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Abstract

For interacting classical field theories such as general relativity exact solutions typically can only be found
by imposing physically motivated (Killing) symmetry assumptions. Such highly symmetric solutions are then
often used as backgrounds in a perturbative approach to more general non-symmetric solutions.

If the theory is in addition a gauge theory such as general relativity, the issue arises how to consistently com-
bine the perturbative expansion with the gauge reduction. For instance it is not granted that the corresponding
constraints expanded to a given order still close under Poisson brackets with respect to the non-symmetric de-
grees of freedom up to higher order.

If one is interested in the problem of backreaction between symmetric and non-symmetric dgrees of freedom,
then one also must consider the symmetric degrees of freedom as dynamical variables which supply additional
terms in Poisson brackets with respect to the symmetric degrees of freedom and the just mentioned consistency
problem becomes even more complicated.

In this paper we show for a general theory how to consistently combine all of these notions. The idea
is to first perform the exact gauge reduction on the full phase space which results in the reduced phase
space of observables and physical Hamiltonian respectively and secondly expand that physical Hamiltonian
perturbatively. Surprisingly, this strategy is not only practically feasible but also avoids the above mentioned
tensions.

There is also a variant of this strategy that employs only a partial gauge reduction with respect to some
of the non-symmetric degrees of freedom on the full phase space. We show that in perturbation theory the
left over constraints close up to higher orders but not exactly, unless there is only one of them such as in
cosmology. Since such classically anomalous constraints are problematic to quantise, the full gauge reduction
for which these issues are absent is preferred in this case.

1 Introduction

In interacting field theories (such as general relativity (GR)) to find the general, exact solution of the field
equations is not feasible. However, exact solutions can often be found when high amounts of (Killing) symmetries
are imposed because this effectively reduces the number of dimensions and simplifies the associated PDE system.
An extreme case are the cosmological solutions by asking for homogeneous spacetimes which reduces the Einstein
equations to a system of ODE’s. Other well known examples are spherically symmetric or axi-symmetric spacetimes
describing black holes of Schwarzschild or Kerr type respectively. See [1] for an almost complete list of known
exact solutions of GR with and without matter.

To find more general solutions one can use perturbative methods. One uses an exact symmetric solution as
background and the non-symmetric deviations of the field from that symmetric background as a perturbation.
The field equations can then be expanded order by order with respect to these perturbations and one can attempt
to find solutions to any desired accuracy with respect to the perturbative order.
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This simple idea gets complicated when the field theory under consideration is a gauge theory such as GR
wich is subject to the spacetime diffeomorphism gauge group. We will work in the Hamiltonian setting with an
eye towards canonical quantisation and discuss here only gauge symmetries generated by constraints of first class
type in Dirac’s classification [2] and only the case of a totally constrained system for which the Hamiltonian of
the theory is a linear combination of constraints. Every gauge system can be reduced to that form by getting rid
of the second class constraints replacing the Poisson bracket by the Dirac bracket and by parametrising a possibly
present physical Hamiltonian.

In the presence of such gauge symmetries, the exact field equations split into two sets, one of them presenting
constraints on the initial data and the other one presenting dynamical equations. The dynamical equations in
turn can be obtained from the Hamiltonian in terms of Poisson brackets on the full phase space. For GR the
constraints are known as spatial diffeomorphism and Hamiltonian constraints which are of first class. Systems
of first class constraints by definition are in involution under the Poisson bracket on the full phase space and
generate gauge motions on it. The constraint surface in the phase space is the set of points where the constraints
vanish and the reduced phase space is the set of gauge orbits of the constraint surface which comes equipped
with its own Poisson bracket. Functions on the reduced phase space are by construction gauge invariant and
present so called Dirac observables.

When it comes to perturbations around symmetric backgrounds, we split the phase space coordinates into
two sets, one of them presenting the symmetric background, the other one the non-symmetric perturbations. One
expands the constraints in powers of these perturbations and may call the constraints truncated to n-th order in
those perturbations constraints of n-th order. At this point one has to make a decision whether one wants to take
backreaction into account or not. If not, one treats the background variables as prescribed external functions and
just considers the phase space described by the non-symmetric perturbations. If yes, the background variables
are still dynamical, we still consider the full phase space but use coordinates adapted to the (Killing) symmetry
under investigation. In either case, it is not at all clear whether the n-th order constraints are in involution,
at least up to higher than n−th order. Without backreaction this is is known to be the case for n ≤ 2 (see
e.g. [4]) for a general theory explaining the success of cosmological, Schwarzschild and Kerr perturbation theory
resulting in the well known Mukhanov-Sasaki, Wheeler-Zerilli and Teukolsky equations respectively [8, 9, 10].
With backreaction this is known not to be the case in examples but there is a procedure for how to correct this
within perturbation theory and with backreaction for the case of cosmology and for n = 2 [5]. Beyond n = 2,
to the best knowledge of the author, there is no commonly accepted procedure for how to reconcile perturbation
theory with gauge symmetry (with or without backreaction), see e.g. [6, 7] and references therein for two concrete
proposals within the Lagrangian and Hamiltonian formulation respectively which are not obviously equivalent.
This poses a severe problem because without a consistent notion of gauge invariance, the observables of the theory
cannot be extracted and the connection with phenomenology becomes veiled. Furthermore, on the practical side,
within the current proposals the gauge invariant variables have to be recalculated every time one increases the
perturbative order. It would be more convenient to disentangle gauge invariance from perturbation theory.

A possible avenue has been suggested in [11] where one passed to the exact reduced phase space before
performing perturbation theory. This solves the tension because the gauge symmetry has now been taken care
of to all orders. One can then extract the physical Hamiltonian and observables using deparametrisation and
perform perturbation theory in the usual way that is familiar from unconstrained theories, directly in terms of
fully gauge invariant observables and including backreaction. However, in [11] this could only be achieved by
adding artificial dust matter to GR. While the effects of the dust were shown to be negligible in the late universe
for small dust energy tensor, it would be desirable to be able to follow the strategy of [11] also without dust matter.

In this paper we consider the more difficult but physically more interesting case of including backreactions.
In principle this is nothing but the full theory, however, written in field coordinates adapted to the symmetry of
interest. We show, for a general first class theory subject to mild structural conditions that are motivated by
the perturbative structure of the constraints of GR when using Killing symmetry reductions, that the machinery
of deparametrisation of gauge systems [3] can be consistently combined with perturbation theory. This can be
done in two versions. Either one performs a full reduction of all constraints or only a partial reduction corre-
sponding to constraints that are naturally associated with some of the non-symmetric degrees of freedom. The
exact full reduction immediately leads to a fully gauge invariant physical Hamiltonian and is analogous to [11]
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while the exact partial reduction is analogous to [5] and keeps some left over constraints which are in involution.
Surprisingly, these exact expressions, which are in general known only implicitly, can be accessed perturbatively
as we show in this paper. The corresponding perturbative techniques do not require more than standard Taylor
expansions of the constraints and for GR these have been worked out to some extent also to higher than second
order for several symmetric backgrounds. However, the consistency between gauge reduction and perturbation
theory imposes that the bits and pieces of these expressions be assembled in a novel way.

At second order, the resulting expressions reproduce the results of [5] for second order cosmological per-
turbation theory with backreaction. Since our method is not confined to n = 2, it embeds the method of [5]
in a wider context. Our method can also be applied to the case of more than one unreduced constraint. In
that case, the unreduced, perturbed constraints do close up to higher orders (trivially, in the case of just one
unreduced constraint, they close exactly at any order) but not exactly. Therefore, as quantising constraints which
are already classically anomalous are problematic in the quantum theory, the partial reduction version appears to
be disfavoured in this case (e.g. black hole perturbation theory). As an alternative, one may follow the theory
developed in [12] precisely for such “only approximately” first class constraints which is designed to deal with
this problem, roughly by considering the closure violation as rendering the approximate constraints second class
and applying the quantisation methods developed for second class constraints [3].

The architecture of this paper is as follows:

In section two we explain the general research question and motivate the structure of the canonical gauge
system with respect to the symmetry reduction using the Killing reductions that one uses in GR. We pin point the
problems that arise when one tries to combine standard Taylor expansions of constraints with gauge reduction.

In section three we review the reduced phase space approach to first class gauge systems, in particular the
notion of relational Dirac observables subordinate to a choice of gauge fixing conditions or “clock” functions and
corresponding physical Hamiltonian. Equivalently one may use the gauge fixing approach leading to the so-called
“true degrees of freedom” subordinate to such a choice of gauge fixing condition and corresponding “reduced”
Hamiltonian.

In section four we combine sections two and three which leads to a split of the canonical coordinates into four
groups: symmetric or non-symmetric gauge degrees of freedom and symmetric or non-symmetric true degrees of
freedom. Likewise, the constraints split into two groups corresponding to symmetric or non-symmetric smearing
functions. In abuse of notation we call them symmetric or non-symmetric but note that in general they neither
close among themselves nor just generate gauge transformations just on the symmetric or non-symmetric degrees
of freedom. We then solve the non-perturbative constraints for the gauge degrees of freedom exactly, subordinate
to a choice of gauge fixings. The split described suggests to adapt the gauge fixings to that split and thus to
reduce the symmetric or non-symmetric constraints with respect to some of the symmetric or non-symmetric
gauge degrees of freeedom respectively. The result of that step is a reduced Hamiltonian which just depends on
the true degrees of freedom, both symmetric and non-symmetric.
For sufficiently complicated systems, this exact reduced Hamiltonian will be known only implicitly involving
inversions of functions etc. which makes it of little practical use. Surprisingly, it is still possible to derive a
practically useful perturbation theory. This comes in two versions, the fully reduced and the partially reduced
version described above and we outline the full version in the same section. We will see that this involves
nothing but standard Taylor expansions of the constraints but assembelled in a novel fashion in order to meet the
consistency with gauge invariance. Hence standard unreduced perturbation theory is still valid, but our approach
assembles its ingredients directly and unambiguously into objects that have a physical (gauge invariant) meaning.

In section five we lay out the reduction theory for the partially reduced version, also called “reduction in
stages”. The motivation for such an approach could be to perform a classical gauge reduction with respect
to some of the non-symmetric degrees of freedom eliminating just the non-symmetric constraints and then to
quantise the resulting remaining symmetric constraints. A prominent example for this is the hybrid approach to
quantum cosmology [13]. Again, this is practically useful only when applying perturbation theory to the resulting
constraints. The problem is that those perturbed resulting constraints do not close exactly but only up to higher
order in perturbation theory which poses a challenge for quantisation, unless there is only one of them, which is
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the case in cosmology which is why [13] is successful. We show that the “in stages” approach for systems with
only one symmetric constraint reproduces the framework of [5] obtained for 2nd order cosmological perturbation
theory with backreaction and thus embeds this framework into our perturbation theory that is also valid at higher
orders.

In section six we detail the perturbation theory for the remaining constraints of a partially reduced system
including backreaction. The formulae we write can directly be applied to higher order cosmological perturbation
theory with backreaction and thus can be applied for instance in the study of cosmological non Gaussianities.
We supply these formulae for general orders in terms of an iteration scheme and solve the scheme explicitly for
third order.

In section seven we conclude and give an outlook into the many future applications of the present work, such
as quantum black hole perturbation theory which we have treated by the methods presented in the present paper
in [14].

2 Symmetry reduction, gauge reduction, backreaction and perturbation

theory

In the first subsection we motivate the general structure of the gauge systems for which we intend to develop
perturbation theory around symmetric configurations using the example of general relativity (GR) where it is
physically motivated to consider Killing reductions. In the second subsection we abstract from the example of GR
and summarise the structure that we found in the first subsection. This structure is crucial for the constructions
that follow in the subsequent sections.

2.1 Killing reductions in GR and mode decompositions

We consider a group G which acts via diffeomorphisms ϕg, g ∈G on tensor fields T on the spacetime manifold
M . We have ϕg ◦ϕg′ = ϕgg′ and ϕ1G = 1Diff(M). If the set of tensor fields under consideration includes a metric
then it is sufficient to consider purely co-variant tensor fields so that the action is just by pull-back T 7→ ϕ∗T
otherwise we also have to consider push-forwards for mixed tensors carrying also contra-variant structure. For
the purpose of this motivation we confine ourselves to theories with metric fields, the additional details needed
for the general case are easy to supply.

A tensor field is called symmetric with respect to G iff ϕ∗
gT = T for all g ∈G, otherwise non-symmetric. We

also call a symmetric tensor a zero mode for reasons that become clear shortly. The group G acts of course also
on M via ϕg and M has invariant submanifolds N = ϕg(N) for all g ∈G. We assume that the manifold M
has the product structure M = M1 ×M2 with corresponding coordinates (ρ, θ) such that ρ labels the invariant
submanifolds N = Nρ, ρ =const. and θ are “angular” coordinates on the Nρ. In particular, the functions ρ are
invariant scalars on M and ϕg acts non-trivially only on the coordinates θ. In other words, M is foliated by the
leaves Nρ diffeomorphic to M2 with foliation parameters ρ.

This warped structure motivates to perform harmonic analysis on M2: We note that a (pseudo-) tensor t
on M2 has both a “spin” transformation of its indices and an “orbital” transformation of its arguments. The
spin part can be considered as a finite dimensional representation πs of G and the orbital part as an infinite
dimensional one πo ≡ φ· and thus the tensor transfoms in the infinite dimensional tensor product representation
πs ⊗ πo as

[ϕ∗
gt](θ) = πs(g) · t(ϕg(θ)) (2.1)

Suppose that such a representation can be decomposed into irreducibles π. An irreducible tensor harmonic tπ
on M2 of type π where π is an irreducible representation of G corresponds precisely to such a decomposition.

A distinguished role in what follows is played by an invariant metric field Ω on M2 of Euclidian signature
i.e. ϕ∗

gΩ = Ω, g ∈G which we assume to exist. It is a tensor harmonic of degree two with respect to the trivial

representation. It follows that dµ(θ) = |det(Ω)(θ)|1/2 dθ is an invariant measure on M2, that is

∫
M2

dµ(θ) f(ϕg(θ)) =

∫
M2

dµ(θ) f(θ) =: µ(f) (2.2)
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for all measurable functions f on M2. We assume that G and therefore M2 is compact and µ or Ω can therefore
be normalised such that µ(1) = 1. Here dθ is the Lebesgue measure on M2. In the non-compact case one
ususally compactifies M2 (e.g. toroidally) and considers a decompactification limit at the end of the quantisation
process (thermodynamic limit).

Using Ω we can define an inner product on the space Ld
2 of square integrable tensors on M2 of degree d

< t, t′ >:=

∫
M2

dµ(θ) t(θ) · [⊗d Ω−1(θ)] · t′(θ) (2.3)

where · denotes the only possible contraction of indices of the tensors involved with the inverse metric Ω−1 which
grants that the inner product is positive. The complex conjugation in (2.3) can of course be dropped when the
tensors are real valued but often it is convenient to consider complex valued tensors. We note that G acts unitarily
on Ld

2.
To become more concrete, we consider first degree d = 0, i.e. scalars. Then H = L2(M2, dµ) can be

decomposed into invariant subspaces Hπ corresponding to irreducible representations π. We pick an ONB
Lπ
k , k = 1, ..,dim(π) wrt (2.3) in Hπ and consider the map Iπ′,π; Hπ → Hπ′ defined by Iπ,π′ · v :=

∑
k′ L

π′

k′ <
Lπ′

k′ , v1 >H. Using unitarity we see that Iπ,π′ is an intertwiner. By definition of irreducible representations, the
intertwiner must be trivial, i.e. the identity when the representations are equivalent and zero when they are not
(Schur’s lemma). It follows that the Lπ

k form an orthonormal system of H and we assume that it is in fact an
orthonormal basis i.e. that Plancherel’s theorem holds. This decomposition denotes the “orbital” part πo = π of
the decomposition. Now tensors of degree d > 0 can be obtained by combinations of multiple actions of the Ω
compatible torsion free covariant differential D on scalars together with contractions by Ω and η where η is the
totally skew pseudo-tensor on M2. A tensor is called polar and axial respectively if the number of η factors used
is even and odd respectively so that the tensor itself is a tensor and pseudo tensor respectively. Given a basis of
(pseudo-) tensors of degree d so obtained from scalars, we can decompose them into orthogonal subspaces with
respect to the fibre metric ⊗dΩ−1. These spaces are also invariant under G because they are built from covariant
tensor operations. This decomposition denotes the “spin” part πs of the decomposition. Now given a tensor of
a certain spin type we can restrict the scalars on which the invariant tensor operations act to the orbital space
labelled by πs. This completes the concrete description of irreducible tensor harmonics of type πs ⊗ πo.

The relevance of this with regard to perturbation theory is now as follows: Given a tensor field T on M =
M1×M2, for fixed ρ we can consider it as a collection of tensor fields on M2. To do this we split the coordinates
xµ, µ = 0, ..,m = m1 +m2 − 1 into ρα, α = 0, ..,m1 − 1 and θA, A = 1, ..,m2 and accordingly each tensor
T on M of total degree d can be considered as a collection of tensors of degree d2 = 0, 1, .., d on M2 with
fixed d1 = d, d − 1, .., 0 indices taking values in the set of values of α and the remaining the values of A.
Each tensor in this collection transforms in some finite dimensional representation of G. This is because for G
compact, its irreducible representations are completely classified, they are all finite dimensional and and every
representation decomposes into irreducibles [15]. Therefore, all tensor fields T on M can be uniquely decomposed
into irreducible tensor harmonics. The expansion coefficients in that decomposition are tensors on M1 i.e. we
have a neat decomposition of any T on M into a linear combination of tensor products tπ1 ⊗ tπ where tπ is an
irreducible tensor harmonic of type π on M2, called a mode and tπ1 is some tensor on M1. The perturbative
structure is now defined by distinguishing between the tensors tπ1 corresponding to the trivial representation, i.e.
the zero modes or symmetric tensors, and the tensors tπ1 corresponding to non-trivial representation, i.e. the
non-zero modes or non-symmetric tensors. The zero modes are declared as background degrees of freedom while
the non zero-modes are declared as perturbations.

