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MONOTONICITY RULES FOR THE RATIO OF POWER SERIES

ZHONG-XUAN MAO, JING-FENG TIAN*

Abstract. In this paper, we present some monotonicity rules for the ratio of two power series
x 7→

∑
∞

k=0
akx

k/
∑

∞

k=0
bkx

k under the assumption that the monotonicity of the sequence
ak/bk changes twice. Additionally, we introduce a local monotonicity rule in this paper.

1. Introduction

Monotonicity rules are essential in the field of analytics, and widely used in fields such as ap-
proximation theory, differential geometry, information theory, probability, and statistics. Mean-
while, they are crucial tools for exploring the properties of special functions.

The origins of the monotonicity rules for the ratio of functions can be attributed to a lemma
[1, Lemma 1] that was initially employed by Biernacki and Krzyż in their studies on differential
geometry.

Monotonicity rule 1.1. Let real power series A(x) =
∑∞

k=0 akx
k and B(x) =

∑∞

k=0 bkx
k

converge on (−r, r), and bk be non-negative and not vanish identically. If the sequence {ak/bk}
is increasing, then the function

x 7→
A(x)

B(x)
=

∑∞
k=0 akx

k

∑∞
k=0 bkx

k
(1.1)

is increasing on (0, r).

Next we introduce the following monotonicity rule (see [3] and [4]), which considers the case
that the monotonicity of {ak/bk}k≥0 changes once on the basis of Monotonicity rule 1.1.

Monotonicity rule 1.2. Let real power series A(x) =
∑∞

k=0 akx
k and B(x) =

∑∞
k=0 bkx

k be
converge on (−r, r) with bk > 0. If there exists a given integer m ≥ 1 such that {ak/bk} is
increasing (decreasing) for all 0 ≤ k ≤ m and decreasing (increasing) for all k ≥ m with neither
{ak/bk}0≤k≤m nor {ak/bk}k≥m is constant, then

(1) the function x 7→ A(x)/B(x) is increasing (decreasing) on (0, r) if and only if HA,B(r
−) ≥

(≤)0,
(2) there exists x0 ∈ (0, r) such that the function x 7→ A(x)/B(x) is increasing (decreasing)

on (0, x0] and decreasing (increasing) on [x0, r) if HA,B(r
−) < (>)0,

where the function Hf,g is defined as Hf,g := f ′

g′
g− f , which is called Yang’s H-function (named

in [2]).

Remark 1.1. Monotonicity rule 1.2 is first introduced by Yang, Chu, and Wang in [3, Theorem
2.1], and it is slightly modified by Yang and Tian in [4, Lemma 2]. Here we give the modified
version.
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In the perspective of the number of times the monotonicity of {ak/bk} undergoes changes,
a research gap becomes evident within the existing research: concerning scenarios where such
monotonicity changes occur 2 times. The primary objective of this paper is to bridge the existing
gap and extend the applicability of the monotonicity rules for the ratio of power series.

In this paper, we will establish the monotonicity rules for

x 7→
A(x)

B(x)
=

∑∞

k=0 akx
k

∑∞

k=0 bkx
k
, (1.2)

under the case that the monotonicity of {ak/bk} change twice. We also provide a local mono-
tonicity rules in this section.

2. Monotonicity rules for the ratio of power series

We begin with a complete introduction to the Yang’s H function [3]. Let −∞ ≤ a < b ≤ ∞,
functions F and G be differentiable on (a, b), and G 6= 0 on (a, b). Yang’s H function is defined
by

HF,G =
F ′

G′
G− F.

It is easy to check that the following two formulas hold:
(F

G

)′

=
G′

G2
HF,G,

and

H ′
F,G =

(F ′

G′

)′

G,

where the second identity requires both F and G are twice differentiable. In what follows, we
also denote that [a, b]N := [a, b]∩N, where N := {0, 1, 2, · · · } is the set of natural numbers. Here
and after, A′ and B′ are the derivatives of functions A and B, respectively. We also use the forms
A(k) and B(k) to respectively represent the derivatives of A and B, where A(0) and B(0) means
A and B.

2.1. The monotonicity of {ak/bk} changes twice. First, we establish the monotonicity rule
for function (1.2), where the monotonicity of {ak/bk} changes twice.

