAD ROHILLA*, AND HARSH TRIVEDI

Abstract. If the symmetry, (an operator J satisfying J = J∗ = J−1) which defines
the Krein space, is replaced by a (not necessarily self-adjoint) unitary, then we have the
notion of an S-space which was introduced by Szafraniec. In this paper, we consider
S-spaces and study the structure of completely U -positive maps between the algebras
of bounded linear operators. We first give a Stinespring-type representation for a
completely U -positive map. On the other hand, we introduce Choi U -matrix of a linear
map and establish the equivalence of the Kraus U -decompositions and Choi U -matrices.
Then we study properties of nilpotent completely U -positive maps. We develop the
U -PPT criterion for separability of quantum U -states and discuss the entanglement
breaking condition of quantum U -channels and explore U -PPT squared conjecture.
Finally, we give concrete examples of completely U -positive maps and examples of
3⊗ 3 quantum U -states which are U -entangled and U -separable.

1. Introduction

The Gelfand-Naimark-Segal (GNS) construction for a given state on a C∗-algebra
provides us a representation of the C∗-algebra on a Hilbert space and a generating
vector. A linear map τ from a C∗-algebra B to a C∗-algebra C is said to be completely
positive (CP) if

∑n
i,j=1 c

∗
jτ(b

∗
jbi)ci ≥ 0 whenever b1, b2, . . . , bn ∈ B; c1, c2, . . . , cn ∈ C

and n ∈ N. Stinespring’s theorem (cf. [18, Theorem 1]), which characterizes operator-
valued completely positive maps, is a generalization of the GNS construction. Choi
decomposition (cf. [6]) for completely positive maps is a pioneering work in Matrix
Analysis.

Dirac [10] and Pauli [14] were among the pioneers to explore the quantum field theory
using Krein spaces, defined below. For our study, we require the following important
definitions:

Definition 1.1. Assume (K, 〈·, ·〉) to be a Hilbert space and J to be a symmetry, that
is, J = J∗ = J−1. Define a map [·, ·] : K ×K → C by

[x, y]J := 〈Jx, y〉 for all x, y ∈ K. (1.1)

The tuple (K, J) is called a Krein space (cf. [3]).
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Definition 1.2. For each V ∈ B(K), there exists an operator V ♮ := JV ∗J ∈ B(K) such
that

[V x, y]J = 〈JV x, y〉 = 〈x, V ∗Jy〉 = 〈x, J∗JV ∗Jy〉
= 〈Jx, JV ∗Jy〉 = 〈Jx, V ♮y〉 = [x, V ♮y]J .

The operator V ♮ is called the J-adjoint of V.

In the definition of the Krein space, if we replace the symmetry J by a (not neces-
sarily self-adjoint) unitary U , then we arrive at the following generalized notion due to
Szafraniec [19]:

Definition 1.3. Let (H, 〈·, ·〉) be a Hilbert space and let U be a unitary on H, that is,
U∗ = U−1. Then we can define a sesquilinear form by

[x, y]U := 〈x, Uy〉 for all x, y ∈ H. (1.2)

In this case, we call (H, U) as an S-space.
The following definition is given by Phillipp, Szafraniec and Trunk, see [15, Definition

3.1]:

Definition 1.4. For each V ∈ B(H), there exists an operator V # := UV ∗U∗ ∈ B(H)
such that

[x, V y]U = 〈x, UV y〉 = 〈V ∗U∗x, y〉 = 〈U∗UV ∗U∗x, y〉
= 〈UV ∗U∗x, Uy〉 = [V #x, y]U .

The operator V # is called the U -adjoint of V.

Phillipp, Szafraniec and Trunk [15] investigated invariant subspaces of self-adjoint op-
erators in Krein spaces by using results obtained through a detailed analysis of S-spaces.
Recently, in [16], Felipe-Sosa and Felipe introduced and analyzed the notions of state and
quantum channel on spaces equipped with an indefinite metric in terms of a symmetry
J . This study was further taken up by Heo, in [11], where equivalence of Choi J-matrices
and Kraus J-decompositions was obtained and applications to J-PPT criterion and J-
PPT squared conjuncture were discussed. The notion of completely U -positive maps
was studied by Dey and Trivedi in [8, 9]. Motivated by these inspiring works, in this
paper, we develop structure theory of quantum U -channels and its applications to the
entanglement breaking.

The plan of the paper is as follows: In Section 2, we give Stinespring-type repre-
sentation for a completely U -positive map. In Section 3, Choi U -matrix is introduced
and the equivalence of Kraus U -decompositions and Choi U -matrices is established. In
Section 4, some properties of nilpotent U -CP maps are discussed. In Sections 5 and
6, we develop U -PPT criterion for separability of quantum U -states and discuss the
entanglement breaking condition of quantum U -channels and explore U -PPT squared
conjecture. Finally, in Section 7, we give concrete examples of completely U -positive
maps and examples of 3⊗ 3 quantum U -states which are U -entangled and U -separable.
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1.1. Background and notations. Let (H, U) be an S-space. Then, Hn is the direct
sum of n-copies of the Hilbert space H, and we denote by (Hn, Un) the S-space with
the indefinite inner-product

[h,k]Un = 〈h, Unk〉 =
n

∑

j=1

〈hj , Ukj〉 =
n

∑

j=1

[hj , kj]U (1.3)

where Un = diag(U, U, . . . , U) ∈ Mn(B(H)) and h = (h1, . . . , hn), k = (k1, . . . , kn) ∈
Hn.

Definition 1.5. Let (H, U) be an S-space with the indefinite inner-product [·, ·]U . We
denote by B(H)U+ the set of all U-positive linear operator V on H, that is,

0 ≤ [V h, h]U := 〈V h, Uh〉 = 〈U∗V h, h〉 , for all h ∈ H.
Hence V is U-positive if and only if U∗V is positive with respect to the usual inner
product 〈·, ·〉.

Definition 1.6. Let (Hi, Ui) (i = 1, 2) be an S-space with the indefinite inner-product
[·, ·]Ui

. Let φ : B(H1) → B(H2) be a linear map. Then φ is called (U1, U2)-Hermitian if
φ(U1V

∗U∗
1 ) = U2φ(V

∗)U∗
2 for V ∈ B(H1). We say that a (U1, U2)-Hermitian linear map

φ is

(1) (U1, U2)-positive if φ(B(H1)
U+) ⊂ B(H2)

U+, that is, if V ∈ (B(H1))
U+ (or V is

U1-positive), then φ(V ) is U2-positive. In simple words, if U∗
1V is positive with

respect to the usual inner product 〈·, ·〉H1
, then U∗

2φ(V ) is positive with respect to
the usual inner product 〈·, ·〉H2

.
(2) completely (U1, U2)-positive or (U1, U2)-CP if for each l ∈ N the l-fold amplifica-

tion φl : Il ⊗ φ :Ml(C)⊗B(H1) →Ml(C)⊗ B(H2) defined by

φl([Vij]) = [φ(Vij)], for [Vij] ∈Ml(B(H1))

satisfies

φl(Ml(B(H1))
U+) ⊂Ml(B(H2))

U+,

that is, if V = [Vij ]i,j ∈ Ml(B(H1))
U+ (i.e., V is U l

1-positive), then φl(V ) is
U l
2-positive. Here Ml(B(Hi))

U+ = B(Hl
i)
U+ is the set of all U l

i -positive linear
operators on S-spaces (Hl

i, U
l
i ), and U l

i = diag(U, U, . . . , U) ∈ Ml(B(Hi)) for
i = 1, 2.

(3) U-positive (and completely U-positive (U-CP) )if H1 = H2 = H and U1 = U2 =
U and it is (U1, U2)-positive (and (U1, U2)-CP, respectively).