So far we have used spacetime language. In the canonical approach one considers globally hyperbolic space-
times (M,g) whose underlying manifold is diffeomorphic to a Cartesian product R× σ for some m− 1 manifold
σ [16]. We will assume that the ϕg preserve the time axis and therefore all that we have said applies also to
σ = σ1 × M2 with M1 = R × σ1. Next to the tensor fields themselves in the canonical formulation now one
also needs their first time derivatives on the Cauchy surface σ or equivalently their conjugate momenta which are
tensor densities of weight one of dual type (i.e. purely contra-variant if the tensor fields are purely co-variant).
Thus for each tensor mode tπ1 we have a momentum pπ1 . These are automatically canonically conjugate. To see
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this, we consider the symplectic structure at fixed t

Θ =

∫
σ
dm−1x P · [δT ] (2.4)

where P is conjugate to T and and both P, T have not yet been decomposed into tensor harmonics. Using
coordinates such that dm−1x = dρ dµ, we now expand both P, T into tensor harmonics P π ⊗ tπ, T

π ⊗ tπ and
see that the mixed terms drop out because (2.4) is of the form of the inner product (2.3), specifically

Θ =
∑
π

∫
σ1

dρ1 P
π · [δT π] (2.5)

where ρ = (t, ρ1) was used.
Next we come to the constraints. By construction, the constraints C = C(T, P ) are themselves tensor fields

on σ of density weight one constructed from the canonical fields T, P while their smearing functions f are dual
tensors of density weight zero. We decompose f into tensor harmonics fπ ⊗ tπ, do the same with P, T and
integrate out M2 resulting in

C(F ) =

∫
σ
dm−1x f · C =

∑
π

∫
σ1

dρ1 f
π· < tπ, C >=:

∑
π

∫
σ1

dρ1 f
π · Cπ (2.6)

Note that Cπ can depend non-trivially on all degrees of freedom T π′

, P π′

.
Perturbation theory now consists in singling out the symmetric degrees of freedom QB = T πt, PB = P πt

with trivial representation πt as background variables and to keep those Qπ = T π, Pπ = P π for non trivial
representation π 6= πt as first order perturbation. Note that for each π we can have several “species” that may
result from additional matter content or because there are several ways to couple spin and orbital dependence
into the same π or because of the remaining tensor structure on M1. We suppress a corresponding species index
in order not to clutter the notation. We can perform a Taylor expansion of the Cπ in terms of the Qπ′ , Pπ′ with
coefficients that depend only on the QB , PB . Let Cπ,(n) be the n-th order perturbation of Cπ i.e. a homogenous
polynomial in the Qπ′ , Pπ′ of degree n. Then an important observation is that Cπ,(0) = 0 if π 6= πt and Cπ,(1) = 0
for π = πt because of the orthogonality properties of (2.3).

Finally it will be convenient to assume that the tensorial type with respect to M2 of the smearing functions f
of the constraints also appears among the list of canonical tensor fields or their canonical momenta, possibly after
performing a canonical transformation. In GR these tensorial types are scalar and vectorial and the assumption
just made is always met when decomposing the spatial metric with respect to the tensor type on M2.

We close this subsection by mentioning how the above general theory fits with the well known examples rel-
evant for cosmology and black holes in four spacetime dimensions:
i.
For cosmology we assume that σ is compact, say a 3-torus (choosing the torus sufficiently large we cannot obser-
vationally distinguish it from R

3) whence G=SO(2)3 is the translation group of the torus. The tensor harmonics
are then just the Fourier modes of the torus labelled by a vector π ∈ Z

3 and the manifold σ1 is zero dimensional
so that the integral over ρ1 in (2.6) is discarded. The zero modes with π = 0 in this case are just homogeneous
metric and matter degrees of freedom.
ii.
For spherically symmetric Schwarzschild black holes the relevant group is G=SO(3) and the tensor harmonics are
the well known spherical tensor harmonics [17] which are labelled by indices π = (I, l,m) where I is a discrete
index depending on the tensor degree and l,m are the usual quantum numbers labelling the scalar harmonics
Yl,m familiar from the theory of angular momentum. The zero modes are functions that depend only on the
radial variable ρ1 = r.
iii.
For axi-symmetric Schwarzschild black holes the relevant group is G=SO(2) and the tensor harmonics are again
just the Fourier modes of the 1-torus labelled by π ∈ Z. The zero modes are functions that depend only on the
radial and axial variable ρ1 = (r, z).
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Finally notice that while we have here only treated the case of bosonic tensor fields, an extension of tensor
harmonics to spin harmonics i.e. fermionic fields is easily possible by passing to the covering group of the above
groups which is still compact and otherwise performing the same decomposition into irreducibles, see e.g. [18].

2.2 Summary of the symmetry, gauge and perturbative structure and notation

We consider a phase space with canonically conjugate coordinates kA, iA where in field theory A takes values in a
countably infinite index set (the mode labels π, the species labels and if σ1 is not zero dimensional further labels
e.g. corresponding to an orthonormal basis of L2(σ1, dρ1)) but in what follows that range could also be finite.
Likewise we have non-perturbative constraints Cµ where again µ has has countably inifinite range in field theory
but we can also consider finite range in what follows. We invoke the information about the symmetry structure
of the background by splitting µ into pairs µ = (a, j) where a labels the zero (symmetric) modes of the smearing
function fµ and j the non-zero (non-symmetric) modes. Accordingly we have symmetric and non-symmetric
constraints Ca, Cj respectively as coefficients of fa, f j respectively.

As motivated at the end of the previous subsection we can perform a corresponding split also among the
canonical coordinates. But unless the theory is topological there will be additional degrees of freedom. Accordingly
we split

(kA, iA) = ((qa, pa), (x
j , yj), (Q

A, PA), (X
J , YJ)) (2.7)

where the meaning is as follows: Both pairs (q, p) and (Q,P ) correspond to zero modes, i.e. they are symmetric
degrees of freedom. Both pairs (x, y) and (X,Y ) correspond to non-zero modes, i.e. they are non-symmetric
degrees of freedom. This emphasises their grouping with respect to the symmetry and perturbative structure,
that is, one will expand with respect to x, y,X, Y around q, p,Q, P . On the other hand we can group them with
respect to the gauge structure: The index picture suggests to consider the pairs (p, q) and (x, y) as pure gauge
degrees of freedom while the pairs (P,Q) and (X,Y ) are considered as true degrees of freedom.

In other words we have a twisting of four sectors corresponding to the symmetry and gauge aspect: There are
both symmetric and non-symmetric observables (P,Q), (X,Y ) and both symmetric and non-symmetric gauge
variables (p, q), (x, y). The fact that these four pairs of variables are conjugate within the respective pair and
have vanishing Poisson brackets between variables of different pairs was motivated in (2.5) above.

We can now develop perturbation theory on the unreduced phase space coordinatised by (2.7), that is, we
perform a Taylor expansion of the constraints

Ca((p, q), (P,Q), (x, y), (X,Y )), Cj((p, q), (P,Q), (x, y), (X,Y )) (2.8)

with respect to x, y,X, Y at fixed p, q, P,Q. We denote by Ca(n) the n-th order contribution to Ca in that
expansion which is a homogneous polynomial of degree n in x, y,X, Y with coefficients which may depend non-
polynomially on p, q, P,Q. The meaning of Cj(n) is similar. On the other hand the expansion of the constraints
to n-th order is denoted as

C(n)
a =

n∑
k=0

Ca(k), C
(n)
j =

n∑
k=0

Cj(n) (2.9)

and we write O(n) for any function on phase space whose perturbative expansion contains homogeneous orders
of degree n or higher.

The observation made towards the end of the previous subsection translates into the statement that

Ca(1) = 0, Cj(0) = 0 (2.10)

By assumption, the non-perturbative constraints are in involution, that is there are structure functions κ on
the full phase space such that

{Ca, Cb} = κab
c Cc + κab

j Cj

{Ca, Cj} = κaj
b Cb + κaj

k Ck

{Cj , Ck} = κjk
a Ca + κjk

l Cl (2.11)
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where the Poisson brackets {., .} are with respect to all phase space coordinates and the indices a, b, c, ... and
j, k, l, ... have the same range respectively, summation over repeated indices being implied.

We introduce a corresponding perturbative notation κ∗∗(n)
∗, κ∗∗

∗(n) for the structure functions and introduce
the following symmetric and non-symmetric Poisson bracket respectively

{F,G}S := {F, qa} {pa, G}+{F,QA} {PA, G}−{G, qa} {pa, F}−{G,QA} {PA, F}, {F,G}S̄ := {F,G}−{F,G}S
(2.12)

which just takes derivatives with respect to the symmetric and non-symmetric degrees of freedom respectively.
It follows that {O(m), O(n)}S = O(m+n) and {O(m), O(n)}S̄ = O(m+n− 2) which has the advantage that
we can better keep track of the perturbative order. We can use this and matching of perturbative order to derive
the infinite hierachy of exact relations for N = 0, 1, ..

∑
m+n=N ; m,n≥0

{C(m), C(n)}S +
∑

m+n=N+2; m,n≥1

{C(m), C(n)}S̄ =
∑

m+n=N ; m,n≥0

κ(m) C(n) (2.13)

where we have suppressed the indices a, b, c, j, k, l which are the same as in (2.11).
The system (2.13) together with (2.10) contains important information, we only state more explicitly the first

few of them relevant for perturbation theory up ton n = 2:
N = 0:
i.
Since {Ca(0), .}S̄ = 0 = Ca(1)

{Ca(0), Cb(0)} = κab(0)
c Cc(0) (2.14)

i.e. the Ca(0) are in involution with respect to the full Poisson bracket.
ii.
Since Cj(0) = 0

{Cj(1), Ck(1)}S̄ = κjk(0)
a Ca(0) (2.15)

i.e. the Cj(1) close modulo Ca(0) but only with respect to the non-symmetric bracket.
iii.
Since Ca(1) = Cj(0) = 0

κaj(0)
b = 0 (2.16)

N = 1:
i.
Using Ca(1) = 0

0 = κab(1)
k Cc(0) + κab(0)

j Cj(1) (2.17)

ii.
Using Ca(1) = Cj(0) = 0

{Ca(0), Cj(1)}S + {Ca(2), Cj(1)}S̄ = κaj(0)
kCk(1) + κaj(1)

bCb(0) (2.18)

N = 2 :
Using Ca(1) = 0 = Cj(0)

{Ca(0), Cb(2)}S+{Ca(2), Cb(0)}S+{Ca(2), Cb(2)}S̄ = κab(0)
c Cc(2)+κab(0)

j Cj(2)+κab(1)
j Cj(1)+κab(2)

c Cc(0)

(2.19)
We may now apply the following logic: As we consider the non-symmetric degrees of freedom as perturbations
and since in GR the smearing functions also are dynamical degrees of freedom (lapse and shift functions, they
are variables conjugate to the primary constraints of GR) in the expansion of the Hamiltonian

H(f, g) = faCa + gjCj (2.20)

we should consider also fa as of zeroth order and gj of first order. This argument is substantiated by another one
which considers the gauge transformation δF = {H(f, g), F} generated by (2.20). For a symmetric degree of
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freedom F ∈ {q, p,Q, P} which is of zeroth order we have∆F = {H(f, g), F}S while for a non-symmetric degree
of freedom F ∈ {x, y,X, Y } which is of first order we have ∆F = {H(f, g), F}S̄ . Since Ca = Ca(0) + O(2)
while Cj = Cj(1) + O(2) the zeroth order character of F is preserved by δF iff f is considered as zeroth order
and the first order character of F is preserved by δF iff g is considered as first order.

Following this logic the N−th order truncation of H is given by

H(N)(f, g) = fa C(N)
a + gjC

(N−1)
j (2.21)

and we may ask whether the N-th order truncations faC
(N)
a , gjC

(N−1)
j are in involution for various values of N ,

either exactly or up to O(N + 1) terms at least. Due to Ca(1) = Cj(0) = 0 we have H(0)(f) = faCa(0) which
is in involution as demonstrated by (2.14) both with respect to the full bracket and the symmetric bracket only.
This says that symmetry reduction excluding perturbations produces a consistent gauge system.

For N = 2 we find

H(2)(f) = fa [Ca(0) + Ca(2)] + gjCj(1) =: C(2)(f) + C(1)(g) (2.22)

The analysis of the closure of the constraints now depends on whether one wants to incorporate backreaction or
not. With backreaction, the system should close with respect to the full bracket {., .}, without it, it should close
with respect to the non-symmetric bracket {., .}S̄ .

I. No backreaction.
From (2.15) we have directly

{C(1)(g), C(1)(g′)}S̄ = gj(g′)kκjk(0)
aCa(0) = gj(g′)kκjk(0)

aC(2)
a − {gj(g′)kκjk(0)

aCa(2)} (2.23)

We can close the algebra of the C(1)(g) exactly if we impose on p, q, P,Q that Ca(0) = 0 which without
backreaction is possible as the background variables are considered as an external structure. This is what is
usually done [19] and (2.23) it is then in fact Abelian. Otherwise it closes up to a term C(2)(f) modulo an O(4)
correction displayed as the curly bracket term in (2.23) if g, g′ count as first order each. Next from (2.18)

{C(1)(g), C(2)(f)}S̄ = {C(1)(g), C(2)(f)}S̄ = gjfa[κja(0)
kCk(1) + κja(1)

bCb(0) − {Cj(1), Ca(0)}S ] (2.24)

where we used that Ca(0) has vanishing {., .}S̄ brackets. We can close (2.24) exactly if again we impose on
p, q, P,Q that Ca(0) = 0 there and that it is a common critical point of the Ca(0) i.e. their Hamiltonian vector
fields vanish there so that the subtracted term in (2.24) vanishes. Together with the fact that Ca(1) = 0 this
means that the Hamiltonian vector field of the non-perturbative Ca vanishes in the full phase space at the chosen
p, q, P,Q and at x = y = X = Y = 0 which then is a point on the full constraint surface. When a takes only
one value (cosmology) this is again standard [19]. Since the subtracted term in (2.24) is O(2) this is in fact the
only option. Finally from (2.19)

{C(2)(f), C(2)(f ′)}S̄ = {C(2)(f), C(2)(f
′)}S̄ (2.25)

= fa(f ′)b[κab(0)
c Cc(2) + κab(0)

j Cj(2) + κab(1)
j Cj(1) + κab(2)

c Cc(0)]− {Ca(0), Cb(2)}S − {Ca(2), Cb(0)}S

= fa(f ′)b[κab(0)
b C(2)

c + κab(0)
j Cj(2) + κab(1)

j Cj(1) + (κab(2)
c − κab(0)

c) Cc(0)]

−{Ca(0), Cb(2)}S − {Ca(2), Cb(0)}S

which closes exactly if Ca(0) and its Hamilonian vector field vanishes at q, p,Q, P and if in addition κab(0)
j = 0

there. From (2.16) which holds everywhere in the full phase space, this is indeed the case as the Cj(1) are linearly
independent.

II. Including backreaction.
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Using the above results we find the full and exact Poisson bracket relations

{C(1)(g), C(1)(g′)} = {C(1)(g), C(1)(g′)}S̄ + {C(1)(g), C(1)(g′)}S = gj(g′)kκjk(0
aCa(0) + {C(1)(g), C(1)(g′)}S

= gj(g′)kκjk(0
aC(2)

a + {{C(1)(g), C(1)(g′)}S − gj(g′)kκjk(0
a Ca(2)}

{C(1)(g), C(2)(f)} = {C(1)(g), C(2)(f)}S̄ + {C(1)(g), C(2)(f)}S

= {C(1)(g), C(2)(f)}S̄ + {C(1)(g), C(0)(f)}S + {C(1)(g), C(2)(f)}S

= gjfa[κja(0)
kCk(1) + κja(1)

bCb(0)] + {C(1)(g), C(2)(f)}S

= gjfa[κja(0)
kCk(1) + κja(1)

bC
(2)
b ] + {{C(1)(g), C(2)(f)}S − gjfaκja(1)

bCb(2)}

{C(2)(f), C(2)(f ′)} = {C(2)(f), C(2)(f ′)}S̄{C
(2)(f), C(2)(f ′)}S = {C(2)(f), C(2)(f

′)}S̄ + {C(2)(f), C(2)(f ′)}S

= [{C(2)(f), C(2)(f
′)}S̄ + {C(0)(f), C(2)(f

′)}S + {C(2)(f), C(0)(f
′)}S ] + {C(0)(f), C(0)(f

′)}S + {C(2)(f), C(2)(f
′)}S

= fa(f ′)b [κab(0)
cCc(2) + κab(0)

jCj(2) + κab(1)
jCj(1)κab(2)

cCc(0) + κab(0)
cCc(0)] + {C(2)(f), C(2)(f

′)}S

= fa(f ′)b [κab(0)
cC(2)

c + κab(0)
jCj(2) + κab(1)

jCj(1)κab(2)
cCc(0)] + {C(2)(f), C(2)(f

′)}S

= fa(f ′)b [(κab(0)
c + κab(2)

c)C(2)
c + κab(0)

jCj(2) + κab(1)
jCj(1)] + {{C(2)(f), C(2)(f

′)}S − κab(2)
cCc(2)} (2.26)

where we used several times that Ca(0) has vanishing {., .}S̄ brackets. If we consider g, g′ as first oder objects, then
the curly bracket term in the above relations is O(4) and can be ignored in 2nd order perturbation theory. Then
all three equations close up to the last equation to second order provided that in addition κab(0)

j = 0 everywhere.
In view of (2.16) which holds everywhere in phase space and the linear independence and of Ca(0), Cj(1) this may
actually hold but it is not entirely conclusive, so we must impose this as an extra condition if we are to follow
this approach. It holds trivially if a takes only one value (cosmology).

