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Abstract. Forecasting methods are affected by data quality issues in
two ways: 1. they are hard to predict, and 2. they may affect the model
negatively when it is updated with new data. The latter issue is usually
addressed by pre-processing the data to remove those issues. An alter-
native approach has recently been proposed, Corrector LSTM (cLSTM),
which is a Read & Write Machine Learning (RW-ML) algorithm that
changes the data while learning to improve its predictions. Despite promis-
ing results being reported, cLSTM is computationally expensive, as it
uses a meta-learner to monitor the hidden states of the LSTM. We
propose a new RW-ML algorithm, Kernel Corrector LSTM (KcLSTM),
that replaces the meta-learner of cLSTM with a simpler method: Ker-
nel Smoothing. We empirically evaluate the forecasting accuracy and
the training time of the new algorithm and compare it with cLSTM and
LSTM. Results indicate that it is able to decrease the training time while
maintaining a competitive forecasting accuracy.

Keywords: Time series forecasting · Recurrent Neural Networks · Data-
Centric AI

1 Introduction

In many fields, including energy, healthcare, management, and climate research,
time series forecasting is a crucial task that can be accomplished using machine
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learning or statistical methods [8]. As data becomes widely available, more pre-
cise forecasting models are expected. However, data quality issues like outliers,
missing values, and changes in the underlying data generation process might
impact predictive techniques.

Traditional machine learning (ML) models are often considered read-only
models, capable of learning from data but neglecting the feedback loop for cor-
recting the data during the learning process. This approach, while efficient in
many cases, lacks proper adaptation of preprocessing techniques and the ML
model itself, as the model’s feedback is often overlooked.

To address this limitation, the concept of Read-Write Machine Learning (RW-
ML) has emerged. RW-ML models, such as Corrector LSTM (cLSTM) [1], not
only learn from data but also have the capability to change the data during the
learning process. cLSTM is a time series forecasting method designed to improve
forecasting accuracy by dynamically adjusting the data. It utilizes a meta-model
of the Hidden State Dynamics obtained with SARIMA to detect data quality is-
sues and employs a greedy heuristic to correct them. cLSTM has demonstrated
superior predictive performance compared to traditional LSTM models. How-
ever, the computational cost associated with the meta-learning component of
cLSTM is significant.

In this paper, we propose a computationally less expensive variant of cLSTM,
named Kernel Corrector LSTM (KcLSTM), which replaces the meta-learner with
a simpler method: Kernel Smoothing. We empirically compare KcLSTM with
both cLSTM and LSTM models. Results reveal that KcLSTM achieves better
predictive performance than LSTM and cLSTM, while also being faster than
cLSTM, although the computational efficiency improvement is not as substantial
as expected.

The main contributions of this paper are:

– Introducing a variant of cLSTM, KcLSTM, which is computationally less
expensive while maintaining high predictive accuracy.

– An empirical study comparing KcLSTM with LSTM and cLSTM in terms
of predictive performance and training time.

This paper is structured as follows: we first provide an overview of the state-
of-the-art forecasting method, LSTM. Then, we delve into the concept of RW-ML
and its significance in time series forecasting. Next, we introduce the proposed
algorithm, KcLSTM. Finally, we describe the experimental setup, present the
results, and discuss their implications.

2 Related Work

In this section, we first present the Long Short-Term Memory. The algorithm
that our proposed algorithm is built on and the one it will be compared to. We
then define Data-Centric AI and provide examples of Data-Centric models built
for time series forecasting.
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2.1 LSTM

Fig. 1. Cell unit of the LSTM recurent neural network [6].

The Long Short-Term Memory (LSTM) [16] is a Recurrent Neural Network
(RNN), that can capture long-term dependencies in the input and it is used
for processing sequential data. RNNs differ from feed-forward networks through
recurrent connections, allowing them to learn from sequential data. Back Propa-
gation is applied to RNNs by taking advantage of the fact that for every recurrent
network, there exists an equivalent feed-forward network with identical behavior
for a finite number of steps [21], training it using Back Propagation Through
Time (BPTT) [23].

RNNs have some well-known limitations. First, they have problems captur-
ing long-term dependencies, being limited to only bridge between 5-10 steps [23].
This occurs because RNNs are sensible to the exploding/vanishing gradient prob-
lem [15]. The LSTM solves this problem through the use of a gating mechanism.

