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Abstract

Blockchain technology has rapidly emerged to
mainstream attention, while its publicly accessible,
heterogeneous, massive-volume, and temporal data
are reminiscent of the complex dynamics encoun-
tered during the last decade of big data. Unlike any
prior data source, blockchain datasets encompass
multiple layers of interactions across real-world en-
tities, e.g., human users, autonomous programs,
and smart contracts. Furthermore, blockchain’s in-
tegration with cryptocurrencies has introduced fi-
nancial aspects of unprecedented scale and com-
plexity such as decentralized finance, stablecoins,
non-fungible tokens, and central bank digital cur-
rencies. These unique characteristics present both
opportunities and challenges for machine learning
on blockchain data.

On one hand, we examine the state-of-the-art
solutions, applications, and future directions as-
sociated with leveraging machine learning for
blockchain data analysis critical for the improve-
ment of blockchain technology such as e-crime de-
tection and trends prediction. On the other hand,
we shed light on the pivotal role of blockchain
by providing vast datasets and tools that can cat-
alyze the growth of the evolving machine learning
ecosystem. This paper serves as a comprehensive
resource for researchers, practitioners, and policy-
makers, offering a roadmap for navigating this dy-
namic and transformative field.

1 Introduction

Blockchain, originally designed as the underlying technol-
ogy for cryptocurrencies, e.g., Bitcoin [Nakamoto, 2008], has
evolved into a robust framework for recording and verify-
ing transactions. Its inherent features, including decentral-
ization and cryptographic security, make it an ideal candidate
for myriad applications beyond finance, such as internet-of-
things, healthcare, and smart city. One of the most intriguing
aspects of blockchain is its ability to generate vast and pub-
licly accessible datasets, containing records of transactions
involving diverse real-life entities and autonomous agents.

Simultaneously, the field of machine learning (ML) is ex-
periencing an exponential surge in its application to data anal-
ysis across domains, thanks to deep neural methods and arti-
ficial general intelligence. ML and deep learning algorithms,
capable of discerning patterns, trends, and anomalies within
vast datasets, have proven indispensable for extracting mean-
ingful insights and enabling predictions from complex data in
an automated and end-to-end manner.

The importance of Blockchain is increasingly felt as the
United Nations, through its Innovation Fund, has committed
substantial resources ($35M + 2267ETH + 8BTC) to explore
and develop blockchain technologies for creating transparent,
efficient systems and rethinking problem-solving approaches
in enhancing lives and developing communities [Chapiro et
al., 2021]. Our exploration reveals that “Machine Learning
for Blockchain Data Analysis” has emerged as a vibrant and
influential field since 2018 with more than 1750 publications
dedicated to this field in the ACM Digital Library.

We apply rigorous criteria to select and evaluate papers that
contribute the most to the “ML for Blockchain Data Analy-
sis” field. They encompass factors such as the relevance of
the research, the significance of the problem addressed, the
quality of the methodology employed, and the impact of the
findings on the broader artificial intelligence community. Our
search particularly focused on articles that analyzed and built
models for data from a public blockchain such as Bitcoin,
Ethereum, Litecoin, Eosio, Ripple, Monero, Zcash, and Dash.

Contributions and Roadmap. Our survey offers several key
contributions to the field. First, it provides a comprehensive
taxonomy (§2) and overview (§4) of the latest advancements
in “ML for Blockchain Data Analysis” since 2018, offering
insights into the state of the art. Second, in §5 we discuss
how the datasets and tools we have highlighted can signif-
icantly facilitate future ML research, benchmarking, and the
development of innovative applications in the field. Addition-
ally, we discuss the unique challenges (§3) and opportunities
(§6) inherent in this domain, shedding light on areas that re-
quire further exploration and innovation. Ultimately, our sur-
vey aims to guide researchers, practitioners, and policymak-
ers in harnessing the potential of machine learning within the
blockchain ecosystem, promoting user-friendly, explainable,
and responsible data analysis practices. To the best of our
knowledge, this is the first comprehensive survey that covers
all five areas of ML on blockchains (see Table 1).



Table 1: Comparison of survey articles across ML for blockchains.

