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The Symmetric group Sn manifests itself in large classes of quantum systems as the invariance of certain
characteristics of a quantum state with respect to permuting the qubits. The subgroups of Sn arise, among many
other contexts, to describe label symmetry of classical images with respect to spatial transformations, e.g. reflec-
tion or rotation. Equipped with the formalism of geometric quantum machine learning, in this work we propose
the architectures of equivariant quantum convolutional neural networks (EQCNNs) adherent to Sn and its sub-
groups. We demonstrate that a careful choice of pixel-to-qubit embedding order can facilitate easy construction
of EQCNNs for small subgroups of Sn. Our novel EQCNN architecture corresponding to the full permutation
group Sn is built by applying all possible QCNNs with equal probability, which can also be conceptualized
as a dropout strategy in quantum neural networks. For subgroups of Sn, our numerical results using MNIST
datasets show better classification accuracy than non-equivariant QCNNs. The Sn-equivariant QCNN architec-
ture shows significantly improved training and test performance than non-equivariant QCNN for classification of
connected and non-connected graphs. When trained with sufficiently large number of data, the Sn-equivariant
QCNN shows better average performance compared to Sn-equivariant QNN . These results contribute towards
building powerful quantum machine learning architectures in permutation-symmetric systems.

I. INTRODUCTION

The field at the interface of quantum technology and ma-
chine learning has been subject to extensive research in recent
times. A significant fraction of these are aimed at building
machine learning models using quantum systems. Of par-
ticular interest are quantum neural networks (QNNs) [1–5],
analogous to classical neural networks in deep learning. The
central component in a prototypical QNN is a quantum cir-
cuit with single and multiple qubit gates with trainable pa-
rameters. It has been widely known as parametric quantum
circuit (PQC) or variational quantum circuit (VQC) [6–10].
PQC-based QNNs have been used to design quantum analogs
of well-known classical machine learning architectures, e.g.
quantum autoencoder [8], quantum convolutional neural net-
works (QCNNs) [11–13], quantum generative adversarial net-
works (QGANs) [14–19], quantum generative diffusion mod-
els [20–22] etc. The cost function obtained from the above
networks is optimized using a classical optimization routine,
thus they are hybrid quantum-classical networks. They are
designed to function with both classical and quantum data.
Despite the potential speed-up and signatures of success of
quantum machine learning over classical ML models [23–27],
there exist several limitations for QNNs, the barren plateau
problem being one of them [28–31]. On one hand, an arbi-
trary hardware-efficient PQC ansatze is expected to have high
expressibility [32] to ensure that the solution of the optimiza-
tion problem is close enough to the actual solution. On the
other hand, PQCs with higher expressibility are increasingly
prone to exhibiting barren plateau [28, 29]. It is therefore a
crucial task to mitigate barren plateau for a practical applica-
tion of quantum neural networks.

One way to improve the trainability and generalization in
machine learning algorithms is to introduce inductive bias in
the learning model, i.e. to use some prior known informa-
tion about the dataset to build a problem-specific model and

constrain the optimization space of the network. Particularly,
geometric machine learning refers to a scheme in which the
known symmetries of the dataset are used to construct a net-
work which respects those symmetries [33]. In past few years,
the theory of geometric quantum machine learning has been
developed by a number of works [34–40]. The performance
of symmetry-enhanced QNNs, also called Equivariant QNNs
(EQNNs), has been investigated for a number of commonly
encountered symmetries in classical datasets as well as quan-
tum systems. These studies show that some classes of EQNNs
are devoid of the barren plateau problem [41–43]. Moreover,
the performance of an EQNN shows improvement over a non-
equivariant QNN for pattern recognition and image classifica-
tion [37, 43–46].

Among all the symmetry groups, the group of all permu-
tations of n objects, which is also called Symmetric group
(Sn), is a crucial one. It is known that every group is iso-
morphic to some subgroup of a Symmetric group. Symmet-
ric group frequently arises in physical scenarios where certain
properties of a quantum state remain invariant under arbitrary
permutation of the qubits. To exemplify, the genuine multi-
party entangled quantum states remain genuinely entangled
when the subsystems are permuted, or the set of connected
graphs remain connected under permutation of the vertices.
There also exist scenarios for which the permutation symme-
try in a system corresponds to a subgroup of Sn. For exam-
ple, the states of a many-body quantum system in presence of
periodic boundary condition remain unchanged under cyclic
permutation of qubits, which corresponds to cyclic group Zn.
Another example is the label symmetry of classical images,
i.e. the class labels of images remain unchanged under spatial
transformations like reflection or rotation, which corresponds
to permuting the pixels in a certain way. The Sn-equivariant
QNN has been studied in [42], with a theoretical proof of ab-
sence of barren plateau. For small subgroups of Sn relevant
to classical images, EQNN can be easily built by visualizing
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the qubits as pixels in a 2D plane [37].
While QNN broadly refers to a general PQC architecture,

in this work, we focus our attention to a specific type of QNN,
namely quantum convolutional neural networks. We propose
an architecture of equivariant quantum convolutional neural
network (EQCNN) for Symmetric group and its subgroups,
which we jointly refer to as permutation group. Our architec-
ture is based on the well-known model of QCNN introduced
in Ref. [11], which shows a considerably good performance
for classifying topological phases of many-body quantum sys-
tems [11, 47–50] as well as classical images [51]. A few
works have studied EQCNN for classical images [45, 46], all
of them using the quantum amplitude embedding. For reflec-
tion or rotation symmetry of images, amplitude embedding
results in a representation of permutation group that acts lo-
cally on each qubit. However, when using qubit embedding
(also known as angle embedding), the resulting representa-
tions correspond to subgroups of Sn and act non-locally on
multiple qubits, as we will elaborate in the next section. In
addition to that, the QCNN proposed in Ref. [11] is subject to
some structural restrictions, i.e. the translational invariance of
the convolution layers and the qubit-reducing feature of pool-
ing layers. The main challenge in designing EQCNN is to
comply with these constraints under non-local action of the
unitary representations in general. In this work, we try to re-
solve this issue. We demonstrate that for subgroups of Sn,
it is important to choose a particular order of pixel-to-qubit
mapping which enables one to build the EQCNN ansatze in a
translationally-invariant manner. Equipped with this, we put
forward EQCNN architectures for reflection symmetry and
π/2-rotational symmetry of images, which shows improved
performance compared to non-equivariant QCNNs for classi-
fying MNIST datasets. For full permutation symmetry of Sn,
our EQCNN is built by applying all QCNNs at random with
equal probability. Such a probabilistic picture of QNN, al-
though mentioned briefly in Ref. [38], has not been explored
significantly before. We build a quantum circuit to realize
this stochastic action of the convolutional and pooling layers.
We test its performance for classification of connected and
non-connected graphs against non-equivariant QCNN as well
as Sn-equivariant QNN. While the EQCNN always performs
better than the former, for the latter it shows an improvement
when trained with comparatively large number of data-points.