2. Completely U-positive and completely U-co-positive maps

Our main objective in this section is to obtain Stinespring-type theorem for completely
U -positive maps. Let (Hi, Ui) (i = 1, 2) be an S-space with the indefinite inner product
[·, ·]Ui

. Suppose φ : B(H1) → B(H2) is a linear map. Define a linear map ψ from B(H1)
to B(H2) by ψ(X) := U2φ(U

∗
1X) where X ∈ B(H1). For any l ∈ N and V = [Vij] ∈
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Ml(B(H1)), we obtain

ψl(V ) = [ψ(Vij)]i,j = [U2φ(U
∗
1Vij)]i,j =





U2φ(U
∗
1V11) · · · U2φ(U

∗
1V1l)

...
. . .

...
U2φ(U

∗
1Vl1) · · · U2φ(U

∗
1Vll)





=





U2 0
. . .

0 U2









φ(U∗
1V11) · · · φ(U∗

1Vll)
...

. . .
...

φ(U∗
1Vl1) · · · φ(U∗

1Vll)



 = U l
2φ

l(U l∗

1 V ).

Similarly, we can easily show that φl(V ) = U l∗

2 ψ(U
l
1V ) where φ(Vij) = U∗

2ψ(U1Vij).
The following result is a generalization of [16, Theorem 20] and [11, Proposition 2.2]

in the setting of S-spaces:

Proposition 2.1. Let (Hi, Ui) (i = 1, 2) be an S-space with the indefinite inner product
[·, ·]Ui

. Suppose φ : B(H1) → B(H2) is a linear map, then φ is CP if and only if the
corresponding linear map ψ from B(H1) to B(H2) defined by ψ(X) := U2φ(U

∗
1X) is

(U1, U2)-CP, where X ∈ B(H1).

Proof. Let φ be a linear map from B(H1) to B(H2). First assume that φ is CP. We have
to prove that ψ is (U1, U2)-CP. For this purpose, let V = [Vij] ∈ Ml(B(H1))

U+, that is,
U l∗

1 V ∈Ml(B(H1)) is positive, that is,

0 ≤ [V h,h]U l
1

= 〈V h, U l
1h〉 = 〈U l∗

1 V h,h〉,

where h ∈ H
l. Consider

[ψl(V )h′,h′]U l
2

= 〈ψl(V )h′, U l
2h

′〉 = 〈U l∗

2 ψ
l(V )h′,h′〉

= 〈U l
2φ

l(U l∗

1 V )h′, U l
2h

′〉 = 〈φl(U l∗

1 V )h′,h′〉 ≥ 0,

where h′ ∈ H
l. Therefore 〈U l∗

2 ψ
l(V )h′,h′〉 ≥ 0, that is, U l∗

2 ψ
l(V ) is positive. This proves

that ψ(V ) is U2-positive. Thus ψ is (U1, U2)-CP.
Conversely, suppose that ψ is (U1, U2)-CP. Since ψ(·) = U2φ(U

∗
1 ·), we get φ(U∗

1 ·) =
U∗
2ψ(·). Therefore φ(·) = U∗

2ψ(U1·). Let V = [Vij] ∈Ml(B(H1))
+, then we have to show

that φl(V ) = [φ(Vij)] ∈Ml(B(H2))
+. Now

0 ≤ 〈V h,h〉 = 〈U l
1V h, U l

1h〉 = [U l
1V h,h]U l

1

,

where h ∈ H
l, it means, U l

1V ∈Ml(B(H1))
U+. Therefore

〈φl(V )h′,h′〉 = 〈U l∗

2 ψ(U
l
1V )h

′,h′〉 = 〈ψ(U l
1V )h′, U l

2h
′〉

= [ψ(U l
1V )h′,h′]U l

2

≥ 0,

where h′ ∈ H
l and the last inequality follows from the fact that U l

1V ∈ Ml(B(H1))
U+

and hence ψ is (U1, U2)-CP.
�

Theorem 2.2. Let (Hi, Ui) (i = 1, 2) be an S-space. Assume that a linear map ψ from
B(H1) to B(H2) defined by ψ(V ) := U2φ(U

∗
1V ) for all V ∈ B(H1) is (U1, U2)-CP. Then



QUANTUM U -CHANNELS ON S-SPACES 5

there exist an S-space (H, U), a ∗-representation π of B(H1) on the Hilbert space H and
a bounded linear operator R : H2 → H such that

ψ(V ) = R#π(V )R

where U = π(U1), and R
# := U2R

∗U∗. Moreover, if ψ(U1) = U2, then R
∗R = IH2

.

Proof. Suppose a linear map ψ is (U1, U2)-CP. Then with the help of Proposition 2.1, we
get that φ defined by φ(V ) = U∗

2ψ(U1V ) is CP. Then using Stinespring’s theorem [18,
Theorem 1], there exist a Hilbert space H, a representation (a unital ∗-homomorphism
) π of B(H1) on the Hilbert space H and a bounded linear operator R : H2 → H, such
that φ(V ) = R∗π(V )R for every V ∈ B(H1).

Let U = π(U1) ∈ B(H), where U is a fundamental unitary, that is, U∗ = U−1, so that
(H, U) becomes an S-space. Define R# := U2R

∗U∗, then

ψ(V ) = U2φ(U
∗
1V ) = U2R

∗π(U∗
1V )R = U2R

∗U∗π(V )R = R#π(V )R.

Furthermore, if ψ(U1) = U2, then

U2 = ψ(U1) = U2φ(U
∗
1U1) = U2R

∗π(U∗
1U1)R = U2R

∗R,

hence R∗R = IH2
. �

Theorem 2.3. Suppose φ : B(H1) → B(H2) is a linear map. If φ satisfies the following
conditions for all V ∈ B(H1) :

φ(U∗
1V ) = U∗

2φ(V ) and φ(U1V ) = U2φ(V ),

then φ is a CP map if and only if φ is (U1, U2)-CP.

Proof. First assume φ to be a CP map. Let V = [Vij] ∈Ml(B(H1))
U+. Observe that

φl(U l∗

1 V ) = [φ(U∗
1Vij)]i,j =





φ(U∗
1V11) · · · φ(U∗

1V1l)
...

. . .
...

φ(U∗
1Vl1) · · · φ(U∗

1Vll)





=





U∗
2 0

. . .
0 U∗

2









φ(V11) · · · φ(Vll)
...

. . .
...

φ(Vl1) · · · φ(Vll)



 = U l∗

2 φ
l(V ).

Similarly, we obtain φl(U l
1V ) = U l

2φ
l(V ). Now consider

[φl(V )h′,h′]U l
2

= 〈φl(V )h′, U l
2h

′〉 = 〈U l∗

2 φ
l(V )h′,h′〉

= 〈φl(U l∗

1 V )h′,h′〉 ≥ 0,

where h′ ∈ H
l
2. Therefore 〈U l∗

2 φ
l(V )h′,h′〉 ≥ 0, that is, U l∗

2 φ
l(V ) is positive with respect

to the usual inner product 〈·, ·〉. This proves that φ(V ) is U2-positive. Thus φ is (U1, U2)-
CP.