If on the other hand we want (2.26) to close exactly and not only up to higher order, then as it stands the
system is inconsistent. This explains why considerable effort must be invested to achieve closure in cosmology
[5]. The motivation to have exact closure is that while in the classical theory one may be able to control errors
when working with approximate equations, in the quantum theory it is vital to have exact relations because
the quantum constraints determine the size of the physical Hilbert space. Anomalous, i.e. not exactly closing
constraints, over-constrain the system and yield a physical Hilbert space which is too small to allow for the correct
classical limit. The way that closure of (2.26) is achieved in [5] is by a clever combination of i. the exact relation
(2.15) combined with ii. canonical transformations on the full phase correct up to second order and iii. absorption
of higher order terms into smearing the functions fa.

However, it is clear that the method of [5] repairs the system (2.26) only if a takes only one value (cosmology)
and for N = 2 only. In fact, one can easily generalise (2.26) to higher orders but obtaining exact closure fails
more and more severly the higher the order. Also closure up to higher order only occurs if one considers g, g′ as
of first order and one may feel uneasy with that viewpoint. The methods of this paper extend the results of [5]
to a general gauge system subject to the assumptions spelled out in section 2.1 for an arbitrary range of a and
for arbitrary N . We follow a route very different from the route chosen in [5]. Yet, for N = 2 and a taking only
one value, we agree with [5].

3 Gauge reduction, gauge conditions, relational Dirac observables, phys-

ical Hamiltonian

This section is for the benefit of the rader not familiar with gauge reduction and the relational formalism. We
explain here just the bare bones of this theory, see [3] for all the details and [20] for an exposition closer in
notation to the present section. Familiar readers may immediately jump to the next section.

In this section we ignore the split with respect to the symmetric and non-symmetric variables and we ignore
perturbation theory altogether and just assume that the phase space is coordinatised by canonical pairs (rα, sα)
and (uµ, vµ) respectively where (r, s) plays the role of (Q,P ), (X,Y )) and (u, v) the role of ((q, p), (x, y)). The
system is subject to first class constraints Cµ. The above split of the phase space variables is assumed to be
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judiciously chosen in such a way that one may solve the constraints Cµ(r, s, u, v) = 0 (locally) in terms of the
momenta vµ, that is we pass to equivalent constraints

Ĉµ(r, s, u, v) = vµ + hµ(r, s, u) (3.1)

The dependence of the Cµ on the vν is usually polynomial and if the polynomial degree is higher than one
then the functions hµ are not unique but depend on finitely many “branches”. We assume that some physical
motivation (e.g. positivity of energy) has been given to select one of those branches and consider henceforth the
corresponding sector of the phase space that contains the constraint surface defined by (3.1).

Since the Ĉµ are just linear combinations of the Cµ (with complicated phase space dependent coefficients) as
C = 0 ⇔ Ĉ = 0 on the sector considered, and the Cµ are first class, so must be the Ĉµ i.e. there are structure
functions κ̂ such that

{Ĉµ, Ĉν} = κ̂µν
ρ Ĉρ (3.2)

Since the Ĉ contains v linearly, the l.h.s. of (3.2) is independen of v. Thus for any (r, s, u) we may evaluate the
l.h.s. by setting v = −h(r, s, u) on the r.h.s. As this vanishes identically, we conclude that the constraints Ĉµ

are Abelian on the full phase space {Ĉµ, Ĉν} = 0. This fact will be very handy in what follows.
We split the following exposition in the “gauge invariance” and the “reduction” viewpoint. Both are equivalent

descriptions of the reduced phase space. The gauge invariance viewpoint explicitly constructs the relational Dirac
observables as functions on the full phase space. Here “relational” refers to the fact that one must select a
set of gauge fixing conditions that enter explicitly into the construction: One can “project” any phase space
function into a Dirac observable relative to these gauge fixing conditions, but neither the constraints nor the
gauge fixing conditions are installed. By contrast, the reduction viewpoint explicitly installs both the constraints
and the gauge fixing conditions. The degrees left over are called “true degrees of freedom”. The two viewpoints
are equivalent in the sense that the relational Dirac observables and the true degrees of freedom subordinate
to the same gauge fixing conditions are Poisson isomorpic and the corresponding physical respectively reduced
Hamiltonians generate isomorphic equations of motion on the reduced phase space.

3.1 Gauge invariance viewpoint

Let τµ be any parameters (“multi-fingered time”), let Gµ := τµ−uµ be gauge fixing conditions for the “clock”
variables u and let F = F (r, s, u, v) be any function of the full phase. Define the “relational observable”

OF (τ) := F +

∞∑
n=1

1

n!
Gµ1 ..Gµn [Xµ1

· ..Xµn · F ] (3.3)

where Xµ · F := {Ĉµ, F} is the Hamiltonian vector field of Ĉµ. Then the functions (3.3) share the following
properties:
1.
They are Dirac observables Xµ ·OF (τ) = 0 for all µ, τ .
2.
Linearity OF (τ) +OF ′(τ) = OF+F ′(τ).
3.
Compatibility with the pointwise product OF (τ) OF ′(τ) = OF F ′(τ)
4.
Compatibility with complex conjugation OF (τ) = OF̄ (τ) if the G,C are real valued.
5.
Dirac bracket homomorphism

{OF (τ), OF ′(τ)} = {OF (τ), OF ′(τ)}∗ = O{F,F ′}∗(τ) (3.4)

where the Dirac bracket is defined by (note that in our convention {Ĉµ, G
ν} = −δνµ)

{F,F ′}∗ = {F,F ′} − [{F, Ĉµ} {Gµ, F ′} − {F ′, Ĉµ} {Gµ, F}] (3.5)
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6. Let t 7→ τ(t) be a 1-parameter curve, F a function depending only on r, s and OF (t)) := OF (τ(t)). Then

d

dt
OF (t) = {H(t), OF (t)}, H(t) = Oτ̇µ(t) hµ

(τ(t)) (3.6)

i.e. H(t) defines the generator of time evolution defined by the one parameter curve in clock space.
Due to property 3. above, it is not necessary that one is able to compute the series involved in (3.3): Given a

function F = F (r, s, u, v) we may rewrite it as F̂ (r, s, u, Ĉ) and find setting Rα(t) := Orα(t), Sα(t) := Osα(t)
that OF (t) = F̂ (R(t), S(t), τ(t), Ĉ). Thus functions depending non-trivially on u, v are of no interest when we
pass to the constraint surface Ĉ = 0 which is preseved by definition of first class constraints. Therefore we are
interested only the algebra of Dirac observables which are functions of R,S only. In particular

H(t) = τ̇µ(t) hµ(R(t), S(t), τ(t)) (3.7)

which is in general explicitly time dependent through the dependence of hµ on u.
We note that the functions R,S stay conjugate variables

{Sα(t), R
β(t)} = δβα, {Sα(t), Sβ(t)} = {Rα(t), Rβ(t)} = 0 (3.8)

3.2 Reduction viewpoint

A Poisson algebraically equivalent description can be given as follows: We identify v as the constrained momenta,
u as the pure gauge degrees of freedom and r, s as the true degrees of freedom coordinatising the reduced phase
space. Indeed the gauge cut G = 0 through the constraint surface Ĉ = 0 is in one to one correpondence with the
gauge orbits of points on Ĉ if i. the gauge G = 0 can always be installed and ii. every gauge orbit is intersected
precisely once (admissable gauge choice). In order that the gauge conditions Gµ = τµ(t)−uµ be preserved under
gauge transformations we must have τ̇µ = {f̂ νĈν , u

µ} that is f̂µ = τ̇µ =: f̂µ
∗ . The reduced Hamiltonian is then

defined as the effective Hamiltonian on the reduced phase space whose action coincides with that of the original
constrained Hamiltonian at the gauge cut. Thus let F = F (r, s) just depend on the true degrees of freedom r, s.
Then by definition H = H(r, s; t) is the function obeying

{H(t), F} = {C(f), F}Ĉ=0,G=0,f=f∗
(3.9)

or by rewriting the constraints C(f) = Ĉ(f̂) in terms of new Lagrange multipliers (which then depend on phase
space but this immaterial as long as the linear map between Ĉ and C is non-singular as both f, f̂ become fixed
as definite phase space functions by stability)

{H(t), F} = {Ĉ(f̂), F}Ĉ=0,G=0,f̂=f̂∗
(3.10)

which is solved by
H(t) = τ̇µ(t) hµ(r, s, τ(t)) (3.11)

and thus coincides with (3.7) under the Poisson bracket isomorphism (r, s) 7→ R,S.

Thus, given the extra structure provided by the gauge fixing conditions, one may arrive at a reduced phase
space description equivalently in terms of manifestly gauge invariant Dirac observables or the true degrees of
freedom and given a one parameter family of gauge fixings one recovers a physical (i.e. observable) notion of
dynamics even for totally constrained systems.

We will apply the true degrees of freedom description to our gauge system combined with perturbation theory
with respect to non-symmetric observables.

3.3 Choice of gauge

What the above formalism does not tell is, which gauge fixing condition to choose. Although all admissable
choices are by definition related by a gauge transformation and thus merely correspond to different but gauge
equivalent sections of the constraint surface, thus providing an explicit coordinatisation of the reduced phase
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space (space of gauge orbits), the choice has a strong impact on the form of the reduced Hamiltonian as it
decides which degrees of freedom to freeze and which are to be evolved. As the variables that are prescribed
define a reference frame (through the Lagrange multipliers that are fixed) it is clear that the physical Hamiltonian
depends on that reference frame. Thus the selection of gauge requires physical input, e.g. one may require that
the physical Hamiltonian acquires the form of the standard model Hamiltonian on Minkowski space in regions of
the phase space that correspond to the flat Minkowski metric.

Another issue is the following: In the previous sections we have considered gauge conditions of the form
qa = τa(t), xj = ρj(t) which depend on a time parameter t and thus define a one parameter family of sections
that gives rise to an evolution. Such an explicit time dependence of the gauge condition is a viable choice.
However, one would like to minimise such freedom when physical principles are one’s disposal that help to
downsize the number of possibilities. In the context of perturbation theory it is motivated to consider ρj ≡ 0
as the x, y are “small” but as far as τa is concerned, this is not the case. When the index a has univalent
range (cosmology) then the choice of the remaining function τa(t) is nothing but a reparametrisation of the
time variable and thus essentially unique. However, when a takes more than one value, in particular an infinite
number, the issue becomes more serious because an infinite number of arbitrary parameters cannot be fixed by
any experiment (predictivity).

Fortunately, precisely in situations when a takes an infinite range there is another effect that in fact allows
the time dependence of τa(t) to be trivial. Such gauge conditions are called “coordinate conditions” [22].
Typically this happens when our discrete description descends from a field theory rather than a finite dimensional
Hamiltonian system. Note that even in this case and as mentioned at the beginning of section 2, a discrete
description is still possible by expanding the fields in terms of a countable set of mode functions La (say Hermite
functions if the non-compact part of the spatial topology consists of copies of R).

The origin of the effect is that the continuum constraints depend on spatial derivatives and that there is
a boundary [22]. In that case, the symplectic structure and the constraints are no longer automatically finite
and functionally differentiable. In order to ensure this, one must specify boundary or decay conditions on the
canonical variables and the test functions that smear the constraints as one approaches the boundary and the
constraints can typically be made functionally differentiable if one adds a boundary term which is finite when the
specified decay behaviour holds but whose variation is singular and cancels the singular variation of the constraint.
Thus the Hamiltonian in its functionally differentiable form and in terms of the original constraints not solved for
vµ = −hµ is now given by

H(f) = C(f) +B(f) (3.12)

where B(f) is the boundary term. A gauge transformation is defined by those f for which B(f) = 0 and
a symmetry transformation by those f for which B(f) 6= 0. In both cases f must obey the specified decay
behaviour. The reduced phase space is still defined by coordinate conditions Gµ = uµ − τµ = 0, uµ = uµ∗ := τµ

with constant functions on the phase space τµ and by the solutions of the constraints Cµ = 0. Since there are
differential equations involved, while this system can be rewritten in the form Ĉµ = vµ+hµ(r, s;u;V ) = 0, v∗µ :=
−hµ(r, s;u = u∗;V ) it depends on integration constants VA. These can be considered as initial conditions on the
boundary when solving the differential equations, thus the constraints on the boundary are identically satisfied for
all values of VA. Therefore the number of independent constraints is reduced by the number of those integration
constants and we impose only as many gauge fixing conditions as there are independent constraints. We may
without loss of generality pick VA as the the values of vA on the boundary where A runs through some index set
denoting boundary degrees of freedom, it is contained in the bulk index set with labels µ. We may then pick UA

as the values of uA on the boundary and impose gauge fixing conditions only on uµ where µ is not a boundary
label and the gauge fixing condition is still a constant function τµ for those fiexed uµ on the phase spce. This
will be made more explicit below.

The smearing functions are specified by gauge stability

{H(f), Gµ}u=u∗,v∗ = {H(f), uµ}u=u∗,v∗ = 0 (3.13)

because τµ does not explicitly depend on time. However, because of the derivatives involved, which is why (3.13)
is not imposed for all µ, namely not for µ = A, this now does not imply f = 0 but yields a differential equation
with non-trivial solutions fµ = fµ

∗ (r, s;V, λ) which depends on yet other integrations constants λA. This f∗
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obeys the decay behaviour specified but it generically corresponds to a symmetry transformation and not a gauge
transformation. Now for any function F = F (r, s;U, V ) we define the reduced Hamiltonian as before

{H,F} = {H(f), F}w=w∗,f=f∗ (3.14)

where w = (u, v) but now it is less clear how to write H explicitly. Since the boundary term is linear in f we
have (it does not depend on derivatives of f after integrating by parts)

B(f) = fA jA (3.15)

where the index α runs through the boundary subset of the bulk index set to which µ belongs and the current
jA defines the smearing function independent part of the boundary function on the full phase space. That
λA, UA, VA, f

A are all labelled by the same index set is no coincidence but again due to the fact that we can
define initial conditions for the differential equations to be solved, equivalent to intgration constants, at the
boundary.

Let j∗ = jw=w∗
then

{B(f)w=w∗
, F}f=f∗ = fA

∗ {j∗A, F}

= {H(f)w=w∗
, F}f=f∗

= {H(f), F}w=w∗,f=f∗ + {H(f), uµ}w=w∗,f=f∗ {v∗µ, F} − {H(f), vµ}w=w∗,f=f∗ {uµ∗ , F}

= {H,F} (3.16)

where in the second step we used that H = B on the constraint surface, in the third we expanded the Poisson
bracket into explicit dependence of Hw∗

(f) on r, s and implicit one through w∗ and in the last we noted that u∗
is a constant on the phase space and (3.13), (3.14).

We see that a closed expression for H can be obtained provided that there exists a function χ(j) such that
fA
∗ = [∂χ/∂jA]j=j∗. Then H = χ(j∗). One may use the freedom in the choice of the integration constants λ on
which f∗ depends in order to achieve that this condition holds because there will be typically as many integration
constants, i.e. initial conditions on the boundary, as there are boundary indices α. The simplest case is that f∗
is a constant on the phase space, then simply H = fA

∗ j∗α.

The above discussion follows closely [22] but deviates somewhat from the description in the previous section
in that we have shifted the focus from the constraints Ĉ solved for the momenta to the original ones. We will
therefore now describe an equivalent procedure which uses the Ĉ more directly and which offers a complementary
point of view of how the integration constants U, V, λ come into play. We go back to the split description Ĉa, Ĉj

and for simplicity consider the case that the Ĉj have already been reduced by the gauge xj = 0 which is possible
as in the form Ĉa, Ĉj the constraints are mutually commuting. The case of a joint treatment of qa, xj is similar.

Since spatial derivatives acting on the mode functions can be expressed as a finite linear combination of mode
functions again, a derivative in the continuum description translates into a kind of difference (with respect to
the label a) in the discrete description. This means that when computing Poisson brackets, one has to integrate
(sum) by parts, leading to boundary contributions and bulk contributions of the bracket provided that there
is a boundary as we will assume. To describe this more explicitly, we assume (a situation often encountered
in practice) that we can split the label a into pairs (r, i) where partial integration (summing) is with respect
to r at fixed i and w.l.g. r has range in R

+
0 (Z+

0 ). The boundary contribution depends on the values of the
fields (qa, pa, R), R = (QA, PA,X

J , YJ) and the Lagrange multipliers fa at r = ∞ while the bulk contribution
depends in particular on derivatives fa′ (differences) of the fa.

