QUANTUM U-CHANNELS ON S-SPACES

PRIYABRATA BAG, AZAD ROHILLA*, AND HARSH TRIVEDI

Abstract

If the symmetry, (an operator J satisfying $J=J^{*}=J^{-1}$) which defines the Krein space, is replaced by a (not necessarily self-adjoint) unitary, then we have the notion of an S-space which was introduced by Szafraniec. In this paper, we consider S-spaces and study the structure of completely U-positive maps between the algebras of bounded linear operators. We first give a Stinespring-type representation for a completely U-positive map. On the other hand, we introduce Choi U-matrix of a linear map and establish the equivalence of the $\operatorname{Kraus} U$-decompositions and Choi U-matrices. Then we study properties of nilpotent completely U-positive maps. We develop the U-PPT criterion for separability of quantum U-states and discuss the entanglement breaking condition of quantum U-channels and explore U-PPT squared conjecture. Finally, we give concrete examples of completely U-positive maps and examples of $3 \otimes 3$ quantum U-states which are U-entangled and U-separable.

1. Introduction

The Gelfand-Naimark-Segal (GNS) construction for a given state on a C^{*}-algebra provides us a representation of the C^{*}-algebra on a Hilbert space and a generating vector. A linear map τ from a C^{*}-algebra \mathcal{B} to a C^{*}-algebra \mathcal{C} is said to be completely positive (CP) if $\sum_{i, j=1}^{n} c_{j}^{*} \tau\left(b_{j}^{*} b_{i}\right) c_{i} \geq 0$ whenever $b_{1}, b_{2}, \ldots, b_{n} \in \mathcal{B} ; c_{1}, c_{2}, \ldots, c_{n} \in \mathcal{C}$ and $n \in \mathbb{N}$. Stinespring's theorem (cf. [18, Theorem 1]), which characterizes operatorvalued completely positive maps, is a generalization of the GNS construction. Choi decomposition (cf. [6]) for completely positive maps is a pioneering work in Matrix Analysis.

Dirac [10] and Pauli [14] were among the pioneers to explore the quantum field theory using Krein spaces, defined below. For our study, we require the following important definitions:

Definition 1.1. Assume $(\mathcal{K},\langle\cdot, \cdot\rangle)$ to be a Hilbert space and J to be a symmetry, that is, $J=J^{*}=J^{-1}$. Define a map $[\cdot, \cdot]: \mathcal{K} \times \mathcal{K} \rightarrow \mathbb{C}$ by

$$
\begin{equation*}
[x, y]_{J}:=\langle J x, y\rangle \text { for all } x, y \in \mathcal{K} . \tag{1.1}
\end{equation*}
$$

The tuple (\mathcal{K}, J) is called a Krein space (cf. [3]).

[^0]Definition 1.2. For each $V \in B(\mathcal{K})$, there exists an operator $V^{\natural}:=J V^{*} J \in B(\mathcal{K})$ such that

$$
\begin{aligned}
{[V x, y]_{J} } & =\langle J V x, y\rangle=\left\langle x, V^{*} J y\right\rangle=\left\langle x, J^{*} J V^{*} J y\right\rangle \\
& =\left\langle J x, J V^{*} J y\right\rangle=\left\langle J x, V^{\natural} y\right\rangle=\left[x, V^{\natural} y\right]_{J} .
\end{aligned}
$$

The operator V^{\natural} is called the J-adjoint of V.
In the definition of the Krein space, if we replace the symmetry J by a (not necessarily self-adjoint) unitary U, then we arrive at the following generalized notion due to Szafraniec [19]:

Definition 1.3. Let $(\mathcal{H},\langle\cdot, \cdot\rangle)$ be a Hilbert space and let U be a unitary on \mathcal{H}, that is, $U^{*}=U^{-1}$. Then we can define a sesquilinear form by

$$
\begin{equation*}
[x, y]_{U}:=\langle x, U y\rangle \text { for all } x, y \in \mathcal{H} \tag{1.2}
\end{equation*}
$$

In this case, we call (\mathcal{H}, U) as an S-space.
The following definition is given by Phillipp, Szafraniec and Trunk, see [15, Definition 3.1]:

Definition 1.4. For each $V \in B(\mathcal{H})$, there exists an operator $V^{\#}:=U V^{*} U^{*} \in B(\mathcal{H})$ such that

$$
\begin{aligned}
{[x, V y]_{U} } & =\langle x, U V y\rangle=\left\langle V^{*} U^{*} x, y\right\rangle=\left\langle U^{*} U V^{*} U^{*} x, y\right\rangle \\
& =\left\langle U V^{*} U^{*} x, U y\right\rangle=\left[V^{\#} x, y\right]_{U}
\end{aligned}
$$

The operator $V^{\#}$ is called the U-adjoint of V.
Phillipp, Szafraniec and Trunk [15] investigated invariant subspaces of self-adjoint operators in Krein spaces by using results obtained through a detailed analysis of S-spaces. Recently, in [16], Felipe-Sosa and Felipe introduced and analyzed the notions of state and quantum channel on spaces equipped with an indefinite metric in terms of a symmetry J. This study was further taken up by Heo, in [11], where equivalence of Choi J-matrices and Kraus J-decompositions was obtained and applications to J-PPT criterion and J PPT squared conjuncture were discussed. The notion of completely U-positive maps was studied by Dey and Trivedi in [8, 9]. Motivated by these inspiring works, in this paper, we develop structure theory of quantum U-channels and its applications to the entanglement breaking.

The plan of the paper is as follows: In Section 2, we give Stinespring-type representation for a completely U-positive map. In Section 3, Choi U-matrix is introduced and the equivalence of Kraus U-decompositions and Choi U-matrices is established. In Section 4, some properties of nilpotent U-CP maps are discussed. In Sections 5 and 6, we develop U-PPT criterion for separability of quantum U-states and discuss the entanglement breaking condition of quantum U-channels and explore U-PPT squared conjecture. Finally, in Section [7, we give concrete examples of completely U-positive maps and examples of $3 \otimes 3$ quantum U-states which are U-entangled and U-separable.
1.1. Background and notations. Let (\mathcal{H}, U) be an S-space. Then, \mathcal{H}^{n} is the direct sum of n-copies of the Hilbert space \mathcal{H}, and we denote by $\left(\mathcal{H}^{n}, U^{n}\right)$ the S-space with the indefinite inner-product

$$
\begin{equation*}
[\mathbf{h}, \mathbf{k}]_{U^{n}}=\left\langle\mathbf{h}, U^{n} \mathbf{k}\right\rangle=\sum_{j=1}^{n}\left\langle h_{j}, U k_{j}\right\rangle=\sum_{j=1}^{n}\left[h_{j}, k_{j}\right]_{U} \tag{1.3}
\end{equation*}
$$

where $U^{n}=\operatorname{diag}(U, U, \ldots, U) \in M_{n}(B(\mathcal{H}))$ and $\mathbf{h}=\left(h_{1}, \ldots, h_{n}\right), \mathbf{k}=\left(k_{1}, \ldots, k_{n}\right) \in$ \mathcal{H}^{n}.

Definition 1.5. Let (\mathcal{H}, U) be an S-space with the indefinite inner-product $[\cdot, \cdot]_{U}$. We denote by $B(\mathcal{H})^{U+}$ the set of all U-positive linear operator V on \mathcal{H}, that is,

$$
0 \leq[V h, h]_{U}:=\langle V h, U h\rangle=\left\langle U^{*} V h, h\right\rangle, \text { for all } h \in \mathcal{H} .
$$

Hence V is U-positive if and only if $U^{*} V$ is positive with respect to the usual inner product $\langle\cdot, \cdot\rangle$.

Definition 1.6. Let $\left(\mathcal{H}_{i}, U_{i}\right)(i=1,2)$ be an S-space with the indefinite inner-product $[\cdot, \cdot]_{U_{i}}$. Let $\phi: B\left(\mathcal{H}_{1}\right) \rightarrow B\left(\mathcal{H}_{2}\right)$ be a linear map. Then ϕ is called $\left(U_{1}, U_{2}\right)$-Hermitian if $\phi\left(U_{1} V^{*} U_{1}^{*}\right)=U_{2} \phi\left(V^{*}\right) U_{2}^{*}$ for $V \in B\left(\mathcal{H}_{1}\right)$. We say that a $\left(U_{1}, U_{2}\right)$-Hermitian linear map ϕ is
(1) $\left(U_{1}, U_{2}\right)$-positive if $\phi\left(B\left(\mathcal{H}_{1}\right)^{U+}\right) \subset B\left(\mathcal{H}_{2}\right)^{U+}$, that is, if $V \in\left(B\left(\mathcal{H}_{1}\right)\right)^{U+}$ (or V is U_{1}-positive), then $\phi(V)$ is U_{2}-positive. In simple words, if $U_{1}^{*} V$ is positive with respect to the usual inner product $\langle\cdot, \cdot\rangle_{\mathcal{H}_{1}}$, then $U_{2}^{*} \phi(V)$ is positive with respect to the usual inner product $\langle\cdot, \cdot\rangle_{\mathcal{H}_{2}}$.
(2) completely $\left(U_{1}, U_{2}\right)$-positive or $\left(U_{1}, U_{2}\right)$-CP if for each $l \in \mathbb{N}$ the l-fold amplification $\phi^{l}: I_{l} \otimes \phi: M_{l}(\mathbb{C}) \otimes B\left(\mathcal{H}_{1}\right) \rightarrow M_{l}(\mathbb{C}) \otimes B\left(\mathcal{H}_{2}\right)$ defined by

$$
\phi^{l}\left(\left[V_{i j}\right]\right)=\left[\phi\left(V_{i j}\right)\right], \quad \text { for } \quad\left[V_{i j}\right] \in M_{l}\left(B\left(\mathcal{H}_{1}\right)\right)
$$

satisfies

$$
\phi^{l}\left(M_{l}\left(B\left(\mathcal{H}_{1}\right)\right)^{U+}\right) \subset M_{l}\left(B\left(\mathcal{H}_{2}\right)\right)^{U+},
$$

that is, if $V=\left[V_{i j}\right]_{i, j} \in M_{l}\left(B\left(\mathcal{H}_{1}\right)\right)^{U+}$ (i.e., V is U_{1}^{l}-positive), then $\phi^{l}(V)$ is U_{2}^{l}-positive. Here $M_{l}\left(B\left(\mathcal{H}_{i}\right)\right)^{U+}=B\left(\mathcal{H}_{i}^{l}\right)^{U+}$ is the set of all U_{i}^{l}-positive linear operators on S-spaces $\left(\mathcal{H}_{i}^{l}, U_{i}^{l}\right)$, and $U_{i}^{l}=\operatorname{diag}(U, U, \ldots, U) \in M_{l}\left(B\left(\mathcal{H}_{i}\right)\right)$ for $i=1,2$.
(3) U-positive (and completely U-positive ($U-C P$)) if $\mathcal{H}_{1}=\mathcal{H}_{2}=\mathcal{H}$ and $U_{1}=U_{2}=$ U and it is $\left(U_{1}, U_{2}\right)$-positive (and $\left(U_{1}, U_{2}\right)-C P$, respectively).