An LSTM network consists of blocks, with each block containing an input
gate, forget gate, output gate, and memory cell (eqs. (1b) to (1d)). The input
gate controls which inputs are relevant; the forget gate learns which information
should be kept in memory; and the output gate controls which information
should be passed to the next block. The information is retained through the use
of two states called the cell state, (eq. (1e)), and the hidden state, (eq. (1f)).
The forward pass concatenates the input with the hidden state from the last
block, while the backward pass derives the error and updates the gates using
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the chain rule of derivatives. The gate derivatives are multiplied by the hidden
output to obtain the gradient deltas that update the gates.

it = σ(Wi · ht−1 + Vi · xt + bi) (1a)

ot = σ(Wo · ht−1 + Vo · xt + bo) (1b)

ft = σ(Wf · ht−1 + Vf · xt + bf ) (1c)

Ĉt = tanh(Wc · ht−1 + Vc · xt + bc) (1d)

Ct = it · Ĉt + ft · Ct−1 (1e)

ht = ot · tanh(Ct) (1f)

zt = ht (1g)

2.2 Data-Centric Time Series Forecasting

Anomalies, including outliers, missing values, and changes in the underlying
data generation process can impact predictive tasks. This affects the predictions
of such methods, hindering their performance [17], conversely to traditional ma-
chine learning methods, that build models using a fixed dataset. In Data-Centric
AI [25], the focus is on the data. Data quality is increased to improve the per-
formance of AI models.

The exploration into machine learning models capable of learning and cor-
recting data has been a topic of interest in various studies. Both [22] and [20]
delve into this concept, with [22] focusing on the potential of ML models to
memorize sensitive information while [20] emphasize the importance of model
interpretability and safety. Additionally, authors in [4] further underscore the
significance of data quality in enhancing model performance, advocating for a
data-centric approach. Providing a broader perspective, the work in [14] discusses
the role of probabilistic modeling in understanding learning and uncertainty in
machine learning.

Moving to neural network models, authors in [11] discuss highly intercon-
nected networks for associative memory and optimization, with a focus on learn-
ing and adaptation. Moreover, [10] propose a model for neural networks that
learn temporal sequences through selection, employing synaptic triads and a local
Hebbian learning rule. Furthermore, [9] introduce predictive-corrective networks
for action detection in videos, which utilize top-down predictions and bottom-
up observations for adaptive computation and simplified learning. These models
collectively demonstrate the potential of neural networks to learn and correct
data across various applications.

Similarly, recurrent neural network (RNN) models have been developed to
address the challenge of learning and correcting data. In [13], an attempt is
made to introduce a learning algorithm for the recurrent random network model,
employing gradient descent of a quadratic error function. Later, authors in [2]
propose a recurrent network architecture for modeling dynamical systems, which
can learn from multiple temporal patterns and cope with sparse data. More
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recently, the research in [5] demonstrates that tree-structured recursive neural
networks can learn logical semantics, including entailment and contradiction.

In the context of time series forecasting, some data-centric approaches have
been employed. In dLSTM [19], the authors train the model on non-anomalous
data and use the predictive errors to detect anomalies. The deviation from the
normal state is measured through delayed prediction errors. The normal state can
then be restored from several candidate values. Following the idea of using the
prediction errors to improve the quality of the data Pastprop was introduced [3].
The responsibility for the training error is shared between the model parameters
and the training data. The backpropagation of the derivatives is applied to the
input, indicating the part of the input that caused the training error.

2.3 Corrector LSTM

cLSTM [1] is an architecture that improves its predictive performance by recon-
structing the data of the model. The architecture of the algorithm is based on
the LSTM and a data correction component. This data correction component
uses a meta-learner, SARIMA, to identify problems in the hidden states of an
LSTM model. This is achieved by predicting the hidden states using SARIMA
and if the difference between the predicted and the real hidden states is over a
certain threshold they are considered anomalous. The anomalies detected in the
hidden states are assumed to be caused by the data which is then reconstructed.
The reconstruction of the data points is such that the difference between the
predicted and the real hidden states falls under a certain threshold. The au-
thors showed that analyzing the Hidden State Dynamics [24] of an LSTM can
be used to detect anomalies in the training data and consequently improve the
forecasting performance of the model. However, the data correction relies on a
meta-learner which makes the algorithm computationally expensive.

3 Kernel Corrector LSTM

The architecture of the Kernel Corrector LSTM (KcLSTM) is the same as the
cLSTM architecture, and the meta-learner used to detect problems in the learn-
ing is substituted by a simpler approach, kernel smoothing.

3.1 Training

The KcLSTM utilizes the hidden states learned during the training process to
find and correct data points of the series. The training of the KcLSTM is divided
into three distinct phases. The first phase consists of training the data on a
standard LSTM. This allows the hidden states to capture the information of the
time series and to be indicative of problems in the data. We then perform the
correction, which is comprised of a detection and a correction component. These
two components find and correct errors in the data respectively, this phase is
thoroughly explained in section 3.2. Finally, the LSTM is trained on the new



6 R. Tuna et al.

data, learning a corrected time series, that can improve the predictions of the
model.