Survey Graph Seq. Code  Temp. Text
ML ML ML ML ML
A Survey on Blockchain Anomaly Detection \/ X \/ \/ X

Using Data Mining Techniques [Li er al.,
2020al

Knowledge Discovery in Cryptocurrency v v v v X
Transactions: A Survey [Liu ef al., 2021a]

A Survey on Blockchain Data Analysis [Hou et v ve v X X
al., 2021]

Analysis of Cryptocurrency Transactions from v X v v v
a Network Perspective: An Overview [Wu et

al., 2021]

Anomaly Detection in Blockchain Networks: A v v v v X
Comprehensive Survey [Hassan ef al., 2022]

Graph Analysis of the Ethereum Blockchain v X v v X
Data: A Survey of Datasets Methods and Fu-

ture Work [Khan, 2022]

A survey on machine learning approaches in X v X X X

cryptocurrency: challenges and opportunities
[Mujlid, 2023]

Blockchain Data Mining with Graph Learning:
A survey [Qi et al., 2023]

Machine Learning for Blockchain Data Analy- v v v v v
sis: Progress and Opportunities [ours]

<
<
N
<
X

2 Taxonomy

We discuss our taxonomy of machine learning methods
(§2.1), blockchain components (§2.2), data models (§2.3),
and applications of blockchain data analysis (§2.4).

2.1 Machine Learning Methods

The integration of machine learning is unlocking new poten-
tial in blockchain data analysis and decision-making [Khan
and Akcora, 2022]. ML approaches, including graph-based
learning, recurrent neural networks (RNN), and transformers,
have become pivotal in extracting insights from blockchain’s
complex and varied data structures. These methods enable
a nuanced understanding of blockchain components, such as
transaction networks and smart contracts, by identifying pat-
terns and anomalies that might otherwise remain obscured.
Graph ML approaches such as unsupervised methods,
graph embedding, and graph neural networks, e.g., graph
convolutional neural networks (GCNs) and graph attention
networks (GATSs) [Xia et al., 2021] are essential for analyz-
ing complex network structures. Sequential ML, e.g., RNNs
and transformers are adept at processing sequential data [Wen
et al., 2023], thus crucial for transaction analysis. Code ML
techniques for smart contract analysis focus on interpreting
code and bytecode [Pierro et al., 2020]. Temporal ML han-
dles time-sensitive data — revealing trends, prices, and pat-
terns over time [Benidis. et al., 2023]. Lastly, Text ML,
particularly using text and NLP on social media posts, of-
fers insights into public perception and interactions regarding
blockchains [Rouhani and Abedin, 2020]. The categories are
not mutually exclusive, e.g., temporal graph learning deals
with both graph ML and temporal ML; it has been exploited
in cryptocurrency e-crimes detection [Akcora et al., 2021].

2.2 Blockchain Components

The key blockchain components include the transaction net-
work, which records assets (e.g., cryptocurrency) movements;
token networks, managing the distribution and interactions of
various tokens; and smart contracts, which are automated

agreements encoded directly in the blockchain. Addition-
ally, the peer-to-peer (P2P) network underpins the decen-
tralized nature of blockchains, allowing direct interactions
among users. User accounts represent individuals or entities
with their transaction histories and balances. A decentralized
application (dApp) combines one or more smart contracts
to support a certain functionality on a distributed, peer-to-
peer network; for example, decentralized finance (DeFi) are
dApps for financial services. One may also consider exter-
nal sources, including social media data, online blogs, cryp-
tocurrency prices, Google Trends, etc., to mine public senti-
ments and trends about blockchains. For a detailed survey on
blockchain components, we refer to [Khan, 2022].

2.3 Blockchain Data Models

The data model for blockchain analysis in ML includes i)
simple graphs that illustrate basic peer-to-peer connections,
ii) temporal graphs that capture changes across time, iii) at-
tributed graphs where nodes and edges carry distinct prop-
erties and iv) weighted graphs with varying importance as-
signed to connections. Furthermore, directed graphs indicat-
ing transaction directions, dynamic graphs reflecting evolv-
ing relationships, stream graphs representing continuous data
flows, and higher-order graphs offering a multi-dimensional
perspective on interactions, have been considered [Akcora et
al., 2022].

Another aspect of the data model is the analysis of smart
contract code, which is essential for understanding the func-
tional mechanics of blockchain systems [Bartoletti et al.,
2020]. This includes both the source code, which offers in-
sights into the logic and rules governing the contracts; and
the bytecode, which is the executable form deployed on the
blockchain. Furthermore, analyzing text data from transac-
tion descriptions, user comments, and other textual inputs
provides a unique perspective on user behaviors and social
dynamics within the blockchain ecosystem. The integration
of these varied data types, including sequential data models,
e.g., time series, is indispensable for a comprehensive anal-
ysis. This integration not only helps in decoding the current
state of the blockchain but also in forecasting future trends.
We shall highlight graph, time series, and smart contract code
data models, as well as their combinations in our survey.

2.4 Applications of Blockchain Data Analysis

Blockchain data analysis has diverse applications pivotal to
the advancement of blockchain technology. This domain fa-
cilitates predictive analytics in financial cryptocurrency mar-
kets and anomaly detection within blockchain networks [Li
et al., 2020a]. Furthermore, the field is useful in identify-
ing and mitigating financial crimes, including ransomware,
money laundering, darknet markets, and Ponzi schemes [Wu
et al., 2023]. Additionally, blockchain data analysis is key in
address/transaction clustering and scrutinizing code for dupli-
cates or malicious contents, thus enhancing the security and
integrity of blockchain systems.