II. METHODS

A. Quantum Convolutional Neural Network (QCNN)

The QCNN architecture of ref. [11] is inspired from the
multi-scale entanglement renormalization ansatz (MERA)
representation of quantum many-body states [52]. Any QNN
has three components: an n-qubit quantum register encoding
the input quantum state |Ψ⟩, a PQC Uθ acting on |Ψ⟩, and
lastly a measurement M on some (or all) of the qubits. In case
of QCNN, Uθ consists of a series of convolutional and pool-
ing layers. The convolutional layer has a brick-like structure
on an 1D array of qubits, i.e. an m-qubit (m < n) trainable

convolutional ansatz is applied on all combinations of neigh-
boring m qubits, mimicking the action of a kernel in CNN.
It is a common practice to consider a two-qubit convolutional
ansatze. All ansatze within the same convolutional layer have
same trainable parameters. In the pooling layer, a subset of
qubits are measured and conditioned on each measurement
outcome, a parametrized rotation is applied on each qubit of
the complementary subset. Similar to convolutional layers the
trainable parameters are shared within a pooling layer. All the
measured qubits are then traced out, thus reducing the effec-
tive dimension of the system. In real quantum devices this
is same as ignoring the qubits in the subsequent stages and
considering only the dynamics on the remaining qubits. The
sequence of convolutional and pooling layers is then repeated
until a small fraction of qubits are left. In analogy to the fully-
connected part of a CNN, one can then apply a general PQC
on the remaining qubits at the end and finally measure them
to obtain the prediction. The network is then trained using a
suitable loss function and optimization algorithm. Compared
to a generic deep quantum neural network, in this case due
to progressive qubits reduction, the structure has a shallower
depth of O(log n), which is preferable for implementation in
NISQ devices. This model of QCNN is also known to be free
of barren plateau [41].

B. Label symmetry

For a classical or quantum dataset, a label symmetry ex-
ists if the class labels of all the data-points remain unchanged
under a set of operations on those data-points. For example,
in MNIST dataset the labels of digits {0, 1, 8} are unchanged
when the images are reflected, or the labels of a quantum state
being entangled or non-entangled are invariant under local
unitary transformations on a qubit. Let us consider a binary-
classification task for a dataset X with data-points xi and cor-
responding class labels yi ∈ Y where Y = {0, 1}. The func-
tion that maps the data-points to their labels is f : X → Y .
The task of QNN is to realize a quantum circuit fθ that closely
approximates f . A set of operations G form a label symmetry
group of X if for all group elements g ∈ G, the assigned labels
remain unchanged, i.e.,

f(g(xi)) = yi = f(xi), ∀xi ∈ X , ∀g ∈ G. (1)

Note that the data points themselves may not be invariant un-
der the group action, i.e., g(xi) ̸= xi in general. Thus, the
parametric function fθ used to classify X will be consistent
with G if it predicts same label for inputs related by the sym-
metry operations. The QNNs respecting this constraint are
called Equivariant QNNs (EQNNs). It was proved in [38, 53]
that a PQC Uθ and a measurement M will form an EQNN if
and only if

[R(g),Uθ] = 0 and [R(g),M ] = 0. (2)

Thus if we define the commutator space of R(g) to be the
space of all operators that commute with R(g), then Uθ and
M must belong to that commutator space. In the context
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FIG. 1: In the center, a 4× 4 image with pixel values {a, b, ..., p} indicated in the top left corner of each pixel and
corresponding pixel positions in the bottom right corner. On the right, the image after vertical reflection. On the left, the image

after rotation by angle π/2.

of EQCNN, Uθ is composed of a series of convolutional and
pooling layers. Thus, equivariance of Uθ can be obtained by
making sure that each convolution and pooling layer is equiv-
ariant with respect to R(g).

C. EQCNN with permutation symmetry

The elements of a symmetry group can act either as in-
ner symmetry or outer symmetry [38]. For the former, R(g)
can be decomposed as a tensor product of locally acting uni-
tary operators. A well known example is the local unitary
group SU(2) acting on a system of n qubits, and its represen-
tation R(g) = g⊗n which acts locally on each qubit, where
g ∈ SU(2). Another commonly occurring instance of in-
ner symmetry is when classical images are encoded as quan-
tum states using amplitude embedding, and the representation
R(g) of reflection or rotation group symmetry is a tensor prod-
uct of Pauli-X matrices and qubit identity operators acting lo-
cally on different qubits. The architecture and performance
of equivariant quantum neural networks for inner symmetries
have been investigated in a number of works [37, 38, 44–46].

