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Abstract

Land cover analysis using hyperspectral images (HSI) remains an open problem
due to their low spatial resolution and complex spectral information. Recent studies
are primarily dedicated to designing Transformer-based architectures for spatial-
spectral long-range dependencies modeling, which is computationally expensive
with quadratic complexity. Selective structured state space model (Mamba), which
is efficient for modeling long-range dependencies with linear complexity, has re-
cently shown promising progress. However, its potential in hyperspectral image
processing that requires handling numerous spectral bands has not yet been ex-
plored. In this paper, we innovatively propose S?Mamba, a spatial-spectral state
space model for hyperspectral image classification, to excavate spatial-spectral
contextual features, resulting in more efficient and accurate land cover analysis. In
S2Mamba, two selective structured state space models through different dimensions
are designed for feature extraction, one for spatial, and the other for spectral, along
with a spatial-spectral mixture gate for optimal fusion. More specifically, S>Mamba
first captures spatial contextual relations by interacting each pixel with its adjacent
through a Patch Cross Scanning module and then explores semantic information
from continuous spectral bands through a Bi-directional Spectral Scanning module.
Considering the distinct expertise of the two attributes in homogenous and com-
plicated texture scenes, we realize the Spatial-spectral Mixture Gate by a group
of learnable matrices, allowing for the adaptive incorporation of representations
learned across different dimensions. Extensive experiments conducted on HSI
classification benchmarks demonstrate the superiority and prospect of S2Mamba.
The code will be available at: https://github.com/PURE-melo/S2Mamba.

1 Introduction

Hyperspectral images (HSI), consisting of numerous spectral bands, are capable of land cover
analysis due to their rich material information [1, 2, 3, 4], with extensive application in domains
such as precision agriculture, mineral exploration, and environmental monitoring [5, 6]. Therefore,
there is a strong incentive to design a more effective and efficient model for hyperspectral image
classification. Convolutional neural networks (CNNs) [7, 8, 9, 10, 11] as a widespread paradigm
have been widely studied in hyperspectral image classification. However, this paradigm is limited
by its local receptive fields and is unable to comprehensively capture continuous spectral properties.
Transformer architectures [12, 13, 14, 15, 16, 17] have been recently explored in hyperspectral image
classification, which exhibits remarkable performance due to their ability to extract global contextual
information on both spatial and spectral dimensions.
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Figure 1: Overall Accuracy (%) and Parameters (M) comparison on Indian Pines, Pavia University,

Houston 2013 dataset. Our proposed S?Mamba achieves optimal results in terms of overall accuracy

and parameters compared to existing methods [12, 13, 14, 30, 31].

Despite its powerful representation ability, dealing HSI data with transformer-based models is com-
putationally expensive, primarily due to the self-attention mechanism with quadratic computational
complexity O (N 2) [18, 19]. As an efficient alternative to self-attention mechanisms, the selective
structured state space model (Mamba) [20] has recently emerged as a powerful tool with linear
complexity for modeling long-range dependency in sequence processing. Derived from this, a series
of Mamba-based models [21, 22, 23, 24, 25, 26, 27, 28, 29] have been explored for various computer
vision tasks, such as image classification, semantic segmentation, and others. However, most of
these models are only applied in natural image processing, leaving a blank in hyperspectral image
classification due to the difficulty in handling complicated spatial-spectral information.

Drawing inspiration from the success of state space models, this paper seeks to explore their potential
for HSI processing. To this end, we propose a spatial-spectral state space model (S?Mamba)
to jointly excavate long-range spatial relations and continuous spectral features for hyperspectral
image classification. Our S2Mamba comprises Patch Cross Scanning and Bi-directional Spectral
Scanning modules for capturing spatial and spectral information, respectively, and merging them
with a Spatial-spectral Mixture Gate. Specifically, we build a patch cross scanning mechanism to
capture the contextual relations between adjacent pixels, wherein the patch data is first flattened into
pixel sequences through different route generation ways and a selective structured state space model
is then applied to these sequences for capturing contextual features. Considering the rich knowledge
within continuous spectral bands, we design an extra scanning module on the spectral dimension for
retrieving semantic properties in HSI data by a bi-directional interaction between each band.