3 Challenges of Machine Learning for
Blockchain Data Analysis

In the realm of blockchain technology, a complex web of
challenges emerges from technology, its usage, control mech-
anisms, the nature of data, and the ML methods employed.

Blockchain Technology. A fundamental aspect of all pub-
lic blockchains is the anonymous nature of blockchain ad-
dresses. The anonymity allows fast and easy access to
blockchain for users, but it also presents a significant hurdle
when tracking addresses and analyzing transaction patterns.
A second technological challenge in blockchain arises from
the fact that only the compiled binary of smart contract code
is visible on the blockchain. This limited visibility restricts
our understanding of the underlying source code, obscuring
the logic and potential vulnerabilities of these contracts. This
opacity is a significant concern for ensuring the integrity and
security of the blockchain network, as it hinders comprehen-
sive auditing and analysis of smart contracts.

Blockchain Usage. A blockchain is characterized by the dy-
namic nature of its data. With new transactions arriving in
blocks every 15 seconds (as seen on Ethereum [Wood, 2018])
to 10 minutes (as on Bitcoin [Nakamoto, 2008]), the data
is in a constant state of evolution. This poses a significant
challenge in maintaining updated and relevant analyses in
real-time. The sheer volume of this data, compounded by
its sparse and graph-like structure, exacerbates computational
and analytical difficulties. Additionally, the complexity is fur-
ther intensified by coin-mixing schemes [Wu et al., 2022al,
which deliberately muddle the process of tracking transac-
tion flows, often to obscure the origins of funds for purposes
such as coin-laundering [Akcora et al., 2020].

Blockchain Control Mechanisms. The open and decentral-
ized nature of blockchains, while one of its strengths, also
invites a range of adversarial behaviors. This includes long-
range attacks and manipulations, challenging the system’s
integrity and reliability. The lack of a centralized review
mechanism for both code and users in the blockchain further
heightens these risks, leaving the network vulnerable to ma-
licious smart contracts and abusive users.

Blockchain Data. Data-related challenges in blockchains
are multifaceted. When utilizing labeled data in blockchain
analysis, the rarity of the positive class (such as instances of
ransomware or money laundering) compared to the vast size
of the networks results in a significant bias in the methods
employed. Such a skewed distribution can lead to mislead-
ingly high accuracy metrics. The scarcity of verified, reliable
ground truth data hampers the development and validation
of robust analytical models. Furthermore, the challenge of
train-test mismatch in blockchain analytics is accentuated by
the ever-evolving nature of blockchains, which are frequently
impacted by real-world events such as government regula-
tions or bans [Xie, 2019]. These external influences can sig-
nificantly alter the nature of the data within a given period,
leading to a scenario where the blockchain’s state during the
training phase may be different from that in the testing phase.
This divergence between training and testing data distribu-
tions severely compromises the accuracy and generalizability
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Figure 1: The timeline of machine learning for Blockchain research.

of models, presenting a substantial obstacle to the effective-
ness of machine learning applications in blockchain analysis.

ML Models. The challenges extend into the domain of ma-
chine learning methods used for blockchain data analysis.
The “black-box” neural models, particularly deep learning,
raise concerns about explainability and interpretability. These
are critical issues in a field that demands transparency and
accountability to comply with financial regulations. Inherent
biases in ML algorithms pose risks of unfairness, contradict-
ing the ethos of blockchain technology. Furthermore, the high
computational demands, including extensive training and in-
ference times and the need for large volumes of labeled train-
ing data, present substantial challenges, especially when data
is often scarce, dynamic, and unlabeled.

4 Survey: Blockchain Data Models, Machine
Learning Methods, and Applications

We primarily investigate three non-exclusive ML approaches:
graph machine learning (§4.1), temporal machine learning
(§4.2), and machine learning for smart contracts (§4.3). We
survey their methods for blockchain data analysis, respective
data models, and applications. A schematic diagram connect-
ing various articles in our survey is illustrated in Figure 1.