Likewise, rewriting the constraints Ca in the form Ĉa = pa + ha(q,R) there is an issue: As derivatives
(differences) of the momenta pa are involved, to solve Ca = 0 for the pa means solving a differential (difference)
equation. As such equations require initial conditions or integration constants in order for a unique solution to
exist, in this case we should rather write ha(q,R) = −Sa(c0; q,R) where c0 = {cr=0,i} is a collective notation
for the integration constants. If we do not want to give c0 the status of new degrees of freedom, we can solve
the equation pr=0,i = Sr=0,i(c0, q, R) for c0 and insert the solution into Sa(c0, q, R) yielding Sa(p0, q, R) where
now by construction Sr=0,i(p0, q, R) = pr=0,i. It follows that the constraints Ĉ0,i := Ĉr=0,i ≡ 0 are identically
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satisfied and thus we should in fact only impose gauge fixing conditions on qr,i, r > 0. In this way the function
ha acquires the form −Sa(p0, q0, {q

b}b>0, R) =: ĥa({q
b}b>0, R̂) where we have augmented the true degrees of

freedom R to R̂ by the canonical pairs (q0,i, p0,i) and b = (r, i) > 0 ⇔ r > 0. The q0,i, p0,i play the role of the
UA, VA above and we have relabelled the indices A by i as here we are dealing with split form of the constraints
and consider only the Ca and not all of the Cµ.

We can now rewrite the constraints Ca in terms of the Ĉa but since Ca depends on derivatives (differences) of
p while in Ĉa no derivatives (differences) of p appear, this rewriting necessarily involves derivatives (differences)
of the Ĉa. In the case that Ca depends polynomially on the momenta p and its derivatives (differences) and
if only first derivatives (differences) are involved, Ca can be written as a linear combination of Ĉ and its first
derivatives DĈ (differences) with phase space dependent coefficients (simply by expanding pa = Ĉa − ĥa) say

Ca =
∑
b≥0

γba Ĉb + δba (DĈ)b (3.17)

Since vanishing of constraints means vanishing of their derivatives (differences) the vanishing of Ĉa for all a ≥ 0
implies the vanishing of Ca for all a ≥ 0. Conversely the vanishing of Ca for all a ≥ 0 implies a differential
(difference) equation for the Ĉa which implies that Ĉa ∝ Ĉ0 ≡ 0. Thus the the sets of constraints are indeed
equivalent. Next, integrating (summing) by parts

∑
a≥0

fa Ca =
∑
i

f∞,iĈ∞,i − f0,iĈ0,i +
∑
a≥0

f̂a Ĉa, f̂
a =

∑
b≥0

γab f b −D[δ.bf
b]a (3.18)

where we have denoted a second boundary by the label ∞. Imposing stability of Ga = qa− τa = 0, a > 0 under
gauge transformations imposes f̂a = 0, a > 0 which is a homogeneous, linear differential (difference) equation
for fa which can be solved in the form f r,i = λj f̃ r,i

j , r ≥ 0 where λi are free parameters while the invertible

propagator f̃ is uniquely determined by that differential equation and say the initial condition f̃0,j
i = δji . We can

now compute the reduced Hamiltonian H that follows from these gauge fixing conditions acting on functions
F = F (R̂)

{H,F} := {
∑
a≥0

fa Ca, F}C=G=f−λ·f̃=0 =
∑
i

{f∞,iĈ∞,i − f0,iĈ0,i, F}C=G=f−λ·f̃=0

=
∑
i

[f∞,i{Ĉ∞,i, F} − f0,i{Ĉ0,i, F}]C=G=f−λf̃=0 =
∑
i,j

λj (f̃∞,i
j )G=C=0{p∞,i + ĥ∞,i, F}]C=G=0

=
∑
i,j

λj (f̃∞,i
j )G=C=0 {ĥ∞,i, F}]G=0 =

∑
i,j

λj (f̃∞,i
j )G=C=0 {(ĥ∞,i)G=0, F} (3.19)

where in the first step we used that the Poisson bracket must act on Ĉ in order not to vanish and that f̂ = 0
when f = λ · f̃ so that only the boundary term in (3.18) survives, in the second step again that the Poisson
bracket must involve Ĉ, in the third that Ĉ0,i vanishes identically, in the fourth that F does not depend on
qa, a > 0 and in particular not on q∞,i and in the fifth that as F does not depend on pa, a > 0 we can impose
Ga = 0, a > 0 before computing the Poisson bracket.

Since (3.19) is supposed to be of the form {H,F} and since f̃∞
G=C=0 is a non-trivial matrix valued function

on phase space we are forced to choose λ to be of the form

λi := (
dχ(z)

dzi
)z=E ([f̃∞

G=C=0]
−1)ij ; Ei(R̂) := ĥ∞,i({q

b = τ b}b>0, R̂), (3.20)

where χ is an arbitrary function which plays the same role as in the above version using the boundary term
formulation while Ei(R̂) is the analog of j∗A. Note that λ correctly does not depend on qa, a > 0. Then

H(R̂) = χ(E(R̂)) (3.21)

is the physical Hamiltonian.
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Thus the time independent gauge fixing which is possible when the constraints depend on derivatives (differ-
ences) of the momenta is similar to the case of the time dependent gauge fixing when the constraints just depend
algebraically on the momenta: The fact that derivatives are involved releases a several parameter freedom in the
gauge fixed Lagrange multipliers fa parametrised by λ while in the case of just algebraic dependence at least one
such parameter (called t) must be supplied in the gauge fixing condition itself. The final physical Hamiltonian
in both cases can be written in terms of the solution pa = −ĥa, yj = −ĥj of Ca = Cj = 0 restricted to
xj = 0, qa = τa. The difference is that in the time independent case qa = τa only for a > 0 corresponding to
the fact that there is “one constraint less” per index i, i.e. that p0,i cannot be solved for due to the presence
of the derivatives (differences). Another difference is that while in the case of time dependent gauge fixings the
function χ in (3.21) is linear in the ha and involves all a, while in the time independent case it involves only
a = ∞ and is not necessarily linear. The possible forms of χ will be determined by the condition that (3.20)
yields an allowed smearing function, i.e. with the specified decay behaviour such that H is in fact well defined,
i.e. both finite in value as functionally differentiable.

Remarks:
1.
The discussion unveils the origin of the additional observables p0, q

0 (e.g. mass, charge, angular momentum plus
conjugate configuration variables in case of black holes) which are not present in the case without derivatives of
momenta (e.g. in cosmology).
2.
The presence of momentum derivatives offers the possibility to consider time independent gauge fixings thus
freeing the physical Hamiltonian from any explicit time dependence, i.e. the reduced system is conservative.
3.
We note that in case that the constraints are not solvable algebraically for the momenta but rather involve a
differential (difference) equation we can compute the solution Sa({q

b}b>0, R̂) by the Picard-Lindelöf method [23]
i.e. by transforming the differential (difference) equation into an integral (sum) equation

pr,i = p0,i + Ir,i(p, q,R), I0,i(p, q,R) = 0 (3.22)

and iterating the right hand side. The perturbative scheme explained in the next section relies on the computation
of a solution of (3.22) at zeroth order with respect to X,Y i.e. by solving it for X = Y = 0. This does not
introduce any non-polynomial dependence of the solution pa(0) so obtained on X,Y but in general it will involve
{qa}a≥0, p0, Q

A, PA non-polynomially which is also true in the case without momentum derivatives (differentials)
(except that no dependence on p0 is present). As the perturbative scheme of the next section only relies on the
polynomial dependence of Ca, Cj with respect to x, y,X, Y , it also applies in presence of momentum differentials.
See below for cases where non-polynomial dependence at least of Q,P can be avoided.
4.
As the physical Hamiltonian involves taking r → ∞ in (3.22) it typically involves an integral (sum) over all r
which therefore provides additional “smearing” of products of operator valued distributions upon quantisation of
the fields Q,P,X, Y involved and thus improves the chance that the physical Hamiltonian itself be promotable
to an operator. For the same reason, in the time dependent case one will choose τa(t) 6= 0 for all a in order to
have an integral (sum over a) involved.
5.
The perturbative algorithm of the next section directly computes ha, hj and thus Ei =

∑
n=0Ei,(n) in (3.20)

perturbatively and if χ in (3.21) is linear in Ei, this also directly computes H perturbatively. If χ is non-linear,
an additional perturbative Taylor expansion of χ is required, schematically

H = χ(E(0)) +
∑
k=0

1

k!
χ(k)(E(0)) [

∑
l=1

E(l)]
k = χ(E(0) + χ(1) E(1) + [

1

2
χ(2) E2

(1) + χ(1) E(2)] + ... (3.23)

which again constructs H perturbatively.
6.
If the perturbative algorithm of the next section involves solving differential (difference) equations then this can be
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done using the Picard-Lindelöf method by reformulating the problem as an integral equation as sketched above.
This involves in addition an expansion of the integrand around the integration constant p0 thereby constructing
ĥ∞ as an iterated integral over polynomial expressions now not only in X,Y but also in Q,P with possibly
non-polynomial dependence on p0, q

0. This makes a quantisation of H conceivable even if Q,P,X, Y are fields
rather than finitely many degrees of freedom. Moreover, since then the interaction terms of the symmetric
background observables Q,P with the non-symmetric perturbation observables X,Y is such that Q,P apear
only in integrated form e.g. in a mass term for X,Y there is a chance that the corresponding backreaction can
be treated with the methods of space adiabatic perturbation theory even if Q,P are fields [29, 28] with Q,P
playing the role of the “slow” variables and X,Y that of the “fast”. The intuition behind this adiabatic split of
the observables is that the Q,P are by construction the average over the action of the symmetry group on all
observables Q,P.X, Y which make them similar to the centre of mass mode (mass weighted average) in classical
mechanics with the much larger total mass as compared to the individual ones. The challenge is that in the field
theory case the Weyl quantisation scheme for Q,P on which SAPT relies has to be extended to infinitely many
degrees of freedom (this is in contrast to cosmology where the phase space of the Q,P is finite dimensional).
A possible regularisation consists in working with a mode cut-off on the Q,P degrees of freedom and thus to
make the phase space of the Q,P finite dimensional. Then at the end one removes that cut-off using methods
of renormalisation.
7.
In both the time dependent and time independent cases we have considered gauge fixing conditions of the form
Ga = qa − τa, Gj = xj − ρj where τ, ρ are constant on the phase space. More general gauge fixing conditions
of the form G = G̃− τ are possible where τ is again constant on phase space but G̃ is a non-constant function
such that the matrix ∆ := {C,G} is invertible. Then most of the statements of section (3.1) remain valid if
one replaces Ĉ by ∆−1 · C just that exact relations become weak (i.e. they hold modulo C = 0). However, in
this case it is difficult to make concrete statements about the form of the reduced Hamiltonian. Moreover, if G̃
also involves the momenta p, y, then the perturbative scheme of the next section would break down because we
could not disentangle the solution of the constraints in terms of p, y at fixed q, x from imposition of the gauge
conditions. It is therefore important to stick to such “simple” gauge conditions that involve only the configuration
degrees of freedom.

4 Perturbation theory in terms of Dirac observables

In principle, given the theory provided in the previous section, the strategy is clear: We declare Q,P,X, Y as the
true degrees of freedom and q, x; p, y as the pure gauge and constrained degrees of freedom respectively, compute
the reduced Hamiltonian H(t) = H(Q,P,X, Y ; t) using gauge fixing conditions Ga = τa − qa, Gj = ρj − xj

and, e.g. for explictly timed dependent gauge fixings, a one parameter curve t 7→ (τ(t), ρ(t)) therein and fi-
nally apply standard Hamiltonian perturbation theory to H(t) with respect to the non-symmetric observables
X,Y . This way the difficult question of how to perform perturbation theory on the unreduced phase space while
keeping the first class property of the perturbed constraints is avoided altogether. The question that is left open
is whether this is feasible. In this section we develop the reduction viewpoint which is technically more convenient.

We thus start again with the gauge system defined by (2.8), (2.10), (2.11). By (2.10), the leading order
contribution to Cj is Cj(1) which linear in the perturbations x, y,X, Y while the leading order contribution to Ca

is Ca(0) which is independent of the perturbations. We assume that we can solve Cj exactly for yj in the form
(modulo global issues in phase space, see the previous section)

Cj(p, q, x, y, P,Q,X, Y ) = 0 ⇔ C̃j = yj + h̃j(p, q, x;P,Q,X, Y ) = 0 (4.1)

We insert the solution yj = −h̃j into Ca and assume that we can solve it excactly for pa in the form

(Ca)y=−h̃ = 0 ⇔ Ĉa = pa + ha(q, x;P,Q,X, Y ) (4.2)

Then we insert pa = −ĥa into C̃j and find

Ĉj = yj + hj(q, x;P,Q,X, Y ), hj = (h̃j)p=−h (4.3)
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By the theory provided in the previous section, the physical Hamiltonian is given by

H(t;P,Q,X, Y ) = τ̇a(t) ha(τ(t), ρ(t);P,Q,X, Y ) + ρ̇j(t) hj(τ(t), ρ(t);P,Q,X, Y ) (4.4)

which can be Taylor expanded with respect to the observablesX,Y to any desired order provided we can construct
H(t;P,Q,X, Y ) sufficiently explicitly.

Whether this is the case depends critically on the form of the constraints. If Ca, Cj depend non-polynomially
on the momenta p, y this will be impossible. Fortunately in physical applications this is not the case if the pair
(Ca, Cj) results from the symmetric – non-symmetric split of constraints Cµ which depend polynomially on all
momenta iA. This will be the case if the underlying Lagrangian depends on finitely many time derivatives by
the Ostrogradski method [21]. Since the symmetry split does not affect polynomiality, for these theories Ca, Cj

depend polynomially on all momenta and in particular on p, y.
While not necessary for what follows, we note that the constraints that we encounter in GR are not polynomial

in the configuration coordinates. However, they can in fact also be made polynomial with respect to all variables
if we multiply them by phase space dependent factors that are classically non vanishing (certain powers of the
determinant of the intrinsic metric). While this would make a significant difference in the Dirac approach to
constrained systems in which one quantises the constraints on the unreduced phase space, this has no influence
on the reduced Hamiltonian in the reduced phase space approach. The reason for this is that given constraints
Cµ, a non-singular matrix Mµ

ν and gauge fixing conditions Gµ such that ∆µ
ν = {Cµ, G

ν} is non-singular, the

smearing functions fµ, f̃µ of Cµ, C̃µ := Mµ
ν Cν are determined as f̂ ,

ˆ̃
f by fixing the gauge and respectively

satisfy f̂ ν ∆ν
µ = τ̇µ = ˆ̃f ν ∆̃ν

µ where ∆̃ = ∆ ·M . Then the reduced Hamiltonian is computed from {H,F} :=
{fµ Cµ, F}C=G=f−f̂=0 and this coincides with {H̃, F} := {f̃µ C̃µ, F}

C̃=G=f̃− ˆ̃f=0
thanks to invertibility of M .

This has the following significance in perturbation theory: In the polynomial form, the perturbative expansion
of the constraints is obviously a finite series while in the non-polynomial form that series is infinite with little
control on the radius of convergence. Accordingly in the polynomial form the task to compute the perturbative
expansion is itself possible to all orders, it is exactly available and as such is a non-perturbative expression. One
just chooses to write the constraints in variables that are adapted to the symmetry under discussion, without
dropping terms. For instance, in vacuum GR it is possible to write the constraints as polynomials of order
ten. In this form one can carry out mode expansions and mode integrals discussed in section 2 in closed form,
it just requires elementary methods from harmonic analysis on the symmetry group. Thus the shift of focus
from the constraints to the reduced phase space leads to a significant simplification and improvement in the
computational effort and the error control. Nevertheless, the perturbative expansion of the physical Hamiltonian
involves an infinite series unless all momenta appear only linearly. This is because for higher polynomial degree
one needs to take (square) roots and their perturbative expansion yields an infinite series. The algorithm of
theorem 4 displayed below computes that series directly perturbatively. Note that only in fortunate cases the
non-perturbative expression of the polynomial form of the constraint may in fact allow to take those (square)
roots exactly so that a non-perturbative expression for the reduced Hamiltonian is available, on the other hand,
the presence of square roots may complicate its quantisation.

Coming back to the task of solving the constraints for the momenta whether or not the constraints are
polynomial also in the configuration variables, still the task of solving the system of polynomial equations (in
the momenta) Ca = Cj = 0 for pa = −ha, yj = −hj appears to be hopeless: Solving systems of polynomials
defining algebraic varieties is the main task in the field of algebraic geometry [24] and already for a finite number
of non-linear polynomials an extremely difficult task (unless the equations can be decoupled into polynomials in
just one variable of degree at most four) and an active field of research in pure mathematics. Since in our field
theoretic setting we are dealing with an infinite number of polynomials, we are even leaving the terrain of known
mathematics when trying to solve the infinite, coupled system exactly. Even if we could do so, since typically
an infinite number of non-linear equations are involved, there are an infinite number of sign choices to be made
when selecting the various roots. What saves the day is that here we are interested in a perturbative setting
and we will show that in this case one can find a unique solution perturbatively. That solution also delivers the
perturbation theory for the physical Hamiltonian in one stroke.