The remaining dilemma lies in optimally merging spatial and spectral attributes of HSI data. We
observe that spectral information exhibits a more significant role for uniform land cover regions than
those regions with complex textures. This is due to the paucity of spatial cues within homogenous
regions, necessitating the reliance on spectral information for determining land cover categories.
In contrast, spatial information can offer a considerable prior in dealing with regions containing
complex textures, thereby enhancing classification performance. To address this, we here propose a
spatial-spectral mixture gate to dynamically merge the above features pixel by pixel, wherein each
spatial location is assigned a group of learnable weights to determine the ratio of various features.
This gating mechanism, promoting the competition of the two features, facilitates the integration of
spatial-spectral attributes by truncating those redundant ones, greatly boosting the accuracy.

Through experimental assessment, we verify the effectiveness of SMamba on the three public
hyperspectral image classification datasets. Fig. 1 illustrates that our S?Mamba improves the previous
SOTA method by 0.86%, 6.74%, and 2.56% in terms of overall accuracy on Indian Pines, Pavia
University, and Houston 2013 datasets, respectively. Meanwhile, it outperforms Transformer-based
models with the fewest parameters (about 0.12M) and a linear complexity O (kN), where k < N.

2 Related Work

2.1 Hyperspectral Image Classification

Existing methods typically solve the hyperspectral image classification problem by leveraging well-
crafted deep neural networks, which can be primarily divided into several categories: convolutional
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Figure 2: Illustration of our proposed S?2Mamba, consisting of a patch cross scanning (PCS) mecha-
nism, a bi-directional spectral scanning (BSS) mechanism, and a spatial-spectral mixture gate (SMG).

neural network-based [8, 9, 32, 33, 34, 35, 36, 7, 37, 38, 10, 11, 39, 40, 41, 42], recurrent neural
network-based [43, 44, 30], and Transformer-based [45, 13, 15, 16, 12, 14, 17, 46, 47, 31, 48].

Traditional Models. CNNs are widely applied in hyperspectral classification tasks, an excellent
feature extraction architecture that captures spatial and local semantic information. Recent works have
explored CNNS to individually extract spatial [36, 7] and spectral features [37, 38] from hyperspectral
remote sensing images, or to learn spatial-spectral joint representation [8, 9, 32, 33, 34, 35], achieving
remarkable progress. Considering that CNN structures are incapable of modeling irregular data, some
research introduced graph convolutional networks (GCNs) [10, 11, 39, 40] to mine the potential
spatial semantic information of HSI data. Another group of studies serves the spectral information
across different bands of HSI data as continuous sequences and employs recurrent neural networks
(RNNs) [43, 44, 30] to extract spectral features for classification. However, these methods often
struggle to extract global spectral information due to their limited capability in long-range dependency.

Transformer-based Models. Transformer is a powerful architecture consisting of multiple self-
attention mechanisms to extract global contextual information, and currently, they have been explored
for hyperspectral image classification. Most of these methods [45, 13, 15, 16, 12, 14, 17, 46, 47, 31,
48] attempt to learn the global sequential information on both spatial and spectral dimensions. Spec-
tralformer [12] is the first one in its kind to introduce the Transformer architecture into hyperspectral
image classification, which jointly captures the local and global information by grouping the adjacent
bands. Beyond single Transformer structures, some methods adopt hybrid networks to acquire
spatial-spectral features. SSFTT [13] utilizes convolutional layers to describe the low-level features
and integrate them through Transformer layers. morphFormer [14] uses morphological convolution
layers to learn both spatial and spectral representations and merges them by applying Transformer
layers. Besides, other works [48] incorporate RNNs with Transformers to collaboratively extract
continuous spectral features and spatial context features, significantly enhancing the classification
performance.