4.1 Graph Machine Learning on Blockchains
4.1.1 Graph Data Models

UTXO Data Models. Blockchain technology, which started
with Bitcoin, utilizes a distinctive data structure known as
an “output” that contains an address and an amount. Such
blockchains are referred to as the UTXO (Unspent Transac-
tion Output) blockchains. An address is a unique string rep-
resentation of the holder within the transaction network. A
Bitcoin transaction, where a later transaction consumes one
or more outputs to generate new outputs, can effectively be
modeled as heterogeneous graphs comprising two primary
node types: addresses and transactions. However, a signif-
icant challenge arises with most graph libraries, e.g., Net-
workX [Hagberg er al., 20081, which are designed to handle



graphs with a single node type. This limitation has led re-
searchers to frequently model the Bitcoin transaction network
as either an address graph [Spagnuolo et al., 2014] by omit-
ting transactions, or a transaction graph [Ron and Shamir,
2013] by omitting addresses. Specifically, both the address
graph and the transaction graph are edge-weighted, directed
graphs with nodes representing their respective namesakes,
and directed edges record the flow of coins. An edge weight
represents the amount of coins transferred.

Account Data Models. The emergence of Ethereum intro-
duced a shift in blockchain data models. Unlike Bitcoin,
Ethereum employs an account-based model that eschews the
output data structure. Instead, the representation shifts to a
graph of address nodes. A key feature of these networks is
the variety of edge types, which can represent different forms
of value transfer, such as the native cryptocurrency (Ether),
tokens, or other user-defined assets. This complexity trans-
forms the network into a multiplex network [Dickison et al.,
2016], where address nodes are shared, but the edges differ
in their types and meanings. Therefore, these graphs are cat-
egorized as directed, edge-weighted multigraphs.

Moreover, the application of hypergraphs [Antelmi et al.,
2023] presents a new dimension in modeling blockchain
transactions, particularly beneficial in e-crime scenarios
where coins flow between seemingly different addresses
which are, in reality, owned by the same user. For instance,
in coin mixing networks such as Tornado Cash [Wu et al.,
2022b], the flow of coins creates a hyper-edge that connects
more than two nodes, providing a more nuanced view of asset
transfers in such systems.

4.1.2 Graph Machine Learning Methods
We categorize the discussion based on unsupervised and su-
pervised graph ML, as well as techniques to scale graph ML.

Unsupervised Learning. The evolution of blockchain an-
alytics has been significantly influenced by the application
of unsupervised learning techniques. Initial research in this
domain mainly focused on examining transaction patterns
within blockchain networks to understand the flow of digi-
tal currencies, identify trends, and detect anomalies [Ron and
Shamir, 2013]. This analysis typically included studying as-
pects such as transaction volumes, frequency, and the interre-
lationships between different addresses [Lee et al., 2020].
As the research progressed, a shift towards more address
and transaction-centric views emerged. Address cluster-
ing, aiming to deduce which addresses are controlled by
the same user, gained considerable attention [Victor, 2020;
Harrigan and Fretter, 2016]. Address clustering employs
various heuristics that exploit the characteristics of UTXO
transactions. This process is largely unsupervised and fo-
cuses on linking entities behind blockchain addresses. Clus-
tering plays a crucial role in identifying and understanding
address behaviors and transaction patterns [Spagnuolo et al.,
2014]. Similar unsupervised analyses have been performed
on reportedly “anonymous” cryptocurrencies, e.g., Monero
[Méser et al., 20171, Zcash [Kappos et al., 2018], and a di-
verse set of cryptocurrency ledgers [Yousaf er al., 2019].

Supervised Learning. The advent of public datasets, e.g.,
Elliptic [Weber et al., 2019] signified a pivotal moment in

the realm of blockchain graph machine learning, providing a
rich source of labeled data. This marked a transition towards
more supervised learning approaches, broadening the scope
and precision of blockchain data analysis. We categorize
these supervised methods into three classes: graph features
extraction, graph embeddings, and graph neural networks.

Graph Features Extraction. Harlev et al. [Harlev et al., 2018]
first use unsupervised clustering on the transaction graph to
link bitcoin addresses owned by the same user. Next, super-
vised machine learning based on cluster features has been em-
ployed to de-anonymize entities on the Bitcoin blockchain.
This approach relies on known data about entities whose
identities were previously exposed to form a training dataset,
thereby reducing the level of anonymity inherent in Bit-
coin transactions. Supervised learning has also been effec-
tively used in detecting blacklisted addresses in the Ethereum
blockchain [Kilig et al., 2022]. The approach involved using
both local and global features extracted from the Ethereum
transaction graph to train various machine learning models.
This method’s feature extraction process, employing tech-
niques such as random undersampling and SMOTE [Chawla
et al., 2002], is designed to address label scarcity.

Graph Embeddings. Graph embeddings map each node in a
graph to a low-dimensional vector, e.g., for supervised node
classification, which has been pivotal in detecting phishing
activities within blockchain networks. Yuan et al. [Yuan
et al., 2020] introduce a graph-based classification frame-
work leveraging an improved Graph2Vec algorithm to ana-
lyze Ethereum transaction networks for this purpose. The pa-
per’s focus on Ether flow in phishing scams integrates this
aspect into the machine learning model, enhancing phish-
ing detection capabilities. Similarly, Wang et al. [Wang et
al., 2021] develop the transaction subgraph network model to
identify phishing accounts in the Ethereum blockchain, uti-
lizing a directed version of the model that retains transaction
flow information crucial for identifying such illicit activities.