Monotonicity rule 2.1. Let real power series A(x) =
∑∞

k=0 akx
k and B(x) =

∑∞
k=0 bkx

k

converge on (0, r) with bk > 0. If there exists different integers m2 > m1 ≥ 1 such that the
sequence {ak/bk} is increasing (decreasing) for all k ∈ [0,m1]N ∪ [m2,∞)N and decreasing (in-
creasing) for all k ∈ [m1,m2]N, as well as {ak/bk}0≤k≤m1 , {ak/bk}m1≤k≤m2 , and {ak/bk}k≥m2

are non-constant, then

(C1) the function x 7→ A(x)/B(x) is increasing (decreasing) on (0, r) if one of the following
conditions holds:
(i) HA,B(r

−) ≥ (≤)0 and HA′,B′(r−) ≤ (≥)0;
(ii) HA,B(r

−) > (<)0, HA′,B′(r−) > (<)0, and HA,B(x) ≥ (≤)0 for all x ∈ (0, r).
(C2) there exists x1 ∈ (0, r) such that the function x 7→ A(x)/B(x) is increasing (decreasing)

on (0, x1] and decreasing (increasing) on [x1, r) if one of the following conditions holds:
(iii) HA,B(r

−) < (>)0 and HA′,B′(r−) ≤ (≥)0;
(iv) HA,B(r

−) ≤ (≥)0 and HA′,B′(r−) > (<)0.
(C3) there exists x2, x3 ∈ (0, r) such that the function x 7→ A(x)/B(x) is increasing (decreas-

ing) on (0, x2] ∪ [x3, r) and decreasing (increasing) on [x2, x3] if:
(v) HA,B(r

−) ≥ (≤)0, HA′,B′(r−) > (<)0, and there exists x0 ∈ (0, r) such that
HA,B(x0) < (>)0.
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Proof. Without loss of generality, we consider the case that {ak/bk} is increasing for all k ∈
[0,m1]N ∪ [m2,∞)N and decreasing for all k ∈ [m1,m2]N. We complete the proof by using
mathematical induction for integer m1.

(I) When m1 = 1, that is, the sequence {ak/bk} is increasing for all k ∈ {0, 1} ∪ [m2,∞)N
and decreasing for all k ∈ [1,m2]N as well as the sequence {ak+1/bk+1} is decreasing for all
0 ≤ k ≤ m2 − 1 and increasing for all k ≥ m2 − 1. Noting that

A′(x)

B′(x)
=

∑∞
k=0(k + 1)ak+1x

k

∑∞
k=0(k + 1)bk+1xk

,

by using Monotonicity rule 1.2, we obtain that

(i) the function x 7→ A′(x)/B′(x) is decreasing on x ∈ (0, r) if HA′,B′(r−) ≤ 0,
(ii) there exists x0 ∈ (0, r) such that it is decreasing on (0, x0] and increasing on [x0, r) if

HA′,B′(r−) > 0.

From identity H ′
A,B = (A′/B′)′B and B > 0, we obtain that the monotonicity of x 7→ HA,B(x) is

the same as x 7→ A′(x)/B′(x). Noting that

HA,B(0
+) =

A′(0+)

B′(0+)
B(0+)−A(0+) = b0

(a1
b1

−
a0
b0

)

> 0,

we receive the following five conclusions:

(i) If HA,B(r
−) ≥ 0 and HA′,B′(r−) ≤ 0, then HA,B ≥ 0. From identity (A/B)′ =

B′/B2HA,B, we obtain that x 7→ A(x)/B(x) is increasing on (0, r).
(ii) If HA,B(r

−) < 0 and HA′,B′(r−) ≤ 0, then there exists x1 ∈ (0, r) such that HA,B(x) ≥ 0
for all x ∈ (0, x1] and HA,B(x) ≤ 0 for all x ∈ [x1, r). Moreover, the function x 7→
A(x)/B(x) is increasing on (0, x1] and it is decreasing on [x1, r).

(iii) If HA,B(r
−) > 0, HA′,B′(r−) > 0 and HA,B(x0) ≥ 0, then HA,B ≥ 0. Moreover, the

function x 7→ A(x)/B(x) is increasing on (0, r).
(iv) If HA,B(r

−) > 0, HA′,B′(r−) > 0 and HA,B(x0) < 0, then there exist x2, x3 ∈ (0, r)
such that HA,B(x) ≥ 0 for all x ∈ (0, x2] ∪ [x3, r) and HA,B(x) ≤ 0 for all x ∈ [x2, x3].
Moreover, the function x 7→ A(x)/B(x) is increasing on (0, x2]∪[x3, r) and it is decreasing
on [x2, x3].

(v) If HA,B(r
−) ≤ 0 and HA′,B′(r−) > 0, then there exists x1 ∈ (0, r) such that HA,B(x) ≥ 0

for all x ∈ (0, x1] and HA,B(x) ≤ 0 for all x ∈ [x1, r). Moreover, the function x 7→
A(x)/B(x) is increasing on (0, x1] and it is decreasing on [x1, r).

(II) Suppose desired conclusions hold for m1 = n, namely, {ak/bk} is increasing for all k ∈
[0, n]N ∪ [m2,∞)N and decreasing for all k ∈ [n,m2]N, as well as (C1), (C2), and (C3) hold.