Conversely, suppose that φ is (U1, U2)-CP. Let V = [Vij ] ∈ Ml(B(H1))
+. Then we

have to show that φl(V ) = [φ(Vij)] ∈ Ml(B(H2))
+. Since

0 ≤ 〈V h,h〉 = 〈U l
1V h, U l

1h〉 = [U l
1V h,h]U l

1

,
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where h ∈ H
l, it means U l

1V ∈Ml(B(H1))
U+. Then

〈φl(V )h′,h′〉 = 〈U l
2φ(V )h

′, U l
2h

′〉 = 〈φ(U l
1V )h

′, U l
2h

′〉
= [φ(U l

1V )h
′,h′]U l

2

≥ 0,

where h′ ∈ H
l and the last inequality follows from the fact that U l

1V ∈ Ml(B(H1))
U+

and φ is (U1, U2)-CP. �

Remark 2.4. In particular, if H1 = H2 = H and U1 = U2 = U, and if a linear map
φ : B(H) → B(H) satisfies φ(U∗V ) = U∗φ(V ) and φ(UV ) = Uφ(V ) for all V ∈ B(H1),
then φ is CP if and only if φ is U-CP.

Definition 2.5. Let (Hi, Ui) (i = 1, 2) be an S-space. Assume that ψ is a linear map
from B(H1) to B(H2). Then

(1) for each l ∈ N, ψ is l-(U1, U2)-co-positive if τl ⊗ ψ :Ml(C)⊗B(H1) → Ml(C)⊗
B(H2) is (Il ⊗ U1, Il ⊗ U2)-positive where τl is the transpose map on Ml(C).

(2) ψ is completely (U1, U2)-co-positive if it is l-(U1, U2)-co-positive for each l ∈ N.
(3) ψ is (U1, U2)-positive partial transpose ((U1, U2)-PPT) if it is (U1, U2)-CP and

completely (U1, U2)-co-positive.
(4) In particular, if H1 = H2 = H and U1 = U2 = U, then we simply call it com-

pletely U-co-positive (and U-positive partial transpose (U-PPT)) if it is com-
pletely (U1, U2)-co-positive (and (U1, U2)-positive partial transpose, respectively).

Proposition 2.6. Let (Hi, Ui) (i = 1, 2) be an S-space. Suppose φ : B(H1) → B(H2)
is a linear map, then φ is completely co-positive if and only if the corresponding linear
map ψ from B(H1) to B(H2) defined by ψ(X) := U2φ(U

∗
1X) is completely (U1, U2)-co-

positive, where X ∈ B(H1).

Proof. Let V = [Vij] ∈Ml(C)⊗ B(H1) be such that (Il ⊗ U∗
1 )V ≥ 0. Then

(τl ⊗ ψ)(V ) =





ψ(V11) · · · ψ(Vl1)
...

. . .
...

ψ(V1l) · · · ψ(Vll)



 =





U2φ(U
∗
1V11) · · · U2φ(U

∗
1Vl1)

...
. . .

...
U2φ(U

∗
1V1l) · · · U2φ(U

∗
1Vll)





=





U2 0
. . .

0 U2









φ(U∗
1V11) · · · φ(U∗

1Vl1)
...

. . .
...

φ(U∗
1V1l) · · · φ(U∗

1Vll)





= (Il ⊗ U2)(τl ⊗ φ)(Il ⊗ U∗
1 )V.

Hence (Il ⊗ U∗
2 )(τl ⊗ ψ)(V ) is positive as φ is completely co-positive map.

Conversely, for any V = [Vij ] ∈Ml(B(H1), we have

0 ≤ 〈V h,h〉 = 〈U l
1V h, U l

1h〉 = [U l
1V h,h]U l

1

,

where h ∈ H
l, it means U l

1V ∈Ml(B(H1))
U+. We obtain

(τl ⊗ φ)(V ) =





φ(V11) · · · φ(Vl1)
...

. . .
...

φ(V1l) · · · φ(Vll)



 =





U∗
2ψ(U1V11) · · · U∗

2ψ(U1Vl1)
...

. . .
...

U∗
2ψ(U1V1l) · · · U∗

2ψ(U1Vll)
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=





U∗
2 0

. . .
0 U∗

2









ψ(U1V11) · · · ψ(U1Vl1)
...

. . .
...

ψ(U1V1l) · · · ψ(U1Vll)





= U l∗

2 (τl ⊗ ψ)(U l
1V ).

Therefore (τl⊗φ)(V ) = U l∗

2 (τl⊗ψ)(U l
1V ). Since U

l
1V ∈Ml(B(H1))

U+ and ψ is completely
(U1, U2)-co-positive, φ is co-positive.

�

3. Kraus U-decomposition and Choi U-matrix

In this section, we derive Kraus U -decomposition and Choi U -matrix and establish
their relation with the completely U -positive maps. Let Mm(C) denote the set of all
m×m-complex matrices. Kraus proved that φ : Mm(C) → Mn(C) is a CP map if and
only if

φ(V ) =
l

∑

i=1

R∗
iV Ri, (3.1)

where V = [Vij]i,j ∈ Mm(C) and for each i, Ri ∈ Mm,n(C). The expression in above
equation is called a Kraus decomposition.

Denote MA := Mm(C) and MB := Mn(C). Let UA and UB be the fundamental
unitaries in MA and MB, respectively. Define a linear map ψ :MA →MB by

ψ(V ) :=

l
∑

i=1

R
#A,B

i V Ri, (3.2)

where R
#A,B

i = UBR
∗
iU

∗
A. Then ψ is (UA, UB)-CP. Indeed, for any k ∈ N, take a

Uk∗

A -positive matrix V = [Vij ] ∈ Mk(MA)
U+. Since V = [Vij] ∈ Mk(MA)

U+, Uk∗

A V ∈
Mk(MA)

+, that is,

Uk∗

A V =





U∗
A 0

. . .
0 U∗

A









V11 · · · V1k
...

. . .
...

Vk1 · · · Vkk





=





U∗
AV11 · · · U∗

AV1k
...

. . .
...

U∗
AVk1 · · · U∗

AVkk



 ∈ Mk(MA)
+.

Consider

ψk(V ) = ψk





V11 · · · V1k
...

. . .
...

Vk1 · · · Vkk



 =





ψ(V11) · · · ψ(V1k)
...

. . .
...

ψ(Vk1) · · · ψ(Vkk)





=
l

∑

i=1







R
#A,B

i V11Ri · · · R
#A,B

i V1kRi

...
. . .

...

R
#A,B

i Vk1Ri · · · R
#A,B

i VkkRi
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=
l

∑

i=1





UBR
∗
iU

∗
AV11Ri · · · UBR

∗
iU

∗
AV1kRi

...
. . .

...
UBR

∗
iU

∗
AVk1Ri · · · UBR

∗
iU

∗
AVkkRi





=

l
∑

i=1





UB 0
. . .

0 UB









R∗
i 0

. . .

0 R∗
i



Uk∗

A V





Ri 0
. . .

0 Ri





= Uk
B

l
∑

i=1





R∗
i 0

. . .
0 R∗

i



Uk∗

A V





Ri 0
. . .

0 Ri



 ,

and since Uk∗

A V ∈Mk(MA)
+, by using the Kraus decomposition

l
∑

i=1

R∗k
i U

k∗

A V R
k
i ∈Mk(MA)

+,

we obtain Uk∗

B ψ
k(V ) ≥ 0. Hence ψk(V ) is a UB-positive matrix, that is, ψ is (UA, UB)-CP

map.

Theorem 3.1. Let UA and UB be the fundamental unitaries inMA andMB, respectively.
A linear map ψ :MA →MB is a (UA, UB)-CP map if and only if it has a decomposition
of the form (3.2).

Proof. Assume that ψ is a (UA, UB)-CP map. Since a linear map φ :MA → MB defined
by φ(V ) = U∗

Bψ(UAV ) is CP, φ has a Kraus decomposition, that is,

φ(V ) =

l
∑

i=1

R∗
iV Ri,

where V ∈Mm(C) and for each i, Ri ∈Mm,n(C). Thus we have

ψ(V ) = UBφ(U
∗
AV ) = UB

l
∑

i=1

R∗
iU

∗
AV Ri =

l
∑

i=1

UBR
∗
iU

∗
AV Ri =

l
∑

i=1

R#
i V Ri.