Systems of polynomial equations are equivalent to larger systems of polynomial equations whose degree is
at most two. For instance the cubic system x3 + 2x2 + 3y = 0, xy2 + 4xy + 5x = 0 in two variables and two
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equations is equivalent to the quadratic system u = xy, v = x2, xv + 2v + 3y = 0, yu + 4u + 5x = 0 in four
variables and four equations. Thus we may assume that Ca, Cj depend at most quadratically on the momenta
p, y, P, Y . In GR this is even the case without enlarging the system. Accordingly we isolate the dependence of
Ca, Cj on p, y using the following notation:

Ca = Ua +Kb
a pb + Lj

a yj +Abc
a pb pc +Bjk

a yj yk + Cbj
a pb yj

Cj = Vj +Ma
j pa +Nk

j yk +Dab
j pa pb + Ekl

j yk yl + F ak
j pa yk (4.5)

where

Ua = ua + uAa PA + uJa YJ + uAB
a PA PB + uJKa YJ YK + uAJ

a PA YJ

Vj = vj + vAj PA + vJj YJ + vAB
j PA PB + vJKj YJ YK + vAJ

j PA YJ

Kb
a = kba + kbAa PA + kbJa YJ

Lj
a = lja + ljAa PA + ljJa YJ

Ma
j = ma

j +maA
j PA +maJ

j YJ

Nk
j = nk

j + nkA
j PA + nkJ

j YJ (4.6)

The notation is as follows: The coefficients U, V and K,L,M,N and A,B,C,D,E, F respectively displayed in
(4.5) are second order and first order and zeroth order polynomials in PA, YJ respectively as displayed in (4.6)
where the various coefficients coefficients u, v, k, l,m, n (which are functions of q, x,Q,X only) are known in
terms of their Taylor expansion in terms of x,X using standard perturbation theory on the unreduced phase
space. Without loss of generality Abc

a ,D
bc
j and Bkl

a , Ekl
j respectively are symmetric in b, c and k, l respectively.

As before, we will denote by ()(n) the n-th order monomial in the Taylor expansion of () wrt x, y,X, Y with
coefficient functions that depend only on q,Q. Thus e.g.

Ua(n) = ua(n) + uAa(n) PA + uJa(n−1) YJ + uAB
a(n) PA PB + uJKa(n−2) YJ YK + uAJ

a(n−1) u
AJ
a PA YJ (4.7)

The motivated identities Ca(1) = Cj(0) = 0 (2.10) now translate into

Ca(1) = Ua(1) +Kb
a(1) pb + Lj

a(0) yj +Abc
a(1) pb pc + Cbj

a(0) pb yj = 0

Cj(0) = Vj(0) +Ma
j(0) pa +Dab

j(0) pa pb = 0 (4.8)

for all p, y. Taking zeroth, first and second derivatives at p = y = 0 yields

Ua(1) = Kb
a(1) = Lj

a(0) = Abc
a(1) = Cbj

a(0) = 0, Vj(0) = Ma
j(0) = Dab

j(0) = 0 (4.9)

To solve Ca = Cj perturbatively for pa = −ha, yj = −hj we expand

pa =

∞∑
n=0

pa(n), yj =

∞∑
n=1

yj(n) (4.10)

where pa(n) := −ha(n), yj(n) := −hj(n) are n-th order monomials wrt x,X, Y with coeffients depending on
q,Q, P which are to be determined. Note that pa(0) 6= 0 = yj(0) consistent with the perturbative scheme that
requires pa, yj respectively to be a zeroth and first order quantity respectively.

Theorem.

Suppose that a solution pa(0) of Ca(0) = 0 can be found and that the x,X, Y independent matrices

Rb
a(q,Q, P ) := Kb

a(0) + 2 Acb
a(0) pc(0), Sk

j (q,Q, P ) := Nk
j(0) + F ck

j(0) pc(0) (4.11)

are non-degenerate. Then Ca = 0 = Cj has a unique (up to the choice of root pa(0)) perturbative solution.
In particular pa(1) = 0.
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Remarks:
i.
Since Ca(0) = 0 is one of the exact field equations of the purely symmetric system, the assumption that a
solution pa(0) exists is physically well justified because imposing the symmetry was motivated by the desire to
find exact solutions.
ii.
The assumed regularity of R,S is a selection criterion for the split of the full canonical pair (k, i) into (q, p), (x, y), (Q,P ), (X,Y )
Note that the regularity of R,S is a condition that one also imposes in usual first and second order perturbation
theory and since R,S do not receive corrections at higher oder, their inversion which enters into the iteration as
displayed below does not get more involved at higher orders.
iii.
The solution constructed below is formal in the sense that nothing is known about the radius of convergence of
the corresponding power series in x,X, Y (pointwise in q, x,Q, P,X, Y ). Such a convergence analysis is beyond
the scope of the present manuscript and is reserved for future analysis.
iv.
The proof displays the advantage of working with constraints polynomial in all variables when available as the
range of the sums in (4.13) gets automatically truncated in terms of the polynomial degree of the coefficient
functions.

Proof. :

The proof is by induction over N = 0, 1, 2, ... in solving C
(N)
a = C

(N)
j = 0. We do this by inserting the

expansions (4.10) into the decomposition (4.5) and isolating homogenous perturbation orders. We start with
the N = 0, 1 cases and use (4.9)

Ca(0) = Ua(0) +Kb
a(0) pb(0) +Abc

a(0) pb(0) pc(0) = 0

Ca(1) = Ua(1) +Kb
a(1) pb(0) +Kb

a(0) pb(1) + Lj
a(0) yj(1) +Abc

a(1) pb(0) pc(0) + 2Abc
a(0) pb(0) pc(1)

+Cbj
a(0) pb(0) yj(1)

= [Kb
a(0) + 2Acb

a(0) pc(0)] pb(1) = Rb
a pb(1) ≡ 0

Cj(0) = Vj(0) +Ma
j(0) pa(0) +Dab

j(0) pa(0) pb(0) ≡ 0

Cj(1) = Vj(1) +Ma
j(1) pa(0) +Ma

j(0) pa(1) +Nk
j(0) yk(1) +Dab

j(1) pa(0) pb(0) + 2Dab
j(0) pa(0) pb(1)

+F ak
j(0) pa(0) yk(1)

= [Vj(1) +Ma
j(1) pa(0) +Dab

j(1) pa(0) pb(0)] + [Nk
j(0) + F ak

j(0) pa(0)] yk(1)

= [Vj(1) +Ma
j(1) pa(0) +Dab

j(1) pa(0) pb(0)] + Sk
j yk(1) = 0 (4.12)

The first equation is supposed to be solved by pa(0) which thus is a known function depending only on
q,Q, P . Thus also the matrices R,S in (4.11) only depend on q,Q, P . The second equation is equivalent to
pa(1) = 0 by virtue of the assumed regularity of R. The third equation is already identically satisfied due
to (4.9) and the fourth equation uniquely determines yj(1) as a homogeneous linear function of x,X, Y by
virtue of the assumed regularity of S.

Thus pa(0), pa(1) = 0, yj(0) = 0, yj(1) are all determined by the the equations Ca(0) = Ca(1) = Cj(0) =

Cj(1) = 0. The idea is that when inluding the next terms Ca(2), Cj(2) to obtain C
(2)
a , C

(2)
j , then solving

C
(2)
a = C

(2)
j = 0 we can account for that by adding corrections pa(2), yj(2) to pa(0), yj(1). This can be

repeated. We thus assume inductively that for some N ≥ 2 all pa(n), yj(n) for n = 0, .., N − 1 have been
found iteratively by solving Ca(n) = Cj(n) = 0 for n = 0, .., N −1. We now isolate Ca(N) and Cj(N) exploiting
pa(0) = yj(1) = 0 and the relations (4.9). We display the excluded values of the integers n, r, s ≥ 0 where we
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sum over the occurring values n, r or n, r, s respectively subject to n+ r = N or n+ r+ s = N respectively

Ca(N) = Ua(N) +
∑

n 6=1,r 6=1,n+r=N

Kb
a(n) pb(r) +

∑
n 6=0,r 6=0,n+r=N

Lj
a(n) yj(r)

+
∑

n 6=1,r,s 6=1,n+r+s=N

Abc
a(n) pb(r) pc(s) +

∑
r,s 6=0,n+r+s=N

Bjk
a(n) yj(r) yk(s)

+
∑

n 6=0,r 6=1,s 6=0,n+r+s=N

Cbj
a(n) pb(r) yj(s)

Cj(N) = Vj(N) +
∑

n 6=0,r 6=1,n+r=N

Ma
j(n) pa(r) +

∑
r 6=0,n+r=N

Nk
j(n) yk(r)

+
∑

n 6=0,r,s 6=1,n+r+s=N

Dab
j(n) pa(r) pb(s) +

∑
r,s 6=0,n+r+s=N

Ekl
j(n) yk(r) yl(s)

+
∑

r 6=1,s 6=0,n+r+s=N

F ak
j(n) pa(r) yk(s) (4.13)

Due to n+ r = N or n+ r+ s = N and n ≥ 0 the top order of r or s in (4.13) can be at most N and only if
n = 0 is an allowed value. If both r, s cannot take the value 0 then also neither of r, s can take the value N
and if one of r, s cannot take the value 0 the other cannot take the value N . Thus, in Ca(N) the only terms
that allow for r = N or s = N are the second and fourth while in Cj(N) the only terms that allow for r = N
or s = N are the third and sixth. Isolating those and denoting the remainder as C ′

a(N), C
′
j(N) respectively

which involves only the already known values of pa(n), yj(n), n ≤ N − 1 we find

0 = C ′
a(N) + [Kb

a(0) + 2Acb
a(0) pc(0)] pb(N) = C ′

a(N) +Rb
a pb(N)

0 = C ′
j(N) + [Nk

j(0) + F ck
j(0)pc(0)] yk(N) = C ′

j(N) + Sk
j yk(N) (4.14)

which can be solved uniquely for pa(N), yj(N) due to the regularity of both R,S.

Note:
i.
It seems that we have introduced more degrees of freedom pa(n), yj(n); n = 0, 1, 2, ... than we had originally
(i.e. just pa, yj) and that we solved more equations Ca(n) = 0, Cb(n) = 0 than we had originally (i.e. only
Ca = 0, Cj = 0). However this is not the case: The pa(n), yj(n) are just auxiliary constructs, of interest is only

their sum. When summed up in (4.10) up to order N yielding −h
(N)
a ,−h

(N)
j respectively, by virtue of the above

construction, they give zero up to a term of order N +1 when inserted into Ca, Cj . This works because for each
N the equations Ca(N) = 0 = Cj(N) involve only the variables pa(n), yj(n); n ≤ N and thus are not affected by

adding higher order corrections to h
(n)
a , h

(n)
j . Thus we immediately get the N − th order approximation of the

reduced Hamiltonian
H(N) := τ̇a[h(N)

a ]q=τ,x=ρ + ρ̇j [h
(N)
j ]q=τ,x=ρ (4.15)

ii.
As detailed by the proof, the contributions pa(n), yj(n) involve n− th powers of the inverses of R,S which are
functions of q, x,Q, P . Since in the final Hamiltonian we are only interested in the evaluation at the prescribed
values q = τ(t), x = ρ(t) installing the gauge fixing conditions, we thus find that the physical Hamiltonian depends
on inverse powers of R,S and thus inverse powers of functions of of the observables Q,P while it depends only
on positive powers of the observables X,Y . Negative powers in the physical Hamiltonian of just one of Q,P are
not problematic in quantum theory as they just correspond to singular potentials and the corresponding operator
can still be densely defined on a suitable domain. However, negative powers of both P,Q could be potentially
problematic unless the functions of both P,Q of which inverse powers occur have suitable properties. For example
these functions could be bounded from below by a positive constant. This is indeed the case in some examples
of interest, including cosmology. Obviously, nothing can be said in general about this issue, it requires a case by
case analysis. A possibility consists in performing an additional power expansion in at least one of Q,P around
the integration constants p0 of the previous section when they are present.
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iii.
The gauge condition ρj = 0 is particularly simple and adopted by many practitioners, it is also used in the
partial reduction approach described in the next section. In this case, the lowest order for which the backreaction
Hamiltonian (4.14) depends non-trivially on the gauge invariant perturbations X,Y is N = 2. To compute it,
we need pa(0) = −ha(0), pa(1) ≡ 0, pa(2) = −ha(2), yj(0) ≡ 0, yj(1) while yj(2) is not needed to compute

H(2) = τ̇a [ha(0) + ha(2)]. These can be computed iteratively using theorem 4. Using it, one finds the explicit
formula for yj(1) is displayed in (6.11) assuming that pa(0) has been found. Thus, having pa(0), yj(1) at our
disposal we find from (4.13), (4.14)

ha(2) = (R−1)ba [Ua(2) +Kb
a(2) pb(0) + Lj

a(1) yj(1) +Abc
a(2) pb(0) pc(0) +Bjk

a(0) yj(1) yk(1) + Cbj
a(1) pb(0) yj(1)]

(4.16)

5 Reduction in stages

In the first subsection we outline the theory for partial classical and partial quantum reduction for general gauge
systems combined with perturbation theory. Analogous to section 3 we develop both the gauge invariance and
the reduction viewpoint. The gauge invariance viewpoint will be used in the next subsection in order to compare
with [5] which uses the gauge invariance viewpoint applied to second order cosmological perturbation theory with
backreaction. We will show that the results of [5] are precisely embedded into the approach developed here,
opening the avenue for generalisation to higher order. Hence, the reduction viewpoint will be used in section 6
in order to display the details of third order perturbation theory in this partially reduced context for a general
gauge system (not only cosmology).

We show that there is generically an obstacle whenever there are more than one unreduced remaining con-
straints when the latter are to be quantised which is one of the motivations to perform full reduction as compared
to partial reduction. If on the other hand there is only one remaining constraint, then our perturbation theory
applied in the partial reduction context, does not suffer from that quantisation obstacle, to arbitrary order. This
is precisely the situation in cosmological perturbation theory.

It should be stressed that what is called a gauge invariant observable in the context of this section should
better be called partially gauge invariant observable: They are just invariant with respect to the subset of
constraints with respect to which the partial reduction is carried out. This is in contrast to the previous section
where observable means a fully gauge invariant object. This abuse of notation common in cosmology arises for
historical reasons: If one neglects backreaction then the unreduced constraint (there is only one in this case)
becomes a physical Hamiltonian and no longer has the status of a constraint, in that sense the partially reduced
variables are full observables.

5.1 Partial reduction and perturbation theory

It maybe desirable to carry out the reduction only partially with respect to a non-trivial subset of the constraints.
For example for practical reasons one may wish to carry out a classical reduction with respect to the chosen subset
of constraints and a quantum reduction with respect to the remaining subset of constraints. In order that this
works, the chosen subset must form a closed subalgebra in the constraint algebra. In what follows we display the
theory for the case that the classical reduction be performed with respect to the “non-symmetric constraints” Cj.
This will enable us to compare a similar procedure developed in [5] for second order cosmological perturbation
theory.

We first note that the subalgebra condition is not automatically satisfied if the structure functions κjk
a displayed

in (2.11) are non-trivial. Thus, the first step must be to pass to an equivalent set of constraints C̃a, C̃j for which
the corresponding κ̃jk

a all vanish. Given the theory layed out in section 3, a good candidate for this are the

constraints C̃a = Ĉa = pa + ha, C̃j = Ĉj = yj + hj which are even Abelian with respect to all of Ĉa, Ĉj.
Since we want to keep the Ca intact as much as possible for the purposes of quantisation, we may work instead
with the equivalent constraint set Ca, C̃j := Ĉj where Ĉj = yj + hj(q, x,Q, P,X, Y ) is obtained by solving Ca

for pa = −h̃a(q, x, y,Q, P,X, Y ) and then solving Cj(q, p = −h̃(q, x, y,Q, P,X, Y ), x, y,Q, P,X, Y ) = 0 for
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yj = −hj(q, x,Q, P,X, Y ). However, as C̃j = λa
j Ca + νkj Ck and Cj = (ν−1)kj [C̃k − λa

kCa] for certain functions
λ and invertible ν and given (2.11) we now find

{Ca, Cb} = (κ′)ab
c Cc + (κ′)ab

j C̃j

{Ca, C̃j} = (κ′)aj
b Cb + (κ′)aj

k C̃k

{C̃j , C̃k} = 0 (5.1)

for certain new structure functions κ′ which can be explicitly computed from κ, λ, ν.