(III) When m1 = n+ 1, namely, {ak/bk} is increasing for all k ∈ [0, n+ 1]N ∪ [m2,∞)N and
decreasing for all k ∈ [n + 1,m2]N. In this case, the sequence {ak+1/bk+1} is increasing for all
k ∈ [0, n]N ∪ [m2 − 1,∞)N and decreasing for all k ∈ [n,m2 − 1]N. Thus, by using induction
hypothesis, we know that (C1), (C2), and (C3) hold for function x 7→ A′(x)/B′(x) and obtain
the following conclusions:

(i) If HA′,B′(r−) < 0, then there exists x1 ∈ (0, r) such that the function x 7→ A′(x)/B′(x)
is increasing on (0, x1] and decreasing on [x1, r), same monotonicity as HA,B. Thus,
HA,B ≥ 0 if HA,B(r

−) ≥ 0, as well as HA,B(x) ≥ 0 for all x ∈ (0, x1] and HA,B(x) ≤ 0
for all x ∈ [x1, r) if HA,B(r

−) < 0, namely, the function x 7→ A(x)/B(x) is increasing
on (0, r) if HA,B(r

−) ≥ 0 as well as it is increasing on (0, x1] and decreasing on [x1, r) if
HA,B(r

−) < 0.
(ii) If HA′,B′(r−) > 0, then the function x 7→ A′(x)/B′(x) is increasing on (0, r) or there

exists x2, x3 ∈ (0, r) such that it is increasing (0, x2] ∪ [x3, r) and decreasing on [x2, x3].
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For the first case, the function x 7→ A(x)/B(x) is increasing on (0, r). For the second
case, if there exists x0 ∈ (0, r) such that HA,B(x0) < 0, then there exist x2, x3 ∈ (0, r)
such that the function x 7→ A(x)/B(x) is increasing on (0, x2]∪ [x3, r) and decreasing on
[x2, x3] ifHA,B(r

−) > 0, and there exist x1 ∈ (0, r) such that the function x 7→ A(x)/B(x)
is increasing on (0, x1] and decreasing on [x1, r) if HA,B(r

−) ≤ 0. If HA,B(x) ≥ 0 for all
x ∈ (0, r), then the function x 7→ A(x)/B(x) is increasing on (0, r).

(iii) If HA′,B′(r−) = 0, then the function x 7→ A′(x)/B′(x) is increasing on (0, r) or there
exists x1 ∈ (0, r) such that the function x 7→ A′(x)/B′(x) is increasing on (0, x1]
and decreasing [x1, r). Thus, the function x 7→ A(x)/B(x) is increasing on (0, r) if
HA,B(r

−) ≥ 0, and there exists x1 ∈ (0, r) such that the function x 7→ A(x)/B(x) is
increasing on (0, x1] and decreasing [x1, r) if HA,B(r

−) < 0.

Thus, we complete the proof. �

Remark 2.1. If one of {ak/bk}0≤k≤m1 , {ak/bk}m1≤k≤m2 , and {ak/bk}m2≤k is a constant, then
we regard the monotonicity of {ak/bk} change once rather than twice.

Remark 2.2. Noting that the condition HA,B(r
−) = 0 and HA′,B′(r−) > 0 deduces there exist

x0 ∈ (0, r) such that HA,B(x0) < 0, we know that, for any given functions A and B, one of (i),
(ii), (iii), (iv), (v) in (C1), (C2), (C3) holds.

Remark 2.3. Let

(i) arrows “ր” and “ց” respectively denote “increasing” and “decreasing”;
(ii) arrows “րց” and “ցր” respectively denote “there exist x1 ∈ (0, r) such that the

function increasing on (0, x1] and decreasing on [x1, r)” and “there exist x1 ∈ (0, r) such
that the function decreasing on (0, x1] and increasing on [x1, r)”;

(iii) arrows “րցր” and “ցրց” respectively denote “there exist x2, x3 ∈ (0, r) such that
the function increasing on (0, x2] ∪ [x3, r) and decreasing on [x2, x3]” and “there exist
x2, x3 ∈ (0, r) such that the function decreasing on (0, x2] ∪ [x3, r) and increasing on
[x2, x3]”.

Then the conclusions in Monotonicity rule 2.1 could be simply represented in Table 1.

Cases {ak/bk} HA,B(r
−) HA′,B′(r−) HA,B(x) A/B

1 րցր ≥ 0 ≤ 0 ր
2 րցր > 0 > 0 ≥ 0 for all x ∈ (0, r) ր
3 րցր < 0 ≤ 0 րց
4 րցր ≤ 0 > 0 րց
5 րցր ≥ 0 > 0 exists x0 ∈ (0, r) such that < 0 րցր
6 ցրց ≤ 0 ≥ 0 ց
7 ցրց < 0 < 0 ≤ 0 for all x ∈ (0, r) ց
8 ցրց > 0 ≥ 0 ցր
9 ցրց ≥ 0 < 0 ցր
10 ցրց ≤ 0 < 0 exists x0 ∈ (0, r) such that > 0 ցրց

Table 1. The Monotonicity of A/B in Monotonicity rule 2.1

Let r → ∞. Then we have the following monotonicity rule.