Therefore ψ is a (UA, UB)-CP map if and only if ψ has the expression ψ(V ) =
∑l

i=1R
#
i V Ri,

we call ψ has a Kraus U-decomposition in this case. �

Suppose {eij | 1 ≤ i, j ≤ m} are the matrix units of Mm(C). We observe that
D = [UAeij ]1≤i,j≤m is Im ⊗ UA-positive. Indeed,

(Im ⊗ U∗
A)D =





U∗
A 0

. . .
0 U∗

A









UAe11 · · · UAe1m
...

. . .
...

UAem1 · · · UAemm





=





e11 · · · e1m
...

. . .
...

em1 · · · emm



 ∈M+

m2(C).

It implies from the above proposition that [ψ(UAeij)]1≤i,j≤m is Im ⊗ UB-positive.
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Theorem 3.2. Let ψ :MA →MB be a linear map. Then ψ is (UA, UB)-CP if and only
if [U∗

Bψ(UAeij)]1≤i,j≤m is positive.

Proof. The proof directly follows from [6, Theorem 2]. �

Let φ : Mm(C) → Mn(C) be a linear map. Choi [6] defined Cφ =
∑m

i,j=1 eij ⊗ φ(eij),
called the Choi matrix, and proved that it is positive if and only if φ is a CP map.

Definition 3.3. Let ψ :Mm(C) →Mn(C) be a linear map. We define CU
ψ :=

∑m
i,j=1 eij⊗

ψ(UAeij). The matrix CU
ψ is called the Choi U -matrix.

Theorem 3.4. Let UA and UB be the fundamental unitaries inMA andMB, respectively,
whereMA =Mm(C) andMB =Mn(C). Then a linear map ψ :MA →MB is a (UA, UB)-
CP map if and only if CU

ψ is IA ⊗ UB-positive in MA ⊗MB.

Proof. Let φ : MA → MB be the linear map defined by φ(V ) := U∗
Bψ(UAV ) where

V ∈ MA. Then by Proposition 2.1, φ is CP if and only if ψ is a (UA, UB)-CP map. It
is known from [6] that φ is CP if and only if Cφ is positive semi-definite. Since, for any
h,h′ ∈ C

mn, we have

[CU
ψ h,h

′]Um
B
= 〈CU

ψ h, U
m
B h′〉 = 〈Um∗

B CU
ψ h,h

′〉

= 〈





U∗
Bψ(UAe11) · · · U∗

Bψ(UAe1m)
...

. . .
...

U∗
Bψ(UAem1) · · · U∗

Bψ(UAemm)



h,h′〉

= 〈





φ(e11) · · · φ(e1m)
...

. . .
...

φ(e1m) · · · φ(emm)



h,h′〉

= 〈Cφh,h′〉,
that is, Cφ is positive if and only if CU

ψ is IA⊗UB-positive inMA⊗MB, which completes
the proof. �

4. Nilpotent U-CP maps

Nilpotent CP maps were studied by Bhat and Mallick in [2]. Let H be a finite
dimensional Hilbert space and φ : B(H) → B(H) be a CP map. Suppose φ is a
nilpotent map of order p, that is, φp = 0 and φp−1 6= 0. Define H1 := ker (φ(U))
and Hk := ker (φk(U)) ⊖ ker (φk−1(U)), where 2 ≤ k ≤ p. Then ∩pk=1Hk = ∅ and
H = H1 ⊕H2 ⊕ · · · ⊕Hp. Let bi := dim (Hi) for 1 ≤ i ≤ p. Then (b1, b2, . . . , bp) is called
the CP nilpotent type of φ. In this section, we introduce U -CP nilpotent type of U -CP
maps.

Proposition 4.1. Let H be a finite dimensional Hilbert space and (H, U) be an S-space
with the indefinite inner product [·, ·]U . Suppose φ : B(H) → B(H) is a CP map, then
the corresponding linear map ψ from B(H) to B(H) defined by ψ(X) := Uφ(U∗X) is

U-CP, with the Kraus U-decomposition ψ(X) =
∑l

i=1R
#
i XRi, where X ∈ B(H) and

R#
i = UR∗

iU
∗ for each 1 ≤ i ≤ l. Then

(1) ker (ψ(U)) = ∩li=1ker (URi),
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(2) For U-positive X, ψ(X) = 0 if and only if ran(X) ⊆ ∩li=1ker (R
∗
iU

∗),
(3) {h ∈ H | ψ(|Uh〉〈h|) = 0} = ∩li=1ker (R

∗
iU

∗),
(4) ran(ψ(U)) = span{UR∗

i h | h ∈ H, 1 ≤ i ≤ l}.

Proof. (1) Consider

ker (ψ(U)) = {h ∈ H | ψ(U)h = 0}

= {h ∈ H |
l

∑

i=1

R#
i URih = 0}

= {h ∈ H |
l

∑

i=1

[R#
i URih, h]U = 0}

= {h ∈ H |
l

∑

i=1

[URih,Rih]U = 0}

= {h ∈ H |
l

∑

i=1

〈URih, URih〉 = 0}

= {h ∈ H |
l

∑

i=1

‖URih‖2 = 0}

= {h ∈ H | URih = 0, for each 1 ≤ i ≤ l}

=

l
⋂

i=1

ker (URi).

(2) Suppose ψ(X) = Uφ(U∗X) = 0 where X is U -positive. It follows that φ(U∗X) =

0, and since φ is a CP map, using the Kraus decomposition, we obtain
∑l

i=1R
∗
iU

∗XRi =
0. As X is U -positive (U∗X is positive), we get R∗

iU
∗XRi = 0 for each i. Note that

R∗
i (U

∗X)
1

2 = 0. It implies that R∗
iU

∗X = 0. Let h1 ∈ ran(X), then there exists h2 ∈ H
such that X(h2) = h1. Now by applying R∗

iU
∗ on both the sides, we get R∗

iU
∗h1 = 0 for

each i. Hence ran(X) ⊆ ∩li=1ker (R
∗
iU

∗).

Conversely, let ran(X) ⊆ ∩li=1ker (R
∗
iU

∗), then ψ(X) =
∑l

i=1R
#
i XRi =

∑l
i=1 UR

∗
iU

∗XRi =
0.

(3) One can easily see that |Uh〉〈h| is U -positive. Indeed, U∗|Uh〉〈h| = |h〉〈h| ≥ 0.
Also, we have ψ(|Uh〉〈h|) = 0, and ran(|Uh〉〈h|) = Ch, therefore it directly follows from
(2) that {h ∈ H | ψ(|Uh〉〈h|) = 0} = ∩li=1ker (R

∗
iU

∗).

(4) Let h1 ∈ ran(ψ(U)) = ran(
∑l

i=1R
#
i URi) = ran(

∑l
i=1 UR

∗
iRi).Then

∑l
i=1 UR

∗
iRih2 =

h1 for some h2 ∈ H. Therefore h1 ∈ span{UR∗
i h | h ∈ H, 1 ≤ i ≤ l}. Hence

ran(ψ(U)) ⊆ span{UR∗
i h | h ∈ H, 1 ≤ i ≤ l}.

Conversely, let h ∈ span{UR∗
i h | h ∈ H, 1 ≤ i ≤ l}. Then h =

∑l
i=1 αiUR

∗
i hi

where αi ∈ C, hi ∈ H. We have to show that h ∈ ran(ψ(U)) = ran(U
∑l

i=1R
∗
iRi).