Unlike previous methods that capture long-range dependencies by compute-intensive Transformer
structures, we innovatively explore a fully sequential architecture based on selective structured state
space models for efficient global spatial-spectral feature extraction.

2.2 State Space Models

Most recently, state space models (SSMs) [49, 50, 51, 52, 53], especially the structured state space
models (S4) [50] have shown promising progress in sequence analysis, which are capable of long-



range sequence modeling with linear computational complexity. By introducing a selective mecha-
nism into [50], Mamba [20] further optimizes its context compression ability and exhibits superior
performance to Transformers. Considering its outstanding performance in sequence data processing,
many works have explored the potential of Mamba [20] in computer vision and achieved promising
advancements. In particular, visual state space model (Vmamba) [22] and vision Mamba (Vim) [21]
have recently emerged as powerful tools for various computer vision tasks due to their efficiency
in modeling long-range dependencies. On the basis of them, a series of visual state space models
have been proposed, such as medical image analysis [25, 27, 54, 55], video understanding [28, 56],
and others [26, 24, 57, 29, 58, 23]. However, most of these methods are only applied in RGB
images, leaving a blank in hyperspectral image classification that requires handling complex spectral
information. Thus, we propose a Mamba-based architecture for hyperspectral image classification,
fully exploiting spatial-spectral features by state space models.

3 Proposed Method

3.1 Preliminaries

State Space Models. State space models are foundational statistical models that describe the
dynamic behavior of systems and are widely applied in domains such as time series analysis and
control systems. In SSMs, the continuous evolution of systems is calculated through a set of ordinary
differential equations (ODEs), which map an input signal into a latent space and decode it into an
output sequence. This operation can be defined as:

h'(t) = Ah(t) + Bz(t)
(t) = Ch(t) + Dx(t)

where h(t) € RN ]>\’€ R, and y(¢) € R indicate latent state, input signal, and output signal,
respectlvely B (t refers to the time derivative of h(¢). N and L represent the dimensions of
the latent space and sequences, respectively. Additionally, A € RV *¥ is the state transition matrix.
B € RY and C € R¥ are projection matrices. D is usually served as a residual connected operation
and thus discarded in the equation. To facilitate the integration of continuous state space models
with discrete sequences, Mamba [20] employs a zero-order hold technique to discretize the ordinary
differential equations as follows:

A =exp(AA)
B = (AA) '(exp(AA) —1)-AB
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@

where A and B represent the discretized forms of the parameters A and B, respectively, through a
discretization step size A. As stated in [20], the projection matrix B can be approximated using the
first-order Taylor series:

B = (exp(A) —)A™'B ~ (AA)(AA)"'AB = AB 3)

After discretization, the ODEs of SSMs can be represented as follows:

ht A]’Lt,1 + B.’L’t (4)
= Chy

Selective Scan Mechanism. Traditional SSMs are linear time-invariant, i.e., the projection matrices

do not vary with input signals, resulting in non-selective attention on each sequence unit. To alleviate

this, Mamba [20] modifies the parameter matrices to be input-dependent, i.e., B € REXLxN,

C € RBXIXN and A € REXLXD gre calculated based on X € RZXEXD fyrther improving the

ability for handling complex sequences by transforming the SSMs into linear time-varying systems.

3.2 S2Mamba

Fig. 2 shows the overall architecture of our proposed S?Mamba framework for hyperspectral image
classification. The input data is first fed into a convolutional layer for embedding and then fed into
patch cross scanning and bi-directional scanning modules to capture spatial and spectral features.



Finally, the above terms are fused by a spatial-spectral mixture gate for category prediction. Unlike
recent advanced approaches that utilize Transformer-based networks with quadratic complexity to
capture global spatial-spectral features, our S?Mamba is a powerful spatial-spectral information
extraction network with linear computational complexity.