3.2 Data Correction

The Data Correction phase of the algorithm is divided into two different compo-
nents: the correction and the detection. These two components aim to find data
points that worsen the learning of the model and change the data so that the
learning process is improved and a better model is obtained. Each phase has a
threshold δd and δc. The hidden states of the last iteration of the first training
phase, H = h0, ..., hn are used to find errors in the training data. cLSTM uses a
meta-model that is computationally expensive to compute; our goal is to assess
if a simpler method can obtain competitive results with less cost; the method se-
lected for this purpose is Kernel Smoothing because states are estimated rather
than predicted which makes it computationally. A new set of estimated hidden
states H ′ = h′

0, ..., h
′
n is calculated using Gaussian Kernel Smoothing of H as

described in eq. (2).

h′
i =

∑
j∈[i−W/2,i+W/2],i̸=j hj ∗K(hi, hj)∑

j∈[i−W/2,i+W/2],i̸=j K(hi, hj)
(2)

Where K(hi, hj) is:

K(hi, hj) = e
∥hi−hj∥

2

2σ2 (3)
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Fig. 2. Gaussian Smoothing of the Hidden States, represented as a series.

The goal of error detection is to discriminate between data points that need
reconstruction and those that do not. A point needs reconstruction if the Dy-
namic Time Warp similarity between the hidden state from which the point
originated hi and the corresponding estimated hidden state h′

i is greater than a
given threshold δd. This relation is depicted in eq. (4).

DTW (h′
i, hi) > δd (4)
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In the error correction, we reconstruct the detected points such that the
Dynamic Time Warp similarity of the hidden state and estimated hidden state
is less or equal to a given threshold δc eq. (5). Early stopping is employed, and
if a maximum number of iterations is reached, the original value for the point is
restored.

DTW (h′
i, hi) ≤ δc (5)

4 Experimental Setup

The goals of the empirical validation are to investigate if the proposed algorithm
is faster than the original one, without a significant decrease in forecasting ac-
curacy.

A straightforward holdout method was used to estimate forecasting perfor-
mance, used when there is a temporal dependency in the dataset [7]. The model
is trained on the first s samples and assessed on the succeeding n − s samples.
The data used for evaluation is always the original one. Using corrected data
for the evaluation would likely lead to inadequate optimistic estimates of the
forecasting performance of the corresponding method.

The hyperparameters of LSTM and KcLSTM are chosen using hyperparam-
eter tuning using grid search. The learning rate was varied between: 0.0001,
0.001, 0.01, 0.1; and the batch size was varied between: 1, 2, 4, 8. For cLSTM
we do not perform hyper-parameter tuning due to the high computational cost.
Instead, we use the results described in the original paper [1]. The thresholds
for KcLSTM are fixed with values of 0.6 for the detection and 0.5 for the cor-
rection. The thresholds for cLSTM are described in the original paper [1], 0.6
for the detection and 0.2 for the correction. We chose to maintain the same de-
tection threshold and increased the correction threshold. The kernel estimates
of the hidden states are smoother; thus, a small correction threshold would sig-
nificantly alter the hidden states, and the information learned in the previous
phase would be lost.

4.1 Datasets

Table 1. Statistical description of the dataset.

Monthly

Timeseries 200
Average Length 366

Mean 4222
Standard Deviation 1160

We have used the M4 Competition Dataset [18] comprising six subsets. From
one subset, Monthly, we evaluate the performance of the algorithms on the first
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199 time series. To evaluate the time taken to train the models, we use the first
20 time series of that subset.

4.2 Evaluation Metrics

This study focuses on both the predictive performance of the algorithm as well
as its training time. To quantify the error of forecasts, we focus on the Mean
Absolute Scaled Error (MASE) in Eq 6 because it allows for the averaging of
results across different time series as opposed to the Rooted Mean Squared Error
(RMSE). The MASE measures the appropriateness of a forecast against the
naive forecast of predicting the previous value. To assess if the differences are
statistically different, we use the Mariano-Diebold Test [12].

MASE =
1

n−s

∑n
i=s+1 ŷi − yi

1
n−1

∑n
i=2 |yi − yi−1|

(6)

The execution time is measured in seconds and the experiments were run on an
Intel(R) Core(TM) i7-1065G7 CPU @ 1.30GHz processor.

5 Results

investigate if the proposed algorithm is faster than the original one, without
significantly decreasing forecasting accuracy. To illustrate the usefulness of the
proposed algorithm, we first evaluate its forecasting capabilities, comparing it
with LSTM section 5.2 and cLSTM section 5.1.

5.1 Comparison with cLSTM

Results of MASE for the algorithms presented in table 2 indicate KcLSTM
outperforms cLSTM, but this may be explained by the hyper-parameter tuning
that was performed for the KcLSTM and not the cLSTM. As such comparison
between these two algorithms, can not be performed directly.