It is equivalent to show that h ∈ ker (
∑l

i=1R
∗
iRiU

∗)⊥, that is, 〈h, h′〉H = 0 for all

h′ ∈ ker (
∑l

i=1
R∗
iRiU

∗).
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Consider h′ ∈ ker (
∑l

i=1R
∗
iRiU

∗), then we have

0 =

l
∑

i=1

[R∗
iRiU

∗h′, h′]U∗ =

l
∑

i=1

〈R∗
iRiU

∗h′, U∗h′〉.

It follows that RiU
∗h′ = 0 for each i. Observe that

〈h, h′〉 =
l

∑

i=1

αi〈UR∗
i hi, h

′〉 =
l

∑

i=1

αi〈hi, RiU
∗h′〉 = 0,

which proves that ran(ψ(U)) = span{UR∗
i h | h ∈ H, 1 ≤ i ≤ l}. �

Proposition 4.2. Let (H, U) be an S-space with the indefinite inner product [·, ·]U .
Suppose φ : B(H) → B(H) is a CP map, then the corresponding linear map ψ from
B(H) to B(H) defined by ψ(X) := Uφ(U∗X) is U-CP, with the Kraus U-decomposition

ψ(X) =
∑l

i=1R
#
i XRi, where X ∈ B(H) and R#

i = UR∗
iU

∗ for each 1 ≤ i ≤ l. Then
the followings are equivalent:

(1) ψp(X) = 0 for all X ∈ B(H);
(2) Ri1Ri2 · · ·Rip = 0 for all i1, i2, . . . , ip.

Proof. (1) =⇒ (2) : Let us assume for each X ∈ B(H), we have

0 = ψp(X) =

l
∑

i1,i2,...,ip=1

R#
ip,...,i1

XRi1Ri2 · · ·Rip ,

where R#
ip,...,i1

= UR∗
ip
R∗
ip−1

· · ·R∗
i1
U∗. Therefore

0 = ψp(I) =
l

∑

i1,i2,...,ip=1

R#
ip,...,i1

Ri1Ri2 · · ·Rip.

Now observe that

{h ∈ H |
l

∑

i1,i2,...,ip=1

R#
ip,...,i1

Ri1Ri2 · · ·Riph = 0}

={h ∈ H |
l

∑

i1,i2,...,ip=1

[R#
ip,...,i1

Ri1Ri2 · · ·Riph, h]U = 0}

={h ∈ H |
l

∑

i1,i2,...,ip=1

[Ri1Ri2 · · ·Riph,Ri1Ri2 · · ·Riph]U = 0},

which concludes the desired equality (2).
(2) =⇒ (1) : Trivial. �

Suppose ψ is a U -CP map from B(H) to B(H) defined by ψ(X) = Uφ(U∗X). Let
ψ be a nilpotent map of order p. Define K1 := ker (ψ(U)) and Kk := ker (ψk(U)) ⊖
ker (ψk−1(U)), where 2 ≤ k ≤ p. Then ∩pk=1Kk = ∅ and H = K1 ⊕K2 ⊕ · · · ⊕ Kp.
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Definition 4.3. Let ci := dim (Ki) for 1 ≤ i ≤ p. Then (c1, c2, . . . , cp) is called the
U -CP nilpotent type of ψ.

5. Quantum U-channels and quantum U-states

The U -states and the quantum U -channel, which are the S-space versions of the
states and quantum channel, respectively, are introduced in this section. Together,
we introduce U -separable and U -entangled states and present the U -PPT criterion for
U -separability of U -states.

Definition 5.1. Let φ :MA →MB be a linear map and UA and UB be the fundamental
unitaries in MA and MB, respectively. Then

(1) φ is a quantum channel if it is CP and trace preserving, that is, Tr(φ(V )) =
Tr(V ) where V ∈MA.

(2) a linear map ψ from B(H1) to B(H2) defined by ψ(V ) := U2φ(U
∗
1V ) is a quantum

(UA, UB)-channel if it is (UA, UB)-CP and trace preserving.

Remark 5.2. It is well known that φ is a quantum channel if and only if there exist
m× n-matrices R1, . . . , Rl such that

φ(V ) =
l

∑

i=1

R∗
iV Ri and

l
∑

i=1

RiR
∗
i = I

where V ∈MA. Indeed, if φ is a quantum channel, then it is a CP map and trace preserv-
ing. Therefore by Kraus decomposition (3.1), there exist m×n-matrices R1, . . . , Rl such

that φ(V ) =
∑l

i=1R
∗
iV Ri, and if φ is a trace preserving map, then φ∗(V ) =

∑l
i=1RiV R

∗
i

is unital (Tr(X) = 〈IX , X〉 = Tr(φ(X)) = 〈IX , φ(X)〉 = 〈φ∗(IX), X〉) which implies
∑l

i=1RiR
∗
i = I.

Similarly, if ψ is a quantum (UA, UB)-channel, then by Kraus U -decomposition (3.2)

we have ψ(V ) =
∑l

i=1R
#A,B

i V Ri, where R
#A,B

i = UBR
∗
iU

∗
A. Since ψ is trace preserving,

it means ψ∗ is unital and we obtain IB = ψ∗(IA) =
∑l

i=1RiR
#A,B

i . Moreover,
∑

i

RiU
∗
BR

#A,B

i = RiU
∗
BUBR

∗
iU

∗
A = U∗

A.

A quantum state ρ ∈Mn(C) is a positive semi-definite matrix with Tr(ρ) = 1.

Definition 5.3. Let U be a fundamental unitary in Mn(C), then a matrix ρ ∈ Mn(C)
is called a quantum U -state if the following conditions hold:

(1) ρ is U-positive, that is, U∗ρ is positive and
(2) Tr(U∗ρ) = 1.

Example 5.4. Let U be a fundamental unitary inMl(C), where l ∈ N. Define ρ ∈Ml(C)
as ρ = |Ue〉〈e| where e ∈ Cl with ‖e‖ = 1. Then

U∗ρ = U∗|Ue〉〈e| = |U∗Ue〉〈e| = |e〉〈e|.
It follows that U∗ρ is positive and also note that Tr(U∗ρ) = Tr(|e〉〈e|) = 〈e, e〉 = 1.
Hence ρ is a quantum U-state.
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Proposition 5.5. A quantum (UA, UB)-channel ψ :MA →MB maps quantum UA-states
into quantum UB-states.

Proof. Let V be a quantum UA-state, that is, V is UA-positive and Tr(U∗
AV ) = 1. Since

ψ is a quantum (UA, UB)-channel, we have

ψ(V ) =

l
∑

i=1

R
#A,B

i V Ri =

l
∑

i=1

UBR
∗
iU

∗
AV Ri,

for some m×n-matrices R1, . . . , Rl. Since V is UA-positive, we have U
∗
AV ≥ 0. Therefore

U∗
Bψ(V ) =

∑l
i=1R

∗
iU

∗
AV Ri ≥ 0, that is, ψ(V ) is UB-positive. Furthermore, we obtain

Tr(U∗
Bψ(V )) = Tr(

l
∑

i=1

R∗
iU

∗
AV Ri) = Tr(

l
∑

i=1

U∗
AV RiR

∗
i ) = Tr(U∗

AV

l
∑

i=1

RiR
∗
i )

= Tr(U∗
AV ) = 1,

which proves that ψ(V ) is a quantum UB-state. �

A bipartite quantum state ρ ∈MA⊗MB is a product state if ρ = ρA⊗ρB with ρA ∈M+
A

and ρB ∈M+
B and is separable if it is a convex combination of product states. Moreover,

it is entangled if it is not separable. We define τ := t⊗id :MA⊗MB → MA⊗MB where t
is the transpose onMA.We call the τ map the partial transpose or the blockwise transpose
and a bipartite quantum state ρ is positive partial transpose (PPT) if ρτ := t ⊗ id(ρ)
is positive. The positive partial transpose criterion says that if ρ is separable, then ρ is
positive partial transpose.