3.2.1 Patch Cross Scanning Mechanism

To facilitate the selective scanning mechanism with HSI inputs, we first extend the vanilla selective
scan mechanism [20, 22] to the patch-level HSI data and design a patch cross scanning mechanism,
which captures spatial contextual relations by interacting each pixel with its adjacent through a state
space model. Given the input of HSI patch X € R”*P*X where P and K denote the patch size and
spectral band number of the data cube, respectively, we perform a pixel-by-pixel scanning strategy on
four different routes. As illustrated in Fig. 2, each route is generated from different directions, such
as top to bottom, left to right, and vice versa.

More specifically, we first flatten the patch data into one-dimensional sequences with the preset routes,
and then recurrently calculate each item of sequences Xeq = {[x0, X1, ..., Xp, p| X} € RIXK 4 ¢

{0,1,2,3}} by using rewritten Eq. (4):
h; = Xspah;_l + Espaxz

i i i (5)
¥j = Cspahj + X

where Kspa, ﬁspa and C spa TEpresent the trainable parameters in PCS. After scanning, we can obtain
a set of output sequences Vieq = {[y0,¥1, .-, ¥p,pl [y: € R*5 i € {0,1,2,3}}. Next, the
output sequences obtained from different scanning routes are fused according to the operations in
Fig. 2, such as flipping or transposing sequences. As a result, each element in the output sequence
Y € RPXP>*K can integrate influences with its adjacent regions from different directions.

3.2.2 Bi-directional Spectral Scanning Mechanism

Although the above scanning mechanism involves the spatial contextual information within the data
cube, it lacks consideration for continuous spectral band information inherent in HSI data. One naive
approach to address this issue is to scan the data cube band by band, capturing the semantic cues
from rich spectral bands. However, due to the unidirectional information induction attribute of state
space models, the spectral scanning mechanism conducted in a single direction may fail to adequately
capture the contextual information between spectral bands, leading to limited spectral utilization.

To this end, we further design a bi-directional spectral scanning mechanism, analyzing the varying

tendency of the continuous spectrum from multiple directions by scanning spectral dimension band

by band. We first flatten the HSI patch along the spatial dimensions to acquire the data matrix
2 . i B B B

S € R¥*”", and then recurrently calculate each item of sequences Syeq = {[s, 81, ...,s%] |s} €

R1*P? ,i € {0,1}} by following operation:

h! = Ageh! ) + Byes!

i i i (6)

pj = Cpehj +sj
where p§ denotes the jth element in the ¢th order of output sequences. Xspe, Espe and C spe TEpresent
the trainable parameters in BSS. After scanning, we can obtain a set of output sequences Pgeq =
{[p6, P, - -, Pk P} € R*P? i € {0,1}}. Next, the output sequences P € RPXP*K are fused
from different routes, which integrate influences from adjacent bands into each spectral band, further
boosting its discriminative ability.

3.2.3 Spatial-spectral Mixture Gate

After acquiring the spatial and spectral information of HSI through the two scanning modules,
calculating the optimal mixture representation becomes a key challenge. As discussed in Sec. 1, the
effectiveness of spatial and spectral features in HSI classification differs across different scenarios,
thereby their direct merging without prior may lead to contradictions.

Specifically, we note that spectral information acts more prominence in the classification of uniform
regions as opposed to those characterized by complicated textures. This is attributable to the scarcity



Table 1: Comparison results (OA%/AA%/k) on the Indian Pines test set. The best is in bold.