On the other hand, R(g) for outer symmetry groups can-
not be decomposed into locally acting components, an exam-
ple being the Symmetric group Sn which manifests itself as a
symmetry with respect to permuting the qubits. The physical
operation of permuting two qubits is expressed mathemati-
cally using SWAP gate. One can show that, for every element
g of Sn, Rg can be written as a product of SWAP gates, as we
will exemplify in the next section. When a system of n qubits
has full permutation symmetry, each qubit can be swapped
with any other qubit. The fulfillment of equivariance condi-
tion Eq. (2) then requires that Uθ must remain unchanged
when the qubits are permuted in an arbitrary way. When us-
ing layers of single-qubit gates and two-qubit entangling gates
to construct Uθ, permutation equivariance can be achieved if
one uses single qubit gates with same parameters on all qubits,
and entangling gates to connect all possible

(
n
2

)
combinations

of two qubits. In reference Ref. [42], the authors show that
this architecture of Sn-equivariant QNN is devoid of barren
plateau, and benchmark its performance for classification of

connected and non-connected graph states.
This structure of Sn-equivariant QNN is translationally

symmetric on an array of qubits, thus can be used as the
first convolutional layer of a permutation-equivariant QCNN.
However, it is not straightforward to construct pooling lay-
ers in this case, as choosing a particular set of qubits to trace
out inevitably breaks the full permutation symmetry. Addi-
tionally, the reduced representation on the remaining qubits
after the first pooling layer is not a faithful representation. It
was pointed out in Ref. [38] that one possible technique is
to randomly trace out all combinations of

(
n

n/2

)
qubits with

equal probability to retain full permutation symmetry. In this
work, we have used this strategy to construct equivariant pool-
ing layers. Moreover, we show how to construct equivariant
measurements for a probabilistic ansatze.

There exist other practically useful scenarios when the rel-
evant labels of quantum states remain unchanged under the
action of a subgroup of Sn. For example, when each pixel
value of a classical image is encoded using a qubit (angle em-
bedding), the operation of reflecting or rotating the image cor-
responds to permuting the qubits in a certain way, eliminating
full freedom. In a way, this is an inner symmetry for which
the group representation acts locally on a set of qubits which
are allowed to permute within that set. In such cases, equiv-
ariant Uθ can be achieved using less than

(
n
2

)
two-qubit gates

and a lower-depth circuit, as we will describe in the following
subsections.

1. Reflection-equivariant QCNN

Let us consider classification of images whose labels re-
main invariant under a reflection about the vertical axis. There
are two group elements here– the identity operation e which
keeps the image unchanged, and the reflection operation r.
They form the abstract group Z2 ≡ {e, r}. For angle embed-
ding of classical images into quantum states, the symmetry
representation of reflection group acts non-locally on certain
groups of qubits through SWAP gates. For example, for a 4×4
image as in Fig. 1, the representation of the reflection group
is,
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FIG. 2: (a) The structure of reflection-equivariant QCNN for 16 qubits. The cyan and the orange boxes represent respectively
the parametrized convolutional and the pooling ansatze. For the control qubits in pooling layer, we use half-filled circles to
indicate that the pooling ansatze depends on both the cotrol states {|0⟩, |1⟩}. (b) Reflection-equivariant QCNN using only

nearest-neighbour connections in a 16-qubit quantum register with square-lattice architecture.

Rref =
{
I⊗16, SWAP1,4SWAP2,3SWAP5,8SWAP6,7SWAP9,12SWAP10,11SWAP13,16SWAP14,15

}
(3)

where SWAPi,j denotes swap operation between pixel val-
ues at positions i and j of the image before reflection. Here,
qubit pairs {{1, 4}, {2, 3}..} constitute subsystems on each of
which a SWAP gate acts locally.

Now, for an arbitrary order of embedding the pixel values in
1D array of qubits, one can check that applying convolutional
ansatze in the typical brick-like structure is not equivariant
with respect to the representation in Eq. (3). We demon-
strate that by adhering to a particular pixel-to-qubit embed-

ding order, one can build equivariant convolutional ansatze
for all layers by having the brick-like arrangement of two-
qubit ansatze. By pixel-to-qubit embedding order, we imply
a particular one-to-one correspondence between pixel values
{a, b, c, ...} and the qubits indices {1, 2, 3, ..} which encodes
them. This pixel-to-qubit embedding order and the resulting
EQCNN have been presented in Fig. 2 for a 4×4 image. Here
the qubit indices increase from 1 to 16 when moving from top
to bottom of the 1D array. Due to this altered embedding or-
der, the group representation changes to,

Rref =
{
I⊗16, SWAP1,16SWAP2,15SWAP3,14SWAP4,13SWAP5,12SWAP6,11SWAP7,10SWAP8,9

}
. (4)

In the pooling layer, we trace out half of the qubits in a way
so that the action of the reflection group has a faithful repre-
sentation on the remaining qubits, which is the following after
the first pooling layer,

Rref =
{
I⊗8, SWAP5,12SWAP6,11SWAP7,10SWAP8,9

}
.

(5)
Similarly, after the second pooling layer, the reduced repre-
sentation is

Rref =
{
I⊗4, SWAP6,11SWAP7,10

}
, (6)

and that after the third pooling layer is

Rref =
{
I⊗2, SWAP7,10

}
. (7)

The measurement is performed on the remaining two qubits
{7, 10}.

This structure of EQCNN can be conveniently embedded
on a quantum register with 2D square lattice architecture. We
demonstrate this in Fig. 2(b). An advantage of 2D is that all
the pooling ansatze are applied on nearest-neighbour qubits.
However, to retain full translation symmetry of the convo-
lutional layer, one needs to apply the convolutional ansatze
on two qubits {a, d} which are not nearest neighbours in this
case. Square lattice architectures have been realized in NISQ
devices such as Rigetti quantum hardware ANKAA-2 and
Pasqal neutral atom quantum processing units.
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FIG. 3: EQCNN for reflection and π/2-rotation symmetry for 16 qubits. For non-nearest-neighbour applications of two-qubit
convolutional ansatze in the first and third layer, we use same integers to clearly indicate qubits on which they apply within a

sub-layer .