2. Completely U-positive and completely U-co-positive maps

Our main objective in this section is to obtain Stinespring-type theorem for completely U-positive maps. Let $\left(\mathcal{H}_{i}, U_{i}\right)(i=1,2)$ be an S-space with the indefinite inner product $[\cdot, \cdot]_{U_{i}}$. Suppose $\phi: B\left(\mathcal{H}_{1}\right) \rightarrow B\left(\mathcal{H}_{2}\right)$ is a linear map. Define a linear map ψ from $B\left(\mathcal{H}_{1}\right)$ to $B\left(\mathcal{H}_{2}\right)$ by $\psi(X):=U_{2} \phi\left(U_{1}^{*} X\right)$ where $X \in B\left(\mathcal{H}_{1}\right)$. For any $l \in \mathbb{N}$ and $V=\left[V_{i j}\right] \in$
$M_{l}\left(B\left(\mathcal{H}_{1}\right)\right)$, we obtain

$$
\begin{aligned}
\psi^{l}(V) & =\left[\psi\left(V_{i j}\right)\right]_{i, j}=\left[U_{2} \phi\left(U_{1}^{*} V_{i j}\right)\right]_{i, j}=\left(\begin{array}{ccc}
U_{2} \phi\left(U_{1}^{*} V_{11}\right) & \cdots & U_{2} \phi\left(U_{1}^{*} V_{1 l}\right) \\
\vdots & \ddots & \vdots \\
U_{2} \phi\left(U_{1}^{*} V_{l 1}\right) & \cdots & U_{2} \phi\left(U_{1}^{*} V_{l l}\right)
\end{array}\right) \\
& =\left(\begin{array}{cccc}
U_{2} & & 0 \\
& \ddots & \\
0 & & U_{2}
\end{array}\right)\left(\begin{array}{ccc}
\phi\left(U_{1}^{*} V_{11}\right) & \cdots & \phi\left(U_{1}^{*} V_{l l}\right) \\
\vdots & \ddots & \vdots \\
\phi\left(U_{1}^{*} V_{l 1}\right) & \cdots & \phi\left(U_{1}^{*} V_{l l}\right)
\end{array}\right)=U_{2}^{l} \phi^{l}\left(U_{1}^{l^{*}} V\right)
\end{aligned}
$$

Similarly, we can easily show that $\phi^{l}(V)=U_{2}^{l^{*}} \psi\left(U_{1}^{l} V\right)$ where $\phi\left(V_{i j}\right)=U_{2}^{*} \psi\left(U_{1} V_{i j}\right)$.
The following result is a generalization of [16, Theorem 20] and [11, Proposition 2.2] in the setting of S-spaces:

Proposition 2.1. Let $\left(\mathcal{H}_{i}, U_{i}\right)(i=1,2)$ be an S-space with the indefinite inner product $[\cdot, \cdot]_{U_{i}}$. Suppose $\phi: B\left(\mathcal{H}_{1}\right) \rightarrow B\left(\mathcal{H}_{2}\right)$ is a linear map, then ϕ is $C P$ if and only if the corresponding linear map ψ from $B\left(\mathcal{H}_{1}\right)$ to $B\left(\mathcal{H}_{2}\right)$ defined by $\psi(X):=U_{2} \phi\left(U_{1}^{*} X\right)$ is $\left(U_{1}, U_{2}\right)-C P$, where $X \in B\left(\mathcal{H}_{1}\right)$.
Proof. Let ϕ be a linear map from $B\left(\mathcal{H}_{1}\right)$ to $B\left(\mathcal{H}_{2}\right)$. First assume that ϕ is CP. We have to prove that ψ is $\left(U_{1}, U_{2}\right)$-CP. For this purpose, let $V=\left[V_{i j}\right] \in M_{l}\left(B\left(\mathcal{H}_{1}\right)\right)^{U+}$, that is, $U_{1}^{l^{*}} V \in M_{l}\left(B\left(\mathcal{H}_{1}\right)\right)$ is positive, that is,

$$
0 \leq[V \mathbf{h}, \mathbf{h}]_{U_{1}^{l}}=\left\langle V \mathbf{h}, U_{1}^{l} \mathbf{h}\right\rangle=\left\langle U_{1}^{l^{*}} V \mathbf{h}, \mathbf{h}\right\rangle
$$

where $\mathbf{h} \in \mathcal{H}^{l}$. Consider

$$
\begin{aligned}
{\left[\psi^{l}(V) \mathbf{h}^{\prime}, \mathbf{h}^{\prime}\right]_{U_{2}^{l}} } & =\left\langle\psi^{l}(V) \mathbf{h}^{\prime}, U_{2}^{l} \mathbf{h}^{\prime}\right\rangle=\left\langle U_{2}^{l^{*}} \psi^{l}(V) \mathbf{h}^{\prime}, \mathbf{h}^{\prime}\right\rangle \\
& =\left\langle U_{2}^{l} \phi^{l}\left(U_{1}^{l^{*}} V\right) \mathbf{h}^{\prime}, U_{2}^{l} \mathbf{h}^{\prime}\right\rangle=\left\langle\phi^{l}\left(U_{1}^{l^{*}} V\right) \mathbf{h}^{\prime}, \mathbf{h}^{\prime}\right\rangle \geq 0
\end{aligned}
$$

where $\mathbf{h}^{\prime} \in \mathcal{H}^{l}$. Therefore $\left\langle U_{2}^{l^{*}} \psi^{l}(V) \mathbf{h}^{\prime}, \mathbf{h}^{\prime}\right\rangle \geq 0$, that is, $U_{2}^{l^{*}} \psi^{l}(V)$ is positive. This proves that $\psi(V)$ is U_{2}-positive. Thus ψ is $\left(U_{1}, U_{2}\right)$-CP.

Conversely, suppose that ψ is $\left(U_{1}, U_{2}\right)$-CP. Since $\psi(\cdot)=U_{2} \phi\left(U_{1}^{*} \cdot\right)$, we get $\phi\left(U_{1}^{*} \cdot\right)=$ $U_{2}^{*} \psi(\cdot)$. Therefore $\phi(\cdot)=U_{2}^{*} \psi\left(U_{1} \cdot\right)$. Let $V=\left[V_{i j}\right] \in M_{l}\left(B\left(\mathcal{H}_{1}\right)\right)^{+}$, then we have to show that $\phi^{l}(V)=\left[\phi\left(V_{i j}\right)\right] \in M_{l}\left(B\left(\mathcal{H}_{2}\right)\right)^{+}$. Now

$$
0 \leq\langle V \mathbf{h}, \mathbf{h}\rangle=\left\langle U_{1}^{l} V \mathbf{h}, U_{1}^{l} \mathbf{h}\right\rangle=\left[U_{1}^{l} V \mathbf{h}, \mathbf{h}\right]_{U_{1}^{l}},
$$

where $\mathbf{h} \in \mathcal{H}^{l}$, it means, $U_{1}^{l} V \in M_{l}\left(B\left(\mathcal{H}_{1}\right)\right)^{U+}$. Therefore

$$
\begin{aligned}
\left\langle\phi^{l}(V) \mathbf{h}^{\prime}, \mathbf{h}^{\prime}\right\rangle & =\left\langle U_{2}^{l^{*}} \psi\left(U_{1}^{l} V\right) \mathbf{h}^{\prime}, \mathbf{h}^{\prime}\right\rangle=\left\langle\psi\left(U_{1}^{l} V\right) \mathbf{h}^{\prime}, U_{2}^{l} \mathbf{h}^{\prime}\right\rangle \\
& =\left[\psi\left(U_{1}^{l} V\right) \mathbf{h}^{\prime}, \mathbf{h}^{\prime}\right]_{U_{2}^{l}} \geq 0,
\end{aligned}
$$

where $\mathbf{h}^{\prime} \in \mathcal{H}^{l}$ and the last inequality follows from the fact that $U_{1}^{l} V \in M_{l}\left(B\left(\mathcal{H}_{1}\right)\right)^{U+}$ and hence ψ is $\left(U_{1}, U_{2}\right)$-CP.

Theorem 2.2. Let $\left(\mathcal{H}_{i}, U_{i}\right)(i=1,2)$ be an S-space. Assume that a linear map ψ from $B\left(\mathcal{H}_{1}\right)$ to $B\left(\mathcal{H}_{2}\right)$ defined by $\psi(V):=U_{2} \phi\left(U_{1}^{*} V\right)$ for all $V \in B\left(\mathcal{H}_{1}\right)$ is $\left(U_{1}, U_{2}\right)-C P$. Then
there exist an S-space (\mathcal{H}, U), a *-representation π of $B\left(\mathcal{H}_{1}\right)$ on the Hilbert space \mathcal{H} and a bounded linear operator $R: \mathcal{H}_{2} \rightarrow \mathcal{H}$ such that

$$
\psi(V)=R^{\#} \pi(V) R
$$

where $U=\pi\left(U_{1}\right)$, and $R^{\#}:=U_{2} R^{*} U^{*}$. Moreover, if $\psi\left(U_{1}\right)=U_{2}$, then $R^{*} R=I_{\mathcal{H}_{2}}$.
Proof. Suppose a linear map ψ is $\left(U_{1}, U_{2}\right)$-CP. Then with the help of Proposition [2.1, we get that ϕ defined by $\phi(V)=U_{2}^{*} \psi\left(U_{1} V\right)$ is CP. Then using Stinespring's theorem [18, Theorem 1], there exist a Hilbert space \mathcal{H}, a representation (a unital $*$-homomorphism) π of $B\left(\mathcal{H}_{1}\right)$ on the Hilbert space \mathcal{H} and a bounded linear operator $R: \mathcal{H}_{2} \rightarrow \mathcal{H}$, such that $\phi(V)=R^{*} \pi(V) R$ for every $V \in B\left(\mathcal{H}_{1}\right)$.

Let $U=\pi\left(U_{1}\right) \in B(\mathcal{H})$, where U is a fundamental unitary, that is, $U^{*}=U^{-1}$, so that (\mathcal{H}, U) becomes an S-space. Define $R^{\#}:=U_{2} R^{*} U^{*}$, then

$$
\psi(V)=U_{2} \phi\left(U_{1}^{*} V\right)=U_{2} R^{*} \pi\left(U_{1}^{*} V\right) R=U_{2} R^{*} U^{*} \pi(V) R=R^{\#} \pi(V) R .
$$

Furthermore, if $\psi\left(U_{1}\right)=U_{2}$, then

$$
U_{2}=\psi\left(U_{1}\right)=U_{2} \phi\left(U_{1}^{*} U_{1}\right)=U_{2} R^{*} \pi\left(U_{1}^{*} U_{1}\right) R=U_{2} R^{*} R,
$$

hence $R^{*} R=I_{\mathcal{H}_{2}}$.
Theorem 2.3. Suppose $\phi: B\left(\mathcal{H}_{1}\right) \rightarrow B\left(\mathcal{H}_{2}\right)$ is a linear map. If ϕ satisfies the following conditions for all $V \in B\left(\mathcal{H}_{1}\right)$:

$$
\phi\left(U_{1}^{*} V\right)=U_{2}^{*} \phi(V) \quad \text { and } \quad \phi\left(U_{1} V\right)=U_{2} \phi(V)
$$

then ϕ is a CP map if and only if ϕ is $\left(U_{1}, U_{2}\right)-C P$.
Proof. First assume ϕ to be a CP map. Let $V=\left[V_{i j}\right] \in M_{l}\left(B\left(\mathcal{H}_{1}\right)\right)^{U+}$. Observe that

$$
\begin{aligned}
\phi^{l}\left(U_{1}^{l^{*}} V\right) & =\left[\phi\left(U_{1}^{*} V_{i j}\right)\right]_{i, j}=\left(\begin{array}{ccc}
\phi\left(U_{1}^{*} V_{11}\right) & \cdots & \phi\left(U_{1}^{*} V_{1 l}\right) \\
\vdots & \ddots & \vdots \\
\phi\left(U_{1}^{*} V_{l 1}\right) & \cdots & \phi\left(U_{1}^{*} V_{l l}\right)
\end{array}\right) \\
& =\left(\begin{array}{cccc}
U_{2}^{*} & & 0 \\
& \ddots & \\
0 & & U_{2}^{*}
\end{array}\right)\left(\begin{array}{ccc}
\phi\left(V_{11}\right) & \cdots & \phi\left(V_{l l}\right) \\
\vdots & \ddots & \vdots \\
\phi\left(V_{l 1}\right) & \cdots & \phi\left(V_{l l}\right)
\end{array}\right)=U_{2}^{l^{*}} \phi^{l}(V) .
\end{aligned}
$$

Similarly, we obtain $\phi^{l}\left(U_{1}^{l} V\right)=U_{2}^{l} \phi^{l}(V)$. Now consider

$$
\begin{aligned}
{\left[\phi^{l}(V) \mathbf{h}^{\prime}, \mathbf{h}^{\prime}\right]_{U_{2}^{l}} } & =\left\langle\phi^{l}(V) \mathbf{h}^{\prime}, U_{2}^{l} \mathbf{h}^{\prime}\right\rangle=\left\langle U_{2}^{l^{*}} \phi^{l}(V) \mathbf{h}^{\prime}, \mathbf{h}^{\prime}\right\rangle \\
& =\left\langle\phi^{l}\left(U_{1}^{l^{*}} V\right) \mathbf{h}^{\prime}, \mathbf{h}^{\prime}\right\rangle \geq 0,
\end{aligned}
$$

where $\mathbf{h}^{\prime} \in \mathcal{H}_{2}^{l}$. Therefore $\left\langle U_{2}^{l^{*}} \phi^{l}(V) \mathbf{h}^{\prime}, \mathbf{h}^{\prime}\right\rangle \geq 0$, that is, $U_{2}^{l^{*}} \phi^{l}(V)$ is positive with respect to the usual inner product $\langle\cdot, \cdot\rangle$. This proves that $\phi(V)$ is U_{2}-positive. Thus ϕ is $\left(U_{1}, U_{2}\right)$ CP.