Monotonicity rule 2.2. Let real power series A(x) =
∑∞

k=0 akx
k and B(x) =

∑∞
k=0 bkx

k

converge on (0,∞) with bk > 0. If there exists different integers m2 > m1 ≥ 1 such that the
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sequence {ak/bk} is increasing (decreasing) for all k ∈ [0,m1]N ∪ [m2,∞)N and decreasing (in-
creasing) for all k ∈ [m1,m2]N, as well as {ak/bk}0≤k≤m1 , {ak/bk}m1≤k≤m2 , and {ak/bk}k≥m2

are non-constant., then

(C1) the function x 7→ A(x)/B(x) is increasing (decreasing) on (0,∞) if one of the following
conditions holds:
(i) HA,B(∞) ≥ (≤)0 and HA′,B′(∞) ≤ (≥)0;
(ii) HA,B(∞) > (<)0, HA′,B′(∞) > (<)0, and HA,B(x) ≥ (≤)0 for all x ∈ (0,∞).

(C2) there exists x1 ∈ (0,∞) such that the function x 7→ A(x)/B(x) is increasing (decreasing)
on (0, x1] and decreasing (increasing) on [x1,∞) if one of the following conditions holds:
(iii) HA,B(∞) < (>)0 and HA′,B′(∞) ≤ (≥)0;
(iv) HA,B(∞) ≤ (≥)0 and HA′,B′(∞) > (<)0.

(C3) there exists x2, x3 ∈ (0,∞) such that the function x 7→ A(x)/B(x) is increasing (decreas-
ing) on (0, x2] ∪ [x3, r) and decreasing (increasing) on [x2, x3] if:
(v) HA,B(∞) ≥ (≤)0, HA′,B′(∞) > (<)0, and there exists x0 ∈ (0,∞) such that

HA,B(x0) < (>)0.

Likewise, we present the monotonicity rule for the ratio of two polynomials.

Monotonicity rule 2.3. Let AN (x) =
∑N

k=0 akx
k and BN (x) =

∑N

k=0 bkx
k defined on (0, r)

with bk > 0. If there exists different integers N > m2 > m1 ≥ 1 such that the sequence
{ak/bk} is increasing (decreasing) for all k ∈ [0,m1]N ∪ [m2, N ]N and decreasing (increasing)
for all k ∈ [m1,m2]N, as well as {ak/bk}0≤k≤m1 , {ak/bk}m1≤k≤m2 , and {ak/bk}m2≤k≤N are
non-constant., then

(C1) the function x 7→ AN (x)/BN (x) is increasing (decreasing) on (0, r) if one of the following
conditions holds:
(i) HAN ,BN

(r−) ≥ (≤)0 and HA′

N
,B′

N
(r−) ≤ (≥)0;

(ii) HAN ,BN
(r−) > (<)0, HA′

N
,B′

N
(r−) > (<)0, and HAN ,BN

(x) ≥ (≤)0 for all x ∈

(0, r).
(C2) there exists x1 ∈ (0, r) such that the function x 7→ AN (x)/BN (x) is increasing (decreas-

ing) on (0, x1] and decreasing (increasing) on [x1, r) if one of the following conditions
holds:
(iii) HAN ,BN

(r−) < (>)0 and HA′

N
,B′

N
(r−) ≤ (≥)0;

(iv) HAN ,BN
(r−) ≤ (≥)0 and HA′

N
,B′

N
(r−) > (<)0.

(C3) there exists x2, x3 ∈ (0, r) such that the function x 7→ AN (x)/BN (x) is increasing (de-
creasing) on (0, x2] ∪ [x3, r) and decreasing (increasing) on [x2, x3] if:
(v) HAN ,BN

(r−) ≥ (≤)0, HA′

N
,B′

N
(r−) > (<)0, and there exists x0 ∈ (0, r) such that

HAN ,BN
(x0) < (>)0.

Monotonicity rule 2.4. Let AN (x) =
∑N

k=0 akx
k and BN(x) =

∑N

k=0 bkx
k defined on (0,∞)

with bk > 0. If there exists different integers N > m2 > m1 ≥ 1 such that the sequence
{ak/bk} is increasing (decreasing) for all k ∈ [0,m1]N ∪ [m2, N ]N and decreasing (increasing)
for all k ∈ [m1,m2]N, as well as {ak/bk}0≤k≤m1 , {ak/bk}m1≤k≤m2 , and {ak/bk}m2≤k≤N are
non-constant., then

(C1) the function x 7→ AN (x)/BN (x) is increasing (decreasing) on (0,∞) if one of the follow-
ing conditions holds:
(i) HAN ,BN

(∞) ≥ (≤)0 and HA′

N
,B′

N
(∞) ≤ (≥)0;

(ii) HAN ,BN
(∞) > (<)0, HA′

N
,B′

N
(∞) > (<)0, and HAN ,BN

(x) ≥ (≤)0 for all x ∈

(0,∞).
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(C2) there exists x1 ∈ (0,∞) such that the function x 7→ AN (x)/BN (x) is increasing (decreas-
ing) on (0, x1] and decreasing (increasing) on [x1,∞) if one of the following conditions
holds:
(iii) HAN ,BN

(∞) < (>)0 and HA′

N
,B′

N
(∞) ≤ (≥)0;

(iv) HAN ,BN
(∞) ≤ (≥)0 and HA′

N
,B′

N
(∞) > (<)0.