2. Reflection and π
2

-rotation equivariant QCNN

Next we consider images having label symmetry with re-
spect to both reflection and a rotation by angle π/2. We

present the corresponding EQCNN in Fig. 3. There are
two symmetry groups at play– the reflection symmetry group
{e, r}, and the rotational symmetry group {e, r′} where r′

corresponds to π/2-rotation. For the natural order of pixel-
to-qubit embedding, the group representation for the latter is

Rrot =
{
I⊗16, SWAP1,16SWAP2,15SWAP3,14SWAP4,13SWAP5,12SWAP6,11SWAP7,10SWAP8,9

}
, (8)

as can be understood from Fig. 1. Note that Eq. (8) is the
same as the representation in Eq. (4). Hence in this case, rota-
tional equivariance is obtained from the brick-like structure of
convolutional layer for the natural order of pixel-to-qubit em-
bedding. However, to ensure reflection equivariance for this
embedding, an additional layer of convolutional ansatze needs
to be applied but in a different fashion. In detail, the two-qubit

convolutional ansatz is applied on every qubit and and its 7th

nearest neighbour when counting the qubits from top to bot-
tom in Fig. 3. The reasoning behind this construction can be
understood by observing how the nearest neighbour qubits are
rearranged under reflection. The construction of first pooling
layer ensures that the representations of both the groups on the
remaining qubits are faithful. These reduced representations
are

Rref =
{
I⊗8, SWAP5,8SWAP6,7SWAP9,12SWAP10,11

}
, (9)

Rrot =
{
I⊗8, SWAP5,12SWAP6,11SWAP7,10SWAP8,9

}
. (10)

In the second convolutional layer, the brick-like structure
alone is sufficient to ensure equivariance with respect to both
the symmetries. The reduced representations after the second
pooling layer are,

Rref =
{
I⊗4, SWAP5,8SWAP9,12

}
, (11)

Rrot =
{
I⊗4, SWAP5,12SWAP8,9

}
. (12)

The third convolutional layer is constructed in the same way
as the second convolutional layer. In the third pooling layer, it
is impossible to trace out any two qubits, maintaining equiv-
ariance with respect to both the symmetry groups. Hence, we
use a pooling layer for which the rotational equivariance is
broken but the reflection equivariance is protected. Lastly, the
remaining two qubits {5, 8} are measured.

Note that, one can obtain the EQCNN with respect to π/2-
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FIG. 4: (a) A schematic diagram showing all possible QCNNs and the qubit indices on which they act for an S4-equivariant
QCNN. Each arrow indicates a possible pooling operation. The number of different pooling operations in a layer is shown in

the vertical column on the left. We highlight two examples of these QCNNs with red and blue arrows. (b) A circuit
representation of the red and blue QCNNs and corresponding measurements. C1 and C2 are respectively the first and second

convolutional layer.
.

rotation symmetry alone by removing the additional convo-
lutional layer in the first layer, and changing the last pooling
ansatze in a way to protect rotational equivariance. As a result,
the final measurement will be on a different set of qubits.

3. Sn-equivariant QCNN

When a system has full permutation symmetry, we use the
Sn-equivariant QNN with all-to-all two-qubit gate connec-
tions as the first convolutional layer. For the pooling opera-
tion, let us consider a scenario in which no explicit pooling
ansatz is applied, but half of the qubits are traced out suc-
cessively at each pooling layer. In the first pooling layer, we
randomly trace out any n/2 qubits. This can be done in

(
n

n/2

)
possible ways, each occurring with equal probability to retain
the permutation equivariance. The second convolutional layer
has the same structure as the first convolutional layer, however
it is applied on the remaining n/2 qubits. In the second pool-
ing layer, we randomly trace out n/4 qubits from n/2 qubits
in
(
n/2
n/4

)
possible ways, and apply the third convolutional layer

on the remaining n/4 qubits. We keep adding convolutional
and pooling layers until only one qubit is left. Another way to
envision this is to think that there are in total

P =

(
n

n/2

)
×
(
n/2

n/4

)
×
(
n/4

n/8

)
× ...×

(
2

1

)
(13)

number of possible QCNNs, which are applied on the input
state with equal probability. For each of these QCNNs, the
last remaining qubit is measured to obtain the loss function.
We schematically depict the idea discussed above in Fig. 4
for a simple case of n = 4.

Now we build a quantum circuit that can exactly realize the
probabilistic nature of the EQCNN described above. We show
this in Fig. 5. Additional to the target register encoding the
input state ρ, there is an auxiliary quantum register A1 with
⌈logP ⌉ = 4 qubits, which is initialized in an equal superpo-
sition |ΨA1

⟩ of the first P = 12 orthogonal basis states. We

apply the first convolutional layer C1 on ρ. Since no trainable
pooling ansatz is present, tracing out n/2 randomly chosen
qubits in the first pooling layer is equivalent to applying the
second convolutional layer C2 on all possible

(
4
2

)
= 6 pairs of

qubits. To ensure that they are applied at random with equal
probability, we apply them controlled on the states of the first
three qubits in A1. In the next and final pooling layer, ran-
domly tracing out any one qubit from a qubit pair is equiva-
lent to randomly choosing a qubit and measuring it. For this,
we add another single-qubit auxiliary register A2 initialized
in state |0⟩. Now for each qubit pair in the target register,
controlled on the last qubit of A1 being in state |0⟩ or |1⟩, we
swap either of the qubits with A2. Finally, we measure Pauli-Z
operator on A2 to obtain the loss function. A detailed math-
ematical description of how this circuit works is discussed in
the Appendix.

A drawback of the above circuit is that with increasing n,
P increases very fast and soon becomes exponential in n, re-
sulting in an exponentially deep circuit. This can be avoided
if instead of tracing out half of the qubits from previous layer,
one chooses to trace out a constant number m of qubits at each
pooling layer, and repeats this for k < n

m times such that P
is polynomial in n. At the end of kth layer, measurements are
performed on all the remaining qubits. This strategy remains
valid since tracing out exactly half of the qubits is a conven-
tion rather than a strict requirement for QCNN, although the
logarithmic depth may not hold depending on the relation be-
tween m and n. We leave it for future research works to in-
vestigate the performance of this polynomially deep EQCNN.