5.1.1 Gauge invariance viewpoint

As we wish to get rid of the constraints C̃j classically we want to still modify the constraint Ca into C̃a in order
to achieve for the resulting yet further modified structure functions that κ̃ab

j = κ̃aj
b = κ̃aj

k = 0. Given the
theory layed out in section (3) this may be achieved as follows: Since the C̃j form a closed, Abelian subalgebra
we may apply (3.3) with the partial set of Abelian Hamiltonian vector fields Xj = {C̃j , .} instead of the full
Abelianised set Xµ. That is, for any function F on phase space

OF := F +

∞∑
n=1

1

n!
G̃j1 ..G̃jn [Xj1 · ..Xjn · F ] (5.2)

with the gauge fixing condition G̃j := −xj (i.e. we set τ = 0 in (3.3)).
Applied to F = Ca we note that Xj · Ca is a linear combination of constraints via the second relation in

(5.1), thus also Xj ·Xk · Ca is a linear combination of constraints etc. It follows that

C̃a := OCa (5.3)

together with C̃j forms an equaivalent set of constraints as the zeroth order term with respect to the xj in (5.3)
starts with Ca. Moreover, (5.3) enjoys the following properties (see the list of properties displayed in section (3))

{C̃a, C̃b} = O{Ca,Cb}∗

{C̃j , C̃a} = 0 (5.4)

The last relation says that C̃a is an observable with respect to the C̃j by construction of the “projector” F 7→ OF .
The first relation can be further worked out using the Dirac bracket defined by the pair (C̃j , G̃

j)

{F,F ′}∗ = {F,F ′} − [{F, C̃j} {G̃j , F ′} − {F ′, C̃j} {G̃j , F}] (5.5)

For F = Ca, F
′ = Cb both correction terms in (5.5) is a linear combination of constraints Ca, C̃j. It follows that

also {C̃a, C̃b} is a linear combination of constraints C̃a, C̃j . The constraints C̃a can also be written (see section
3)

C̃a = Ca(q → Oq, p → Op, x → 0, y → C̃ −Oh, Q → OQ, P → OP ,X → OX , Y → OY ) (5.6)

Since by construction {OF , OF ′} = {OF , OF ′}∗ and since with respect to the Dirac bracket we may set C̃j = 0
before or after evaluating the bracket, we may pass to the partial constraint surface C̃j = 0 and henceforth
forget about the degrees of freedom xj, C̃j which form a canonical pair and the partially reduced phase space is
coordinatised by OF with F ∈ {q, p,Q, P,X, Y } while we set C̃j strongly to zero in (5.6), that is

C̃a = Ca(q → Oq, p → Op, x → 0, y → −Oh, Q → OQ, P → OP ,X → OX , Y → OY ),

Ohj
= hj(q → Oq, x → 0, Q → OQ, P → OP ,X → OX , Y → OY ) (5.7)

Moreover, since xj has vanishing Poisson brackets with F ∈ {q, p,Q, P,X, Y } it follows that

{OF , OF ′} = O{F,F ′}∗ = O{F,F ′} = {F,F ′} (5.8)

for F,F ′ ∈ {q, p,Q, P,X, Y } since then {F,F ′} =const. so that the OF , OF ′ remain conjugate variables. Thus
Poisson algebraically nothing is changed under the substitution F 7→ OF for functions of q, p,Q, P,X, Y only,
i.e. on this sector of the phase space the map O is an exact Poisson isomorphism or canonical transformation.
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5.1.2 Reduction viewpoint

Alternatively to this gauge invariance (with respect to the C̃j) viewpoint we may consider the partially reduced
phase space where the reduction is with respect to the C̃j . This is completely analogous to the previous section
and the summary is that we can forget about the degrees of freedom x, y and the constraints Cj altogether and
just keep the constraints Ca as long as we modify them into

C̃a(q, p,Q, P,X, Y ) = Ca(q, p, x = 0, y = −h(q, x = 0, Q, P,X, Y ), Q, P,X, Y ) (5.9)

Here hj was constructed perturbatively in the previous section. In particular these modified constraints close
among themselves

{C̃a, C̃b} = κ̃ab
c C̃c (5.10)

for certain κ̃ which are explicitly computed in the next section, see (6.2). To have a classical first class algebra
(5.10) is a prerequisite for a consistent quantisation. The problem is that only the exact C̃a are granted to close
among themselves, i.e. only when we invoke the entire series (4.10) that defines hj and not only its N−th order
truncation. The only exception is the case that the index a takes only one value. If that is not the case and if
we construct C̃a perturbatively, then the closure of the approximated constraints will in general be violated thus
prohibiting a consistent quantisation which, however, was the whole motivation for the only partial reduction with
respect to Cj . Thus, the perturbation theory for hj and thus C̃a developed in the previous section is granted to
be be viable for the partial reduction approach developed in this section only for systems for which there is only
one symmetric constraint Ca as is the case for instance in cosmology but not for black holes. Thus, whenever the
index range of a comprises at least two values we must resort to the full reduction process developed in section
4.

If on the other hand, if there is only one symmetric constraint Ca then the N−th order truncation

C
(N)
a (q, p,Q, P,X, Y ) of the function

Ca(q, p, x = 0, y = −h(N)(q, x = 0, Q, P,X, Y ), Q, P,X, Y ) (5.11)

with respect to X,Y , where h
(N)
j is the series (4.10) truncated at order N , will be a well motivated starting

point for quantisation. The N − th order truncation of (5.11) is readily computed since Ca(p, q, x, y, P,Q,X, Y )
is polynomial in y as displayed in (4.5). Thus, e.g. for N ≥ 3 using either the previous or the present section
one would get a viable theory describing cosmological non-Gaussianities resulting from the self-interactions of
the non-symmetric (that is in this case, inhomogeneous) degrees of freedom X,Y while there are only a finite
number of degrees of freedom in the list q, p,Q, P (the homogeneous modes of all matter and geometry degrees
of freedom). We display the details in section 6 for N = 3.

5.2 Comparison with the literature at second order

We first review the quite elaborate procedure developed in [5] and then show that it embeds very naturally into
the context of the previous subsection, thus explaining the symplecto-geometric origin of the procedure followed
in [5]. We only consider 2nd order perturbation theory in this section and keep the index a for easier compari-
son with the rest of this paper but keep in mind that eventually we are only interested in univalent index range of a.

We start again with the constraints Ca, Cj and, as motivated in section (2), truncate them at second and
first order respectively

Ca(1) = 0, Cj(0) = 0, C(2)
a = Ca(0) + Ca(2), C

(1)
j = Cj(1) (5.12)

We also recall the symmetric and non-symmetric brackets (2.12) as well as the following identies derived in section
2

{Ca(0), Cb(0)}S = {Ca(0), Cb(0)} = κab(0)
c Cc(0),

{Cj(1), Ck(1)}S̄ = κjk(0)
a Ca(0)

{Cj(1), Ca(0)}S + {Cj(1), Ca(2)}S̄ = κja(0)
kCk(1) + κja(1)

bCb(0) (5.13)
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Since the Cj(1) do not close among each other, the first step of [5] is to select some first order canonical variable
Lj subject to the conditions

{Cj(1), L
k}S̄ = δkj , {L

j , Lk}S̄ = 0 (5.14)

In the present situation, a possible choice is

Lj := xk (σ−1)jk, σ
k
j := {Cj(1), x

k}S̄ (5.15)

Whenever such functions can be found we can consider the “improved” constraints

C ′
j(1) = Cj(1) +

1

2
κjk(0) L

k Ca(0) (5.16)

which enjoy the property (note that all zero order quantities have vanishing {., .}S̄ bracket)

{C ′
j(1), C

′
k(1)}S̄ = {Cj(1), Ck(1)}S̄ +

1

2
[κkm(0)

a {Cj(1), L
m}S̄ − κjm(0)

a {Ck(1), L
m}S̄ ] Ca(0) = 0 (5.17)

i.e. they are Abelian albeit only with respect to the non-symmetric bracket. We may replace Cj(1) by C ′
j(1) free

of charge in 2nd order perturbation theory because the totally constrained Hamiltonian reads

faC(2)
a + gjCj(1) = [fa−

1

2
gjLkκjk(0)

a]Ca(0) + faCa(2) + gjC ′
j(1) = [fa−

1

2
gjLkκjk(0)

a]C(2)
a + gjC ′

j(1)+O(3)

(5.18)
where the third order correction can be dropped in 2nd order perturbation theory. In other words, the substitution
of Cj(1) by (5.16) can be induced by a redefinition of fa up to a higher order correction of the Hamiltonian.

If we are interested in backreaction, it is not enough that (5.17) holds with respect to the non-symmetric
bracket only, it should hold with respect to the full bracket. Therfore the second step of [5] consists in constructing
a canonical transformation on the full phase space, at least to second order perturbation theory, from the
canonical coordinates (q, p, x, y,Q, P,X, Y ) to new canonical coordinates (q′, p′, x′, y′, Q′, P ′,X ′, Y ′) with y′j :=

C ′
j(1), (x

′)j := Lj. In other words the {., .}S̄ canonical pair (Lj , C ′
j(1)) as displayed in (5.14), (5.15), (5.16) and

(5.17) is completed to a canonical pair on the full phase space which triggers corresponding changes in the other
canonical coordinates. To derive this transformation one notices that [5]

(X ′)J := XJ −Lj{Cj(1),X
J}S̄ = XJ −Lj{C ′

j(1),X
J}S̄ , Y ′

J := YJ −Lj{Cj(1), YJ}S̄ = YJ −Lj{C ′
j(1), YJ}S̄ ,

(5.19)
are such that (x′, y′,X ′, Y ′) have canonical {., .}S̄ brackets among each other since κjk(0)

a Ca(0) and σk
j have

vanishing {., .}S̄ bracket. We will therefore use these x′, y′,X ′, Y ′ as candidates and try to compute q′, p′, Q′, P ′

at least up to second order. To do this we compute the inversions of (5.15), (5.16) and (5.19) i.e.

xj = σj
k (x′)k = (x′)k{C ′

k(1), x
j}S̄ , XJ = (X ′)J + (x′)j{C ′

j(1),X
J}S̄

YJ = Y ′
J + (x′)j{C ′

j(1), YJ}S̄ , yj = (σ−1)kj [y′k − (σjk xk + σjK XK + σK
j YK)] (5.20)

where we have used that C ′
j(1) is linear in x, y,X, Y with with coefficient functions σ depending on q, p,Q, P

C ′
j(1) = σjk xk + σk

j y
k + σjK XK + σK

j YK (5.21)

We will condense the notation by writing the variables in two groups corresponding to symmetric and non-
symmetric degrees of freedom

rα = (qa, QA), sα = (pa, PA), u
ρ = (xj ,XJ ), vρ = (yj, YJ) (5.22)

and may write the content of (5.20) compactly as

uρ = Mρ
λ (u′)λ +Mρλ v′λ, vρ =ρλ (u′)λ +Mλ

ρ v′λ (5.23)
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where the matrices M depend only on r, s and define by construction a linear canonical transformation (u′, v′) 7→
(u, v) at constant (r, s). We plug (5.23) into the symp[lectic potential

2Θ = sα drα − dsα rα + vρ duρ − dvρ uρ (5.24)

where the exterior derivative d acts on all phase space variables. If we collect the terms in which d acts on u′, v′

we know that this just replaces the (u, v) in (5.24) by (u′, v′) by virtue of M being canonical for each r, s. Thus

2Θ = sα drα − dsα rα + v′ρ d(u
′)ρ − dv′ρ (u′)ρ + 2 (∆sα) dr

α − 2 dsα (∆rα)

= (sα + (∆s)α) d(r
α + (∆r)α)− d(sα + (∆s)α) (r

α + (∆r)α) + v′ρ d(u′)ρ − dv′ρ (u′)ρ + d(.) +O(4)

2(∆s)α = vρ uρ,rα − vρ,rα uρ, −2(∆r)α = vρ uρ,sα − vρ,sα uρ (5.25)

where in the last step we dropped a total differential and a term of fourth order in u, v because ∆r,∆s are
of second order. The notation in the last line means that u, v are considered as functions of the independent
coordinates u′, v′, r, s. Thus up to second order

(r′)α = rα + (∆r)α, s′α = sα + (∆s)α, (5.26)

where in the expressions for ∆r,∆s we reexpress u′, v′ in terms of u, v. A closer look at ∆r,∆s shows that

2(∆r)α = {vρ, r
α}Su

ρ − vρ {u
ρ, rα}S , 2(∆s)α = {vρ, sα}Su

ρ − vρ {u
ρ, sα}S (5.27)

where again u, v are functions of u′, v′, r, s as displayed in (5.23). We once more compactify the notation and
write tA = (rα, sα), wM = (uρ, vρ) and introduce the antisymmetric, constant symplectic structure matrices

ΩS,ΩS̄ defined by
2Θ = ΩS

ABt
A dtB +ΩS̄

MNwM dwN (5.28)

with inverse ΩAB
S i.e. ΩAC

S (ΩS)CB = δAB and similar for ΩS̄ . It is standard but also not difficult to check
directly that with the non-vanishing Poisson bracket convention {yj, x

k}S̄ = δkj , {YJ ,X
K}S̄ = δKJ {pa, q

b}S =

δba, {PA, Q
B}S = δBA we have

{F,G}S = −ΩAB
S F,A G,B, {F,G}S̄ = −ΩMN

S̄ F,M G,N (5.29)

with F,A := ∂F/∂tA, F,M := ∂F/∂wM. In this notation (5.23) becomes

wM = MM
N (w′)N (5.30)

and (5.27) becomes (w is considered a function of w′, t)

−2(∆t)A = ΩS̄
MN wM {wN , tA}S

= ΩS̄
MN wM {MN

P , tA}S (w′)P

= ΩS̄
MN wM {MN

P , tA}S (M−1)PQ wQ (5.31)

which expresses the corrections ∆t in terms of w, t as M is also a function of t. Next

−2(∆t)A = −ΩS̄
MN wM MN

P {(M−1)PQ, t
A}S wQ

= −ΩS̄
MN wM MN

P {(w′)P , tA}S (5.32)

where in the second step we used that {., .}S does not act on w and reintroduced w′ = M−1w considered as a
function of w, t. Since M is canonical wrt ΩS̄ we have

ΩS̄
MN MM

P MN
Q = ΩS̄

PQ ⇔ ΩS̄
MN MN

Q = ΩS̄
PQ (M−1)PM (5.33)

and thus we can cast (5.32) into the simpler form

−2(∆t)A = −ΩS̄
QP (M−1)QM wM {(w′)P , tA}S = −(w′)M ΩS̄

MN {(w′)N , tA}S (5.34)
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Reintroducing x′, y′,X ′, Y ′ we get

−2(∆t)A = −y′j{(x
′)j, tA}S + (x′)j{y′j , t

A}S − Y ′
J{(X

′)J , tA}S + (X ′)J{Y ′
J , t

A}S (5.35)

To summarise we have shown that

y′j : = C ′
j(1) = Cj(1) + κjk(0)

a Ca(0) L
k/2 (5.36)

(x′)j := Lj = (σ−1)k
j xk, σk

j = {Cj(1), x
k}S̄

(X ′)J := XJ − (x′)j{C ′
j(1),X

J}S̄ , Y
′
J := YJ − (x′)j{C ′

j(1), YJ}S̄ ,

F ′ = F +
1

2
[y′j{(x

′)j , f}S − (x′)j{y
′
j , f}S + Y ′

J{(X
′)J , f}S − (X ′)J{Y ′

J , f}S ], F ∈ {qa, pa, Q
A, PA}

defines a canonical transformation with respect to the full Poisson bracket, up to 2nd order in x, y,X, Y , i.e. the
failure from being an exact canonical transformation is an at least third order correction.

Therefore q′, p′, Q′, P ′,X ′, Y ′ in (5.36) define observables with respect to C ′
j(1) up to second order corrections.

It is however not clear that C
(2)
a = Ca(0) +Ca(2) in (5.12) can be written in terms of these 2nd order observables

up to higher order corrections. For this to be the case it would be necessary that {C ′
j(1), C

(2)
a } is of second order

modulo C ′
k(1), C

(2)
a terms. Given (5.13) we compute the modifications of (5.13) that result from the substitution

Cj(1) → C ′
j(1). Using κ̂jk(0)

a = 1
2 κ̂jl(0)

a (σ−1)lk we find for the full brackets (note that C ′
j(1) is still homogeneous

linear in x, y,X, Y )

{C ′
j(1), C

′
k(1)} = {C ′

j(1), C
′
j(1)}S̄ +O(2) = O(2)

{C ′
j(1), C

(2)
a } = {Cj(1), C

(2)
a }+ {κ̂jk(0

b xk Cb(0), C
(2)
a }

= {Cj(1), Ca(0)}S + {Cj(1), Ca(2)}S̄ +O(3) + {κ̂jk(0
b xk Cb(0), Ca(0)}S + {κ̂jk(0

b xk Cb(0), Ca(2)}S̄ +O(3)

= κja(0)
kCk(1) + κja(1)

bCb(0)

+xk [{κ̂jk(0
b, Ca(0)}S Cb(0) + κ̂jk(0

b κab(0)
cCc(0)] + κ̂jk(0

b {xk, Ca(2)}S̄ Cb(0) +O(3)

=: κja(0)
k C ′

k(1) + κ̃bja(1) Cb(0) +O(3) (5.37)

The C ′
j(1) close among themselves up to O(2) corrections by construction but C

(2)
a is not an observable with

respect to C ′
j(1) up to O(2) corrections, there is an O(1) obstruction term proportional to Ca(0). We thus modify

C
(2)
a by

C ′(2)
a := C(2)

a + λb
a(2)Cb(0) (5.38)

where the O(2) correction can be absorbed into a redefinition of the smearing function (f ′)a = fa + λa
b(2)f

b up

to higher order corrections since (f ′)aC
(2)
a − faC

′(2)
a = O(4). Then

{C ′
j(1), C

′(2)
a } = κja(0)

k C ′
k(1) + κ̃bja(1) Cb(0) +O(3) + {C ′

j(1), ρ
b
a(2)Cb(0)}

= κja(0)
k C ′

k(1) + [κ̃bja(1) + {C ′
j(1), ρ

b
a(2)}S̄ ]Cb(0) +O(3) (5.39)

The term proportional to Cb(0) can be brought to vanish if the PDE system

κ̃bja(1) + {C ′
j(1), ρ

b
a(2)}S̄ = 0 (5.40)

has a solution for which it is necessary that the corresponding integrability conditions

2{C ′
[j(1), κ̃

b
k]a(1) + {C ′

k](1), ρ
b
a(2)}S̄}S̄ = 0 (5.41)

hold which, using the Jacobi identity with respect to {., .}S̄ translates into

2{C ′
[j(1), κ̃

b
k]a(1)}S̄ = O(2) (5.42)
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which is not granted to hold, not even, if the index range of a, b is uni-valent. We also note for completeness
that

{C(2)
a , C

(2)
b } = {Ca(0), Cb(0)}S + {Ca(0), Cb(2)}S + {Ca(2), Cb(0)}S + {Ca(2), Cb(2)}S̄ +O(4)

= κcab(0) Cb(0) + κcab(0)Cb(2) + κcab(2)Cb(0) + κjab(1)Cj(1) + κjab(0)Cj(2) +

= κab(0)
c C(2)

c +O(2) (5.43)

closes with itself but only up to O(2) corrections which are of the same order as C
(2)
a which is discomforting.