Categor | CNNs | RNN | Transformers | Mamba
gory [ I-DCNN 2-DCNN  miniGCN | RNN  CasRNN | ViT  SpectralFormer _morphFormer SSFTT _ GraphGST | S*Mamba
1 47.83 65.90 72.54 69.00 61.78 53.25 70.52 93.14 91.18 95.81 94.44
2 42.35 76.66 55.99 58.93 57.78 66.20 81.89 97.70 98.72 98.85 100.00
3 60.87 92.39 92.93 77.17 75.00 86.41 91.30 100.00 100.00 100.00 100.00
4 89.49 93.96 92.62 82.33 90.16 89.71 95.53 96.87 96.19 97.09 98.43
5 92.40 87.23 94.98 67.72 81.35 87.66 85.51 99.86 100.00 98.57 100.00
6 97.04 97.27 98.63 89.07 87.70 89.98 99.32 99.77 100.00 99.54 100.00
7 59.69 77.23 64.71 69.06 79.08 7222 81.81 86.71 95.10 97.93 98.47
8 65.38 57.03 68.78 63.56 56.29 66.00 75.48 97.93 94.44 94.50 98.10
9 93.44 72.87 69.33 65.07 60.11 57.09 73.76 94.33 90.96 95.04 95.04
10 99.38 100.00 98.77 95.06 95.06 97.53 98.77 100.00 100.00 98.76 100.00
11 84.00 92.85 87.78 88.67 82.23 87.62 93.17 99.12 99.35 99.59 97.67
12 86.06 88.18 50.00 50.00 46.97 63.94 78.48 99.09 100.00 98.48 100.00
13 91.11 100.00 100.00 97.78 97.78 95.56 100.00 100.00 100.00 100.00 100.00
14 84.62 84.62 48.72 66.67 56.41 79.49 79.49 92.31 100.00 100.00 100.00
15 100.00 100.00 7273 81.82 81.82 90.91 100.00 100.00 100.00 100.00 100.00
16 80.00 100.00 80.00 100.00  100.00 80.00 100.00 100.00 100.00 100.00 100.00
OA (%) [ 7043 75.89 75.11 70.66 68.65 71.86 81.76 96.38 96.11 97.06 97.92
AA (%) 79.60 86.64 78.03 76.37 75.59 78.97 87.81 97.30 97.92 98.39 98.88
K 0.6642 0.7281 0.7164 0.6673  0.6464 | 0.6804 0.7919 0.9584 0.9555 0.9664 0.9761

Table 2: Comparison results (OA%/AA%/k) on the Pavia University test set. The best is in bold.

Category | CNNs | RNN | Transformers | Mamba
| I-DCNN_2-DCNN_ miniGCN | RNN  CasRNN | ViT  SpectralFormer morphFormer SSFTT _ GraphGST | S’Mamb

1 88.90 80.98 96.35 84.01 77.62 71.51 82.73 89.90 87.64 84.99 96.24

2 58.81 81.70 89.43 66.95 63.41 76.82 94.03 75.26 76.60 82.43 98.75

3 73.11 67.99 87.01 58.46 57.30 46.39 73.66 85.90 85.56 79.94 85.95

4 82.07 97.36 94.26 97.70 98.42 96.39 93.75 86.33 95.54 90.80 97.73

5 99.46 99.64 99.82 99.10 99.37 99.19 99.28 95.87 100.00 100.00 99.10

6 97.92 97.59 43.12 83.18 75.17 83.18 90.75 95.54 98.08 90.66 99.30

7 88.07 82.47 90.96 83.08 88.48 83.08 87.56 98.27 99.18 98.78 99.90

8 88.14 97.62 77.42 89.63 87.25 89.63 95.81 98.01 94.41 93.10 98.93

9 99.87 95.60 87.27 96.48 99.11 96.48 94.21 96.86 98.62 99.25 98.36

OA (%) 75.50 86.05 79.79 77.13 73.60 76.99 91.07 84.65 85.72 86.39 97.81

AA (%) 86.26 88.99 85.07 84.29 8291 80.22 90.20 91.32 92.85 91.11 97.14
K 0.6948 0.8187 0.7367 0.7101 0.6677 | 0.7010 0.8805 0.8162 0.7941 0.8220 0.9705

of spatial cues within homogenous regions, which in turn emphasizes the importance of spectral
information for differentiating these land cover. In this case, PCS may contribute to misleading
directions as a consequence of the redundant features. Inversely, it offers considerable prior in dealing
with regions characterized by complex textures, thereby enhancing the richness of discriminative
representation.