As mentioned in ref. [38], the technique of probabilistically
applying different unitary ansatze on the input states can also
be used to design a dropout mechanism in a general quantum
neural network. A few works exist in literature that proposes
quantum dropout by randomly dropping single and two-qubit
gates [54, 55] as well as the qubits themselves [10], whereas
our strategy matches well with that discussed in ref. [56]. Par-
ticularly, ours is a special case in which half of the qubits from
the previous layer are randomly chosen and dropped along
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|Ψa⟩ = 1
12 ( |0000⟩ + |0001⟩ + |0010⟩ + |0011⟩ + |0100⟩ + |0101⟩ + |0110⟩ + |0111⟩ + |1000⟩ + |1001⟩ + |1010⟩ + |1011⟩)

ρ1 → 1
12 (S10(C122 ρ1C12†

2 ⊗ |0⟩⟨0 | )S10† + S20(C122 ρ1C12†
2 ⊗ |0⟩⟨0 | )S20† + S10(C132 ρ1C13†

2 ⊗ |0⟩⟨0 | )S10† + S30(C132 ρ1C13†
2 ⊗ |0⟩⟨0 | )S30† + . . . . . ) = ρ2

ρ → C1ρC†
1 Sij ≡ SWAPi, j

m = Tr(ρ2(' ⊗ ' ⊗ ' ⊗ ' ⊗ σ0
z )) →

Lets take the first term of  :    ρ2 m1 = Tr(S10(C122 ρ1C12†
2 ⊗ |0⟩⟨0 | )S10†(' ⊗ ' ⊗ ' ⊗ ' ⊗ σ0

z ))
= Tr(S10†(' ⊗ ' ⊗ ' ⊗ ' ⊗ σ0

z )S10(C122 ρ1C12†
2 ⊗ |0⟩⟨0 | ))

= Tr((σz ⊗ ' ⊗ ' ⊗ ' ⊗ '0)(C122 ρ1C12†
2 ⊗ |0⟩⟨0 | ))

Thus measuring only the first qubit with probability  .   Similarly follows for other terms.1/12

Expectation value used to define loss function, “0” is the index of the red qubit

using cyclic property of trace

= Tr((σz ⊗ ' ⊗ ' ⊗ ')(C122 ρ1C12†
2 )) . Tr( |0⟩⟨0 | )

= Tr((σz ⊗ ' ⊗ ' ⊗ ')(C122 ρ1C12†
2 ))

C1 C2
C2

C2

×
×

×

×

×
×

×

×

×
×

×

×

×

×

×

×

×

×

×

×
×

×

×

×|0A2⟩

{ρ
{|ΨA1⟩

FIG. 5: The circuit for realizing EQCNN for symmetric group S4 on the input state ρ. In the controlled gates, the circles with
no fillings and black fillings represent states |0⟩ and |1⟩ respectively.

FIG. 6: Samples of Fashion MNIST images corresponding to
class 0 and class 8 sized down to 4× 4 pixels.

with all gates acting on them on subsequent layers. How-
ever, it also implies dropping half of the trainable parameters
at each layer, which greatly reduces the expressibility and can
result in poor trainability of the network. Instead, one may
choose to drop a small constant number of m qubits at each
successive layer, as discussed also in the previous paragraph.

III. RESULTS

We compare the classification accuracy of equivariant and
non-equivariant QCNNs for the symmetry groups discussed
in the last section. We build and train all the networks using
Pennylane quantum simulator [57].

For reflection symmetry alone, we use class 0 (tshirt) and
class 8 (handbag) of Fashion MNIST dataset, whereas for im-
ages symmetric with respect to reflection and π/2-rotation,
we use class 0 and 1 of MNIST dataset. The original images
are 28 × 28 pixels, we downsize them to 4 × 4 pixels to em-
bed the pixel values into 16 qubits using RY rotation. Some
samples of the downsized images for Fashion MNIST dataset
are presented in Fig. 6. As the convolutional and pooling
ansatze, we use the circuits in Fig. 7(a) and 7(b) respectively,
where Rot(θ1, θ2, θ3) = RZ(θ3)RY (θ2)RZ(θ1). One can
choose any other set of single-qubit and two-qubit gates with-
out loss of generality. For building EQCNNs we follow the

embeddings and architectures in Fig. 2 and Fig. 3, while for
non-equivariant QCNNs we use standard pixel-to-qubit em-
bedding order and the architectures in Ref. [51]. We train the
models using Nesterov moment optimizer with learning rate
0.005. As loss function, we use binary cross-entropy. We ob-
tain the average test-set classification accuracy over 10 identi-
cal runs, each with random initial parameters and a batch size
of 32. The behaviour of mean test-set accuracy with increas-
ing number of training iterations is presented in Fig. 8. For
fashion MNIST, EQCNN has a higher classification accuracy
than non-equivariant QCNN. For MNIST images, consider-
ing the π/2-rotational symmetry alone results in a higher ac-
curacy than the non-equivariant QCNN. However, taking into
account both reflection and π/2-rotational symmetry reduces
the accuracy significantly. This can be due to the highly con-
strained structure of EQCNN under both the symmetries, for
which the expressibility degrades significantly.

We apply the Sn-equivariant QCNN for classification of
connected and non-connected graphs with 4 vertices. The
graphs are randomly generated using Erdős-Rényi model with
an edge probability of 45%. The quantum graph states
are generated from the graphs using the standard method
from [58, 59], and are embedded into a four-qubit quantum
register using amplitude embedding. The property of being a
connected or non-connected graph remains unchanged under
arbitrary permutations of the vertices, in this case the qubits.
From all possible graph states with 4 vertices, we choose a
fraction for training and the other part for testing. We use two
different instances of this partitioning- for case 1 we have 45
data-points for training and 18 for testing, while for case 2
we have 52 and 11 data-points respectively for training and
testing. In both cases, the training data is well balanced be-
tween the two classes, while the test data has a large fraction
of connected graphs. We augment the training and test set
with multiple copies of the distinct data-points. As the con-
volutional ansatze, we use the Sn-equivariant ansatze shown
in Fig. 7(c) in the first layer, and its two-qubit analog in
the second layer. The choice of the gates is again arbitrary.
In addition to EQCNN, we also test the performance of Sn-
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Rot(θ1, θ2, θ3)

Rot(θ4, θ5, θ6) +

Rz(φ1) Rx(φ2)

Z

Rot(θ1, θ2, θ3)

Rot(θ1, θ2, θ3)

Rot(θ1, θ2, θ3)

Rot(θ1, θ2, θ3)

Rxx(θ4)

Rxx(θ4)

Rxx(θ4)

Rxx(θ4)
Rxx(θ4)

Rxx(θ4)

Rxx(θ4)

Rxx(θ4)

Rxx(θ4)(a)

(b) (c)