Conversely, suppose that ϕ is $\left(U_{1}, U_{2}\right)$-CP. Let $V=\left[V_{i j}\right] \in M_{l}\left(B\left(\mathcal{H}_{1}\right)\right)^{+}$. Then we have to show that $\phi^{l}(V)=\left[\phi\left(V_{i j}\right)\right] \in M_{l}\left(B\left(\mathcal{H}_{2}\right)\right)^{+}$. Since

$$
0 \leq\langle V \mathbf{h}, \mathbf{h}\rangle=\left\langle U_{1}^{l} V \mathbf{h}, U_{1}^{l} \mathbf{h}\right\rangle=\left[U_{1}^{l} V \mathbf{h}, \mathbf{h}\right]_{U_{1}^{l}}
$$

where $\mathbf{h} \in \mathcal{H}^{l}$, it means $U_{1}^{l} V \in M_{l}\left(B\left(\mathcal{H}_{1}\right)\right)^{U+}$. Then

$$
\begin{aligned}
\left\langle\phi^{l}(V) \mathbf{h}^{\prime}, \mathbf{h}^{\prime}\right\rangle & =\left\langle U_{2}^{l} \phi(V) \mathbf{h}^{\prime}, U_{2}^{l} \mathbf{h}^{\prime}\right\rangle=\left\langle\phi\left(U_{1}^{l} V\right) \mathbf{h}^{\prime}, U_{2}^{l} \mathbf{h}^{\prime}\right\rangle \\
& =\left[\phi\left(U_{1}^{l} V\right) \mathbf{h}^{\prime}, \mathbf{h}^{\prime}\right]_{U_{2}^{l}} \geq 0,
\end{aligned}
$$

where $\mathbf{h}^{\prime} \in \mathcal{H}^{l}$ and the last inequality follows from the fact that $U_{1}^{l} V \in M_{l}\left(B\left(\mathcal{H}_{1}\right)\right)^{U+}$ and ϕ is $\left(U_{1}, U_{2}\right)$-CP.

Remark 2.4. In particular, if $\mathcal{H}_{1}=\mathcal{H}_{2}=\mathcal{H}$ and $U_{1}=U_{2}=U$, and if a linear map $\phi: B(\mathcal{H}) \rightarrow B(\mathcal{H})$ satisfies $\phi\left(U^{*} V\right)=U^{*} \phi(V)$ and $\phi(U V)=U \phi(V)$ for all $V \in B\left(\mathcal{H}_{1}\right)$, then ϕ is $C P$ if and only if ϕ is $U-C P$.

Definition 2.5. Let $\left(\mathcal{H}_{i}, U_{i}\right)(i=1,2)$ be an S-space. Assume that ψ is a linear map from $B\left(\mathcal{H}_{1}\right)$ to $B\left(\mathcal{H}_{2}\right)$. Then
(1) for each $l \in \mathbb{N}$, ψ is l - $\left(U_{1}, U_{2}\right)$-co-positive if $\tau_{l} \otimes \psi: M_{l}(\mathbb{C}) \otimes B\left(\mathcal{H}_{1}\right) \rightarrow M_{l}(\mathbb{C}) \otimes$ $B\left(\mathcal{H}_{2}\right)$ is $\left(I_{l} \otimes U_{1}, I_{l} \otimes U_{2}\right)$-positive where τ_{l} is the transpose map on $M_{l}(\mathbb{C})$.
(2) ψ is completely $\left(U_{1}, U_{2}\right)$-co-positive if it is l - $\left(U_{1}, U_{2}\right)$-co-positive for each $l \in \mathbb{N}$.
(3) ψ is $\left(U_{1}, U_{2}\right)$-positive partial transpose $\left(\left(U_{1}, U_{2}\right)\right.$-PPT) if it is $\left(U_{1}, U_{2}\right)-C P$ and completely $\left(U_{1}, U_{2}\right)$-co-positive.
(4) In particular, if $\mathcal{H}_{1}=\mathcal{H}_{2}=\mathcal{H}$ and $U_{1}=U_{2}=U$, then we simply call it completely U-co-positive (and U-positive partial transpose (U-PPT)) if it is completely $\left(U_{1}, U_{2}\right)$-co-positive (and $\left(U_{1}, U_{2}\right)$-positive partial transpose, respectively).
Proposition 2.6. Let $\left(\mathcal{H}_{i}, U_{i}\right)(i=1,2)$ be an S-space. Suppose $\phi: B\left(\mathcal{H}_{1}\right) \rightarrow B\left(\mathcal{H}_{2}\right)$ is a linear map, then ϕ is completely co-positive if and only if the corresponding linear map ψ from $B\left(\mathcal{H}_{1}\right)$ to $B\left(\mathcal{H}_{2}\right)$ defined by $\psi(X):=U_{2} \phi\left(U_{1}^{*} X\right)$ is completely $\left(U_{1}, U_{2}\right)$-copositive, where $X \in B\left(\mathcal{H}_{1}\right)$.
Proof. Let $V=\left[V_{i j}\right] \in M_{l}(\mathbb{C}) \otimes B\left(\mathcal{H}_{1}\right)$ be such that $\left(I_{l} \otimes U_{1}^{*}\right) V \geq 0$. Then

$$
\begin{aligned}
\left(\tau_{l} \otimes \psi\right)(V) & =\left(\begin{array}{ccc}
\psi\left(V_{11}\right) & \cdots & \psi\left(V_{l 1}\right) \\
\vdots & \ddots & \vdots \\
\psi\left(V_{1 l}\right) & \cdots & \psi\left(V_{l l}\right)
\end{array}\right)=\left(\begin{array}{cc}
U_{2} \phi\left(U_{1}^{*} V_{11}\right) & \cdots \\
\vdots & \ddots
\end{array}\right] \begin{array}{c}
2 \\
U_{2} \phi\left(U_{1}^{*} V_{1 l}\right) \\
\cdots
\end{array} \\
& =\left(\begin{array}{ccc}
U_{2} & & 0 \\
& \ddots & \\
0 & & U_{2} \phi\left(U_{1}^{*} V_{l l}\right)
\end{array}\right)\left(\begin{array}{ccc}
\phi\left(U_{1}^{*} V_{11}\right) & \cdots & \phi\left(U_{1}^{*} V_{l 1}\right) \\
\vdots & \ddots & \vdots \\
\phi\left(U_{1}^{*} V_{1 l}\right) & \cdots & \phi\left(U_{1}^{*} V_{l l}\right)
\end{array}\right) \\
& =\left(I_{l} \otimes U_{2}\right)\left(\tau_{l} \otimes \phi\right)\left(I_{l} \otimes U_{1}^{*}\right) V .
\end{aligned}
$$

Hence $\left(I_{l} \otimes U_{2}^{*}\right)\left(\tau_{l} \otimes \psi\right)(V)$ is positive as ϕ is completely co-positive map.
Conversely, for any $V=\left[V_{i j}\right] \in M_{l}\left(B\left(\mathcal{H}_{1}\right)\right.$, we have

$$
0 \leq\langle V \mathbf{h}, \mathbf{h}\rangle=\left\langle U_{1}^{l} V \mathbf{h}, U_{1}^{l} \mathbf{h}\right\rangle=\left[U_{1}^{l} V \mathbf{h}, \mathbf{h}\right]_{U_{1}^{l}}
$$

where $\mathbf{h} \in \mathcal{H}^{l}$, it means $U_{1}^{l} V \in M_{l}\left(B\left(\mathcal{H}_{1}\right)\right)^{U+}$. We obtain

$$
\left(\tau_{l} \otimes \phi\right)(V)=\left(\begin{array}{ccc}
\phi\left(V_{11}\right) & \cdots & \phi\left(V_{l 1}\right) \\
\vdots & \ddots & \vdots \\
\phi\left(V_{1 l}\right) & \cdots & \phi\left(V_{l l}\right)
\end{array}\right)=\left(\begin{array}{ccc}
U_{2}^{*} \psi\left(U_{1} V_{11}\right) & \cdots & U_{2}^{*} \psi\left(U_{1} V_{l 1}\right) \\
\vdots & \ddots & \vdots \\
U_{2}^{*} \psi\left(U_{1} V_{1 l}\right) & \cdots & U_{2}^{*} \psi\left(U_{1} V_{l l}\right)
\end{array}\right)
$$

$$
\begin{aligned}
& =\left(\begin{array}{ccc}
U_{2}^{*} & & 0 \\
& \ddots & \\
0 & & U_{2}^{*}
\end{array}\right)\left(\begin{array}{ccc}
\psi\left(U_{1} V_{11}\right) & \cdots & \psi\left(U_{1} V_{l 1}\right) \\
\vdots & \ddots & \vdots \\
\psi\left(U_{1} V_{1 l}\right) & \cdots & \psi\left(U_{1} V_{l l}\right)
\end{array}\right) \\
& =U_{2}^{l^{*}}\left(\tau_{l} \otimes \psi\right)\left(U_{1}^{l} V\right) .
\end{aligned}
$$

Therefore $\left(\tau_{l} \otimes \phi\right)(V)=U_{2}^{l^{*}}\left(\tau_{l} \otimes \psi\right)\left(U_{1}^{l} V\right)$. Since $U_{1}^{l} V \in M_{l}\left(B\left(\mathcal{H}_{1}\right)\right)^{U+}$ and ψ is completely $\left(U_{1}, U_{2}\right)$-co-positive, ϕ is co-positive.

3. Kraus U-decomposition and Choi U-matrix

In this section, we derive Kraus U-decomposition and Choi U-matrix and establish their relation with the completely U-positive maps. Let $M_{m}(\mathbb{C})$ denote the set of all $m \times m$-complex matrices. Kraus proved that $\phi: M_{m}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$ is a CP map if and only if

$$
\begin{equation*}
\phi(V)=\sum_{i=1}^{l} R_{i}^{*} V R_{i} \tag{3.1}
\end{equation*}
$$

where $V=\left[V_{i j}\right]_{i, j} \in M_{m}(\mathbb{C})$ and for each $i, R_{i} \in M_{m, n}(\mathbb{C})$. The expression in above equation is called a Kraus decomposition.

Denote $M_{A}:=M_{m}(\mathbb{C})$ and $M_{B}:=M_{n}(\mathbb{C})$. Let U_{A} and U_{B} be the fundamental unitaries in M_{A} and M_{B}, respectively. Define a linear map $\psi: M_{A} \rightarrow M_{B}$ by

$$
\begin{equation*}
\psi(V):=\sum_{i=1}^{l} R_{i}^{\#_{A, B}} V R_{i} \tag{3.2}
\end{equation*}
$$

where $R_{i}^{\#_{A, B}}=U_{B} R_{i}^{*} U_{A}^{*}$. Then ψ is $\left(U_{A}, U_{B}\right)$-CP. Indeed, for any $k \in \mathbb{N}$, take a $U_{A}^{k^{*}}$-positive matrix $V=\left[V_{i j}\right] \in M_{k}\left(M_{A}\right)^{U+}$. Since $V=\left[V_{i j}\right] \in M_{k}\left(M_{A}\right)^{U+}, U_{A}^{k^{*}} V \in$ $M_{k}\left(M_{A}\right)^{+}$, that is,

$$
\begin{aligned}
U_{A}^{k^{*}} V & =\left(\begin{array}{ccc}
U_{A}^{*} & & 0 \\
& \ddots & \\
0 & & U_{A}^{*}
\end{array}\right)\left(\begin{array}{ccc}
V_{11} & \cdots & V_{1 k} \\
\vdots & \ddots & \vdots \\
V_{k 1} & \cdots & V_{k k}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
U_{A}^{*} V_{11} & \cdots & U_{A}^{*} V_{1 k} \\
\vdots & \ddots & \vdots \\
U_{A}^{*} V_{k 1} & \cdots & U_{A}^{*} V_{k k}
\end{array}\right) \in M_{k}\left(M_{A}\right)^{+} .
\end{aligned}
$$

Consider

$$
\begin{aligned}
\psi^{k}(V) & =\psi^{k}\left(\begin{array}{ccc}
V_{11} & \cdots & V_{1 k} \\
\vdots & \ddots & \vdots \\
V_{k 1} & \cdots & V_{k k}
\end{array}\right)=\left(\begin{array}{ccc}
\psi\left(V_{11}\right) & \cdots & \psi\left(V_{1 k}\right) \\
\vdots & \ddots & \vdots \\
\psi\left(V_{k 1}\right) & \cdots & \psi\left(V_{k k}\right)
\end{array}\right) \\
& =\sum_{i=1}^{l}\left(\begin{array}{ccc}
R_{i}^{\# A, B} V_{11} R_{i} & \cdots & R_{i}^{\# A, B} V_{1 k} R_{i} \\
\vdots & \ddots & \vdots \\
R_{i}^{\#_{A, B}} V_{k 1} R_{i} & \cdots & R_{i}^{\#_{A, B}} V_{k k} R_{i}
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i=1}^{l}\left(\begin{array}{ccc}
U_{B} R_{i}^{*} U_{A}^{*} V_{11} R_{i} & \cdots & U_{B} R_{i}^{*} U_{A}^{*} V_{1 k} R_{i} \\
\vdots & \ddots & \vdots \\
U_{B} R_{i}^{*} U_{A}^{*} V_{k 1} R_{i} & \cdots & U_{B} R_{i}^{*} U_{A}^{*} V_{k k} R_{i}
\end{array}\right) \\
& =\sum_{i=1}^{l}\left(\begin{array}{ccc}
U_{B} & & 0 \\
& \ddots & \\
0 & & U_{B}
\end{array}\right)\left(\begin{array}{ccc}
R_{i}^{*} & & 0 \\
& \ddots & \\
0 & & R_{i}^{*}
\end{array}\right) U_{A}^{k^{*}} V\left(\begin{array}{ccc}
R_{i} & & 0 \\
& \ddots & \\
0 & & R_{i}
\end{array}\right) \\
& =U_{B}^{k} \sum_{i=1}^{l}\left(\begin{array}{ccc}
R_{i}^{*} & & 0 \\
& \ddots & \\
0 & & R_{i}^{*}
\end{array}\right) U_{A}^{k^{*} V} V\left(\begin{array}{ccc}
R_{i} & & 0 \\
& \ddots & \\
0 & & R_{i}
\end{array}\right),
\end{aligned}
$$

and since $U_{A}^{k^{*}} V \in M_{k}\left(M_{A}\right)^{+}$, by using the Kraus decomposition

$$
\sum_{i=1}^{l} R_{i}^{*^{k}} U_{A}^{k^{*}} V R_{i}^{k} \in M_{k}\left(M_{A}\right)^{+}
$$

we obtain $U_{B}^{k^{*}} \psi^{k}(V) \geq 0$. Hence $\psi^{k}(V)$ is a U_{B}-positive matrix, that is, ψ is $\left(U_{A}, U_{B}\right)$-CP map.