The Mariano-Diebold Test for cLSTM and KcLSTM resulted in 40 wins for
cLSTM, 111 wins for KcLSTM, and 48 draws. This shows an improvement in
forecasting accuracy by substituting the meta-learner with Kernel Smoothing.
Again the uneven conditions do not allow us to reach clear conclusions about
these two methods.

Results for the training time presented in table 2 indicate that KcLSTM is
indeed faster than cLSTM, significantly. Nonetheless, the gain is not as large as
would be expected. Estimating the states with Kernel Smoothing is less com-
putationally expensive than predicting the states with SARIMA. However, this
is a cruder method that results in estimated states that are farther away than
from the original states when compared with. Consequently, more points are
considered anomalies that will be corrected, which will cause the training time
to increase.
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Table 2. Comparison of each algorithm.

Mean Median Standard Deviation Average time (s)

LSTM 3.48 0.74 6.07 20.47
cLSTM 8.77 1.04 36.96 56.15
KcLSTM 4.64 0.83 11.96 48.77

However, when performing the Mariano-Diebold test to compare LSTM and
KcLSTM at the significance level of α = 0.05 we get 102 wins for KcLSTM, 50
wins for LSTM, and 47 draws. We can conclude that KcLSTM is superior to
LSTM as it wins more often, although when it loses it is by a greater margin.
This is confirmed by the values of the standard deviation of MASE for LSTM
and KcLSTM and explains the (apparent) superiority of LSTM when analyzing
only the MASE. We see examples of a series with clear outliers that KcLSTM
is able to correct and as such increase their predictions in fig. 3. Conversely, an
example of a series without outliers made KcLSTM wrongfully alter the data
which results in disastrous predictions in fig. 4. These two examples reflect the
different behaviors mentioned before.

2700

2800

2900

3000

3100

3200

3300

3400
Predicted (train)
Original Data
Predicted (test)

Fig. 3. Example where data reconstruction was successful.

5.2 Comparison with LSTM

Results of MASE for the algorithms presented in table 2 indicate that LSTM
has an overall better performance than KcLSTM with lower values for both the
median and the mean for the MASE. However, when performing the Mariano-
Diebold test to compare LSTM and KcLSTM at the significance level of α = 0.05
we get 102 wins for KcLSTM, 50 wins for LSTM, and 47 draws. We can conclude
that KcLSTM is superior to LSTM as it wins more often, although when it loses
it is by a greater margin. This is confirmed by the values of the standard deviation
of MASE for LSTM and KcLSTM and explains the (apparent) superiority of
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1000
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1600

1800

2000

2200 Predicted (train)
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Predicted (test)

Fig. 4. Example where the data reconstruction destroyed the data which caused the
model not to capture the information of the series.

LSTM when analyzing only the MASE. We see examples of a series with clear
outliers that KcLSTM is able to correct and as such increase their predictions
in fig. 3. Conversely, an example of a series without outliers made KcLSTM
wrongfully alter the data which results in worse predictions in fig. 4. These two
examples reflect the different behaviors mentioned before.

Results for the training time presented in table 2 indicate that KcLSTM is
significantly slower than LSTM. This to be expected as KcLSTM has a data
correction component that is responsible for most of the execution time of the
algorithm.

6 Conclusion

The goal of our work is to create a forecasting algorithm that reconstructs data
that is faster than current solutions in the literature. We present a new algorithm:
Kernel Corrector LSTM (KcLSTM). This algorithm alters the training data
to improve its forecasting accuracy. Like in cLSTM, this is done by analyzing
the Hidden States Dynamics and finding anomalies in hidden states to detect
anomalies in data points and consequently correct them. However, the meta-
learner of cLSTM was replaced by the Gaussian Kernel Smoothing of the hidden
states to decrease the training time of cLSTM.

We empirically compare our algorithm with LSTM and cLSTM both in terms
of predictive performance and training time. Results show that KcLSTM obtains
a competitive forecasting accuracy surpassing both the LSTM and cLSTM in
the number of statistically significant wins. However, KcLSTM is more sensitive
to its training data and more prone to making worse forecasts than the baseline,
which caused the average MASE of LSTM to be inferior to the average MASE
of KcLSTM. The measured training times also show that KcLSTM indeed im-
proves on cLSTM in terms of computational cost, but the margin is smaller
than expected because KcLSTM detects more points as anomalies than cLSTM.
The estimated hidden states by KcLSTM are more distant from the real hidden
states than the predicted states of cLSTM. The empirical study showed that
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KcLSTM is a faster algorithm that corrects its training data than cLSTM and
that those corrections improve the forecasts by being superior to LSTM. Fu-
ture work comprises the possibility of implementing the algorithm with different
estimators.
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