FIG. 7: (a) The convolutional ansatze and (b) the pooling ansatze used to construct EQCNN and non-equivariant QCNN for
reflection and π/2-rotation symmetry. (c) The convolutional ansatze used in Sn-equivariant QCNN.
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FIG. 8: Comparison of EQCNN and non-equivariant QCNN for binary classification of (a) classes 0 and 8 of Fashion MNIST
dataset and (b) classes 0 and 1 of MNIST dataset. All quantities are averaged over 10 training iterations with random initial

parameters.

equivariant QNN without pooling layer, for which we replace
the second convolutional layer by another layer of the four-
qubit ansatze in Fig. 7(c). In this case we measure Pauli-Z
operator on all the qubits to obtain the loss function. Note that
the number of trainable parameters is same for the EQCNN
and EQNN. For non-equivariant QCNN, we use the architec-
ture of QCNN in Ref. [51] with Fig. 7(a) and 7(b) as con-
volutional and pooling ansatze. All models are trained using
Adam optimizer with a learning rate 0.01, and we use mean-
squared error as loss function. We obtain the mean training
loss, training accuracy and test accuracy from 10 randomly
initialized training schemes with a batch size 10. The results
are presented in Fig. 9.

On average, we find that the Sn-EQNN has a good gen-
eralization behaviour, and the corresponding test accuracy is
better than the other two models for case 1 when the train-test
ratio is 5 : 3 approximately. The performance of Sn-EQNN
does not differ much for case 1 and case 2. On the other hand,
the Sn-EQCNN overfits the training data in case 1. However,
when the train-test ratio is approximately 5 : 1 in case 2 and
there are more data-points to learn, the performance of the
EQCNN improves and it shows higher average test accuracy

than Sn-equivariant QNN. In this case, out of the 10 instances
of initial parameters, there are more cases for which the max-
imum test accuracy 1 is obtained for EQCNN compared to
EQNN. In Fig. 10 we show the training and test accuracy for
one such instance. The non-equivariant QCNN has a much
lower test accuracy than both the equivariant architectures in
both cases.

IV. DISCUSSIONS AND CONCLUSION

In this work, we proposed a pixel-to-qubit embedding order
that facilitates applying the quantum convolutional ansatze in
an equivariant manner for angle-embedded classical images
with reflection and rotational symmetry of image labels. The
resulting EQCNNs show better classification accuracy than
non-equivariant QCNNs. Though angle embedding requires
as many qubits as the number of pixels compared to the loga-
rithmically less number of qubits in amplitude embedding, the
latter needs an exponentially deep circuit to encode an arbi-
trary quantum superposition of n qubits, thus subsuming the
advantage due to logarithmically shallow circuit of QCNN.
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(a)

(b)

FIG. 9: Comparison of training set loss and accuracy, and test set classification accuracy of EQCNN, EQNN, and
non-equivariant QCNN for classification of connected and non-connected graphs with 4 vertices. All quantities are averaged
over 10 training iterations with random initial parameters. (a) The training set and test set has respectively 45 and 18 distinct

data-points. (b) The training set and test set has respectively 52 and 11 distinct data-points.
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FIG. 10: An instance of initial parameters for which
Sn-EQCNN performs better than Sn-EQNN when the

train-test split has 5 : 1 ratio.

Compared to that, angle embedding requires a circuit of con-
stant depth, since each qubit can be manipulated individually
in parallel. With this advantage, and the fast growing dimen-

sion of NISQ devices, angle embedding remains a more po-
tent choice for quantum embedding of classical data. More-
over, one can also pre-process a large classical image to re-
duce its dimension using principal component analysis (PCA)
or a classical autoencoder, before angle-embedding it into a
smaller number of available qubits. In this case however, the
pre-processing must preserve the label symmetry, in order to
use an EQCNN for classification. It is to be noted that, though
our embedding trick works for small subgroups of Sn, it will
become increasingly difficult to design a translationally sym-
metric equivariant convolutional ansatze for bigger permuta-
tion groups, e.g. p4m symmetry group, which again arises fre-
quently in highly symmetric classical images. In such cases,
one may choose to take into account fewer symmetries. This is
supported by our numerical data showing a better performance
compared to equivariant circuit which takes into account all
existing symmetries. One can also use a more flexible ansatze
that weakly breaks the symmetries [45].

Our construction of Sn-equivariant QCNN proposed also a
probabilistic picture of QNN, which has not been explored in
detail in literature yet. We use graph states as dataset to ana-
lyze the performance of the Sn-equivariant EQCNN, which
shows a better performance than non-equivariant QCNN.
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When sufficient training data are used, this EQCNN performs
better than Sn-equivariant QNN on average. This probabilis-
tic application of Sn-equivariant QCNN can be viewed as a
special type of dropout mechanism in QNN [10, 54–56], in
analogy to dropout in CNN to prevent overfitting [60]. Par-
ticularly in our case, the important difference with the con-
ventional dropout is that, here no trainable parameters are
dropped, rather some of the qubits on which the correspond-
ing gates apply. One can also apply with equal probability
the equivariant ansatze for every symmetry group when there
exist more than one symmetry group, as also discussed in the
last paragraph.

It should be mentioned that there exist alternative ap-
proaches for designing a quantum convolutional neural net-
work in quantum systems [13, 39, 61]. Particularly in refer-
ences [39, 61], the authors conceptualize the qubit permuta-
tion symmetry as the quantum analog of translational sym-
metry in classical images. They propose as ‘convolutional
quantum ansatze’ a permutation-equivariant ansatze which is
in turn constructed by employing global SU(d)-equivariant
Hamiltonians, since by Schur’s lemma the representation the-
ory of Sn can be described using the representation theory
of SU(d), and vice versa. As a result, their architecture can
be used to find the ground states of many-body Hamiltonians
that exhibit SU(d) symmetry. This is in contrast to our work
which proposes a permutation-equivariant QCNN that mani-
fests the translation symmetry in a different way [11].

Data classification is an ubiquitous task in a plethora of ev-
eryday applications. Classical state-of-the-art classifiers are
supremely successful, yet the potency of quantum classifiers
are worth the investigation. The quantum convolutional neu-
ral networks are proved to be efficient classifiers. Thus, our
construction of equivariant QCNNs for spatial symmetry of
images is a significant addition to the growing literature. The
Sn-equivariant QCNN proposed in this work is extremely rel-
evant due to the frequent presence of permutation symmetry in
nature. We also believe that the stochastic nature of the varia-
tional quantum ansatz is an interesting direction to be pursued
for future research.
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Appendix A: Sn-equivariant channel and measurements

Denoting the input state as ρ, the state after the first convo-
lutional layer is

ρ1 = C1ρC
†
1 , (A1)

where C1 is the unitary corresponding to the first convolu-
tional layer.