However, if we wish C
(2)
a to be gauge invariant with respect to C ′

j(1) up to O(2) we must perform the substitution

(if it exists) C
(2)
a → C

′(2)
a = λb

a(2)Cb(0) + C
(2)
a and then find

{C ′(2)
a , C

′(2)
b } = κab(0)

c C ′(2)
c +O(2) (5.44)

where the additional O(2) corrections are all proportional to Ca(0) with coefficients of the form {λ(2), λ(2)}S̄ ,
{λ(2), C(2)}S̄ , λκ(0). Of course, (5.44) vanishes when a, b take only uni-valent range.

Given these difficulties the procedure followed in the literature is to expand C
(2)
a in terms of q′, p′, x′, y′, Q′, P ′,X ′, Y ′, P ′,

to drop higher order terms and all terms proportional to y′ (corresponding to a redefinition of gj) and all powers
of x′. Dropping the x′ dependent terms is usually justified by arguing that x′ is pure gauge and thus these terms

cannot be observable. The so modified C ′
a(2) then satisfies {C ′

j(1), C
′(2)
a } = O(2) by construction and trivially

{C
′(2)
a , C

′(2)
b } = 0 for uni-valent range of a, b. However, the dropping of the x′ dependent terms lacks a more

profound justification other than providing a consistent model.

Given the theory developed in section 3 and specialised to the current situation in the previous subsection,
one may wonder whether there is any connection between (5.36) and the observable “projector” OF in 5.2. This
is far from obvious:
1. In (5.36) an elaborate mixture and symmetric and non-symmetric brackets appears while in (5.2) just involves
the full Poisson bracket.
2. In (5.36) the correction terms involve Poisson brackets of F ∈ {q, p,Q, P,X, Y } with both C ′

j(1) and (X ′)J , Y ′
J

while in (5.2) only Poisson brackets between F and C̃j = yj + hj(q, x,Q, P,X, Y ) are involved.
3. While both C ′

j(1) = C ′
j(1)(q, p, x, y,QP,X, Y ) and C̃j are related to the same original unperturbed Cj , they

do not even depend on the same set of variables (C̃j does not depend on p).
Remarkably, still a precise relation between (5.36) and (5.2) can be established, thereby unveiling the

symplecto-geometric origin of the quite elaborate set of formulae (5.36) and showing how to extend the framework

of [5] to higher orders. It also justifies why the constrained Hamiltionian faC
(2)
a + gjCj(1) can be replaced by an

equivalent one which can be written just in terms of q′, p′, y′, Q′, P ′,X ′, Y ′ while an explicit dependence on x′

drops out: As we showed in the previous section, before engaging in perturbation theory, one can replace Ca, Cj

by equivalent constraints (thereby redefining fa, gj in the Hamiltonian) C̃a, C̃j such that with respect to the full
bracket the C̃a close among themselves, the C̃a, C̃j commute and the C̃j, C̃k are Abelian. The exact reduction
of the theory with respect to C̃j should therefore result in C̃a which is fully gauge invariant with respect to C̃j

and thus cannot depend on xj (which is such that {C̃j , x
k} = δkj ) explicitly. Indeed this is precisely achieved in

(5.6) (partially gauge invariant viewpoint) or (5.9) (partial reduction viewpoint). As x, x′ are linearly related in

the perturbative treatment above, all explicit dependence on x′ in C
(2)
a should be eliminated.

A first hint that (5.36) and (5.2) cannot be unrelated is due to the appearance of the factor 1/2 in q′−q, p′−
p,Q′ −Q,P ′ − P which is missing in X ′ −X,Y ′ − Y : Such a factor would appear precisely in the second order
term of the Taylor expansion in (5.2). Also the expansion parameter in (5.2) is xj while in (5.36) for at least
some of the terms it is (x′)j and x, x′ are linearly related. To understand the factor 1/2 from the point of view
of (5.2) let us temporarily assume (to be justified below) that we may sustitute (x′)j , y

′
j = C ′

j(1) by xj, C̃j(1).
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Let Xj = {C̃j(1), .} then

OF = F − xj {C̃j(1), F}+
1

2
xj xk {C̃j(1), C̃k(1), F}} +O(3) (5.45)

where we dropped higher order terms for second order perturbation theory: Since x is of first oder, thus no
matter what the result of the n−th order Poisson bracket calculation is, the terms proportional to xn in (5.2)
are at least of order n. We determine the terms at most of order two in (5.45) for a first order function F(1),
i.e. a linear function of x, y,X, Y with coefficients depending on q, p,Q, P and a zeroth order function F(0)

respectively. We have {C̃j(1), F(1)} = {C̃j(1), F(1)}S̄ + O(2) and thus the second term in (5.45) is contributing
a quadratic correction. On the other hand

{C̃j(1), {C̃k(1), F(1)}} = {C̃j(1), O(0) +O(2)} = {C̃j(1), O(0)}S + {C̃j(1), O(2)}S̄ +O(3) = O(1) (5.46)

thus the third term in (5.45) is of third order and can be dropped. Next {C̃j(1), F(0)} = {C̃j(1), F(0)}S = O(1)
and thus the second term in (5.45) is a quadratic correction and thus

{C̃j(1), {C̃k(1), F(0)}} = {C̃j(1), O(1)} = {C̃j(1), O(1)}S̄ +O(2) (5.47)

Therefore the third term which contains the factor 1/2 in (5.45) is also quadratic and does contribute when F
is of zeroth order!

To see explicitly why the third term in (5.45) is mandatory in order that OF be a second order observable
when F = F(0) we compute assuming {C̃j(1), x

k} = δkj (justified below)

{C̃j(1), F − xk{C̃k(1), F}} = −xk{C̃j(1), {C̃k(1), F}} (5.48)

which is O(2) for F = F(1) but only O(1) for F = F(0). Thus for F = F(0) we include the third term in (5.45)

and use {C̃j , C̃k} = O(2) (justified below). Then

{C̃j(1), OF } = {C̃j(1), F} − {C̃j(1), x
k {C̃k(1), F}}+

1

2
{C̃j(1), x

k xl {C̃k(1), {C̃l(1), F}}}

= −xk {C̃j(1), {C̃k(1), F}} +
1

2
[xk {C̃k(1), {C̃j(1), F}}} + xl {C̃j(1), {C̃l(1), F}}}

+xkxl{C̃j(1), {C̃k(1), {C̃l(1), F}}}]

=
1

2
xk [{C̃k(1), {C̃j(1), F}}} − {C̃j , {C̃k(1), F}}] +O(3)

=
1

2
xk {C̃k(1), {C̃j(1)}, F}} +O(3) = O(3) (5.49)

where we used the Jacobi identity.

Summarising, to second order

OXJ = XJ − xj{C̃j(1),X
J}, OYJ

= YJ − xj{C̃j(1), YJ} (5.50)

already look very close to (X ′)J , Y ′
J in (5.36) while for F ∈ {qa, pa, Q

A, PA} the quantities OF and F ′ in
(5.36) are not obviously related except that they involve a factor 1/2. To see how (5.2) and (5.36) are related
nevertheless we must carry out the programme of the previous subsection to second order. The first step is to
calculate C̃j = yj +hj(q, x,Q, P,X, Y ) to first order where hj is computed perturbatively in section 4. Thus we
suppose to have found a solution pa(0) (a function of q,Q, P of Ca(0) = 0) and must solve Cj = 0 to first order
in y which is explicitly given by (see (4.12) where what is denoted by Sk

j there is denoted by σk
j here)

C̃j(1) = yj + {(σ−1)kj [σjk xk + σjJ XJ ++σJ
j YJ ]}p=p(0) = {(σ−1)kj [C ′

j(1)]}p=p(0) (5.51)

where the notation (5.21) was used. Note that C ′
j(1) = Cj(1) when p = p(0) since these two functions differ by

a term proportional to Ca(0) which vanishes at p = p(0) by definition.
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This provides the first connection between the formalisms. The second is that (x′)j = σj
kx

k so that

[(x′)j C ′
j(1)]p=p(0) = xjC̃j(1) (5.52)

It follows that to second order

OXJ = XJ − xj {C̃j(1),X
J} = XJ − xj {C̃j(1),X

J}S̄ = XJ − (x′)j {[C ′
j(1)]p=p(0),X

J}S̄

= XJ − (x′)j {[C ′
j(1)]p=p(0),X

J}S̄ = (X ′)Jp=p(0) (5.53)

and similarly OYJ
= [Y ′

J ]p=p(0).

Recall y′j = C ′
j(1) and let ỹj = (σ−1)kj y

′
k so that C̃j(1) = [ỹj]p=p(0). For F ∈ {q, p,Q, P} note that all

brackets with F are automatically {., .}S brackets which do not act on x, y,X, Y . Then

−2(F ′ − F ) = y′j {(x
′)j , F} − (x′)j {y′j, F}+ Y ′

J {(X ′)J , F} − (X ′)J {Y ′
J , F} (5.54)

= y′j {(x
′)j , F} − (x′)j {y′j , F} − Y ′

J {(x′)j{y′j,X
J}S̄ , F}+ (X ′)J {(x′)j{y′j, YJ}S̄ , F}

= y′j {(x
′)j , F} − xk[(σ−1)jk{y

′
j , F}+ Y ′

J {(σ−1)jk{y
′
j ,X

J}S̄ , F} − (X ′)J {(σ−1)jk{y
′
j, YJ}S̄ , F}]

= y′j {(x
′)j , F} − xk[{ỹk, F}+ (σ−1)jk ỹl{σ

l
j , F}+ Y ′

J {{ỹk,X
J}S̄ , F} − (X ′)J {{ỹk, YJ}S̄ , F}]

= y′j {(x
′)j , F} − xk[{ỹk, F} − y′j{σ

−1)jk, F}+ Y ′
J {{ỹk,X

J}S̄ , F} − (X ′)J {{ỹk, YJ}S̄ , F}]

= 2y′j {(x
′)j , F} − xk[{ỹk, F}+ Y ′

J {{ỹk,X
J}S̄ , F} − (X ′)J {{ỹk, YJ}S̄ , F}]

= 2y′j {(x
′)j , F}

−xk[{Akj , F} xj + {BjJ , F} XJ + {CJ
j , F} YJ + (YJ + xj Bj) {C

J
k , F}+ (XJ − xj CJ

j ) {BkJ , F}]

= 2y′j {(x
′)j , F} − xk[{Akj , F} xj + 2{BjJ , F} XJ + 2{CJ

j , F} YJ + xj [Bj) {C
J
k , F} − CJ

j {BkJ , F}]]

where in the last step we used the abbreviations

ỹj = yj + (σ−1)kj [σkl x
l + σkJ XJ + σJ

k YJ) =: yj +Ajk xk +BjJ XJ + CJ
j YJ (5.55)

On the other hand with Ājk := [Ajk]p=p(0) and similar for B̄jJ , C̄
J
j as well as ȳj := [ỹj ]p=p(0) = C̃j(1) we have

−2(OF − F ) = 2xk{ȳk, F} − xk xj {ȳk, {ȳj, F}}

= 2xk{ȳk, F} − xk xj {ȳk, {ȳj , F}}S̄ +O(4)

= 2xk{ȳk, F} − xk xj {ȳk, [{Ājl, F} xl + {B̄jJ , F} XJ + {C̄J
j , F} YJ ]}S̄

= 2xk{ȳk, F} − xk xj [{Ājk, F}+ {B̄jJ , F} CJ
k − {C̄J

j , F} BkJ ]

= 2xk[{Ākj , F}xj + {B̄kJ , F} XJ + {C̄J
k , F} YJ ]− xk xj [{Ājk, F}+ {B̄jJ , F} CJ

k − {C̄J
j , F} BkJ ]

= xk[{Ākj , F}xj + 2{B̄kJ , F} XJ + 2{C̄J
k , F} YJ ] + xk xj [{C̄J

j , F} BkJ − {B̄jJ , F} CJ
k ] (5.56)

where we have used that Ajk is symmetrically projected.
Comparing (5.36) and (5.56) we find that to second order, modulo a term proportional to the constraints y′j,

we have OF = F ′ except that for OF we set p = p(0) before evaluating the brackets {., }S involving F while
for F ′ we do not do that. Nevertheless both expressions fulfill the same purpose, namely they define observables
with respect to C̃j(1) and C ′

j(1) respectively. The reason for this is clear: From the relation

{Cj(1), Ck(1)}S̄ = κjk(0)
a Ca(0) (5.57)

we find from using ȳj = [(σ−1)ky′k]p=p(0) = [(σ−1)jkCk(0)]p=p(0) and the fact that restricting p = p(0) does not
affect the {., }S̄ bracket that {ȳj , ȳk}S̄ = 0 just like {y′j , y

′
k}S̄ = 0. Thus the two descriptions agree at second

order, we are using equivalent sets of constraints. Note that while the constraints C̃j use p = p(0) in their con-
struction, the constraints C̃a = OCa do not, the variable p is not yet eliminated in this partial reduction approach.

The advantage of working with the approach developed in this paper is that it directly generalises to higher
orders. In the next section we develop higher order perturbation theory for partially reduced gauge systems with
backreaction which is directly relevant for cosmology.
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6 Partially reduced perturbation theory

We display here the explicit formulae for third order partially reduced perturbation theory, i.e. the explicit formu-
lae for the remaining constraints Ca in the presence of the reduction of Cj. Again we will keep the index range a
arbitrary but note that unless the range is uni-valent the subsequent perturbative constraints do not close at finite
order (although the unperturbed constraints do). The results of this section are directly relevant for cosmological
perturbation theory.

The non-perturbative expression is given by

C̃a(q, p,Q, P,X, Y ) := Ca(q, p, x = 0, y = −h(q, x = 0, Q, P,X, Y ), Q, P,X, Y ) (6.1)

where h =
∑∞

n=1 hj(n) is found using theorem 4 which is a perturbative method for determining hj(q, x,Q, P,X, Y ).

Conceptually, hj results from solving Ca = 0 for pa = −ĥa(q, x, y,Q, P,X, Y ) and solving

Cj(q, p = −ĥ(q, x, y,Q, P,X, Y ), x, y,Q, P,X, Y ) = 0 for yj = −hj(q, x,Q, P,X, Y ). Although by the general
theory reviewed in sections 3, 5.1 it is clear that the (6.1) close, it is instructive to verify this by direct computation.
To that end we introduce the collective configuration coordinates kα = (qa, QA,XJ ) and and momentum coordi-
nates iα = (pa, PA, YJ) on which C̃a still depends. We use the notation Fy=−h,x=0 to mean that we first replace
y = −h(q, x,Q, P,X, Y ) to obtain F ′(q, p, x,Q, P,X, Y ) = F (q, p, x, y = −h(q, x,Q, P,X, Y ), Q, P,X, Y ) and
then set x = 0 to obtain F̃ (q, p,Q, P,X, Y ) = F ′(q, p, x = 0, Q, P,X, Y ). Direct computation yields

{C̃a, C̃b} =
∂C̃a

∂iα

∂C̃b

∂kα
− a ↔ b

= ([
∂Ca

∂iα
]y=−h,x=0 − [

∂Ca

∂yj
]y=−h,x=0 [

∂hj
∂iα

]x=0) ([
∂Cb

∂kα
]y=−h,x=0 − [

∂Cb

∂yk
]y=−h,x=0 [

∂hk
∂kα

]x=0)− a ↔ b

= {
∂Ca

∂iα

∂Cb

∂kα
− a ↔ b}y=−h,x=0

−{[
∂Ca

∂yj
]y=−h,x=0 [

∂hj
∂iα

]x=0 [
∂Cb

∂kα
]y=−h,x=0 + [

∂Ca

∂iα
]y=−h,x=0 [

∂Cb

∂yk
]y=−h,x=0 [

∂hk
∂kα

]x=0 − a ↔ b]y=−h,x=0}

+{[
∂Ca

∂yj
∂Cb

∂yk
]y=−h,x=0 [

∂hj
∂iα

∂hk
∂kα

− j ↔ k]x=0)}

= {Ca, Cb}y=−h,x=0 − {
∂Ca

∂yj
∂Cb

∂xj
− a ↔ b}y=−h,x=0 − {

∂Ca

∂yj
{[hj ]x=0, Cb} − a ↔ b}y=−h,x=0

+[
∂Ca

∂yj
∂Cb

∂yk
]y=−h,x=0 {[hj ]x=0, [hk]x=0}

= {Ca, Cb}y=−h,x=0 − {
∂Ca

∂yj
{yj + [hj ]x=0, Cb} − a ↔ b}y=−h,x=0

+[
∂Ca

∂yj
∂Cb

∂yk
]y=−h,x=0 {[hj ]x=0, [hk]x=0}

= {Ca, Cb}y=−h,x=0 − {
∂Ca

∂yj
({C̃j , Cb}+ {yk, hj}

∂Cb

∂yk
)− a ↔ b}y=−h,x=0 + [

∂Ca

∂yj
∂Cb

∂yk
]y=−h,x=0 {hj , hk}x=0

= {Ca, Cb}y=−h,x=0 − {
∂Ca

∂yj
{C̃j , Cb} − a ↔ b}y=−h,x=0

+[
∂Ca

∂yj
∂Cb

∂yk
]y=−h,x=0 {−{yk, hj}+ {yj , hk}+ {hj , hk}x=0}

= {Ca, Cb}y=−h,x=0 − {
∂Ca

∂yj
{C̃j , Cb} − a ↔ b}y=−h,x=0 + [

∂Ca

∂yj
∂Cb

∂yk
]y=−h,x=0 {C̃j , C̃k}x=0

= [(κ′)ab
c Cc + (κ′)ab

j C̃j ]y=−h,x=0 − {
∂Ca

∂yj
[(κ′)jb

c Cc + (κ′)jb
k C̃k]− a ↔ b}y=−h,x=0

= [(κ′)ab
c + 2

∂C[a

∂yj
(κ′)b]j

c]y=−h,x=0 C̃c =: κ̃cab C̃c (6.2)
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where in the third step we used that [hj ]x=0 does not depend on x, y, in the fourth we combined the sec-
ond and third term using ∂/∂xj(.) = {yj, .}, in the fifth we noted that the yj + [hj ]x=0 = [C̃j]x=0 and that
{[hj ]x=0, [hk]x=0} = {hj , hk}x=0 as hj does not depend on y, in the seventh and eighth we combined terms, in
the nineth we used that the set of constraints Ca, C̃j closes and whose structure constants were defined in (5.1), in
the tenth we used that C̃j = 0 when y = −h and that C̃a = [Ca]y=−h,x=0. Note that at the reduced level C̃j ≡ 0.