Theorem 3.1. $\operatorname{Let} U_{A}$ and U_{B} be the fundamental unitaries in M_{A} and M_{B}, respectively. A linear map $\psi: M_{A} \rightarrow M_{B}$ is a $\left(U_{A}, U_{B}\right)$-CP map if and only if it has a decomposition of the form (3.2).
Proof. Assume that ψ is a $\left(U_{A}, U_{B}\right)$-CP map. Since a linear map $\phi: M_{A} \rightarrow M_{B}$ defined by $\phi(V)=U_{B}^{*} \psi\left(U_{A} V\right)$ is CP, ϕ has a Kraus decomposition, that is,

$$
\phi(V)=\sum_{i=1}^{l} R_{i}^{*} V R_{i}
$$

where $V \in M_{m}(\mathbb{C})$ and for each $i, R_{i} \in M_{m, n}(\mathbb{C})$. Thus we have

$$
\psi(V)=U_{B} \phi\left(U_{A}^{*} V\right)=U_{B} \sum_{i=1}^{l} R_{i}^{*} U_{A}^{*} V R_{i}=\sum_{i=1}^{l} U_{B} R_{i}^{*} U_{A}^{*} V R_{i}=\sum_{i=1}^{l} R_{i}^{\#} V R_{i}
$$

Therefore ψ is a $\left(U_{A}, U_{B}\right)$-CP map if and only if ψ has the expression $\psi(V)=\sum_{i=1}^{l} R_{i}^{\#} V R_{i}$, we call ψ has a Kraus U-decomposition in this case.

Suppose $\left\{e_{i j} \mid 1 \leq i, j \leq m\right\}$ are the matrix units of $M_{m}(\mathbb{C})$. We observe that $D=\left[U_{A} e_{i j}\right]_{1 \leq i, j \leq m}$ is $I_{m} \otimes U_{A}$-positive. Indeed,

$$
\begin{aligned}
\left(I_{m} \otimes U_{A}^{*}\right) D & =\left(\begin{array}{ccc}
U_{A}^{*} & & 0 \\
& \ddots & \\
0 & & U_{A}^{*}
\end{array}\right)\left(\begin{array}{ccc}
U_{A} e_{11} & \cdots & U_{A} e_{1 m} \\
\vdots & \ddots & \vdots \\
U_{A} e_{m 1} & \cdots & U_{A} e_{m m}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
e_{11} & \cdots & e_{1 m} \\
\vdots & \ddots & \vdots \\
e_{m 1} & \cdots & e_{m m}
\end{array}\right) \in M_{m^{2}}^{+}(\mathbb{C}) .
\end{aligned}
$$

It implies from the above proposition that $\left[\psi\left(U_{A} e_{i j}\right)\right]_{1 \leq i, j \leq m}$ is $I_{m} \otimes U_{B}$-positive.

Theorem 3.2. Let $\psi: M_{A} \rightarrow M_{B}$ be a linear map. Then ψ is $\left(U_{A}, U_{B}\right)-C P$ if and only if $\left[U_{B}^{*} \psi\left(U_{A} e_{i j}\right)\right]_{1 \leq i, j \leq m}$ is positive.
Proof. The proof directly follows from [6, Theorem 2].
Let $\phi: M_{m}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$ be a linear map. Choi [6] defined $C_{\phi}=\sum_{i, j=1}^{m} e_{i j} \otimes \phi\left(e_{i j}\right)$, called the Choi matrix, and proved that it is positive if and only if ϕ is a CP map.
Definition 3.3. Let $\psi: M_{m}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$ be a linear map. We define $C_{\psi}^{U}:=\sum_{i, j=1}^{m} e_{i j} \otimes$ $\psi\left(U_{A} e_{i j}\right)$. The matrix C_{ψ}^{U} is called the Choi U-matrix.

Theorem 3.4. Let U_{A} and U_{B} be the fundamental unitaries in M_{A} and M_{B}, respectively, where $M_{A}=M_{m}(\mathbb{C})$ and $M_{B}=M_{n}(\mathbb{C})$. Then a linear map $\psi: M_{A} \rightarrow M_{B}$ is a $\left(U_{A}, U_{B}\right)$ CP map if and only if C_{ψ}^{U} is $I_{A} \otimes U_{B}$-positive in $M_{A} \otimes M_{B}$.

Proof. Let $\phi: M_{A} \rightarrow M_{B}$ be the linear map defined by $\phi(V):=U_{B}^{*} \psi\left(U_{A} V\right)$ where $V \in M_{A}$. Then by Proposition [2.1, ϕ is CP if and only if ψ is a $\left(U_{A}, U_{B}\right)$-CP map. It is known from [6] that ϕ is CP if and only if C_{ϕ} is positive semi-definite. Since, for any $\mathbf{h}, \mathbf{h}^{\prime} \in \mathbb{C}^{m n}$, we have

$$
\begin{aligned}
{\left[C_{\psi}^{U} \mathbf{h}, \mathbf{h}^{\prime}\right]_{U_{B}^{m}} } & =\left\langle C_{\psi}^{U} \mathbf{h}, U_{B}^{m} \mathbf{h}^{\prime}\right\rangle=\left\langle U_{B}^{m^{*}} C_{\psi}^{U} \mathbf{h}, \mathbf{h}^{\prime}\right\rangle \\
& =\left\langle\left(\begin{array}{ccc}
U_{B}^{*} \psi\left(U_{A} e_{11}\right) & \cdots & U_{B}^{*} \psi\left(U_{A} e_{1 m}\right) \\
\vdots & \ddots & \vdots \\
U_{B}^{*} \psi\left(U_{A} e_{m 1}\right) & \cdots & U_{B}^{*} \psi\left(U_{A} e_{m m}\right)
\end{array}\right) \mathbf{h}, \mathbf{h}^{\prime}\right\rangle \\
& =\left\langle\left(\begin{array}{ccc}
\phi\left(e_{11}\right) & \cdots & \phi\left(e_{1 m}\right) \\
\vdots & \ddots & \vdots \\
\phi\left(e_{1 m}\right) & \cdots & \phi\left(e_{m m}\right)
\end{array}\right) \mathbf{h}, \mathbf{h}^{\prime}\right\rangle \\
& =\left\langle C_{\phi} \mathbf{h}, \mathbf{h}^{\prime}\right\rangle
\end{aligned}
$$

that is, C_{ϕ} is positive if and only if C_{ψ}^{U} is $I_{A} \otimes U_{B}$-positive in $M_{A} \otimes M_{B}$, which completes the proof.

4. Nilpotent U-CP maps

Nilpotent CP maps were studied by Bhat and Mallick in [2]. Let \mathcal{H} be a finite dimensional Hilbert space and $\phi: B(\mathcal{H}) \rightarrow B(\mathcal{H})$ be a CP map. Suppose ϕ is a nilpotent map of order p, that is, $\phi^{p}=0$ and $\phi^{p-1} \neq 0$. Define $\mathcal{H}_{1}:=\operatorname{ker}(\phi(U))$ and $\mathcal{H}_{k}:=\operatorname{ker}\left(\phi^{k}(U)\right) \ominus \operatorname{ker}\left(\phi^{k-1}(U)\right)$, where $2 \leq k \leq p$. Then $\cap_{k=1}^{p} \mathcal{H}_{k}=\emptyset$ and $\mathcal{H}=\mathcal{H}_{1} \oplus \mathcal{H}_{2} \oplus \cdots \oplus \mathcal{H}_{p}$. Let $b_{i}:=\operatorname{dim}\left(\mathcal{H}_{i}\right)$ for $1 \leq i \leq p$. Then $\left(b_{1}, b_{2}, \ldots, b_{p}\right)$ is called the CP nilpotent type of ϕ. In this section, we introduce U-CP nilpotent type of U-CP maps.

Proposition 4.1. Let \mathcal{H} be a finite dimensional Hilbert space and (\mathcal{H}, U) be an S-space with the indefinite inner product $[\cdot, \cdot]_{U}$. Suppose $\phi: B(\mathcal{H}) \rightarrow B(\mathcal{H})$ is a CP map, then the corresponding linear map ψ from $B(\mathcal{H})$ to $B(\mathcal{H})$ defined by $\psi(X):=U \phi\left(U^{*} X\right)$ is $U-C P$, with the Kraus U-decomposition $\psi(X)=\sum_{i=1}^{l} R_{i}^{\#} X R_{i}$, where $X \in B(\mathcal{H})$ and $R_{i}^{\#}=U R_{i}^{*} U^{*}$ for each $1 \leq i \leq l$. Then
(1) $\operatorname{ker}(\psi(U))=\cap_{i=1}^{l} \operatorname{ker}\left(U R_{i}\right)$,
(2) For U-positive $X, \psi(X)=0$ if and only if $\operatorname{ran}(X) \subseteq \cap_{i=1}^{l} \operatorname{ker}\left(R_{i}^{*} U^{*}\right)$,
(3) $\{h \in \mathcal{H} \mid \psi(|U h\rangle\langle h|)=0\}=\cap_{i=1}^{l} \operatorname{ker}\left(R_{i}^{*} U^{*}\right)$,
(4) $\operatorname{ran}(\psi(U))=\overline{\operatorname{span}}\left\{U R_{i}^{*} h \mid h \in \mathcal{H}, 1 \leq i \leq l\right\}$.

Proof. (1) Consider

$$
\begin{aligned}
\operatorname{ker}(\psi(U)) & =\{h \in \mathcal{H} \mid \psi(U) h=0\} \\
& =\left\{h \in \mathcal{H} \mid \sum_{i=1}^{l} R_{i}^{\#} U R_{i} h=0\right\} \\
& =\left\{h \in \mathcal{H} \mid \sum_{i=1}^{l}\left[R_{i}^{\#} U R_{i} h, h\right]_{U}=0\right\} \\
& =\left\{h \in \mathcal{H} \mid \sum_{i=1}^{l}\left[U R_{i} h, R_{i} h\right]_{U}=0\right\} \\
& =\left\{h \in \mathcal{H} \mid \sum_{i=1}^{l}\left\langle U R_{i} h, U R_{i} h\right\rangle=0\right\} \\
& =\left\{h \in \mathcal{H} \mid \sum_{i=1}^{l}\left\|U R_{i} h\right\|^{2}=0\right\} \\
& =\left\{h \in \mathcal{H} \mid U R_{i} h=0, \text { for each } 1 \leq i \leq l\right\} \\
& =\bigcap_{i=1}^{l} \operatorname{ker}\left(U R_{i}\right) .
\end{aligned}
$$

(2) Suppose $\psi(X)=U \phi\left(U^{*} X\right)=0$ where X is U-positive. It follows that $\phi\left(U^{*} X\right)=$ 0 , and since ϕ is a CP map, using the Kraus decomposition, we obtain $\sum_{i=1}^{l} R_{i}^{*} U^{*} X R_{i}=$ 0 . As X is U-positive ($U^{*} X$ is positive), we get $R_{i}^{*} U^{*} X R_{i}=0$ for each i. Note that $R_{i}^{*}\left(U^{*} X\right)^{\frac{1}{2}}=0$. It implies that $R_{i}^{*} U^{*} X=0$. Let $h_{1} \in \operatorname{ran}(X)$, then there exists $h_{2} \in \mathcal{H}$ such that $X\left(h_{2}\right)=h_{1}$. Now by applying $R_{i}^{*} U^{*}$ on both the sides, we get $R_{i}^{*} U^{*} h_{1}=0$ for each i. Hence $\operatorname{ran}(X) \subseteq \cap_{i=1}^{l} \operatorname{ker}\left(R_{i}^{*} U^{*}\right)$.