To address this, we here propose a spatial-spectral mixture gate to dynamically merge the above
features for each position, wherein each location is assigned a group of learnable weights M €
RPXP*2 to determine the ratio of various features as follows:

KL — exp(H(Y;0y))
0 exp(H(Yéeg)) +exp(H(P§@g)) @)
X, — exp(H(P;0y))

— exp(H(Y;0,)) +exp(H(P; 0,))

where H(*; ©) indicates the feature encoder in SMG. It consists of two fully connected layers with
a gaussian error linear unit activation function. Next, a softmax activation function is applied to
transfer them into probability maps, whose values are between 0 and 1. Subsequently, we merge the
above features as follows:

F=Mp-1(My>7)0Y +(M;-1(M; >7)) 0P (8)

where 7 is the threshold for pruning those low contribution features. By employing this gating
mechanism, redundant features that do not contribute to HSI classification can be effectively truncated,
facilitating the integration of spatial-spectral attributes. The intuition behind SMG is to encourage
competition between the two types of features to select the most discriminative ones under different
scenarios, thereby achieving a more satisfactory fusion.



Table 3: Comparison results (OA%/AA%/x) on the Houston 2013 test set. The best is in bold.

Categor | CNNs | RNN | Transformers | Mamba
gory [ I-DCNN 2-DCNN _ miniGCN | RNN  CasRNN | ViT  SpectralFormer _morphFormer SSFTT  GraphGST | S*Mamba
1 87.27 85.09 98.39 82.34 82.62 82.81 81.86 93.63 85.37 85.66 83.10
2 98.21 99.91 92.11 94.27 96.90 96.62 100.00 98.02 99.81 99.91 100.00
3 100.00 77.23 99.60 99.60 99.60 99.80 95.25 99.20 95.05 95.64 99.60
4 92.99 97.73 96.78 97.54 96.97 99.24 96.12 95.64 90.24 91.29 98.20
5 97.35 99.53 97.73 93.28 97.35 97.73 99.53 98.95 100.00 100.00 100.00
6 95.10 92.31 95.10 95.10 95.10 95.10 94.41 100.00 100.00 100.00 95.80
7 77.33 92.16 57.28 83.77 76.21 76.77 83.12 86.66 75.00 76.96 89.37
8 51.38 79.39 68.09 56.03 44.63 55.65 76.73 83.85 89.74 89.84 88.60
9 27.95 86.31 53.92 72.14 64.97 67.42 79.32 75.92 76.86 83.57 92.45

10 90.83 43.73 77.41 84.17 78.28 68.05 78.86 66.50 90.92 91.79 92.57
11 79.32 87.00 84.91 82.83 88.43 82.35 88.71 82.06 87.95 91.46 91.56
12 76.56 66.28 77.23 70.61 66.38 58.50 87.32 87.22 92.02 90.49 90.97
13 69.47 90.18 50.88 69.12 70.53 60.00 72.63 84.91 80.00 81.40 89.12
14 99.19 90.69 98.38 98.79 100.00 98.79 100.00 100.00 100.00 100.00 100.00
15 98.10 77.80 98.52 95.98 96.62 98.73 99.79 99.57 100.00 100.00 100.00
OA (%) 80.04 83.72 81.71 83.23 81.22 80.41 88.01 88.27 89.62 90.80 93.36
AA (%) 82.74 84.35 83.09 85.04 83.64 82.50 88.91 90.15 90.87 91.93 94.09
K 0.7835 0.8231 0.8018 0.8183  0.7967 | 0.7876 0.8699 0.8727 0.8873 0.8853 0.9279
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Figure 3: Classification results on the Indian Pines dataset. Figure 4: Parameter analysis of the

patch size in S2Mamba.