(C3) there exists x2, x3 ∈ (0,∞) such that the function x 7→ AN (x)/BN (x) is increasing
(decreasing) on (0, x2] ∪ [x3,∞) and decreasing (increasing) on [x2, x3] if:
(v) HAN ,BN

(∞) ≥ (≤)0, HA′

N
,B′

N
(∞) > (<)0, and there exists x0 ∈ (0,∞) such that

HAN ,BN
(x0) < (>)0.

As we known, functions that satisfy certain conditions can be expanded into a power series,

the so-called Maclaurin series. Taking ak = A(k)(0)
k! and bk = B(k)(0)

k! , power series A(x) and B(x)
reduces to the so-called Maclaurin series with the following corollary holds.

Corollary 2.1. Let functions A(x) and B(x) have arbitrary order derivatives at point t = 0, as

well as A(x) =
∑∞

k=0
A(k)(0)

k! tk and B(x) =
∑∞

k=0
B(k)(0)

k! tk converge on (−r, r) with B(k)(0) > 0

for all k ≥ 0. If there exists different integers m2 > m1 ≥ 1 such that the sequence
{

A(k)(0)
B(k)(0)

}

is increasing (decreasing) for all k ∈ [0,m1]N ∪ [m2,∞)N and decreasing (increasing) for all
k ∈ [m1,m2]N, then the conclusions (C1), (C2), and (C3) in Theorem 2.1 hold.

Now we consider some special cases by taking different function B. Taking B(x) = ex =
∑∞

k=0
xk

k! in Monotonicity rule 2.1, then we have the following corollary.

Corollary 2.2. Let real power series A(x) =
∑∞

k=0 akx
k converge on (0,∞). If there exists

different integers m2 > m1 ≥ 1 such that the sequence {k!ak} is increasing (decreasing) on
k ∈ [0,m1]N ∪ [m2,∞)N and decreasing (increasing) on k ∈ [m1,m2]N, then

(C1) the function x 7→ e−xA(x) is increasing (decreasing) if one of the following conditions
holds:
(i) A′(∞) ≥ (≤)A(∞) and A′′(∞) ≤ (≥)A′(∞);
(ii) A′(∞) > (<)A(∞), A′′(∞) > (<)A′(∞), and A′(x)−A(x) ≥ 0 for all x ∈ (0,∞).

(C2) there exists x1 ∈ (0,∞) such that the function x 7→ e−xA(x) is increasing (decreasing)
on (0, x1] and decreasing (increasing) on [x1,∞) if one of the following conditions holds:
(iii) A′(∞) < (>)A(∞) and A′′(∞) ≤ (≥)A′(∞);
(iv) A′(∞) ≤ (≥)A(∞) and A′′(∞) > (<)A′(∞).

(C3) there exists x2, x3 ∈ (0,∞) such that the function x 7→ e−xA(x) is increasing (decreasing)
on (0, x2] ∪ [x3,∞) and decreasing (increasing) on [x2, x3] if:
(v) A′(∞) ≥ (≤)A(∞), A′′(∞) > (<)A′(∞), and there exists x0 ∈ (0,∞) such that

A′(x0) < (>)A(x0).

Taking B(x) = 1
(1−x)d

=
∑∞

k=0
(d)k
k! xk, then we have the following corollary, where d > 0 and

(a)k = Γ(a+k)
Γ(a) is the Pochhammer symbol.

Corollary 2.3. Let real power series A(x) =
∑∞

k=0 akx
k converge on (0, 1) and d > 0. If

there exists different integers m2 > m1 ≥ 1 such that the sequence {k!ak/(d)k} is increasing
(decreasing) on k ∈ [0,m1]N ∪ [m2,∞)N and decreasing (increasing) on k ∈ [m1,m2]N, then

(C1) the function x 7→ (1− x)−dA(x) is increasing (decreasing) if one of the following condi-
tions holds:
(i) limx→1

(

A′(x)1−x
d

−A(x)
)

≥ (≤)0 and limx→1

(

A′′(x)1−x
d+1 −A′(x)

)

≤ (≥)0;

(ii) limx→1

(

A′(x)1−x
d

−A(x)
)