Conversely, let $\operatorname{ran}(X) \subseteq \cap_{i=1}^{l} \operatorname{ker}\left(R_{i}^{*} U^{*}\right)$, then $\psi(X)=\sum_{i=1}^{l} R_{i}^{\#} X R_{i}=\sum_{i=1}^{l} U R_{i}^{*} U^{*} X R_{i}=$ 0.
(3) One can easily see that $|U h\rangle\langle h|$ is U-positive. Indeed, $U^{*}|U h\rangle\langle h|=|h\rangle\langle h| \geq 0$. Also, we have $\psi(|U h\rangle\langle h|)=0$, and $\operatorname{ran}(|U h\rangle\langle h|)=\mathbb{C} h$, therefore it directly follows from (2) that $\{h \in \mathcal{H} \mid \psi(|U h\rangle\langle h|)=0\}=\cap_{i=1}^{l} \operatorname{ker}\left(R_{i}^{*} U^{*}\right)$.
(4) Let $h_{1} \in \operatorname{ran}(\psi(U))=\operatorname{ran}\left(\sum_{i=1}^{l} R_{i}^{\#} U R_{i}\right)=\operatorname{ran}\left(\sum_{i=1}^{l} U R_{i}^{*} R_{i}\right)$. Then $\sum_{i=1}^{l} U R_{i}^{*} R_{i} h_{2}=$ h_{1} for some $h_{2} \in \mathcal{H}$. Therefore $h_{1} \in \overline{\operatorname{span}}\left\{U R_{i}^{*} h \mid h \in \mathcal{H}, 1 \leq i \leq l\right\}$. Hence $\operatorname{ran}(\psi(U)) \subseteq \overline{\operatorname{span}}\left\{U R_{i}^{*} h \mid h \in \mathcal{H}, 1 \leq i \leq l\right\}$.

Conversely, let $h \in \overline{\operatorname{span}}\left\{U R_{i}^{*} h \mid h \in \mathcal{H}, \quad 1 \leq i \leq l\right\}$. Then $h=\sum_{i=1}^{l} \alpha_{i} U R_{i}^{*} h_{i}$ where $\alpha_{i} \in \mathbb{C}, h_{i} \in \mathcal{H}$. We have to show that $h \in \operatorname{ran}(\psi(U))=\operatorname{ran}\left(U \sum_{i=1}^{l} R_{i}^{*} R_{i}\right)$. It is equivalent to show that $h \in \operatorname{ker}\left(\sum_{i=1}^{l} R_{i}^{*} R_{i} U^{*}\right)^{\perp}$, that is, $\left\langle h, h^{\prime}\right\rangle_{\mathcal{H}}=0$ for all $h^{\prime} \in \operatorname{ker}\left(\sum_{i=1}^{l} R_{i}^{*} R_{i} U^{*}\right)$.

Consider $h^{\prime} \in \operatorname{ker}\left(\sum_{i=1}^{l} R_{i}^{*} R_{i} U^{*}\right)$, then we have

$$
0=\sum_{i=1}^{l}\left[R_{i}^{*} R_{i} U^{*} h^{\prime}, h^{\prime}\right]_{U^{*}}=\sum_{i=1}^{l}\left\langle R_{i}^{*} R_{i} U^{*} h^{\prime}, U^{*} h^{\prime}\right\rangle
$$

It follows that $R_{i} U^{*} h^{\prime}=0$ for each i. Observe that

$$
\left\langle h, h^{\prime}\right\rangle=\sum_{i=1}^{l} \alpha_{i}\left\langle U R_{i}^{*} h_{i}, h^{\prime}\right\rangle=\sum_{i=1}^{l} \alpha_{i}\left\langle h_{i}, R_{i} U^{*} h^{\prime}\right\rangle=0
$$

which proves that $\operatorname{ran}(\psi(U))=\overline{\operatorname{span}}\left\{U R_{i}^{*} h \mid h \in \mathcal{H}, 1 \leq i \leq l\right\}$.
Proposition 4.2. Let (\mathcal{H}, U) be an S-space with the indefinite inner product $[\cdot, \cdot]_{U}$. Suppose $\phi: B(\mathcal{H}) \rightarrow B(\mathcal{H})$ is a CP map, then the corresponding linear map ψ from $B(\mathcal{H})$ to $B(\mathcal{H})$ defined by $\psi(X):=U \phi\left(U^{*} X\right)$ is $U-C P$, with the Kraus U-decomposition $\psi(X)=\sum_{i=1}^{l} R_{i}^{\#} X R_{i}$, where $X \in B(\mathcal{H})$ and $R_{i}^{\#}=U R_{i}^{*} U^{*}$ for each $1 \leq i \leq l$. Then the followings are equivalent:
(1) $\psi^{p}(X)=0$ for all $X \in B(\mathcal{H})$;
(2) $R_{i_{1}} R_{i_{2}} \cdots R_{i_{p}}=0$ for all $i_{1}, i_{2}, \ldots, i_{p}$.

Proof. (1) $\Longrightarrow(2):$ Let us assume for each $X \in B(\mathcal{H})$, we have

$$
0=\psi^{p}(X)=\sum_{i_{1}, i_{2}, \ldots, i_{p}=1}^{l} R_{i_{p}, \ldots, i_{1}}^{\#} X R_{i_{1}} R_{i_{2}} \cdots R_{i_{p}}
$$

where $R_{i_{p}, \ldots, i_{1}}^{\#}=U R_{i_{p}}^{*} R_{i_{p-1}}^{*} \cdots R_{i_{1}}^{*} U^{*}$. Therefore

$$
0=\psi^{p}(I)=\sum_{i_{1}, i_{2}, \ldots, i_{p}=1}^{l} R_{i_{p}, \ldots, i_{1}}^{\#} R_{i_{1}} R_{i_{2}} \cdots R_{i_{p}}
$$

Now observe that

$$
\begin{aligned}
& \left\{h \in \mathcal{H} \mid \sum_{i_{1}, i_{2}, \ldots, i_{p}=1}^{l} R_{i_{p}, \ldots, i_{1}}^{\#} R_{i_{1}} R_{i_{2}} \cdots R_{i_{p}} h=0\right\} \\
= & \left\{h \in \mathcal{H} \mid \sum_{i_{1}, i_{2}, \ldots, i_{p}=1}^{l}\left[R_{i_{p}, \ldots, i_{1}}^{\#} R_{i_{1}} R_{i_{2}} \cdots R_{i_{p}} h, h\right]_{U}=0\right\} \\
= & \left\{h \in \mathcal{H} \mid \sum_{i_{1}, i_{2}, \ldots, i_{p}=1}^{l}\left[R_{i_{1}} R_{i_{2}} \cdots R_{i_{p}} h, R_{i_{1}} R_{i_{2}} \cdots R_{i_{p}} h\right]_{U}=0\right\},
\end{aligned}
$$

which concludes the desired equality (2).
$(2) \Longrightarrow(1)$: Trivial.
Suppose ψ is a U-CP map from $B(\mathcal{H})$ to $B(\mathcal{H})$ defined by $\psi(X)=U \phi\left(U^{*} X\right)$. Let ψ be a nilpotent map of order p. Define $\mathcal{K}_{1}:=\operatorname{ker}(\psi(U))$ and $\mathcal{K}_{k}:=\operatorname{ker}\left(\psi^{k}(U)\right) \ominus$ $\operatorname{ker}\left(\psi^{k-1}(U)\right)$, where $2 \leq k \leq p$. Then $\cap_{k=1}^{p} \mathcal{K}_{k}=\emptyset$ and $\mathcal{H}=\mathcal{K}_{1} \oplus \mathcal{K}_{2} \oplus \cdots \oplus \mathcal{K}_{p}$.

Definition 4.3. Let $c_{i}:=\operatorname{dim}\left(\mathcal{K}_{i}\right)$ for $1 \leq i \leq p$. Then $\left(c_{1}, c_{2}, \ldots, c_{p}\right)$ is called the U-CP nilpotent type of ψ.

5. Quantum U-channels and quantum U-states

The U-states and the quantum U-channel, which are the S-space versions of the states and quantum channel, respectively, are introduced in this section. Together, we introduce U-separable and U-entangled states and present the U-PPT criterion for U-separability of U-states.

Definition 5.1. Let $\phi: M_{A} \rightarrow M_{B}$ be a linear map and U_{A} and U_{B} be the fundamental unitaries in M_{A} and M_{B}, respectively. Then
(1) ϕ is a quantum channel if it is $C P$ and trace preserving, that is, $\operatorname{Tr}(\phi(V))=$ $\operatorname{Tr}(V)$ where $V \in M_{A}$.
(2) a linear map ψ from $B\left(\mathcal{H}_{1}\right)$ to $B\left(\mathcal{H}_{2}\right)$ defined by $\psi(V):=U_{2} \phi\left(U_{1}^{*} V\right)$ is a quantum $\left(U_{A}, U_{B}\right)$-channel if it is $\left(U_{A}, U_{B}\right)-C P$ and trace preserving.

Remark 5.2. It is well known that ϕ is a quantum channel if and only if there exist $m \times n$-matrices R_{1}, \ldots, R_{l} such that

$$
\phi(V)=\sum_{i=1}^{l} R_{i}^{*} V R_{i} \quad \text { and } \quad \sum_{i=1}^{l} R_{i} R_{i}^{*}=I
$$

where $V \in M_{A}$. Indeed, if ϕ is a quantum channel, then it is a CP map and trace preserving. Therefore by Kraus decomposition (3.1), there exist $m \times n$-matrices R_{1}, \ldots, R_{l} such that $\phi(V)=\sum_{i=1}^{l} R_{i}^{*} V R_{i}$, and if ϕ is a trace preserving map, then $\phi^{*}(V)=\sum_{i=1}^{l} R_{i} V R_{i}^{*}$ is unital $\left(\operatorname{Tr}(X)=\left\langle I_{X}, X\right\rangle=\operatorname{Tr}(\phi(X))=\left\langle I_{X}, \phi(X)\right\rangle=\left\langle\phi^{*}\left(I_{X}\right), X\right\rangle\right)$ which implies $\sum_{i=1}^{l} R_{i} R_{i}^{*}=I$.

Similarly, if ψ is a quantum $\left(U_{A}, U_{B}\right)$-channel, then by Kraus U-decomposition (3.2) we have $\psi(V)=\sum_{i=1}^{l} R_{i}^{\#_{A, B}} V R_{i}$, where $R_{i}^{\#_{A, B}}=U_{B} R_{i}^{*} U_{A}^{*}$. Since ψ is trace preserving, it means ψ^{*} is unital and we obtain $I_{B}=\psi^{*}\left(I_{A}\right)=\sum_{i=1}^{l} R_{i} R_{i}^{\#_{A, B}}$. Moreover,

$$
\sum_{i} R_{i} U_{B}^{*} R_{i}^{\not \#_{A, B}}=R_{i} U_{B}^{*} U_{B} R_{i}^{*} U_{A}^{*}=U_{A}^{*}
$$

A quantum state $\rho \in M_{n}(\mathbb{C})$ is a positive semi-definite matrix with $\operatorname{Tr}(\rho)=1$.
Definition 5.3. Let U be a fundamental unitary in $M_{n}(\mathbb{C})$, then a matrix $\rho \in M_{n}(\mathbb{C})$ is called a quantum U-state if the following conditions hold:
(1) ρ is U-positive, that is, $U^{*} \rho$ is positive and
(2) $\operatorname{Tr}\left(U^{*} \rho\right)=1$.

Example 5.4. Let U be a fundamental unitary in $M_{l}(\mathbb{C})$, where $l \in \mathbb{N}$. Define $\rho \in M_{l}(\mathbb{C})$ as $\rho=|U e\rangle\langle e|$ where $e \in \mathbb{C}^{l}$ with $\|e\|=1$. Then

$$
U^{*} \rho=U^{*}|U e\rangle\langle e|=\left|U^{*} U e\right\rangle\langle e|=|e\rangle\langle e| .
$$

It follows that $U^{*} \rho$ is positive and also note that $\operatorname{Tr}\left(U^{*} \rho\right)=\operatorname{Tr}(|e\rangle\langle e|)=\langle e, e\rangle=1$. Hence ρ is a quantum U-state.

Proposition 5.5. A quantum $\left(U_{A}, U_{B}\right)$-channel $\psi: M_{A} \rightarrow M_{B}$ maps quantum U_{A}-states into quantum U_{B}-states.