Graph Neural Networks. GNNs are deep learning models de-
veloped for graph-related tasks in an end-to-end manner.
A notable contribution in this domain is the work on de-
tecting Ponzi schemes within the Ethereum blockchain [Yu
et al., 2021b]. Here, a model based on a graph convolu-
tional network is developed to classify nodes in the Ethereum
transaction network as Ponzi or non-Ponzi. This approach
demonstrates the efficacy of supervised learning in identify-
ing fraudulent schemes by examining the topological struc-
ture and transactional characteristics of smart contracts. The
development of graph attention network models to identify
abnormal transactions in dynamically generated data is also a
key area where supervised learning has shown great promise.
Yu et al. [Yu et al., 2021a] introduce a GAT approach, fo-
cusing on exploiting the graph structure of transactions. The
method’s dynamic graph handling capability and weight as-
signment to nodes based on their relevance to abnormal trans-
actions offer advanced capabilities.

Moreover, the concept of anomaly detection in Ethereum’s
blockchain network has been explored. Patel et al. [Patel
et al., 2020] employ the “one-class” graph neural network
capturing complex relationships and interactions between ac-




counts for more effective identification of anomalous pat-
terns. Analogously, the paper by Patel et al. [Patel ef al.,
2022] develops EvAnGCN, a dynamic GCN for detecting
anomalous behaviors in blockchain networks by structuring
the data as temporal graphs. This model efficiently learns
from the dynamic and evolving structures of blockchain net-
works, utilizing both temporal and structural features.

Furthermore, the identification of illicit Bitcoin addresses
has been enhanced through the integration of structure and
temporal information of Bitcoin transactions. Tian et al. [Tian
et al., 2021] develop an attention-based graph neural network
that refines address embeddings through neighbor embedding
and attention mechanisms. An LSTM-based auto-encoder
is used to capture hidden temporal features from transaction
records, augmenting identification accuracy.

Scaling Graph Machine Learning. Scaling graph machine
learning on blockchains is crucial for handling the vast and
continuously growing volume of data within transaction net-
works. For example, Bitcoin has ~ 700,000 unique addresses
daily in 500,000 transactions. ! Examining the Bitcoin trans-
action network for even a single day poses a computationally
demanding challenge for graph neural networks which are
considered state-of-the-art in a multitude of predictive tasks,
such as node classification [Yang et al., 2023].

In their initial efforts to analyze large graphs, researchers
typically focus on extracting information from the local
neighborhoods of nodes. Kili¢ et al. employ easily calcu-
lable features, including neighbor counts and the time dif-
ference between the first and last transactions of a given ad-
dress [Kilig et al., 2022]. If computing power permits, e.g.,
using parallel computing, researchers may extend their anal-
ysis to higher-hop neighborhoods [Yu et al., 2021al.

One common scaling approach is node sampling. This
technique has been widely employed to manage large trans-
action networks. For instance, Harlev et al. classify entities
based on transactional behaviors without necessitating analy-
sis of the entire network [Harlev ef al., 2018] . Similarly, Yu
et al. identify Ponzi schemes within the Ethereum blockchain
by node sampling to create subgraphs for analysis [Yu et al.,
2021b]. The authors randomly sample centered contracts to
obtain their first-order neighbors, significantly reducing the
computational load. Another scaling strategy involves the
use of subgraph sampling, where transaction subgraphs are
extracted and analyzed. This is evident in the work of Yu et
al., where the dynamic graph structures employ a GAT model
that relies on the structure of the sampled edges, rather than
requiring a complete graph for analysis [Yu er al., 2021al.
This method is particularly effective in processing dynamic
graph structures, and adapting to real-time transaction data.

4.1.3 Open Questions and Challenges

Graph machine learning for blockchains faces several critical
challenges. Label scarcity is a prominent but well-known is-
sue. An under-reported issue is the undisclosed e-crime trans-
actions (e.g., ransomware payments), which may create false
positives in node classification tasks. The scale of blockchain
graphs presents a computational hurdle, demanding efficient

"https://www.blockchain.com/charts/n-unique-addresses

algorithms and scalable systems. Real-time analysis is crucial
as blockchain data evolves rapidly where latency in detecting
anomalies can cause billions of dollars in lost value (e.g., in
the LunaTerra collapse). Integrating machine learning across
multiple blockchains is complex, involving data heterogene-
ity and interoperability challenges (e.g., in UTXO-account
data integration). Detecting data shifts within blockchain
graphs is essential for maintaining model accuracy as us-
age patterns by ordinary users, as well as e-crime operators,
change. Tackling these challenges is essential for harnessing
machine learning’s potential in blockchain data analysis.