The initial state in the auxiliary register A1 is

|ΨA1
⟩ = 1√

12

(
|0000⟩+ |0001⟩+ |0010⟩+ |0011⟩+ |0100⟩

+|0101⟩+ |0110⟩+ |0111⟩+ |1000⟩+ |1001⟩
+|1010⟩+ |1011⟩

)
. (A2)

After the controlled application of second convolutional layer
on different pairs of qubits, the input state becomes,

ρ2 = 1
6

(
C12

2 ρ1C
12†

2 + C13
2 ρ1C

13†

2 + C14
2 ρ1C

14†

2

+C23
2 ρ1C

23†

2 + C24
2 ρ1C

24†

2 + C34
2 ρ1C

34†

2

)
, (A3)

where Cij
2 is the second convolutional layer acting on the

qubit-pair (i, j).

At this stage, the auxiliary register A2 is in the state |0⟩, and
we denote the corresponding qubit with index 0. After appli-
cation of controlled swap gates, the state of the joint system
consisting of our input state register and auxiliary register A2

is,

ρ′3 =
1

12

(
S01(C

12
2 ρ1C

12†

2 ⊗ |0⟩⟨0|)S†
01 + S02(C

12
2 ρ1C

12†

2 ⊗ |0⟩⟨0|)S†
02 + S01(C

13
2 ρ1C

13†

2 ⊗ |0⟩⟨0|)S†
01

+ S03(C
13
2 ρ1C

13†

2 ⊗ |0⟩⟨0|)S†
03 + S01(C

14
2 ρ1C

14†

2 ⊗ |0⟩⟨0|)S†
01 + S04(C

14
2 ρ1C

14†

2 ⊗ |0⟩⟨0|)S†
04

+ S02(C
23
2 ρ1C

23†

2 ⊗ |0⟩⟨0|)S†
02 + S03(C

23
2 ρ1C

23†

2 ⊗ |0⟩⟨0|)S†
03 + S02(C

24
2 ρ1C

24†

2 ⊗ |0⟩⟨0|)S†
02

+ S04(C
24
2 ρ1C

24†

2 ⊗ |0⟩⟨0|)S†
04 + S03(C

34
2 ρ1C

34†

2 ⊗ |0⟩⟨0|)S†
03 + S04(C

34
2 ρ1C

34†

2 ⊗ |0⟩⟨0|)S†
04

)
.

The expectation value of the measurement on A2 is,

m = Tr(ρ′3M
′
0), (A4)

where M ′
0 = σz

0 ⊗ I1 ⊗ I2 ⊗ I3 ⊗ I4.
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Now, using the cyclic property of trace, we can write the following for an arbitrary term in Eq. (A4),

mij
i = Tr

((
S0i(C

ij
2 ρ1C

ij†

2 ⊗ |0⟩⟨0|)S†
0i

)
M ′

0

)
= Tr

(
(S†

0iM
′
0S0i)(C

ij
2 ρ1C

ij†

2 ⊗ |0⟩⟨0|)
)

= Tr
(
M ′

i(C
ij
2 ρ1C

ij†

2 ⊗ |0⟩⟨0|)
)

= Tr(MiC
ij
2 ρ1C

ij†

2 ).Tr(I0|0⟩⟨0|)

= Tr(MiC
ij
2 ρ1C

ij†

2 ),

where Mi (i ̸= 0) denotes a Pauli-Z measurement on the ith

qubit. In this way, we design a measurement outcome which is
the weighted sum of measurement outcomes from all equally
probable QCNNs.
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R. Biswas, Opportunities and challenges for quantum-assisted
machine learning in near-term quantum computers, Quantum
Science and Technology 3, 030502 (2018).

[5] M. Schuld and N. Killoran, Is quantum advantage the right
goal for quantum machine learning?, PRX Quantum 3, 030101
(2022).

[6] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou,
P. J. Love, A. Aspuru-Guzik, and J. L. O’Brien, A variational
eigenvalue solver on a photonic quantum processor, Nature
Communications 5, 4213 (2014).

[7] J. R. McClean, J. Romero, R. Babbush, and A. Aspuru-Guzik,
The theory of variational hybrid quantum-classical algorithms,
New Journal of Physics 18, 023023 (2016).

[8] J. Romero, J. P. Olson, and A. Aspuru-Guzik, Quantum autoen-
coders for efficient compression of quantum data, Quantum Sci-
ence and Technology 2, 045001 (2017).

[9] K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii, Quantum
circuit learning, Phys. Rev. A 98, 032309 (2018).

[10] M. Schuld, A. Bocharov, K. M. Svore, and N. Wiebe, Circuit-
centric quantum classifiers, Phys. Rev. A 101, 032308 (2020).

[11] I. Cong, S. Choi, and M. D. Lukin, Quantum convolutional neu-
ral networks, Nature Physics 15, 1273 (2019).

[12] Y. Li, R.-G. Zhou, R. Xu, J. Luo, and W. Hu, A quantum deep
convolutional neural network for image recognition, Quantum
Science and Technology 5, 044003 (2020).

[13] M. Henderson, S. Shakya, S. Pradhan, and T. Cook, Quanvolu-
tional neural networks: powering image recognition with quan-
tum circuits, Quantum Machine Intelligence 2, 2 (2020).

[14] P. Braccia, F. Caruso, and L. Banchi, How to enhance quan-
tum generative adversarial learning of noisy information, New
Journal of Physics 23, 053024 (2021).

[15] P. Braccia, L. Banchi, and F. Caruso, Quantum noise sensing by
generating fake noise, Phys. Rev. Appl. 17, 024002 (2022).

[16] M. S. Rudolph, N. B. Toussaint, A. Katabarwa, S. Johri, B. Per-
opadre, and A. Perdomo-Ortiz, Generation of high-resolution
handwritten digits with an ion-trap quantum computer, Phys.
Rev. X 12, 031010 (2022).