Definition 5.6. Let UA and UB be the fundamental unitaries in MA and MB, respec-
tively. Let UA ⊗ UB be the fundamental unitary in MA ⊗MB and ρ ∈ MA ⊗MB be a
bipartite quantum UA ⊗ UB-state. Then

(1) ρ is a product UA ⊗ UB-state if ρ = ρA ⊗ ρB where ρA ∈MU+
A and ρB ∈ MU+

B .
(2) ρ is UA ⊗ UB-separable if it is a convex combination of product UA ⊗ UB-states.
(3) ρ is UA ⊗ UB-entangled if it is not UA ⊗ UB-separable.
(4) ρ is UA ⊗ UB-positive partial transpose if the partial transpose ρτ is U t

A ⊗ UB-
positive, that is, (UA ⊗ U∗

B)(ρ
τ ) is positive.

Proposition 5.7. If a bipartite quantum UA ⊗ UB-state ρ ∈ MA ⊗MB is UA ⊗ UB-
separable, then ρ is UA ⊗ UB-positive partial transpose.

Proof. Consider that ρ is UA ⊗ UB-separable, it means we can write it as a convex
combination of product UA ⊗ UB-states, that is,

ρ =

l
∑

i=1

pi(UA ⊗ UB)(|zi〉〈zi|) =
l

∑

i=1

pi(UA ⊗ UB)(|xi〉 ⊗ |yi〉)(〈xi| ⊗ 〈yi|)

=
l

∑

i=1

pi(UA ⊗ UB)(|xi〉〈xi| ⊗ |yi〉〈yi|) =
l

∑

i=1

piUA(|xi〉〈xi|)⊗ UB(|yi〉〈yi|),
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with
∑l

i=1 pi = 1, and |zi〉 = |xi〉 ⊗ |yi〉 ∈ MA ⊗MB. Since (UA(|xi〉〈xi|))t = |xi〉〈xi|U∗
A,

we obtain

ρτ = t⊗ id(ρ) =

l
∑

i=1

pi|xi〉〈xi|U∗
A ⊗ UB(|yi〉〈yi|).

Since UA|xi〉〈xi|U∗
A is a positive matrix in MA, (UA ⊗ U∗

B)(ρ
τ ) is positive. �

6. U-entanglement breaking maps

In this section, we consider the special class of quantum channels which can be sim-
ulated by a classical channel in the following sense: The sender makes a measurement
on the input state ρ, and send the outcome k via a classical channel to the receiver who
then prepares an agreed upon state Rk. Such channels can be written in the form

φ(ρ) =
∑

k

RkTr(Ekρ),

where each Rk is a density matrix (density matrices, also called density operators, which
conceptually take the role of the state vectors, that is, Rk is a positive semi-definite
matrix with Tr(Rk) = 1) and the Ek form a positive operator valued measure ({Ek}k
form a positive operator valued measure means for each k, Ek is positive semi-definite
and

∑

k Ek = idA). We call this the “Holevo form” because it was introduced by Holevo
in [13]. In this context, it is natural to consider the class of channels which break
entanglement.

Definition 6.1. Let φ :MA → MB be a quantum channel. If (idn⊗φ)(S) is always sep-
arable for all bipartite quantum states S ∈Mn(C)⊗MA, then we call it an entanglement
breaking map.

Let UA and UB be the fundamental unitaries in MA andMB, respectively. The family
{Fk}k is a UA-positive operator valued measure if each FkUA is positive semi-definite and
∑

k FkUA = idA (or
∑

k Fk = U∗
A) and D is called UA-density matrix if D is a UA-positive

semi-definite matrix, that is, U∗
AD is positive semi-definite matrix with Tr(U∗

AD) = 1.

Definition 6.2. Let ψ :MA →MB be a (UA, UB)-quantum channel.

(1) ψ is said to be (UA, UB)-entanglement breaking if (idn⊗ψ)(S) is In⊗UB-separable
for any In ⊗ UA-density matrix S ∈Mn(C)⊗MA.

(2) ψ is in (UA, UB)-Holevo form if it can be expressed as

ψ(ρ) =
∑

k

DkTr(Fkρ),

where Dk is a UB-density matrix, that is, U∗
BDk is positive semi-definite matrix

and Tr(U∗
BDk) = 1 and Fk is a UA-positive operator valued measure in MA, that

is FkUA is positive semi-definite and
∑

k FkUA = idA.

Theorem 6.3. Let ψ : MA → MB be a (UA, UB)-quantum channel. Then the following
statements are equivalent:

(1) ψ is (UA, UB)-entanglement breaking;
(2) ψ is in (UA, UB)-Holevo form .
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Proof. (1) =⇒ (2) : Suppose ψ is (UA, UB)-entanglement breaking. The map φ given
by φ(V ) = U∗

Bψ(UAV ) is a quantum channel and we have for each n ∈ N,

idn ⊗ φ = idn ⊗ (U∗
Bψ(UA)) = (In ⊗ U∗

B)(idn ⊗ ψ)(In ⊗ UA). (6.1)

Let S ∈ Mn(C) ⊗MA be a density matrix. One can easily verify that (In ⊗ UA)S is a
(In⊗UA)-density matrix, that is, (In⊗U∗

A)(In⊗UA)S is positive and Tr((In⊗U∗
A)(In⊗

UA)S) = 1 which trivially hold as (In ⊗ U∗
A)(In ⊗ UA)S = S. Since (idn ⊗ ψ)(In ⊗ UA)S

is (In⊗UB)-separable, (idn⊗φ)(S) is separable. This implies that φ is an entanglement
breaking map. Now using [12, Theorem 4], we can write φ in the Holevo form, that is,

φ(ρ) =
∑

k

RkTr(Ekρ),

where each Rk is a density matrix and {Ek}k is a positive operator valued measure with
∑

k Ek = idA. Observe that

ψ(ρ) = UBφ(U
∗
Aρ) =

∑

k

UBRkTr(EkU
∗
Aρ) =

∑

k

DkTr(Fkρ),

where Dk := UBRk and Fk := EkU
∗
A. Note that Dk is a UB-density matrix since U∗

BDk =
U∗
BUBRk = Rk and Rk is already a density matrix in MB and also {Fk}k is a UA-

positive operator valued measure in MA as EkU
∗
AUA = Ek is positive semi-definite and

∑

k EkU
∗
AUA = idA.

(2) =⇒ (1) : Assume that ψ has the (UA, UB)-Holevo form, it means ψ(ρ) =
∑

kDkTr(Fkρ), where Dk is a UB-density matrix and {Fk}k is a UA-positive operator
valued measure in MA. Define φ by φ(ρ) = U∗

Bψ(UAρ), where ρ ∈MA. We obtain

φ(ρ) = U∗
Bψ(UAρ) = U∗

Bψ(UAρ) = U∗
B

∑

k

DkTr(FkUAρ)

=
∑

k

U∗
BDkTr(FkUAρ).

Since Dk is a UB-density matrix and {Fk}k is a UA-positive operator valued measure in
MA, φ has a Holevo form and by [12, Theorem 4] φ is an entanglement breaking map
and hence Equation (6.1) implies that ψ is a (UA, UB)-entanglement breaking map. �

Remark 6.4. Let φ, ψ : MA → MB be linear maps such that ψ(ρ) = UBφ(U
∗
Aρ), where

ρ ∈ MA. As we know φ is positive if and only if ψ is a (UA, UB)-positive map. Suppose
φ is a quantum channel, that is, ψ is a (UA, UB)-quantum channel. Note that θ ◦ φ is
a CP map for any CP map θ : MB → MC if and only if ω ◦ ψ is (UA, UC)-CP for
any (UB, UC)-CP ω : MB → MC . Therefore, it follows from Theorem 6.3 that φ is an
entanglement breaking map if and only if ψ is a (UA, UB)-entanglement breaking map.