4.2 Temporal Machine Learning on Blockchains

The integration of ML with blockchain’s temporal data offers
unique opportunities for enhanced security, predictive analyt-
ics, and understanding dynamic market behaviors.

4.2.1 Temporal Data Models

Temporal data on blockchains offer a rich variety, including
time series of crypto asset prices; temporal, multilayer graphs
of transaction and asset networks; discrete and continuous
dynamic graphs; and graphs with temporal node and edge
features. The market volumes of native coins have reached
billions of dollars. Hence, the most critical temporal data re-
lates to the price of the native coins, such as Ether on the
Ethereum network, denominated in fiat currency. The price
data also exists for a subset of crypto assets on blockchains,
such as tokens on Ethereum due to global trading activities,
thereby establishing an external pricing dataset. Transaction
and asset trading networks provide temporal transaction data
in the form of networks where both node and edge attributes,
as well as edge types, may change. When a blockchain has a
short block creation interval (e.g., Ethereum’s ~ 12 sec gap
between two blocks), the network can be effectively modeled
as an (almost) continuous-time dynamic graph.

4.2.2 Temporal Machine Learning Methods

Time Series Analysis. Early work in time series analy-
sis for cryptocurrencies used abundant transaction network
data to extract predictive signals. Abay et al. [Abay et
al., 2019] use Bitcoin graph substructures, called chainlets
[Akcora et al., 2018], to predict Bitcoin prices. Kwon et
al. [Kwon et al., 2019] use the long short-term memory
(LSTM) model [Schmidhuber and Hochreiter, 1997] on the
historic cryptocurrency price time series data to classify the
time series. Livieris et al. use ensemble-averaging, bagging,
and stacking with deep learning models for forecasting hourly
cryptocurrency prices [Livieris et al., 2020].

Unsupervised Learning. The transaction network provides
a dynamic dataset abundant in user behavior, enabling the
mining of complex patterns. For instance, Algassem et
al. analyze the Bitcoin transaction graph from its incep-
tion [Algassem ef al., 2018]. They observe changes in net-
work diameter, node connectivity, and community structure
over time. Their findings include patterns like the densifi-
cation power law and shrinking diameter. Importantly, they
underscore the influence of anonymity-seeking behavior on
Bitcoin’s network dynamics. Zhao et al. investigate the evo-
lutionary nature of the Ethereum blockchain network such as



the growth rate, active lifespan of high-degree nodes, detect-
ing anomalies based on temporal changes in global network
properties, and forecasting the survival of network communi-
ties [Z. et al., 2021]. In the context of blockchain selection,
Scheid et al. [Scheid et al., 2022] introduce an ML-based ap-
proach to simplify the selection process for non-technical in-
dividuals. The authors present a novel metric to quantify the
subjective popularity of blockchain platforms, contributing to
the feature set used in their ML model. This work emphasizes
the temporal flexibility of their ML model, which adapts over
time to new parameters and data.

Supervised Learning. Many temporal ML articles study
graph ML topics with a temporal view. Alarab et al. divide
the popular Elliptic dataset into 49 time-steps, each repre-
senting a distinct set of transactions within a three-hour win-
dow [Alarab et al., 2020]. This temporal division of data
ensures that the model can handle real-time transaction data
and be trained on temporally coherent subsets. Temporal in-
formation is also useful in profiling blockchain addresses.
Harlev et al. focus on de-anonymizing entities on the Bitcoin
blockchain by analyzing transactions over time and extracting
useful features, such as transaction patterns and time-series
data [Harlev er al., 2018]. This temporal dimension enables
predicting behaviors based on transaction history.

In e-crime research, temporal transaction patterns exhib-
ited by operators such as ransomware hackers [Akcora et al.,
2021] is invaluable. Pocher et al. effectively utilize pat-
terns by first grouping Bitcoin transactions into distinct time
steps and then using a chronological analysis of transaction
patterns to find characteristic of e-crime activities [Pocher
et al., 2023]. In anonymity-seeking behavior, users em-
ploy different addresses for each transaction to maintain their
anonymity. The anonymous behavior is further strengthened
by coin-mixing services where one can launder the coins
through a mixing service. Wu et al. propose a feature-based
network analysis framework to identify such mixing services
on Bitcoin [Wu et al., 2022al. In their work, temporal mo-
tifs are crucial to distinguish normal transactions from those
associated with mixing services.