[17] A. O. Boyle and R. Nikandish, A hybrid quantum-classical gen-
erative adversarial network for near-term quantum processors
(2023), arXiv:2307.03269 [quant-ph].

[18] S. L. Tsang, M. T. West, S. M. Erfani, and M. Usman, Hy-
brid quantum–classical generative adversarial network for high-
resolution image generation, IEEE Transactions on Quantum
Engineering 4, 1 (2023).

[19] N.-R. Zhou, T.-F. Zhang, X.-W. Xie, and J.-Y. Wu, Hybrid
quantum–classical generative adversarial networks for image
generation via learning discrete distribution, Signal Processing:
Image Communication 110, 116891 (2023).

[20] M. Parigi, S. Martina, and F. Caruso, Quantum-noise-driven
generative diffusion models (2023), arXiv:2308.12013 [quant-
ph].

[21] B. Zhang, P. Xu, X. Chen, and Q. Zhuang, Generative quantum
machine learning via denoising diffusion probabilistic models,
Phys. Rev. Lett. 132, 100602 (2024).

[22] A. Cacioppo, L. Colantonio, S. Bordoni, and S. Giagu, Quan-
tum diffusion models (2023), arXiv:2311.15444 [quant-ph].

[23] P. Rebentrost, M. Mohseni, and S. Lloyd, Quantum support vec-
tor machine for big data classification, Phys. Rev. Lett. 113,
130503 (2014).

[24] Y. Liu, S. Arunachalam, and K. Temme, A rigorous and ro-
bust quantum speed-up in supervised machine learning, Nature
Physics 17, 1013 (2021).

[25] A. Abbas, D. Sutter, C. Zoufal, A. Lucchi, A. Figalli, and
S. Woerner, The power of quantum neural networks, Nature
Computational Science 1, 403 (2021).

[26] H.-Y. Huang, M. Broughton, J. Cotler, S. Chen,
J. Li, M. Mohseni, H. Neven, R. Babbush, R. Kueng,
J. Preskill, and J. R. McClean, Quantum advantage in
learning from experiments, Science 376, 1182 (2022),
https://www.science.org/doi/pdf/10.1126/science.abn7293.

[27] M. C. Caro, H.-Y. Huang, M. Cerezo, K. Sharma, A. Sorn-
borger, L. Cincio, and P. J. Coles, Generalization in quantum

https://doi.org/10.1080/00107514.2014.964942
https://doi.org/10.1080/00107514.2014.964942
https://arxiv.org/abs/https://doi.org/10.1080/00107514.2014.964942
https://doi.org/10.1038/nature23474
https://doi.org/10.1038/nature23474
https://doi.org/10.1088/2058-9565/ab4eb5
https://doi.org/10.1088/2058-9565/ab4eb5
https://doi.org/10.1088/2058-9565/aab859
https://doi.org/10.1088/2058-9565/aab859
https://doi.org/10.1103/PRXQuantum.3.030101
https://doi.org/10.1103/PRXQuantum.3.030101
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1088/1367-2630/18/2/023023
https://doi.org/10.1088/2058-9565/aa8072
https://doi.org/10.1088/2058-9565/aa8072
https://doi.org/10.1103/PhysRevA.98.032309
https://doi.org/10.1103/PhysRevA.101.032308
https://doi.org/10.1038/s41567-019-0648-8
https://doi.org/10.1088/2058-9565/ab9f93
https://doi.org/10.1088/2058-9565/ab9f93
https://doi.org/10.1007/s42484-020-00012-y
https://doi.org/10.1088/1367-2630/abf798
https://doi.org/10.1088/1367-2630/abf798
https://doi.org/10.1103/PhysRevApplied.17.024002
https://doi.org/10.1103/PhysRevX.12.031010
https://doi.org/10.1103/PhysRevX.12.031010
https://arxiv.org/abs/2307.03269
https://doi.org/10.1109/TQE.2023.3319319
https://doi.org/10.1109/TQE.2023.3319319
https://doi.org/https://doi.org/10.1016/j.image.2022.116891
https://doi.org/https://doi.org/10.1016/j.image.2022.116891
https://arxiv.org/abs/2308.12013
https://arxiv.org/abs/2308.12013
https://doi.org/10.1103/PhysRevLett.132.100602
https://arxiv.org/abs/2311.15444
https://doi.org/10.1103/PhysRevLett.113.130503
https://doi.org/10.1103/PhysRevLett.113.130503
https://doi.org/10.1038/s41567-021-01287-z
https://doi.org/10.1038/s41567-021-01287-z
https://doi.org/10.1038/s43588-021-00084-1
https://doi.org/10.1038/s43588-021-00084-1
https://doi.org/10.1126/science.abn7293
https://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/science.abn7293


12

machine learning from few training data, Nature Communica-
tions 13, 4919 (2022).

[28] J. R. McClean, S. Boixo, V. N. Smelyanskiy, R. Babbush, and
H. Neven, Barren plateaus in quantum neural network training
landscapes, Nature Communications 9, 4812 (2018).

[29] Z. Holmes, K. Sharma, M. Cerezo, and P. J. Coles, Connect-
ing ansatz expressibility to gradient magnitudes and barren
plateaus, PRX Quantum 3, 010313 (2022).

[30] M. Cerezo, A. Sone, T. Volkoff, L. Cincio, and P. J. Coles, Cost
function dependent barren plateaus in shallow parametrized
quantum circuits, Nature Communications 12, 1791 (2021).

[31] S. Wang, E. Fontana, M. Cerezo, K. Sharma, A. Sone, L. Cin-
cio, and P. J. Coles, Noise-induced barren plateaus in variational
quantum algorithms, Nature Communications 12, 6961 (2021).

[32] S. Sim, P. D. Johnson, and A. Aspuru-Guzik, Express-
ibility and entangling capability of parameterized quan-
tum circuits for hybrid quantum-classical algorithms,
Advanced Quantum Technologies 2, 1900070 (2019),
https://onlinelibrary.wiley.com/doi/pdf/10.1002/qute.201900070.

[33] M. M. Bronstein, J. Bruna, T. Cohen, and P. Veličković, Ge-
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