> (<)0, limx→1

(

A′′(x)1−x
d+1−A′(x)

)

> (<)0, and A′(x)1−x
d

−

A(x) ≥ 0 for all x ∈ (0, 1).
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(C2) there exists x1 ∈ (0, 1) such that the function x 7→ (1−x)−dA(x) is increasing (decreasing)
on (0, x1] and decreasing (increasing) on [x1, 1) if one of the following conditions holds:
(iii) limx→1

(

A′(x)1−x
d

−A(x)
)

< (>)0 and limx→1

(

A′′(x)1−x
d+1 −A′(x)

)

≤ (≥)0;

(iv) limx→1

(

A′(x)1−x
d

−A(x)
)

≤ (≥)0 and limx→1

(

A′′(x)1−x
d+1 −A′(x)

)

> (<)0.

(C3) there exists x2, x3 ∈ (0, 1) such that the function x 7→ (1 − x)−dA(x) is increasing
(decreasing) on (0, x2] ∪ [x3, 1) and decreasing (increasing) on [x2, x3] if:
(v) limx→1

(

A′(x)1−x
d

−A(x)
)

≥ (≤)0, limx→1

(

A′′(x)1−x
d+1 −A′(x)

)

> (<)0, and there

exists x0 ∈ (0, 1) such that A′(x0)
1−x0

d
−A(x0) < (>)0.

In particular, taking d = 1, namely, B(x) = 1
1−x

=
∑∞

k=0 x
k, then we have the following

corollary.

Corollary 2.4. Let real power series A(x) =
∑∞

k=0 akx
k converge on (0, 1). If there exists

different integers m2 > m1 ≥ 1 such that the sequence {ak} is increasing (decreasing) on k ∈
[0,m1]N ∪ [m2,∞)N and decreasing (increasing) on k ∈ [m1,m2]N, then

(C1) the function x 7→ (1−x)A(x) is increasing (decreasing) if one of the following conditions
holds:
(i) limx→1

(

A′(x)(1 − x)−A(x)
)

≥ (≤)0 and limx→1

(

A′′(x)1−x
2 −A′(x)

)

≤ (≥)0;

(ii) limx→1

(

A′(x)(1 − x) − A(x)
)

> (<)0, limx→1

(

A′′(x)1−x
2 − A′(x)

)

> (<)0, and
A′(x)(1 − x)−A(x) ≥ 0 for all x ∈ (0, 1).

(C2) there exists x1 ∈ (0, 1) such that the function x 7→ (1− x)A(x) is increasing (decreasing)
on (0, x1] and decreasing (increasing) on [x1, 1) if one of the following conditions holds:
(iii) limx→1

(

A′(x)(1 − x)−A(x)
)

< (>)0 and limx→1

(

A′′(x)1−x
2 −A′(x)

)

≤ (≥)0;

(iv) limx→1

(

A′(x)(1 − x)−A(x)
)

≤ (≥)0 and limx→1

(

A′′(x)1−x
2 −A′(x)

)

> (<)0.
(C3) there exists x2, x3 ∈ (0, 1) such that the function x 7→ (1−x)A(x) is increasing (decreas-

ing) on (0, x2] ∪ [x3, 1) and decreasing (increasing) on [x2, x3] if:
(v) limx→1

(

A′(x)(1 − x) − A(x)
)

≥ (≤)0, limx→1

(

A′′(x)1−x
2 − A′(x)

)

> (<)0, and
there exists x0 ∈ (0, 1) such that A′(x0)(1− x0)−A(x0) < (>)0.

Taking B(x) = − ln(1− dx) =
∑∞

k=1
dk

(k)!x
k, then we have the following corollary.

Corollary 2.5. Let real power series A(x) =
∑∞

k=0 akx
k converge on (0, 1/d), where d > 0.

If there exists different integers m2 > m1 ≥ 1 such that the sequence {k!ak/d
k} is increasing

(decreasing) on k ∈ [0,m1]N ∪ [m2,∞)N and decreasing (increasing) on k ∈ [m1,m2]N, then

(C1) the function x 7→ −A(x)−a0

ln(1−dx) is increasing (decreasing) if one of the following conditions

holds:
(i) limx→ 1

d

(

−A′(x) (1−dx) ln(1−dx)
d

−A(x)
)

≥ (≤)0 and limx→ 1
d

(

A′′(x)1−dx
d

−A′(x)
)

≤

(≥)0;

(ii) limx→ 1
d

(

−A′(x) (1−dx) ln(1−dx)
d

−A(x)
)

> (<)0, limx→ 1
d

(

A′′(x)1−dx
d

−A′(x)
)

> (<

)0, and −A′(x) (1−dx) ln(1−dx)
d

−A(x) ≥ 0 for all x ∈ (0, 1
d
).