Sequence-based Models. Li et al. focus on identifying il-
licit Bitcoin addresses by extracting temporal features from
the change in the balance of addresses over time [Li ef al.,
2020b]. They use an auto-encoder with LSTM to generate
discriminating temporal features, enhancing the model’s abil-
ity to identify illicit addresses based on temporal patterns.
This approach highlights the importance of temporal anal-
ysis in distinguishing normal transaction behavior from il-
licit activities. Lahmiri et al. used LSTM neural networks
for predicting cryptocurrency prices [Lahmiri and Bekiros,
2019]. Their model memorizes both long-term and short-
term temporal information, which is crucial for predicting
the volatile and dynamic nature of cryptocurrency markets.
One recent contribution in this field is BlockGPT, a dynamic,
real-time approach for detecting anomalous blockchain trans-
actions [Gai et al., 2023]. This tool is notable for its ability
to generate tracing representations of blockchain activity and
train an LLM as a real-time intrusion detection system. Un-
like traditional methods, BlockGPT does not rely on prede-

fined rules or patterns, making it significantly more effective
in detecting anomalies in Ethereum transactions.

Graph Neural Networks. Zhuang et al. propose a novel
method for detecting vulnerabilities in smart contracts using
graph neural networks [Zhuang et al., 2021]. They introduce
a degree-free graph convolutional neural network and a tem-
poral message propagation network for automatic detection.
The temporal aspect is central to their approach, considering
the sequence of operations and interactions within smart con-
tracts to detect vulnerabilities over time. Liu et al. introduce
a method for detecting vulnerabilities in smart contracts by
combining graph neural networks with expert knowledge [Liu
et al., 2021b]. They transform smart contract source code
into a contract graph, focusing on critical nodes through a
node elimination phase. A temporal message propagation
network is employed to extract graph features, considering
the sequential nature of smart contract execution. This ap-
proach is pivotal in detecting vulnerabilities by capturing the
temporal dynamics of data and control flows within smart
contracts. Other notable works include [Patel et al., 2022;
Yu et al., 2021a] for detecting anomalous transactions; due
to the non-exclusive nature of our categorization, they have
been discussed earlier in graph ML (§4.1.2).

4.2.3 Open Questions and Challenges

Linking temporal data across multiple blockchains (e.g., be-
tween Bitcoin and Monero in money laundering) to identify
behavior patterns presents a complex challenge. Blockchains
operate independently, and cross-chain data analysis requires
addressing issues related to data heterogeneity, interoper-
ability, and privacy while uncovering valuable insights into
cross-blockchain behaviors. Identifying significant changes
or anomalies in temporal blockchain data is critical for under-
standing and responding to emerging trends or irregularities
such as hacked blockchain bridges, seized addresses, and ex-
ternal events [Xie, 2019]. Developing effective change point
detection algorithms tailored to blockchain data remains an
open question on (sparse) transaction graphs. Another chal-
lenge is dealing with data staleness issues. As blockchain
data continuously evolves, ensuring that ML models operate
on informative and up-to-date information is essential.

4.3 Machine Learning for Smart Contracts

4.3.1 Smart Contract Data Models

We consider four types of smart contract data: transaction,
contract state, event log, and source code. Transaction data
includes information on each transaction executed on the
blockchain, e.g., sender and receiver addresses, and block
numbers. Smart contracts have a state, which is essentially
the current data stored in the contract. This state includes
variables, balances, and other information specific to the con-
tract’s functionality. Events, emitted by contracts, record spe-
cific occurrences, such as the completion of a task, or the oc-
currence of an event-triggering condition. The source code of
a smart contract (in bytecode or higher level languages, e.g.,
Solidity) is another critical element for ML analysis.

4.3.2 Machine Learning Methods for Smart Contracts

Contract Graph Analysis. Ferreira et al. automate detec-
tion and investigation of attacks on Ethereum smart contracts,



utilizing logic-driven and graph-driven analysis of transac-
tions [Ferreira T. ef al., 2021]. Zhuang et al. construct a
contract graph to represent both syntactic and semantic struc-
tures of contract functions [Zhuang er al., 2021]. Liu et al.
propose a method that transforms smart contract source code
into a contract graph, highlights critical nodes via a node
elimination phase, and employs a temporal message propa-
gation network to extract graph features [Liu ef al., 2021b].
These features, combined with expert-designed security pat-
terns, contribute to an effective and scalable vulnerability de-
tection system on platforms, e.g., Ethereum and VNT Chain.

Source Code Analysis. Mi et al. propose a metric learning-
based deep neural network for vulnerability detection in
smart contracts, focusing on analyzing bytecode [Mi et al.,
2021]. Fan et al. detect smart Ponzi schemes in blockchain
systems by extracting smart contract features from Op-
Codes [Fan er al., 2021]. Qian et al. present a deep learn-
ing model, BILSTM-Attention, for detecting defects in smart
contracts, treating contract operation codes as sequential sen-
tences, and utilizing attention mechanisms for accurate detec-
tion [Qian et al., 2022]. Tang et al. identify vulnerabilities by
analyzing code snippets of functions [Tang et al., 2023].