Proof. Let V be a quantum U_{A}-state, that is, V is U_{A}-positive and $\operatorname{Tr}\left(U_{A}^{*} V\right)=1$. Since ψ is a quantum $\left(U_{A}, U_{B}\right)$-channel, we have

$$
\psi(V)=\sum_{i=1}^{l} R_{i}^{\# A, B} V R_{i}=\sum_{i=1}^{l} U_{B} R_{i}^{*} U_{A}^{*} V R_{i}
$$

for some $m \times n$-matrices R_{1}, \ldots, R_{l}. Since V is U_{A}-positive, we have $U_{A}^{*} V \geq 0$. Therefore $U_{B}^{*} \psi(V)=\sum_{i=1}^{l} R_{i}^{*} U_{A}^{*} V R_{i} \geq 0$, that is, $\psi(V)$ is U_{B}-positive. Furthermore, we obtain

$$
\begin{aligned}
\operatorname{Tr}\left(U_{B}^{*} \psi(V)\right) & =\operatorname{Tr}\left(\sum_{i=1}^{l} R_{i}^{*} U_{A}^{*} V R_{i}\right)=\operatorname{Tr}\left(\sum_{i=1}^{l} U_{A}^{*} V R_{i} R_{i}^{*}\right)=\operatorname{Tr}\left(U_{A}^{*} V \sum_{i=1}^{l} R_{i} R_{i}^{*}\right) \\
& =\operatorname{Tr}\left(U_{A}^{*} V\right)=1
\end{aligned}
$$

which proves that $\psi(V)$ is a quantum U_{B}-state.
A bipartite quantum state $\rho \in M_{A} \otimes M_{B}$ is a product state if $\rho=\rho_{A} \otimes \rho_{B}$ with $\rho_{A} \in M_{A}^{+}$ and $\rho_{B} \in M_{B}^{+}$and is separable if it is a convex combination of product states. Moreover, it is entangled if it is not separable. We define $\tau:=t \otimes \mathrm{id}: M_{A} \otimes M_{B} \rightarrow M_{A} \otimes M_{B}$ where t is the transpose on M_{A}. We call the τ map the partial transpose or the blockwise transpose and a bipartite quantum state ρ is positive partial transpose (PPT) if $\rho^{\tau}:=t \otimes \operatorname{id}(\rho)$ is positive. The positive partial transpose criterion says that if ρ is separable, then ρ is positive partial transpose.

Definition 5.6. Let U_{A} and U_{B} be the fundamental unitaries in M_{A} and M_{B}, respectively. Let $U_{A} \otimes U_{B}$ be the fundamental unitary in $M_{A} \otimes M_{B}$ and $\rho \in M_{A} \otimes M_{B}$ be a bipartite quantum $U_{A} \otimes U_{B}$-state. Then
(1) ρ is a product $U_{A} \otimes U_{B}$-state if $\rho=\rho_{A} \otimes \rho_{B}$ where $\rho_{A} \in M_{A}^{U+}$ and $\rho_{B} \in M_{B}^{U+}$.
(2) ρ is $U_{A} \otimes U_{B}$-separable if it is a convex combination of product $U_{A} \otimes U_{B}$-states.
(3) ρ is $U_{A} \otimes U_{B}$-entangled if it is not $U_{A} \otimes U_{B}$-separable.
(4) ρ is $U_{A} \otimes U_{B}$-positive partial transpose if the partial transpose ρ^{τ} is $U_{A}^{t} \otimes U_{B^{-}}$ positive, that is, $\left(\bar{U}_{A} \otimes U_{B}^{*}\right)\left(\rho^{\tau}\right)$ is positive.

Proposition 5.7. If a bipartite quantum $U_{A} \otimes U_{B}$-state $\rho \in M_{A} \otimes M_{B}$ is $U_{A} \otimes U_{B^{-}}$ separable, then ρ is $U_{A} \otimes U_{B}$-positive partial transpose.

Proof. Consider that ρ is $U_{A} \otimes U_{B}$-separable, it means we can write it as a convex combination of product $U_{A} \otimes U_{B}$-states, that is,

$$
\begin{aligned}
\rho & =\sum_{i=1}^{l} p_{i}\left(U_{A} \otimes U_{B}\right)\left(\left|z_{i}\right\rangle\left\langle z_{i}\right|\right)=\sum_{i=1}^{l} p_{i}\left(U_{A} \otimes U_{B}\right)\left(\left|x_{i}\right\rangle \otimes\left|y_{i}\right\rangle\right)\left(\left\langle x_{i}\right| \otimes\left\langle y_{i}\right|\right) \\
& =\sum_{i=1}^{l} p_{i}\left(U_{A} \otimes U_{B}\right)\left(\left|x_{i}\right\rangle\left\langle x_{i}\right| \otimes\left|y_{i}\right\rangle\left\langle y_{i}\right|\right)=\sum_{i=1}^{l} p_{i} U_{A}\left(\left|x_{i}\right\rangle\left\langle x_{i}\right|\right) \otimes U_{B}\left(\left|y_{i}\right\rangle\left\langle y_{i}\right|\right),
\end{aligned}
$$

with $\sum_{i=1}^{l} p_{i}=1$, and $\left|z_{i}\right\rangle=\left|x_{i}\right\rangle \otimes\left|y_{i}\right\rangle \in M_{A} \otimes M_{B}$. Since $\left(U_{A}\left(\left|x_{i}\right\rangle\left\langle x_{i}\right|\right)\right)^{t}=\left|\overline{x_{i}}\right\rangle\left\langle\overline{x_{i}}\right| \overline{U_{A}^{*}}$, we obtain

$$
\rho^{\tau}=t \otimes \operatorname{id}(\rho)=\sum_{i=1}^{l} p_{i}\left|\overline{x_{i}}\right\rangle\left\langle\overline{x_{i}}\right| \overline{U_{A}^{*}} \otimes U_{B}\left(\left|y_{i}\right\rangle\left\langle y_{i}\right|\right)
$$

Since $\overline{U_{A}}\left|\overline{x_{i}}\right\rangle\left\langle\overline{x_{i}}\right| \overline{U_{A}^{*}}$ is a positive matrix in $M_{A},\left(\bar{U}_{A} \otimes U_{B}^{*}\right)\left(\rho^{\tau}\right)$ is positive.

6. U-Entanglement breaking maps

In this section, we consider the special class of quantum channels which can be simulated by a classical channel in the following sense: The sender makes a measurement on the input state ρ, and send the outcome k via a classical channel to the receiver who then prepares an agreed upon state R_{k}. Such channels can be written in the form

$$
\phi(\rho)=\sum_{k} R_{k} \operatorname{Tr}\left(E_{k} \rho\right)
$$

where each R_{k} is a density matrix (density matrices, also called density operators, which conceptually take the role of the state vectors, that is, R_{k} is a positive semi-definite matrix with $\operatorname{Tr}\left(R_{k}\right)=1$) and the E_{k} form a positive operator valued measure ($\left\{E_{k}\right\}_{k}$ form a positive operator valued measure means for each k, E_{k} is positive semi-definite and $\left.\sum_{k} E_{k}=i d_{A}\right)$. We call this the "Holevo form" because it was introduced by Holevo in [13]. In this context, it is natural to consider the class of channels which break entanglement.
Definition 6.1. Let $\phi: M_{A} \rightarrow M_{B}$ be a quantum channel. If $\left(i d_{n} \otimes \phi\right)(S)$ is always separable for all bipartite quantum states $S \in M_{n}(\mathbb{C}) \otimes M_{A}$, then we call it an entanglement breaking map.

Let U_{A} and U_{B} be the fundamental unitaries in M_{A} and M_{B}, respectively. The family $\left\{F_{k}\right\}_{k}$ is a U_{A}-positive operator valued measure if each $F_{k} U_{A}$ is positive semi-definite and $\sum_{k} F_{k} U_{A}=i d_{A}$ (or $\sum_{k} F_{k}=U_{A}^{*}$) and D is called U_{A}-density matrix if D is a U_{A}-positive semi-definite matrix, that is, $U_{A}^{*} D$ is positive semi-definite matrix with $\operatorname{Tr}\left(U_{A}^{*} D\right)=1$.
Definition 6.2. Let $\psi: M_{A} \rightarrow M_{B}$ be a $\left(U_{A}, U_{B}\right)$-quantum channel.
(1) ψ is said to be $\left(U_{A}, U_{B}\right)$-entanglement breaking if $\left(i d_{n} \otimes \psi\right)(S)$ is $I_{n} \otimes U_{B}$-separable for any $I_{n} \otimes U_{A}$-density matrix $S \in M_{n}(\mathbb{C}) \otimes M_{A}$.
(2) ψ is in $\left(U_{A}, U_{B}\right)$-Holevo form if it can be expressed as

$$
\psi(\rho)=\sum_{k} D_{k} \operatorname{Tr}\left(F_{k} \rho\right),
$$

where D_{k} is a U_{B}-density matrix, that is, $U_{B}^{*} D_{k}$ is positive semi-definite matrix and $\operatorname{Tr}\left(U_{B}^{*} D_{k}\right)=1$ and F_{k} is a U_{A}-positive operator valued measure in M_{A}, that is $F_{k} U_{A}$ is positive semi-definite and $\sum_{k} F_{k} U_{A}=i d_{A}$.
Theorem 6.3. Let $\psi: M_{A} \rightarrow M_{B}$ be a $\left(U_{A}, U_{B}\right)$-quantum channel. Then the following statements are equivalent:
(1) ψ is $\left(U_{A}, U_{B}\right)$-entanglement breaking;
(2) ψ is in $\left(U_{A}, U_{B}\right)$-Holevo form.

Proof. (1) $\Longrightarrow(2)$: Suppose ψ is $\left(U_{A}, U_{B}\right)$-entanglement breaking. The map ϕ given by $\phi(V)=U_{B}^{*} \psi\left(U_{A} V\right)$ is a quantum channel and we have for each $n \in \mathbb{N}$,

$$
\begin{equation*}
i d_{n} \otimes \phi=i d_{n} \otimes\left(U_{B}^{*} \psi\left(U_{A}\right)\right)=\left(I_{n} \otimes U_{B}^{*}\right)\left(i d_{n} \otimes \psi\right)\left(I_{n} \otimes U_{A}\right) \tag{6.1}
\end{equation*}
$$

Let $S \in M_{n}(\mathbb{C}) \otimes M_{A}$ be a density matrix. One can easily verify that $\left(I_{n} \otimes U_{A}\right) S$ is a $\left(I_{n} \otimes U_{A}\right)$-density matrix, that is, $\left(I_{n} \otimes U_{A}^{*}\right)\left(I_{n} \otimes U_{A}\right) S$ is positive and $\operatorname{Tr}\left(\left(I_{n} \otimes U_{A}^{*}\right)\left(I_{n} \otimes\right.\right.$ $\left.\left.U_{A}\right) S\right)=1$ which trivially hold as $\left(I_{n} \otimes U_{A}^{*}\right)\left(I_{n} \otimes U_{A}\right) S=S$. Since $\left(i d_{n} \otimes \psi\right)\left(I_{n} \otimes U_{A}\right) S$ is $\left(I_{n} \otimes U_{B}\right)$-separable, $\left(i d_{n} \otimes \phi\right)(S)$ is separable. This implies that ϕ is an entanglement breaking map. Now using [12, Theorem 4], we can write ϕ in the Holevo form, that is,

$$
\phi(\rho)=\sum_{k} R_{k} \operatorname{Tr}\left(E_{k} \rho\right),
$$

where each R_{k} is a density matrix and $\left\{E_{k}\right\}_{k}$ is a positive operator valued measure with $\sum_{k} E_{k}=i d_{A}$. Observe that

$$
\psi(\rho)=U_{B} \phi\left(U_{A}^{*} \rho\right)=\sum_{k} U_{B} R_{k} \operatorname{Tr}\left(E_{k} U_{A}^{*} \rho\right)=\sum_{k} D_{k} \operatorname{Tr}\left(F_{k} \rho\right),
$$

where $D_{k}:=U_{B} R_{k}$ and $F_{k}:=E_{k} U_{A}^{*}$. Note that D_{k} is a U_{B}-density matrix since $U_{B}^{*} D_{k}=$ $U_{B}^{*} U_{B} R_{k}=R_{k}$ and R_{k} is already a density matrix in M_{B} and also $\left\{F_{k}\right\}_{k}$ is a $U_{A^{-}}$ positive operator valued measure in M_{A} as $E_{k} U_{A}^{*} U_{A}=E_{k}$ is positive semi-definite and $\sum_{k} E_{k} U_{A}^{*} U_{A}=i d_{A}$.
$(2) \Longrightarrow(1):$ Assume that ψ has the $\left(U_{A}, U_{B}\right)$-Holevo form, it means $\psi(\rho)=$ $\sum_{k} D_{k} \operatorname{Tr}\left(F_{k} \rho\right)$, where D_{k} is a U_{B}-density matrix and $\left\{F_{k}\right\}_{k}$ is a U_{A}-positive operator valued measure in M_{A}. Define ϕ by $\phi(\rho)=U_{B}^{*} \psi\left(U_{A} \rho\right)$, where $\rho \in M_{A}$. We obtain

$$
\begin{aligned}
\phi(\rho)=U_{B}^{*} \psi\left(U_{A} \rho\right)=U_{B}^{*} \psi\left(U_{A} \rho\right) & =U_{B}^{*} \sum_{k} D_{k} \operatorname{Tr}\left(F_{k} U_{A} \rho\right) \\
& =\sum_{k} U_{B}^{*} D_{k} \operatorname{Tr}\left(F_{k} U_{A} \rho\right) .
\end{aligned}
$$

Since D_{k} is a U_{B}-density matrix and $\left\{F_{k}\right\}_{k}$ is a U_{A}-positive operator valued measure in M_{A}, ϕ has a Holevo form and by [12, Theorem 4] ϕ is an entanglement breaking map and hence Equation (6.1) implies that ψ is a $\left(U_{A}, U_{B}\right)$-entanglement breaking map.