4 Experiment

4.1 Experimental Setup

Datasets. We conduct evaluations of our S2Mamba on three publicly available datasets, focusing
on hyperspectral image classification: Indian Pines, Pavia University, and Houston 2013 datasets.
The Indian Pines dataset consists of 145x 145 pixels at a ground sampling distance of 20 m and
220 spectral bands spanning the wavelength range of 400-2500 nm, in which 200 spectral bands
are preserved after removing 20 noisy and water absorption bands. The dataset is annotated using
16 land cover categories, including crops, trees, and other vegetation. The Pavia University dataset
consists of 610x340 pixels at a ground sampling distance of 1.3 m and 103 spectral bands spanning
the wavelength range of 430 to 860 nm, which is annotated using 9 land cover categories, including
asphalt, meadows, gravel, trees, metal sheets, bare soil, bitumen, bricks, and shadows. The Houston
2013 dataset consists of 349x 1905 pixels at a ground sampling distance of 2.5 m and 144 spectral
bands spanning the wavelength range of 380 to 1050 nm. The dataset is annotated using 15 land
cover categories, including healthy grass, stressed grass, synthetic grass, trees, soil, water, residential,
and others. Notably, all experiments use the same training and validate samples as [12] for a fair
comparison, which is also detailed in the supplementary materials.

Evaluation. To evaluate the classification performance of our S2Mamba, we utilized three commonly
used evaluation metrics: overall accuracy (OA), average accuracy (AA), and kappa coefficient (k).

Implementation Details. All the experiments are conducted within the PyTorch framework, utilizing
a single NVIDIA GeForce RTX 4090 with 24-GB GPU memory. For the initialization of our
S2Mamba, its parameters are randomly initialized by a zero-mean normal distribution with a standard
deviation of 0.01. AdamW [59] is adopted as the optimizer for S?Mamba, where the exponential
learning rate strategy is applied with an initial value of 0.0001. The model is trained with 400 epochs,
where the batch size is set to 64. The patch size of inputs is set to 7, 11, and 9 for Indian Pines, Pavia
University and Houston 2013, respectively. The number of blocks [V is set to 1.
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Table 4: Ablation study on the impact of each component in S?Mamba. "PCS": Patch Cross Scanning.
"BSS": Bi-directional Spectral Scanning. "SMG": Spatial-spectral Mixture Gate.

Indian Pines Pavia University Houston 2013
OA (%) AA (%) Kk | OA (%) AA (%) k| OA(%) AA (%) K

96.45 97.99 09593 | 96.42 96.53  0.9521 | 90.78 92.05  0.9002
96.51 98.27 09599 | 96.24 96.21  0.9493 | 92.19 9329 09154
97.19 98.56  0.9678 | 97.17 97.12  0.9620 | 92.74 93.36  0.9211
v 97.92 98.88 0.9761 | 97.81 9714 09705 | 93.36 94.09  0.9279
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4.2 Comparison with State-of-the-Arts

We conduct a comprehensive evaluation of our S2Mamba and compare it with several comparative
approaches, including CNN-based (1-D CNN, 2-D CNN, miniGCN [11]), RNN-based (RNN, Cas-
RNN [30]), and Transformer-based (ViT [19], Spectralformer [12], morphformer [14], SSFTT [13],
GraphGST [31]) methods, where 1-D CNN, 2-D CNN, RNN, and ViT are implemented following
[12]. All methods are tested using the optimal experimental settings reported in their papers or
re-implemented by their official code.

Indian Pines. In Table 1, we benchmark performances on the Indian Pines dataset. The results,
presented in Table 1, demonstrate that our approach significantly outperforms state-of-the-art hyper-
spectral image classification methods on 14 categories, achieving the best comprehensive performance
in terms of OA (97.92% vs. 97.06%), AA (98.88% vs. 98.39%), and x (0.9761 vs. 0.9664). In
particular, we surpass the performance of the typical Transformer-based method, i.e., SpectralFormer
[12], which utilizes transformer architecture to extract long-range dependencies from continuous
spectral bands. In contrast, our S2Mamba, involving more efficient basic structures and elaborate
designs, achieves superior results in terms of OA, AA, and « (e.g., improving the OA from 81.76% to
97.92%). Furthermore, Fig. 3 shows examples of prediction maps. It demonstrates that our S?Mamba
is capable of producing accurate predictions of each category.