Community and Transaction Analysis. Huang et al. pro-
vide a large-scale analysis of the EOSIO blockchain ecosys-
tem, identifying bot activities at both community-level and
account-level [Huang ef al., 2020]. SoliAudit combines ML
and fuzz testing for vulnerability assessment using Solidity
machine code as learning features and incorporating gray-box
fuzz testing [Liao er al.,, 2019]. Chen et al. detect Ponzi
schemes in Ethereum by extracting features from user ac-
counts and operation codes of contracts [Chen et al., 2018].

4.3.3 Open Questions and Challenges

One significant challenge in code machine learning for
blockchains is the difficulty in finding the high-level code of
smart contracts. Smart contracts often have their bytecode
uploaded to the blockchain, making it challenging to access
their human-readable source code. Lack of access to high-
level code hinders comprehensive analysis and interpretation.

The decentralized and distributed nature of blockchain net-
works can introduce vulnerabilities, such as reentry attacks,
not found in typical software projects. Analyzing the script
languages of blockchains for these vulnerabilities requires
blockchain domain knowledge as well as a good understand-
ing of how distributed systems work. As a result, coding for
blockchains is a challenging software domain.

Additionally, functions and opcodes on blockchains of-
ten lack direct equivalents in conventional programming lan-
guages, which makes it challenging to apply standard code
analysis techniques, as the mapping between blockchain code
and traditional code constructs may not be straightforward.

5 Datasets and Tools

Graphs. Blockchain network data have become increasingly
valuable in research for financial transactions, network dy-
namics, and user behavior. The Elliptic dataset [Weber et al.,
2019] stands out with its labeled Bitcoin transaction graph,

which has been utilized in GNNs. However, the dataset em-
ploys anonymized addresses, and descriptions of node fea-
tures are not shared due to intellectual property rights issues.
The BitcoinHeist dataset shares address and labels for about
30K addresses linked to ransomware, facilitating more direct
transaction pattern analysis [Akcora er al., 2021].

The evolution of blockchain datasets has been notable. Ini-
tially, datasets were released in conjunction with academic
articles in isolated repositories [Anoaica and Levard, 2018;
Liang et al., 2018; Lee et al., 2020]. However, recent trends,
particularly highlighted in benchmark tracks of conferences,
e.g., NeurIPS, have led to the development of standardized
and accessible benchmarks, such as Chartalist [Shamsi et al.,
2022] and NFTGraph [Zhang et al., 2023]. These bench-
marks provide large-scale, labeled graph data crucial for di-
verse research areas, from financial fraud detection to net-
work dynamics analysis. The datasets are also used in the
analysis of real-life phenomena where datasets are quite dif-
ficult to access. For example, Zhang et al. have proposed to
use blockchain networks for studying the resilience of power
networks [Zhang and Y., 2021].

Code. Smart contract code datasets, such as [Ortner and Es-
kandari, 2024; di Angelo et al., 2023], include vulnerable
smart contract codes, offering valuable insights into secu-
rity vulnerabilities within blockchain applications. Ibba et
al. [Ibba, 2022] provide token and non-fungible token con-
tract code datasets, shedding light on the intricacies of these
specialized smart contract types.

Tools. Kushwaha et al. provide a comprehensive overview of
tools and methodologies for analyzing Ethereum-based smart
contracts [Kushwaha et al., 2022]. Additionally, [Durieux et
al., 2020] provides a comprehensive resource for an empirical
review of automated analysis tools on a dataset of 47,587
Ethereum smart contracts.

6 Conclusion and Future Direction

The field of machine learning for blockchains has made sig-
nificant progress in addressing numerous challenges, as high-
lighted in this survey. However, several promising future
directions await further advancement. Firstly, ensuring that
ML model decisions are transparent and interpretable is cru-
cial for responsible and trustworthy blockchain data analy-
sis. As blockchain data continues to grow in size and com-
plexity, the development of scalable learning and inference
techniques becomes imperative. Efficient algorithms and dis-
tributed computing approaches will play a pivotal role in han-
dling the ever-expanding datasets. Furthermore, exploring
the application of machine learning to complex blockchain
networks, including cross-chain analysis, offers new insights
and opportunities for research. Moreover, the dynamic nature
of blockchain data requires the development of machine un-
learning and continuous learning techniques, enabling mod-
els to adapt to evolving data distributions and maintain ac-
curacy over time. Lastly, harnessing the capabilities of large
language models for understanding natural language, inter-
acting with data, and generating source code can revolution-
ize blockchain data and smart contract analysis.
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