Remark 6.4. Let $\phi, \psi: M_{A} \rightarrow M_{B}$ be linear maps such that $\psi(\rho)=U_{B} \phi\left(U_{A}^{*} \rho\right)$, where $\rho \in M_{A}$. As we know ϕ is positive if and only if ψ is a $\left(U_{A}, U_{B}\right)$-positive map. Suppose ϕ is a quantum channel, that is, ψ is a $\left(U_{A}, U_{B}\right)$-quantum channel. Note that $\theta \circ \phi$ is a CP map for any CP map $\theta: M_{B} \rightarrow M_{C}$ if and only if $\omega \circ \psi$ is $\left(U_{A}, U_{C}\right)-C P$ for any $\left(U_{B}, U_{C}\right)-C P \omega: M_{B} \rightarrow M_{C}$. Therefore, it follows from Theorem 6.3 that ϕ is an entanglement breaking map if and only if ψ is a $\left(U_{A}, U_{B}\right)$-entanglement breaking map.

7. Examples of fundamental unitary and U-CP maps

In this section, we provide concrete examples of completely U-positive maps and examples of $3 \otimes 3$ quantum U-states which are U-entangled and U-separable. It is easy
to observe that the 2×2 identity matrix I and the Pauli matrices

$$
\sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{y}=\left(\begin{array}{cc}
0 & -\iota \\
\iota & 0
\end{array}\right), \quad \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

form a basis for $M_{2}(\mathbb{C})$. That is, for any $A \in M_{2}(\mathbb{C})$, we have $A=a I+b \sigma_{x}+c \sigma_{y}+d \sigma_{z}$ where $a, b, c, d \in \mathbb{C}$. Any fundamental unitary on the 2 -dimensional complex S-space has the form

$$
U=\left(\begin{array}{cc}
a & b \tag{7.1}\\
-e^{\iota \phi} \bar{b} & e^{\iota \phi} \bar{a}
\end{array}\right)
$$

where $\phi \in \mathbb{R}$ and $a, b \in \mathbb{C}$ such that $|a|^{2}+|b|^{2}=1$. For example, if we choose $a=1$ and $b=0$, then we have the unitary

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & e^{\iota \phi}
\end{array}\right)
$$

which is called a Phase Gate (see [17]) that represents a rotation about the z-axis by an angle ϕ on the Bloch sphere.

If we define an S-space with respect to the fundamental unitary U as in (7.1), then $U^{*} A=a U^{*}+b \sigma_{x}^{U}+c \sigma_{y}^{U}+d \sigma_{z}^{U}$, where $\sigma_{x}^{U}=U^{*} \sigma_{x}, \sigma_{y}^{U}=U^{*} \sigma_{y}$, and $\sigma_{z}^{U}=U^{*} \sigma_{z}$, and we call these matrices U-Pauli matrices.

Let $U_{1}=\left(\begin{array}{cc}1 & 0 \\ 0 & \iota\end{array}\right)$ and $U_{2}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right)$ be two unitaries which are not symmetries, where U_{1} is the Phase gate for $\phi=\frac{\pi}{2}$.
(1) Consider the S-space $\left(\mathbb{C}^{2}, U_{1}\right)$. For any $A \in M_{2}(\mathbb{C})$, we have

$$
U_{1}^{*} A=\left[a\left(\begin{array}{cc}
1 & 0 \\
0 & -\iota
\end{array}\right)-\iota b\left(\begin{array}{cc}
0 & \iota \\
1 & 0
\end{array}\right)-\iota c\left(\begin{array}{ll}
0 & 1 \\
\iota & 0
\end{array}\right)+d\left(\begin{array}{ll}
1 & 0 \\
0 & \iota
\end{array}\right)\right]
$$

and

$$
\left(U_{1}^{*} A\right)^{*}=\left[\bar{a}\left(\begin{array}{ll}
1 & 0 \\
0 & \iota
\end{array}\right)+\bar{b}\left(\begin{array}{ll}
0 & \iota \\
1 & 0
\end{array}\right)+\bar{c}\left(\begin{array}{ll}
0 & 1 \\
\iota & 0
\end{array}\right)+\bar{d}\left(\begin{array}{cc}
1 & 0 \\
0 & -\iota
\end{array}\right)\right] .
$$

Comparing $U_{1}^{*} A$ and $\left(U_{1}^{*} A\right)^{*}$, one may easily find out that A is U_{1}-self adjoint if and only if $a=\bar{d},-\iota c=\bar{c}$ and $-\iota b=\bar{b}$, that is, A has the form

$$
A=\left(\begin{array}{ll}
a+d & b-\iota c \\
b+\iota c & a-d
\end{array}\right)=\left(\begin{array}{ll}
a+\bar{a} & b+\bar{c} \\
b-\bar{c} & a-\bar{a}
\end{array}\right)=\left(\begin{array}{cc}
2 \Re(a) & b+\bar{c} \\
b-\bar{c} & 2 \iota \Im(a)
\end{array}\right)
$$

and $U_{1}^{*} A$ has the form

$$
U_{1}^{*} A=\left(\begin{array}{cc}
a+d & b-\iota c \\
c-\iota b & -\iota(a-d)
\end{array}\right)=\left(\begin{array}{cc}
a+\bar{a} & b+\bar{c} \\
c+\bar{b} & \iota(a-\bar{a})
\end{array}\right)=\left(\begin{array}{cc}
2 \Re(a) & b+\bar{c} \\
c+\bar{b} & 2 \Im(a)
\end{array}\right)
$$

where $a, b, c \in \mathbb{C}$. Further, $U_{1}^{*} A$ is positive, that is, A is U_{1}-positive if and only if

$$
0 \leq \Re(a) \quad \text { and } \quad 4 \Re(a) \Im(a) \geq(b+\bar{c})(\bar{b}+c)
$$

Also, $U_{1}^{*} A$ is a quantum state, that is, A is a quantum U_{1}-state if and only if

$$
\Re(a)+\Im(a)=\frac{1}{2}
$$

In particular, if $a=\frac{1}{2} \in \mathbb{R}, b=t$ and $c=-t$ for all $t \geq 0$, then all the above relations are trivially satisfied. In other words, for $t \geq 0$,

$$
A=\rho_{t}=\left(\begin{array}{cc}
1 & 0 \\
2 t & 0
\end{array}\right)
$$

provides a one parameter family of quantum U_{1}-states in $M_{2}(\mathbb{C})$. Similarly, the following provides a one parameter family of quantum $U_{1} \otimes U_{1}$-states

$$
\frac{1}{16}\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
2 t & 0 & 0 & 0 \\
2 t & 0 & 0 & 0 \\
4 t^{2} & 0 & 0 & 0
\end{array}\right)
$$

where $t \geq 0$.
Since $M_{2}(\mathbb{C})$ is a unital $*$-algebra, any $*$-homomorphism π from $M_{2}(\mathbb{C})$ into $M_{2}(\mathbb{C})$ has the form $\pi(A)=W^{*} A W$ for some unitary matrix $W \in M_{2}(\mathbb{C})$. If ϕ is a U_{1}-CP map defined on $M_{2}(\mathbb{C})$, then by Theorem 2.2 there exist a $*-$ homomorphism π on $M_{2}(\mathbb{C})$ and a matrix $V \in M_{2}(\mathbb{C})$ such that

$$
\phi(A)=V^{\#} \pi(A) V
$$

where $V^{\#}=U_{1} V^{*} U_{1}^{*}$. For example, if we consider $V=\left(\begin{array}{cc}\alpha & 0 \\ 0 & \beta\end{array}\right)$ and a unitary $W=\left(\begin{array}{ll}\gamma & 0 \\ 0 & \delta\end{array}\right)$, then we get $U_{1}-\mathrm{CP} \phi$ in the following form:

$$
\begin{aligned}
\phi(A) & =V^{\#} \pi(A) V=\left(U_{1} V^{*} U_{1}^{*}\right)\left(W^{*} A W\right) V=\left(\begin{array}{cc}
\bar{\alpha} & 0 \\
0 & \bar{\beta}
\end{array}\right)\left(\begin{array}{cc}
a_{11} & \bar{\gamma} a_{12} \delta \\
\bar{\delta} a_{21} \gamma & a_{22}
\end{array}\right)\left(\begin{array}{cc}
\alpha & 0 \\
0 & \beta
\end{array}\right) \\
& =\left(\begin{array}{cc}
\bar{\alpha} \alpha a_{11} & \overline{\alpha \gamma} \delta \beta a_{12} \\
\beta \delta \gamma \alpha a_{21} & \bar{\beta} \beta a_{22}
\end{array}\right),
\end{aligned}
$$

where $A=\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right) \in M_{2}(\mathbb{C})$. Furthermore, if $|\alpha|=|\beta|=1$, then $\phi(A)$ is of the form

$$
\phi(A)=\left(\begin{array}{cc}
a_{11} & \overline{\alpha \gamma} \delta \beta a_{12} \\
\beta \delta \gamma \alpha a_{21} & a_{22}
\end{array}\right)
$$

(2) Consider the S-space $\left(\mathbb{C}^{2}, U_{2}\right)$. For any $A \in M_{2}(\mathbb{C})$, we obtain
$U_{2}^{*} A=\frac{1}{\sqrt{2}}\left[a\left(\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right)+b\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)-\iota c\left(\begin{array}{cc}-1 & 1 \\ -1 & -1\end{array}\right)+d\left(\begin{array}{cc}1 & -1 \\ -1 & -1\end{array}\right)\right]$.
Comparing $U_{2}^{*} A$ and $\left(U_{2}^{*} A\right)^{*}$, one may easily find out that A is U_{2}-self adjoint if and only if b and d are reals and $c=-\iota \bar{a}$, that is, A has the form

$$
\left(\begin{array}{cc}
a+d & -\bar{a}+b \\
\bar{a}+b & a-d
\end{array}\right)
$$

where $a \in \mathbb{C}$ and $b, d \in \mathbb{R}$. Further, $U_{2}^{*} A$ is positive, that is, A is U_{2}-positive if and only if

$$
-(b+d) \leq 2 \Re(a) \quad \text { and } \quad b^{2}+d^{2} \leq 2\left((\Re(a))^{2}-(\Im(a))^{2}\right)
$$

Also, $U_{2}^{*} A$ is a quantum state, that is, A is a quantum U_{2}-state if and only if

$$
\Re(a)=\frac{\sqrt{2}}{4}, \quad-(b+d) \leq \frac{\sqrt{2}}{2} \quad \text { and } \quad b^{2}+d^{2} \leq \frac{1}{4}-2(\Im(a))^{2}
$$