Pavia University. We further evaluate our S2Mamba on the Pavia University dataset, whose scenario
includes numerous complex spatial textures. As illustrated in Table 2, our method significantly
outperforms the comparative techniques with at least 6.74%, 4.29%, and 9.00% in terms of OA, AA,
and k, respectively. This confirms that our S2Mamba can offer a more satisfactory solution under
complex scenarios. Fig. 5 shows that our approach achieves superior performance than others with
more completed prediction maps, such as asphalt (masked in light green color) and meadow (masked
in dark green color).

Houston 2013. Furthermore, we compare our proposed method with the state-of-the-art methods
on the more challenging dataset, i.e., Houston 2013. The experimental results, presented in Table
3, demonstrate that our S2Mamba significantly outperforms state-of-the-art hyperspectral image
classification methods on 8 categories, achieving the best comprehensive performance in terms of OA,
AA, and Kappa coefficient. Specifically, it exhibits 2.56%, 2.16%, and 4.26% gains in comparison
with the advanced Transformer-based method [31] on OA, AA, and &, respectively. Fig. 6 shows
classification predictions, which demonstrates that our S2Mamba realizes the most precise results.
For instance, our method is capable of accurately identifying highways (masked in blue color) under
shadows, demonstrating its effectiveness.
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Figure 7: Parameter analysis of
different gating thresholds.

4.3 Ablation Study

Figure 8: Parameter analysis of
different latent dimensions.

Figure 9: Parameter analysis of
different layer numbers.

The effectiveness of each component in S2Mamba. We conduct ablation studies in Table 4 to show
the impact of each component in S?Mamba. The first row shows the performance using the PCS
mechanism, which efficiently considers the spatial relations of pixels by a Mamba-based module. As
can be seen, it outperforms most comparative methods with 96.45%, 96.42%, and 90.78% OA on
Indian Pines, Pavia University, and Houston 2013 datasets, respectively, due to its effective ability
in modeling spatial contexts. Then, by incorporating a bi-directional spectral scanning mechanism,
we improve performance to 96.72%, 97.17%, and 92.74% OA on the three datasets. This suggests
that the BSS can offer more discriminative cues by scanning continuous spectral bands. Finally, by
combining both the PCS, BSS, and SMG, we further boost the performance to 97.92%/98.80%/0.9746,
97.81%/97.14%/0.9705, and 93.36%/94.09%/0.9279 in terms of OA/AA/k on the three datasets,
which confirms the SMG module can preferably merge spatial and spectral features for each location
by a feature competition. The comprehensive results demonstrate that our S2Mamba can effectively
learn discriminative representations of HSI data.

Parameter analysis of each component in S2Mamba. We study the effectiveness of hyperparame-
ters in S2Mamba, including patch size, gating threshold, latent dimension, and layer numbers. As



shown in Fig. 4, it can be observed that the optimal patch sizes of Indian Pines, Pavia University, and
Houston 2013 are 7, 11, and 9, separately, which is consistent with the expectation that the last two
datasets comprise more complex spatial boundaries, thereby larger patch inputs are required. Fig.
7 demonstrates that firming the gating threshold to 0.1 can achieve satisfactory results, which can
filter those redundant features. Figs. 8 and 9 denote that 64 and 1 are the optimal values of hidden
dimension and layer number, respectively. This confirms our S2Mamba can achieve state-of-the-art
performance with a single-block network, whereas deeper layers or larger hidden dimensions can not
yield additional improvements.

5 Conclusion

In this paper, we propose S?Mamba, a novel architecture for hyperspectral image classification.
S?Mamba comprises a Patch Cross Scanning mechanism and a Bi-directional Spectral Scanning
mechanism for learning the contextual information from spatial and spectral aspects, respectively,
which utilize the selective structured state space models as alternatives to self-attention mechanisms
for capturing long-range dependency with linear complexity, thereby efficiently improving the results.
Furthermore, to optimally merge the above features, a Spatial-spectral Mixture Gate is proposed to
adjust the fusion ratio for each position with learnable matrices, further enhancing the classification
performance. Experimental results on three datasets verify the superiority of our S?Mamba.
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