7. Examples of fundamental unitary and U-CP maps

In this section, we provide concrete examples of completely U -positive maps and
examples of 3⊗ 3 quantum U -states which are U -entangled and U -separable. It is easy
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to observe that the 2× 2 identity matrix I and the Pauli matrices

σx =

(

0 1
1 0

)

, σy =

(

0 −ι
ι 0

)

, σz =

(

1 0
0 −1

)

form a basis for M2(C). That is, for any A ∈M2(C), we have A = aI + bσx + cσy + dσz
where a, b, c, d ∈ C. Any fundamental unitary on the 2-dimensional complex S-space
has the form

U =

(

a b
−eιφb eιφa

)

(7.1)

where φ ∈ R and a, b ∈ C such that |a|2 + |b|2 = 1. For example, if we choose a = 1 and
b = 0, then we have the unitary

(

1 0
0 eιφ

)

which is called a Phase Gate (see [17]) that represents a rotation about the z-axis by an
angle φ on the Bloch sphere.

If we define an S-space with respect to the fundamental unitary U as in (7.1), then
U∗A = aU∗ + bσUx + cσUy + dσUz , where σ

U
x = U∗σx, σ

U
y = U∗σy, and σ

U
z = U∗σz, and we

call these matrices U-Pauli matrices.

Let U1 =

(

1 0
0 ι

)

and U2 =
1√
2

(

1 −1
1 1

)

be two unitaries which are not symmetries,

where U1 is the Phase gate for φ = π
2
.

(1) Consider the S-space (C2, U1). For any A ∈M2(C), we have

U∗
1A =

[

a

(

1 0
0 −ι

)

− ιb

(

0 ι
1 0

)

− ιc

(

0 1
ι 0

)

+ d

(

1 0
0 ι

)]

and

(U∗
1A)

∗ =

[

a

(

1 0
0 ι

)

+ b

(

0 ι
1 0

)

+ c

(

0 1
ι 0

)

+ d

(

1 0
0 −ι

)]

.

Comparing U∗
1A and (U∗

1A)
∗, one may easily find out that A is U1-self adjoint if

and only if a = d, −ιc = c and −ιb = b , that is, A has the form

A =

(

a + d b− ιc
b+ ιc a− d

)

=

(

a+ a b+ c
b− c a− a

)

=

(

2ℜ(a) b+ c
b− c 2ιℑ(a)

)

and U∗
1A has the form

U∗
1A =

(

a+ d b− ιc
c− ιb −ι(a− d)

)

=

(

a+ a b+ c
c + b ι(a− a)

)

=

(

2ℜ(a) b+ c
c+ b 2ℑ(a)

)

where a, b, c ∈ C. Further, U∗
1A is positive, that is, A is U1-positive if and only if

0 ≤ ℜ(a) and 4ℜ(a)ℑ(a) ≥ (b+ c)(b+ c)

Also, U∗
1A is a quantum state, that is, A is a quantum U1-state if and only if

ℜ(a) + ℑ(a) = 1

2
.
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In particular, if a = 1

2
∈ R, b = t and c = −t for all t ≥ 0, then all the above

relations are trivially satisfied. In other words, for t ≥ 0,

A = ρt =

(

1 0
2t 0

)

provides a one parameter family of quantum U1-states in M2(C). Similarly, the
following provides a one parameter family of quantum U1 ⊗ U1-states

1

16









1 0 0 0
2t 0 0 0
2t 0 0 0
4t2 0 0 0









,

where t ≥ 0.
Since M2(C) is a unital ∗-algebra, any ∗-homomorphism π from M2(C) into

M2(C) has the form π(A) = W ∗AW for some unitary matrix W ∈ M2(C).
If φ is a U1-CP map defined on M2(C), then by Theorem 2.2 there exist a ∗-
homomorphism π on M2(C) and a matrix V ∈M2(C) such that

φ(A) = V #π(A)V,

where V # = U1V
∗U∗

1 . For example, if we consider V =

(

α 0
0 β

)

and a unitary

W =

(

γ 0
0 δ

)

, then we get U1-CP φ in the following form:

φ(A) = V #π(A)V = (U1V
∗U∗

1 )(W
∗AW )V =

(

α 0
0 β

)(

a11 γa12δ
δa21γ a22

)(

α 0
0 β

)

=

(

ααa11 αγδβa12
βδγαa21 ββa22

)

,

where A =

(

a11 a12
a21 a22

)

∈ M2(C). Furthermore, if |α| = |β| = 1, then φ(A) is of

the form

φ(A) =

(

a11 αγδβa12
βδγαa21 a22

)

.

(2) Consider the S-space (C2, U2). For any A ∈M2(C), we obtain

U∗
2A =

1√
2

[

a

(

1 1
−1 1

)

+ b

(

1 1
1 −1

)

− ιc

(

−1 1
−1 −1

)

+ d

(

1 −1
−1 −1

)]

.

Comparing U∗
2A and (U∗

2A)
∗, one may easily find out that A is U2-self adjoint if

and only if b and d are reals and c = −ιa, that is, A has the form
(

a + d −a + b
a+ b a− d

)
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where a ∈ C and b, d ∈ R. Further, U∗
2A is positive, that is, A is U2-positive if

and only if

−(b+ d) ≤ 2ℜ(a) and b2 + d2 ≤ 2((ℜ(a))2 − (ℑ(a))2).
Also, U∗

2A is a quantum state, that is, A is a quantum U2-state if and only if

ℜ(a) =
√
2

4
, −(b+ d) ≤

√
2

2
and b2 + d2 ≤ 1

4
− 2(ℑ(a))2.

In particular, if a =
√
2/4 ∈ R and b = d = t/4, with −

√
2 ≤ t ≤

√
2, then all

the above relations are trivially satisfied. In other words, for −
√
2 ≤ t ≤

√
2,

ρt =
1

4

(

t+
√
2 t−

√
2

t+
√
2 −t +

√
2

)

provides a one parameter family of quantum U2-states in M2(C). Similarly, the
following provides a one parameter family of quantum U2 ⊗ U2-states

1

16









t2 + 2
√
2t+ 2 t2 − 2 t2 − 2 t2 − 2

√
2t+ 2

t2 + 2
√
2t+ 2 −t2 + 2 t2 − 2 −t2 + 2

√
2t− 2

t2 + 2
√
2t+ 2 t2 − 2 −t2 + 2 −t2 + 2

√
2t− 2

t2 + 2
√
2t+ 2 −t2 + 2 −t2 + 2 t2 − 2

√
2t+ 2









,

where −
√
2 ≤ t ≤

√
2.

Also, similar to the earlier example, we get any U2-CP map φ in the following
form:

φ(A) = V #π(A)V = (U2V
∗U∗

2 )(W
∗AW )V

=
1

2

(

α+ β α− β
α− β α + β

)(

a11 γa12δ
δa21γ a22

)(

α 0
0 β

)

=
1

2

(

(α + β)αa11 + (α− β)δγαa21 (α + β)γδβa12 + (α− β)βa22
(α− β)αa11 + (α + β)δγαa21 (α− β)γδβa12 + (α + β)βa22

)

,

where A =

(

a11 a12
a21 a22

)

∈M2(C). Also if |α| = |β| = 1, then φ(A) is of the form

φ(A) =
1

2

(

(1 + βα)a11 + (1− βα)δγa21 (αβ + 1)γδa12 + (αβ − 1)a22
(1− βα)a11 + (1 + βα)δγa21 (αβ − 1)γδa12 + (αβ + 1)a22

)

.