(C2) there exists x1 ∈ (0, 1
d
) such that the function x 7→ −A(x)−a0

ln(1−dx) is increasing (decreasing)

on (0, x1] and decreasing (increasing) on [x1,
1
d
) if one of the following conditions holds:

(iii) limx→ 1
d

(

−A′(x) (1−dx) ln(1−dx)
d

−A(x)
)

< (>)0 and limx→ 1
d

(

A′′(x)1−dx
d

−A′(x)
)

≤

(≥)0;

(iv) limx→ 1
d

(

−A′(x) (1−dx) ln(1−dx)
d

−A(x)
)

≤ (≥)0 and limx→ 1
d

(

A′′(x)1−dx
d

−A′(x)
)

>

(<)0.

(C3) there exists x2, x3 ∈ (0, 1
d
) such that the function x 7→ −A(x)−a0

ln(1−dx) is increasing (decreasing)

on (0, x2] ∪ [x3,
1
d
) and decreasing (increasing) on [x2, x3] if:
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(v) limx→ 1
d

(

−A′(x) (1−dx) ln(1−dx)
d

−A(x)
)

≥ (≤)0, limx→ 1
d

(

A′′(x)1−dx
d

−A′(x)
)

> (<

)0, and there exists x0 ∈ (0, 1
d
) such that −A′(x0)

(1−dx0) ln(1−dx0)
d

−A(x0) < (>)0.

Respectively taking B(x) = sinh(dx) =
∑∞

k=0
d2k+1

(2k+1)!x
2k+1 and B(x) = cosh(dx) =

∑∞

k=0
d2k

(2k)!x
2k,

then we have the following two corollaries.

Corollary 2.6. Let real power series A(x) =
∑∞

k=0 akx
2k+1 converge on (0,∞) and d > 0.

If there exists different integers m2 > m1 ≥ 1 such that the sequence {(2k + 1)!ak/d
2k+1} is

increasing (decreasing) on k ∈ [0,m1]N∪ [m2,∞)N and decreasing (increasing) on k ∈ [m1,m2]N,
then

(C1) the function x 7→ A(x)
sinh(dx) is increasing (decreasing) if one of the following conditions

holds:
(i) limx→∞

(

A′(x) tanh(dx)
d

−A(x)
)

≥ (≤)0 and limx→∞

(

A′′(x) coth(dx)
d

−A′(x)
)

≤ (≥)0;

(ii) limx→∞

(

A′(x) tanh(dx)
d

− A(x)
)

> (<)0, limx→∞

(

A′′(x) coth(dx)
d

− A′(x)
)

> (<)0,

and A′(x) tanh(dx)
d

−A(x) ≥ 0 for all x ∈ (0,∞).

(C2) there exists x1 ∈ (0,∞) such that the function x 7→ A(x)
sinh(dx) is increasing (decreasing) on

(0, x1] and decreasing (increasing) on [x1,∞) if one of the following conditions holds:

(iii) limx→∞

(

A′(x) tanh(dx)
d

−A(x)
)

< (>)0 and limx→∞

(

A′′(x) coth(dx)
d

−A′(x)
)

≤ (≥)0;

(iv) limx→∞

(

A′(x) tanh(dx)
d

−A(x)
)

≤ (≥)0 and limx→∞

(

A′′(x) coth(dx)
d

−A′(x)
)

> (<)0.

(C3) there exists x2, x3 ∈ (0,∞) such that the function x 7→ A(x)
sinh(dx) is increasing (decreasing)

on (0, x2] ∪ [x3,∞) and decreasing (increasing) on [x2, x3] if:

(v) limx→∞

(

A′(x) tanh(dx)
d

− A(x)
)

≥ (≤)0, limx→∞

(

A′′(x) coth(dx)
d

− A′(x)
)

> (<)0,

and there exists x0 ∈ (0,∞) such that A′(x0)
tanh(dx0)

d
−A(x0) < (>)0.

Corollary 2.7. Let real power series A(x) =
∑∞

k=0 akx
2k converge on (0,∞) and d > 0. If

there exists different integers m2 > m1 ≥ 1 such that the sequence {(2k)!ak/d
2k} is increasing

(decreasing) on k ∈ [0,m1]N ∪ [m2,∞)N and decreasing (increasing) on k ∈ [m1,m2]N, then

(C1) the function x 7→ A(x)
cosh(dx) is increasing (decreasing) if one of the following conditions

holds:
(i) limx→∞

(

A′(x) coth(dx)
d

−A(x)
)

≥ (≤)0 and limx→∞

(

A′′(x) tanh(dx)
d

−A′(x)
)

≤ (≥)0;

(ii) limx→∞

(

A′(x) coth(dx)
d

− A(x)
)

> (<)0, limx→∞

(

A′′(x) tanh(dx)
d

− A′(x)
)

> (<)0,

and A′(x) coth(dx)
d

−A(x) ≥ 0 for all x ∈ (0,∞).