In particular, if $a=\sqrt{2} / 4 \in \mathbb{R}$ and $b=d=t / 4$, with $-\sqrt{2} \leq t \leq \sqrt{2}$, then all the above relations are trivially satisfied. In other words, for $-\sqrt{2} \leq t \leq \sqrt{2}$,

$$
\rho_{t}=\frac{1}{4}\left(\begin{array}{cc}
t+\sqrt{2} & t-\sqrt{2} \\
t+\sqrt{2} & -t+\sqrt{2}
\end{array}\right)
$$

provides a one parameter family of quantum U_{2}-states in $M_{2}(\mathbb{C})$. Similarly, the following provides a one parameter family of quantum $U_{2} \otimes U_{2}$-states

$$
\frac{1}{16}\left(\begin{array}{cccc}
t^{2}+2 \sqrt{2} t+2 & t^{2}-2 & t^{2}-2 & t^{2}-2 \sqrt{2} t+2 \\
t^{2}+2 \sqrt{2} t+2 & -t^{2}+2 & t^{2}-2 & -t^{2}+2 \sqrt{2} t-2 \\
t^{2}+2 \sqrt{2} t+2 & t^{2}-2 & -t^{2}+2 & -t^{2}+2 \sqrt{2} t-2 \\
t^{2}+2 \sqrt{2} t+2 & -t^{2}+2 & -t^{2}+2 & t^{2}-2 \sqrt{2} t+2
\end{array}\right)
$$

where $-\sqrt{2} \leq t \leq \sqrt{2}$.
Also, similar to the earlier example, we get any U_{2}-CP map ϕ in the following form:

$$
\begin{aligned}
\phi(A) & =V^{\#} \pi(A) V=\left(U_{2} V^{*} U_{2}^{*}\right)\left(W^{*} A W\right) V \\
& =\frac{1}{2}\left(\begin{array}{cc}
\bar{\alpha}+\bar{\beta} & \bar{\alpha}-\bar{\beta} \\
\bar{\alpha}-\bar{\beta} & \bar{\alpha}+\bar{\beta}
\end{array}\right)\left(\begin{array}{cc}
a_{11} & \bar{\gamma} a_{12} \delta \\
\delta a_{21} \gamma & a_{22}
\end{array}\right)\left(\begin{array}{cc}
\alpha & 0 \\
0 & \beta
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{ll}
(\bar{\alpha}+\bar{\beta}) \alpha a_{11}+(\bar{\alpha}-\bar{\beta}) \bar{\delta} \gamma \alpha a_{21} & (\bar{\alpha}+\bar{\beta}) \bar{\gamma} \delta \beta a_{12}+(\bar{\alpha}-\bar{\beta}) \beta a_{22} \\
(\bar{\alpha}-\bar{\beta}) \alpha a_{11}+(\bar{\alpha}+\bar{\beta}) \bar{\delta} \gamma \alpha a_{21} & (\bar{\alpha}-\bar{\beta}) \bar{\gamma} \delta \beta a_{12}+(\bar{\alpha}+\bar{\beta}) \beta a_{22}
\end{array}\right),
\end{aligned}
$$

where $A=\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right) \in M_{2}(\mathbb{C})$. Also if $|\alpha|=|\beta|=1$, then $\phi(A)$ is of the form
$\phi(A)=\frac{1}{2}\left(\begin{array}{cc}(1+\bar{\beta} \alpha) a_{11}+(1-\bar{\beta} \alpha) \bar{\delta} \gamma a_{21} & (\bar{\alpha} \beta+1) \bar{\gamma} \delta a_{12}+(\bar{\alpha} \beta-1) a_{22} \\ (1-\bar{\beta} \alpha) a_{11}+(1+\bar{\beta} \alpha) \bar{\delta} \gamma a_{21} & (\bar{\alpha} \beta-1) \bar{\gamma} \delta a_{12}+(\bar{\alpha} \beta+1) a_{22}\end{array}\right)$.
(3) Let \mathbb{C}^{3} be a 3 -dimensional S-space with an indefinite metric induced by U_{3}, where $U_{3}=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}1 & -1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & \sqrt{2}\end{array}\right)$. It is easy to observe that the matrices

$$
\mu_{1}=\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad \mu_{2}=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right), \quad \mu_{3}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

$$
\begin{array}{ll}
\mu_{4}=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), & \mu_{5}=\left(\begin{array}{ccc}
0 & -1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right), \quad \mu_{6}=\left(\begin{array}{ccc}
0 & 0 & -1 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) \\
\mu_{7}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
\sqrt{2} & 0 & 0
\end{array}\right), \quad \mu_{8}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & \sqrt{2} & 0
\end{array}\right), \quad \mu_{9}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & \sqrt{2}
\end{array}\right)
\end{array}
$$

form a basis for $M_{3}(\mathbb{C})$. Thus, for any $A \in M_{3}(\mathbb{C})$, we have $A=\sum_{i=1}^{9} a_{i} \mu_{i}$, where $a_{i} \in \mathbb{C}$. Then, we get

$$
A=\left(\begin{array}{ccc}
a_{1}-a_{4} & a_{2}-a_{5} & a_{3}-a_{6} \tag{7.2}\\
a_{1}+a_{4} & a_{2}+a_{5} & a_{3}+a_{6} \\
a_{7} \sqrt{2} & a_{8} \sqrt{2} & a_{9} \sqrt{2}
\end{array}\right) .
$$

Since

$$
U_{3}^{*} A=\sqrt{2}\left(\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
a_{4} & a_{5} & a_{6} \\
a_{7} & a_{8} & a_{9}
\end{array}\right)
$$

after comparing $U_{3}^{*} A$ and $\left(U_{3}^{*} A\right)^{*}$, one may easily find out that A is U_{3}-self adjoint if and only if a_{1}, a_{5} and a_{9} are reals and $a_{2}=\overline{a_{4}}, a_{3}=\overline{a_{7}}$ and $a_{6}=\overline{a_{8}}$, that is, $U_{3}^{*} A$ has the form

$$
U_{3}^{*} A=\sqrt{2}\left(\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
\overline{a_{2}} & a_{5} & a_{6} \\
\overline{a_{3}} & \overline{a_{6}} & a_{9}
\end{array}\right) .
$$

Further, $U_{3}^{*} A$ is positive, that is, A is U_{3}-positive if and only if the following conditions hold:

$$
\begin{array}{ll}
& a_{1} \geq 0 \\
& a_{1} a_{5}-\left|a_{2}\right|^{2} \geq 0 \\
\text { and } \quad & a_{1} a_{5} a_{9}-a_{1}\left|a_{6}\right|^{2}-\left|a_{2}\right|^{2} a_{9}-\left|a_{3}\right|^{2} a_{5}+2 \Re\left(a_{2} \overline{a_{3}} a_{6}\right) \geq 0 . \tag{7.5}
\end{array}
$$

Also, $U_{3}^{*} A$ is a quantum state, that is, A is a quantum U_{3}-state if and only if

$$
a_{1}+a_{5}+a_{9}=\frac{1}{\sqrt{2}} .
$$

In particular, if we choose $a_{i}=\frac{1}{3 \sqrt{2}}$ in ((7.2), then the matrix $A=\frac{1}{3}\left(\begin{array}{ccc}0 & 0 & 0 \\ \sqrt{2} & \sqrt{2} & \sqrt{2} \\ 1 & 1 & 1\end{array}\right)$ is a U_{3}-state, where

$$
U_{3}^{*} A=\frac{1}{3}\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)
$$

Using this example we give the following quantum separable $U_{3} \otimes U_{3}$-state:

$$
\frac{1}{9}\left(\begin{array}{ccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 \\
\sqrt{2} & \sqrt{2} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\sqrt{2} & \sqrt{2} \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right) .
$$

In [7, Choi gave the following entangled state which has positive partial transpose:

$$
\left(\begin{array}{lllllllll}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 2 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{2} & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 2 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & \frac{1}{2} & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right) .
$$

Consider

$$
C:=\frac{2}{21}\left(\begin{array}{ccccccccc}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 2 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{2} & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 2 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & \frac{1}{2} & 0 \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right) .
$$

Note that

$$
U_{3} \otimes U_{3}=\frac{1}{2}\left(\begin{array}{ccccccccc}
1 & -1 & 0 & -1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & -1 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & \sqrt{2} & 0 & 0 & -\sqrt{2} & 0 & 0 & 0 \\
1 & -1 & 0 & 1 & -1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & \sqrt{2} & 0 & 0 & \sqrt{2} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \sqrt{2} & -\sqrt{2} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \sqrt{2} & \sqrt{2} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2
\end{array}\right) .
$$

One may easily check that

$$
A=\left(U_{3} \otimes U_{3}\right) C=\frac{1}{21}\left(\begin{array}{ccccccccc}
2 & -3 & 0 & -\frac{3}{2} & 2 & 0 & 0 & 0 & 2 \\
0 & 1 & 0 & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{\sqrt{2}} & 0 & 0 & -2 \sqrt{2} & \sqrt{2} & -\sqrt{2} & 0 \\
0 & -1 & 0 & -\frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\
2 & 3 & 0 & \frac{3}{2} & 2 & 0 & 0 & 0 & 2 \\
0 & 0 & \frac{1}{\sqrt{2}} & 0 & 0 & 2 \sqrt{2} & \sqrt{2} & \sqrt{2} & 0 \\
0 & 0 & \sqrt{2} & 0 & 0 & -\sqrt{2} & 2 \sqrt{2} & -\frac{1}{\sqrt{2}} & 0 \\
0 & 0 & \sqrt{2} & 0 & 0 & \sqrt{2} & 2 \sqrt{2} & \frac{1}{\sqrt{2}} & 0 \\
2 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 2
\end{array}\right)
$$

is a $U_{3} \otimes U_{3}$-entangled state.
Acknowledgement. Azad Rohilla thanks Harsh Trivedi for a research visit during February-March 2024 at The LNM Institute of Information Technology. Harsh Trivedi is supported by MATRICS-SERB Research Grant, File No: MTR/2021/000286, by SERB, Department of Science \& Technology (DST), Government of India. Harsh Trivedi acknowledges the DST-FIST program (Govt. of India) FIST - No. SR/FST/MSI/2018/24.

References

[1] J.-P. Antoine and S. Ōta, Unbounded GNS representations of a^{*}-algebra in a Kreŭn space, Lett. Math. Phys. 18 (1989), no. 4, 267-274.
[2] B. V. R. Bhat and N. Mallick, Nilpotent completely positive maps, Positivity, 2014, 18, pp.567-577.
[3] J. Bognár, Indefinite inner product spaces, Springer-Verlag, New York-Heidelberg, 1974, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 78.
[4] P. J. M. Bongaarts, Maxwell's equations in axiomatic quantum field theory. I. Field tensor and potentials, J. Mathematical Phys. 18 (1977), no. 7, 1510-1516.
[5] H.-J. Borchers, On the structure of the algebra of field operators. II, Comm. Math. Phys. 1 (1965), 49-56.
[6] M. D. Choi, Completely positive linear maps on complex matrices, Linear algebra and its applications. 1975 Jun 1; 10(3):285-90.
[7] M. D. Choi and R. V. Kadison, Positive linear maps in Operator Algebras and Applications Kingston, 1980, Proc. Sympos. Pure Math, 1980.
[8] S. Dey and H. Trivedi, KSGNS construction for τ-maps on S-modules and \mathfrak{K}-families, Oper. Matrices 11 (2017), no. 3, 679-696.
[9] S. Dey and H. Trivedi, Bures Distance and Transition Probability for α-CPD-Kernels, Complex Anal. Oper. Theory 13, 2171-2190 (2019).
[10] P. A. M. Dirac, The physical interpretation of quantum mechanics, Proc. Roy. Soc. London. Ser. A. 180 (1942), 1-40.
[11] J. Heo, Quantum J-channels on Krein spaces. (English summary) Quantum Inf. Process. 22 (2023), no. 1, Paper No. 16, 18 pp.
[12] M. Horodecki, P. W. Shor, and M. B. Ruskai, Entanglement breaking channels Reviews in Mathematical Physics 15, no. 06 (2003): 629-641.
[13] A. S. Holevo, Coding Theorems for Quantum Channels, Russian Math. Surveys 53, 1295-1331 (1999).
[14] W. Pauli, On Dirac's new method of field quantization, Rev. Modern Phys. 15 (1943), 175-207.
[15] F. Philipp, F. H. Szafraniec, and C. Trunk, Selfadjoint operators in S-spaces, J. Funct. Anal. 260 (2011), no. 4, 1045-1059.
[16] F.-S. Raúl; F. Raúl, J-states and quantum channels between indefinite metric spaces. (English summary) Quantum Inf. Process., 21 (2022), no. 4, Paper No. 139, 32 pp.
[17] E. G. Rieffel and P. H. Wolfgang, Quantum computing: A gentle introduction, MIT press, 2011.
[18] W. F. Stinespring, Positive functions on C^{*}-algebras, Proc. Amer. Math. Soc. 6 (1955), 211-216.
[19] F. H. Szafraniec, Two-sided weighted shifts are 'almost Krein' normal, Spectral theory in inner product spaces and applications, Oper. Theory Adv. Appl., vol. 188, Birkhäuser Verlag, Basel, 2009, pp. 245-250.

Department of Mathematics, School of Science, Gandhi Institute of Technology and Management (Deemed-to-be University), Doddaballapur Taluk, Bengaluru, Karnataka 561203, INDIA

Email address: pbag@gitam.edu, priyabrata.bag@gmail.com
Centre for Mathematical and Financial Computing, Department of Mathematics, The LNM Institute of Information Technology, Rupa ki Nangal, Post-Sumel, ViaJamdoli Jaipur-302031, (Rajasthan) INDIA

Email address: 18pmt005@lnmiit.ac.in, azadrohilla23@gmail.com
Centre for Mathematical and Financial Computing, Department of Mathematics, The LNM Institute of Information Technology, Rupa ki Nangal, Post-Sumel, ViaJamdoli Jaipur-302031, (Rajasthan) INDIA

Email address: harsh.trivedi@lnmiit.ac.in, trivediharsh26@gmail.com

[^0]: Date: April 30, 2024.
 2010 Mathematics Subject Classification. 46E22, 46L05, 46L08, 47B50, 81T05.
 Key words and phrases. Completely positive maps, Krein space, Quantum channels, Choi decomposition, Stinespring decomposition, S-space.
 *corresponding author.