(3) Let C3 be a 3-dimensional S-space with an indefinite metric induced by U3, where

U3 =
1√
2





1 −1 0
1 1 0

0 0
√
2



 . It is easy to observe that the matrices

µ1 =





1 0 0
1 0 0
0 0 0



 , µ2 =





0 1 0
0 1 0
0 0 0



 , µ3 =





0 0 1
0 0 1
0 0 0



 ,
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µ4 =





−1 0 0
1 0 0
0 0 0



 , µ5 =





0 −1 0
0 1 0
0 0 0



 , µ6 =





0 0 −1
0 0 1
0 0 0



 ,

µ7 =





0 0 0
0 0 0√
2 0 0



 , µ8 =





0 0 0
0 0 0

0
√
2 0



 , µ9 =





0 0 0
0 0 0

0 0
√
2





form a basis for M3(C). Thus, for any A ∈ M3(C), we have A =
9
∑

i=1

aiµi, where

ai ∈ C. Then, we get

A =





a1 − a4 a2 − a5 a3 − a6
a1 + a4 a2 + a5 a3 + a6
a7
√
2 a8

√
2 a9

√
2



 . (7.2)

Since

U∗
3A =

√
2





a1 a2 a3
a4 a5 a6
a7 a8 a9



 ,

after comparing U∗
3A and (U∗

3A)
∗, one may easily find out that A is U3-self adjoint

if and only if a1, a5 and a9 are reals and a2 = a4, a3 = a7 and a6 = a8, that is,
U∗
3A has the form

U∗
3A =

√
2





a1 a2 a3
a2 a5 a6
a3 a6 a9



 .

Further, U∗
3A is positive, that is, A is U3-positive if and only if the following

conditions hold:

a1 ≥ 0, (7.3)

a1a5 − |a2|2 ≥ 0 (7.4)

and a1a5a9 − a1|a6|2 − |a2|2a9 − |a3|2a5 + 2ℜ(a2a3a6) ≥ 0. (7.5)

Also, U∗
3A is a quantum state, that is, A is a quantum U3-state if and only if

a1 + a5 + a9 =
1√
2
.

In particular, if we choose ai =
1

3
√
2
in (7.2), then the matrixA =

1

3





0 0 0√
2

√
2

√
2

1 1 1





is a U3-state, where

U∗
3A =

1

3





1 1 1
1 1 1
1 1 1



 .
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Using this example we give the following quantum separable U3 ⊗ U3-state:

1

9





























0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
2 2 2 2 2 2 2 2 2√
2

√
2

√
2

√
2

√
2

√
2

√
2

√
2

√
2

0 0 0 0 0 0 0 0 0√
2

√
2

√
2

√
2

√
2

√
2

√
2

√
2

√
2

1 1 1 1 1 1 1 1 1





























.

In [7], Choi gave the following entangled state which has positive partial trans-
pose:



























1 0 0 0 1 0 0 0 1
0 2 0 1 0 0 0 0 0
0 0 1

2
0 0 0 1 0 0

0 1 0 1

2
0 0 0 0 0

1 0 0 0 1 0 0 0 1
0 0 0 0 0 2 0 1 0
0 0 1 0 0 0 2 0 0
0 0 0 0 0 1 0 1

2
0

1 0 0 0 1 0 0 0 1



























.

Consider

C :=
2

21



























1 0 0 0 1 0 0 0 1
0 2 0 1 0 0 0 0 0
0 0 1

2
0 0 0 1 0 0

0 1 0 1
2

0 0 0 0 0
1 0 0 0 1 0 0 0 1
0 0 0 0 0 2 0 1 0
0 0 1 0 0 0 2 0 0
0 0 0 0 0 1 0 1

2
0

1 0 0 0 1 0 0 0 1



























.

Note that

U3 ⊗ U3 =
1

2





























1 −1 0 −1 1 0 0 0 0
1 1 0 −1 −1 0 0 0 0

0 0
√
2 0 0 −

√
2 0 0 0

1 −1 0 1 −1 0 0 0 0
1 1 0 1 1 0 0 0 0

0 0
√
2 0 0

√
2 0 0 0

0 0 0 0 0 0
√
2 −

√
2 0

0 0 0 0 0 0
√
2

√
2 0

0 0 0 0 0 0 0 0 2





























.
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One may easily check that

A = (U3 ⊗ U3)C =
1

21































2 −3 0 −3
2

2 0 0 0 2
0 1 0 1

2
0 0 0 0 0

0 0 1√
2

0 0 −2
√
2

√
2 −

√
2 0

0 −1 0 −1
2

0 0 0 0 0
2 3 0 3

2
2 0 0 0 2

0 0 1√
2

0 0 2
√
2

√
2

√
2 0

0 0
√
2 0 0 −

√
2 2

√
2 − 1√

2
0

0 0
√
2 0 0

√
2 2

√
2 1√

2
0

2 0 0 0 2 0 0 0 2































is a U3 ⊗ U3-entangled state.
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Math. Phys. 18 (1989), no. 4, 267–274.

[2] B. V. R. Bhat and N. Mallick, Nilpotent completely positive maps, Positivity, 2014, 18, pp.567-577.
[3] J. Bognár, Indefinite inner product spaces, Springer-Verlag, New York-Heidelberg, 1974, Ergebnisse

der Mathematik und ihrer Grenzgebiete, Band 78.
[4] P. J. M. Bongaarts, Maxwell’s equations in axiomatic quantum field theory. I. Field tensor and

potentials, J. Mathematical Phys. 18 (1977), no. 7, 1510–1516.
[5] H.-J. Borchers, On the structure of the algebra of field operators. II, Comm. Math. Phys. 1 (1965),

49–56.
[6] M. D. Choi, Completely positive linear maps on complex matrices, Linear algebra and its applica-

tions. 1975 Jun 1; 10(3):285-90.
[7] M. D. Choi and R. V. Kadison, Positive linear maps in Operator Algebras and Applications

Kingston, 1980, Proc. Sympos. Pure Math, 1980.
[8] S. Dey and H. Trivedi, KSGNS construction for τ-maps on S-modules and K-families, Oper. Ma-

trices 11 (2017), no. 3, 679–696.
[9] S. Dey and H. Trivedi, Bures Distance and Transition Probability for α-CPD-Kernels, Complex

Anal. Oper. Theory 13, 2171–2190 (2019).
[10] P. A. M. Dirac, The physical interpretation of quantum mechanics, Proc. Roy. Soc. London. Ser.

A. 180 (1942), 1–40.
[11] J. Heo, Quantum J-channels on Krein spaces. (English summary) Quantum Inf. Process. 22 (2023),

no. 1, Paper No. 16, 18 pp.
[12] M. Horodecki, P. W. Shor, and M. B. Ruskai, Entanglement breaking channels Reviews in Mathe-

matical Physics 15, no. 06 (2003): 629-641.
[13] A. S. Holevo, Coding Theorems for Quantum Channels, Russian Math. Surveys 53, 1295–1331

(1999).
[14] W. Pauli, On Dirac’s new method of field quantization, Rev. Modern Phys. 15 (1943), 175–207.



22 BAG, ROHILLA, AND TRIVEDI

[15] F. Philipp, F. H. Szafraniec, and C. Trunk, Selfadjoint operators in S-spaces, J. Funct. Anal. 260
(2011), no. 4, 1045–1059.
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