(C2) there exists x1 ∈ (0,∞) such that the function x 7→ A(x)
cosh(dx) is increasing (decreasing) on

(0, x1] and decreasing (increasing) on [x1,∞) if one of the following conditions holds:

(iii) limx→∞

(

A′(x) coth(dx)
d

−A(x)
)

< (>)0 and limx→∞

(

A′′(x) tanh(dx)
d

−A′(x)
)

≤ (≥)0;

(iv) limx→∞

(

A′(x) coth(dx)
d

−A(x)
)

≤ (≥)0 and limx→∞

(

A′′(x) tanh(dx)
d

−A′(x)
)

> (<)0.

(C3) there exists x2, x3 ∈ (0,∞) such that the function x 7→ A(x)
cosh(dx) is increasing (decreasing)

on (0, x2] ∪ [x3,∞) and decreasing (increasing) on [x2, x3] if:

(v) limx→∞

(

A′(x) coth(dx)
d

− A(x)
)

≥ (≤)0, limx→∞

(

A′′(x) tanh(dx)
d

− A′(x)
)

> (<)0,

and there exists x0 ∈ (0,∞) such that A′(x0)
coth(dx0)

d
−A(x0) < (>)0.

2.2. Other type monotonicity rules. The following monotonicity rule shows that the mono-
tonicity of x 7→ A(x)/B(x) near point x = 0 is determined by the monotonicity of {ak/bk} near
point k = 0, which named local monotonicity rule in this paper.

Monotonicity rule 2.5. Let real power series A(x) =
∑∞

k=0 akx
k and B(x) =

∑∞
k=0 bkx

k

converge on (0, r) with bk > 0. If there exists integer m ≥ 1 such that the sequence {ak/bk}
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is strictly increasing (decreasing) for all 0 ≤ k ≤ m, then there exists x0 ∈ (0, r] such that the
function x 7→ A(x)/B(x) is strictly increasing (decreasing) on (0, x0).

Proof. Noting that

HA,B(0
+) =

A′(0+)

B′(0+)
B(0+)−A(0+) = b0

(a1
b1

−
a0
b0

)

> 0,

by using identity (A/B)′ = B′/B2HA,B, we obtain that there exists x0 ∈ (0, r] such that
HA,B(x) > 0 for all x ∈ (0, x0) and the function x 7→ A(x)/B(x) is strictly increasing (de-
creasing) on (0, x0). �

Let the monotonicity of {ak/bk} changes n(n ≥ 0) times and the the monotonicity of the
response functionx 7→ A(x)/B(x) changes τA,B(n) times. The following monotonicity rule shows
τA,B(n) ≤ n for all power series A,B.

Monotonicity rule 2.6. Let real power series A(x) =
∑∞

k=0 akx
k and B(x) =

∑∞

k=0 bkx
k

converge on (0, r) with bk > 0. If the monotonicity of {ak/bk} changes n(n ≥ 0) times, then the
monotonicity of x 7→ A(x)/B(x) changes no more than n(n ≥ 0) times.

Proof. We complete the proof by using mathematical induction. According to Monotonicity
rule 1.1, Monotonicity rule 1.2, and Monotonicity rule 2.1, the conclusion is true for n = 0, 1, 2,
respectively. Suppose it is true for n = q, now we consider n = q + 1.

In this case, the monotonicity of the sequence {ak/bk} changes q + 1 times. Without loss
of generality, we suppose that there exist integer m ≥ 1, which can’t be bigger, such that the
sequence {ak/bk} is increasing for all 0 ≤ k ≤ m. Thus, the monotonicity of the sequence
{ak+1/bk+1} changes q times if m = 1 and changes q + 1 times if m ≥ 2.

(I) When m = 1, the monotonicity of x 7→ A′(x)/B′(x) changes q times with decreasing first,
same as HA,B due to identity H ′

A,B = (A′/B′)′B. According to HA,B(0
+) ≥ 0, we obtain that

the monotonicity of x 7→ A(x)/B(x) changes no more than q + 1 times.
(II) Suppose it holds for m = p, we consider m = p+1. The monotonicity of x 7→ A′(x)/B′(x)

changes q + 1 times with increasing first, same as HA,B. According to HA,B(0
+) ≥ 0, we obtain

that the monotonicity of x 7→ A(x)/B(x) changes no more than q + 1 times.
Thus, we complete the proof. �

Corollary 2.8. Let real power series A(x) =
∑∞

k=0 akx
k and B(x) =

∑∞

k=0 bkx
k converge on

(0, r) with bk > 0 as well as l ∈ N. If the monotonicity of {ak/bk} changes n(n ≥ 0) times, then
the monotonicity of x 7→ A(l)(x)/B(l)(x) changes no more than n times.

Proof. Clearly, the monotonicity of {ak+l/bk+l} changes no more than n times. Thus, the mono-
tonicity of x 7→ A(l)(x)/B(l)(x) changes no more than n times. �
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