Our task is now to expand C̃a to N−th order in X,Y . We collect the relevant formulae from (4.5), (4.6)

Ca = Ua +Kb
a pb + Lj

a yj +Abc
a pb pc +Bjk

a yj yk + Cbj
a pb yj

Ua = ua + uAa PA + uJa YJ + uAB
a PA PB + uJKa YJ YK + uAJ

a PA YJ

Kb
a = kba + kbAa PA + kbJa YJ

Lj
a = lja + ljAa PA + ljJa YJ (6.3)

where the functions A,B,C, u, k, l only depend on q, x,Q,X. We denote by Ā, B̄, C̄, ū, k̄, l̄ their evaluation at
x = 0 and by Ā(n) etc. the homogeneous n−th order contribution to its expansion with respect to X. Also
Ū , K̄, L̄ just mean replacement of u, k, l in U,K,L by ū, k̄, l̄.

We are supposed to evaluate (6.3) at y = −h and require the knowledge of the coefficients hj(n) for n ≤ N
that were constructed by the iterative scheme of theorem 4. We denote by h̄j the evaluation of hj(q, x,Q, P,X, Y )
at x = 0 and by h̄j(n) the n−th order contribution of its expansion with respect toX,Y . Then the exact expression
is

C̃a = Ūa + K̄b
a pb − L̄j

a h̄j + Ābc
a pb pc + B̄jk

a h̄j h̄k − C̄bj
a pb h̄j (6.4)

and the n−th order homogeneous contribution to its expansion with respect to X,Y is

C̃a(n) = Ūa(n) + K̄b
a(n) pb −

∑
r+s=n

[L̄j
a(r) + C̄bj

a(r) pb] h̄j(s) + Ābc
a(n) pb pc +

∑
r+s+t=n

B̄jk
a(r) h̄j(s) h̄k(t) (6.5)

where

Ūa(n) = ūa(n) + ūAa(n) PA + ūJa(n−1) YJ + ūAB
a(n) PA PB + ūJKa(n−2) YJ YK + ūAJ

a(n−1) PA YJ

K̄b
a(n) = k̄ba(n) + k̄bAa(n) PA + k̄bJa(n−1)YJ

L̄j
a(n) = l̄ja(n) + l̄jAa(n) PA + l̄jJa(n−1) YJ (6.6)

while

C̃(N)
a =

N∑
n=0

C̃a(n) (6.7)

To determine the top order of h̄j(r) needed to evaluate C̃a(n) we recall (4.9), (4.13) and (4.14): We note that due
to hj(0) ≡ 0 also h̄j(0) = 0 therefore the third term in (6.5) involves only s, t ≤ n−1. Next from (4.9) we see that

Lj
a(0) ≡ 0 ≡ Cbj

a(0) so that L̄j
a(0) = 0 = C̄bj

a(0). Therefore also in the second term of (6.5) only involves s ≤ n− 1.

Thus we only need h̄j(r), r = 1, ..n − 1 to determine C̃a(n) which in turn requires to know hj(r), r = 1, ..n − 1.
By (4.13) and (4.14) the computation of both ha(n), hj(n) requires knowledge of hb(r), hk(r); r ≤ n − 1. The
latter are obtained by solving Ca(r) = Cj(r) = 0 for r ≤ n − 1. Thus to find hj(r), r ≤ n − 1 we need to
perturbatively solve Ca(s) = 0, 0 ≤ n − 2 and Cj(s) = 0, s ≤ n − 1 or in other words we must perturbatively

solve C
(r)
a , r ≤ n − 2 and C

(r)
j , r ≤ n − 1. For instance to find C̃a(3) we must solve Ca(0), Ca(1) = 0 and

Cj(0) = Cj(1) = Cj(2) = 0 and since Ca(1) ≡ 0 ≡ Cj(0) corresponding to ha(1) = hj(0) = 0 we just need to solve
Ca(0) = Cj(1) = Cj(2). It should be stressed that while the solutions pa(r) = −ha(r) of (4.13), (4.14) enter the

construction of C̃a via hj , in C̃a the variable p is otherwise still unconstrained.
The object (6.7) is to be contrasted with the strategy outlined in section 2 where one expands the unperturbed

Ca, Cj to order N,N − 1 respectively with respect to x, y,X, Y relying on the assumption that the smearing
functions fa, gj respectively are to be considered as zeroth and second order quantities respectively. We compare

this with C̃
(N)
a , which, as just derived, is obtained by 1. perturbatively solving the system C

(N−2)
a = C

(N−1)
j = 0
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for −yj = h
(N−1)
j = hj(1)+ ..+hj(N−1), 2. restricting to x = 0 to find h̄

(N−1)
j = [h

(N−1)
j ]x = 0 and 3. expanding

Ca evaluated at xj = 0, yj = −h̄
(N−1)
j up to N−th order in X,Y . Common to both procedures is that both

involve C
(N)
a , C

(N−1)
j but the crucial difference is that in the second procedure C

(N)
a acquires the non-trivial

modification C
(N)
a → C̃

(N)
a and forgets about C

(N−1)
j while in the first procedure one keeps both C

(N)
a , C

(N−1)
j

and hopes that these form a closed system of constraints which, as we have seen in section 2, is not the case.

The modification C
(N)
a → C̃

(N)
a is just the perturbative counter part of switching from Ca, Cj to equivalent

constraints (i.e. they have the same kernel) C̃a, C̃j for which the crucial property holds that the C̃j close among
themselves (even Abelian) and that the C̃a are invariant with respect to them so that a partial reduction with
respect to the C̃j can be carried out.

Accordingly, C̃
(N)
a has a profound justification while C

(N)′
a does not. A sign of that can be seen from the fact

that (6.7) can be shown to close, with respect to the full bracket up to higher order corrections of order at least

N + 1. To see this, we split the exact C̃a = C̃
(N)
a + Za(N+1) where Za(N+1) = O(N + 1) contains the higher

order terms of C̃a with respect to X,Y . Then using (6.2)

{C̃(N)
a , C̃

(N)
b } = {C̃a − Za(N+1), C̃b − Zb(N+1)}

= {C̃a, C̃b} − {C̃a, Zb(N+1)}+ {C̃b, Za(N+1)}+ {Za(N+1), Zb(N+1)}

= κ̃ab
c C̃c − {C̃a, Zb(N+1)}S̄ +O(N + 1) + {C̃b, Za(N+1)}S̄ +O(N + 1) +O(2N)

= κ̃ab
c C̃(N)

c − {C̃a(0) + C̃a(2) +O(3), Zb(N+1)}S̄ + {C̃b(0) + C̃b(2) +O(3), Za(N+1)}S̄ +O(N + 1)

= κ̃ab
c C̃(N)

c − {C̃a(2), Zb(N+1)}S̄ + {C̃b(2), Za(N+1)}S̄ +O(N + 1)

= κ̃ab
c C̃(N)

c +O(N + 1) (6.8)

where we used that {., .}S does not decrease orders, that C̃a(0) has vanishing {., .}S̄ brackets and that C̃a(1) ≡ 0.
To see the latter we note from (6.5) and that hj(0) = 0

C̃a(1) = Ūa(1) + K̄b
a(1) pb − [L̄j

a(0) + C̄bj
a(0) pb] h̄j(1) + Ābc

a(0) pb pc = 0 (6.9)

since by (4.9)

Ua(1) = Kb
a(1) = Lj

a(0) = Abc
a(1) = Cbj

a(0) = 0 (6.10)

for all q, x, P,Q,X, Y hence also at x = 0.
Note that the proof of (6.8) uses the non-perturbative result (6.2). The result (6.8) shows that the failure of

the C̃
(N)
a to close exactly is of higher order O(N+1) and thus formally decays to zero as N → ∞. It is exactly

zero for any N if the range of a, b is only univalent. Since only approximately closing constraints are not suitable
for operator constraint quantisation, the partial reduction procedure is presumably not helpful for multivalent
range of a, b. See, however, [12] where only approximately closing constraints are considered as second class
constraints which opens a quantisation strategy based on second class constraints (Dirac bracket formalism).
Yet, the result (6.8) can be used as a motivation to follow the approach to perturbation theory for partially
reduced gauge systems with backreaction proposed in the present article at least in the classical theory. It is
conceptually clear and simple and does not need the split of Poisson brackets into background and perturbation
brackets, no canonical transformations are involved. Yet, it can be seen as a natural extension of the established
method [5] as shown in the previous section. That (6.8) closes up to corrections of order higher than C

(N)
a itself

is also to be contrasted with (5.43) for second order which only closes up to the same order.

We finish this section by examplifying the procedure and write C̃
(3)
a with all details supplied, following the

notation of theorem 4. This requires to know yj(1) = −hj(1), yj(2) = −hj(2) and, as an intermediate step,
pa(0) in the notation of theorem 4. Here pa(0) solves Ca(0) = 0 and is supposed to be a known function of

q,Q, P . Following the steps of theorem (4) we find successively in terms of the zeroth order matrix Sk
j (q,Q, P ) :=

Nk
j(0) + 2 F ck

j(0) pc(0), which is assumed to be regular

hk(1) = (S−1)k
j [Vj(1) +Ma

j(1) pa(0) +Dab
j(1) pa(0) pb(0)] (6.11)

hk(2) = (S−1)k
j [Vj(2) +Ma

j(2) pa(0)−Nk
j(1) hk(1) +Dab

j(2) pa(0) pb(0) + Ekl
j(0) hk(1) hl(1) − F ak

j(1) pa(0) hk(1)]
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which are to be restricted to x = 0 thus yielding h̄j(1), h̄j(2) and inserted into (6.5) for n = 2, 3 to find C̃a(2), C̃a(3)

while C̃a(0) = Ca(0), C̃a(1) = Ca(1) = 0 remain unmodified. Then C̃
(3)
a =

∑3
n=0 C̃a(n). Note again that pa(0)

which solves Ca(0) = 0 just enters hj(1), hj(2) but the unconstrained p still remains intact in all other parts of

C̃a(n) in particular in Ca(0) and all coefficients in U,K,L,A,B,C (6.5).
We note that in full reduction to order N we require both ha, hj to order N and not only to order N−2, N−1

respectively which then gives directly the reduced Hamiltonian

H(N)(t) = τ̇a(t) [
N∑

n=0

ha(n)]q=τ,x=ρ + ρ̇j(t) [
N∑

n=0

hj(n)]q=τ,x=ρ (6.12)

subject to the gauge fixing conditions qa = τa, xj = ρj , as functions of Q,P,X, Y . Thus, to obtain for instance
H(3) we require in addition ha(2), ha(3) if ρ̇ = 0 and in addition hj(3) if ρ̇ 6= 0 all of which can be obtained
analogously.

Therefore at low orders of N the amount of work in partial reduction, when applicable, is significantly lower

than for full reduction which comes at the price of having still to perform a quantum reduction of the C̃
(N)
a . At

higher orders the difference in the amount of work involved becomes insignificant so that a full reduction seems
preferrable.

7 Conclusion and outlook

The present project was partly motivated by the desire to understand the seminal work [5] from a broader
perspective. In [5] an elegant approach to classical and quantum (partially, i.e. with respect to the non-
homogeneous gauge transformations) gauge invariant second order cosmological theory including backreaction
is developed. The intention of the present study was to extract the symplecto-geometric origin of the methods
developed in [5] with the aim to generalise them to higher orders, different symmetries and more general gauge
systems. In fact, the generalisation of (cosmological) perturbation theory to higher orders is a much debated
subject and to the best of our knowledge there is no conclusion in the literature how to proceed, the challenge
being to define a perturbative notion of gauge invariance [6, 7].

We were intrigued by the fact that in [5] sophisticated canonical transformations are employed in order to
generate gauge invariant variables which at least in part of its variables strongly reminded us of the first few
terms in the Taylor expansion of relational Dirac observables [3]. In fact, we used the relational approach before
[11] but using additional matter that is designed to drastically simplify the occurring tasks listed below and to
arrive at an exact solution.

We believe that the present work at least partly succeeded in unveiling the broader structure underlying the
work of [5]. The central ingredients are as follows:
1.
Starting form a physically motivated Killing symmetry, one can naturally split the symplectic structure into a
symmetric and a non-symmetric sector.
2.
The first class constraints of the underlying constraints also naturally split into “symmetric” and “non-symmetric”
subsets corresponding to a split of the tensors smearing those constraints.
3.
One then further splits the degrees of freedom into pure gauge and true degrees of freedom respectively. That
additional split is less canonical, the only requirement being that the gauge degrees of freedom allow to gauge
fix the constraints. This yields altogether four sets: symmetric or non-symmetric gauge degrees of freedom and
symmetric or non-symmetric true degrees of freedom.
4.
As is well known, in that situation one may pass in principle to the reduced phase space. This step requires
solving the constraints, the gauge fixing conditions and the stability conditions on the gauge fixings for the La-
grange multipliers (smearing function). For sufficiently complicated gauge systems, this step cannot be carried
out exactly. The observation is (see theorem 4) that precisely in the presence of the symmetry one may solve
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these three sets of equations perturbatively where we identify the perturbations with the non-symmetric degrees
of freedom. Responsible for this is that the symmetry imposes that the first order of the symmetric constraint
and the zeroth order of the non-symmetric constraint vanish identically on the full phase space. This allows to
establish a well defined hierarchy of equations which can be solved iteratively and explicitly.
5.
One may use the reduction process of 4. in two versions, the fully gauge invariant version and the partially gauge
invariant version. They turn out to be of similar complexity. In the full version, all constraints, symmetric and
non symmetric, are reduced in a single step. The non-trivial task is then to develop the perturbation theory of the
reduced (or physical) Hamiltonian. In the partial version, only a subset of the constraints are reduced. These are
in general not just the non-symmetric constraints because these generically lack the important feature of forming
a Poisson subalgebra even before perturbing them. The first non-trivial step is therefore to pass to an equivalent
set of symmetric and non-symmetric constraints. After the corresponding partial reduction, the remaining task
is to develop the perturbation theory for the accordingly reduced remaing symmetric constraints which in their
exact version are exactly partially gauge invariant with respect to the non-symmetric constraints. It is the partial
version that is the direct analog of [5] and when considering the second order of our approach we find exact
match with results of [5].

We may apply the general theory developed in this work, among others, to the following tasks:
i. Higher order cosmological perturbation theory
We have written out all perturbative and iterative formulae for a general gauge system in sections 4, 5 and 6
and in principle one just has to specialise them to the system and the order that one is interested in. What
one needs are the usual perturbative expansions of the constraints but its ingredients have to be combined in a
non standard way in order that gauge invariance be maintained. Of particular importance is for instance third
order cosmological perturbation theory with an eye towards non-Gaussianities [25] and the needed expressions in
Hamiltonian language are already available [26].
ii. Spherically symmetric black holes
There is a rich literature on spherically symmetric spacetimes and their perturbations [9]. To the best of our
knowledge, this has not been done yet including backreaction and also only to second order which is technically
already quite challenging. If these backreaction formulae are worked out one would in principle be able to study
quantum backreaction in Hawking radiation, perhaps even black hole evaporation [27]. As in this case the par-
tial reduction would leave still an infinite number of constraints, given the complications that we have pointed
throughout the paper regarding quantisation, one would prefer here the fully reduced approach. We have recently
started this programme in [14].
iii. Axi-symmetric black holes
What we have said about Schwarzschild type black holes literally also applies to axi-symmetric (Kerr type) black
holes [10].
iv. Quantum Backreaction
This paper and most of the literature is concerned with classical backreaction. In [28] we have developed an
approach to quantum backreaction based un quantum mechanical space adiabatic perturbation theory (SAPT)
[29] which is a perturbative expansion in addition to that with respect to the non-symmetric degrees of freedom,
it is based on a mass hierachy which typically makes the symmetric degrees of feedom “slower” than the “faster”
non-symmetric ones. It seems natural to extend the ideas of [28] to the black hole context. A challenge will
be to extend the Moyal product techniques of [29] to the case (black holes) that the slow sector is still a field
theory rather than a quantum mechanical system as in the case of cosmology. Also, as pointed out in [5] as
well as in [28], additional canonical transformations on the full phase space are generically required in order to
allow for Fock type quantisations of the non-symmetric fields because masses and couplings of the fast fields are
generically non-constant functions of the slow fields which calls for Hilbert-Schmidt type of conditions.
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