
Using Deep Q-Learning to Dynamically Toggle between Push/Pull Actions in Computational

Trust Mechanisms

Zoi Lygizou

Hellenic Open University, Patra, Greece

std084140@ac.eap.gr (Corresponding author)

https://orcid.org/0000-0001-8414-7963

Dimitris Kalles

Hellenic Open University, Patra, Greece

kalles@eap.gr (Corresponding author)
https://orcid.org/0000-0003-0364-5966

Abstract

Recent work on decentralized computational trust models for open Multi Agent Systems has

resulted in the development of CA, a biologically inspired model which focuses on the

trustee’s perspective. This new model addresses a serious unresolved problem in existing

trust and reputation models, namely the inability to handle constantly changing behaviors

and agents’ continuous entry and exit from the system. In previous work, we compared CA

to FIRE, a well-known trust and reputation model, and found that CA is superior when the

trustor population changes, whereas FIRE is more resilient to the trustee population

changes. Thus, in this paper, we investigate how the trustors can detect the presence of

several dynamic factors in their environment and then decide which trust model to employ

in order to maximize utility. We frame this problem as a machine learning problem in a

partially observable environment, where the presence of several dynamic factors is not

known to the trustor and we describe how an adaptable trustor can rely on a few

measurable features so as to assess the current state of the environment and then use Deep

Q Learning (DQN), in a single-agent Reinforcement Learning setting, to learn how to adapt to

a changing environment. We ran a series of simulation experiments to compare the

performance of the adaptable trustor with the performance of trustors using only one

model (FIRE or CA) and we show that an adaptable agent is indeed capable of learning when

to use each model and, thus, perform consistently in dynamic environments.

KEYWORDS

Computational trust models, Machine Learning, Reinforcement Learning, Deep Q Learning,

Single-agent RL setting

1. Introduction

In open environments, identifying trustworthy partners to interact with is a challenging task.

This issue is usually addressed by trust and reputation mechanisms, which are key elements

for the design of Multi Agent Systems (MAS) [3].

However, available trust management methods still have serious weaknesses, such as the

inability to deal with agents’ mobility and unstable behavior *1]. Common trust models

mailto:std084140@ac.eap.gr
https://orcid.org/0000-0001-8414-7963
mailto:kalles@eap.gr
https://orcid.org/0000-0001-8414-7963

struggle to cope with agents’ frequent, unexpected entries and exits [4]. In highly dynamic

environments, agents’ behavior can change rapidly, and agents using trust mechanisms must

be able to quickly detect these changes, in order to select beneficial partners for their

interactions [7].

To address these unresolved issues in existing trust and reputation models, we have

previously proposed CA [8], a decentralized computational trust model for open MAS,

inspired by biological processes in the human brain. Unlike conventional models, CA handles

trust from the trustee’s point of view. CA draws its strength from letting a trustee decide if it

is skilled to provide a service, as required, instead of trustors selecting trustees. In previous

work [9], we compared CA to FIRE, an established trust and reputation model, and our main

finding was that CA outperforms FIRE when the consumer population changes, while FIRE is

more resilient when the trustee population is volatile. Note here, that the terms providers

and trustees refer to the agents who provide services, while the terms consumers and

trustors refer to the agents who use these services.

This paper focuses on answering the question how trustors may identify the presence of

various factors that define a dynamically changing, open MAS (conceptualizing the nature of

open MAS appears in [9]), and then decide which trust model to use to maximize utility. This

problem can be framed as a machine learning problem in a partially observable

environment, in which trustors are unaware of the effect of these dynamically changing

factors. This framing renders the problem suitable for a Reinforcement Learning (RL)

approach, where an agent learns how to behave in a given environment to maximize

rewards. Unlike supervised and unsupervised learning, which use a specific data set to learn

from, in RL, agents learn from the rewards and penalties they receive for their actions.

Indeed, in our problem, the trustor attempts to learn the optimal policy, i.e., whether to

advertise tasks and let trustees decide who gets to carry out a task (as implemented by CA,

which is a push model) or to select trustees directly (as implemented by FIRE, a pull model),

with actions being chosen in each state and with utility gain (UG) serving as a reward. We

describe in detail how the adaptable trustor can calculate values for a number of

environmental variables (features) to assess current state, and use Deep Q Learning (DQN)

to learn how to adapt to a changing environment. We ran a series of simulations to compare

the performance of an adaptable trustor (using DQN) with the performance of consumers

using solely one model, FIRE or CA, and we found that by using Deep Q Learning, the

adaptable trustor is able to learn when to use each model, demonstrating a consistently

robust performance.

The rest of the paper is organized as follows. In section 2, we review the background on the

relevant trust mechanisms and reinforcement learning. Section 3 describes the testbed,

DQN architecture, hyper-parameters setup, and the features used for DQN. In section 4, we

describe the methodology we employed for our experiments. Section 5 presents our results

and section 6 provides a brief discussion of our findings. Finally, in section 7 we conclude our

work, highlighting potential future work.

2. Background

2.1. Trust mechanisms

In this section, we briefly describe the two trust mechanisms used in our simulations: FIRE

and CA.

2.1.1. FIRE model

FIRE [5] is an established trust and reputation model, which follows the distributed,

decentralized approach, and utilizes the following four sources of trust information:

 Interaction Trust (IT): a target trustee’s trustworthiness is evaluated based on the

trustor’s previous interactions with the target agent.

 Witness Reputation (WR): trustworthiness is estimated by the evaluator based on

the opinions of other trustors (witnesses) that have previously interacted with the

target trustee.

 Role-based trust (RT): trustworthiness is assessed based on roles and available

domain knowledge, including norms and regulations.

 Certified Reputation (CR): trustworthiness is evaluated based on third-party

references stored by the target trustee, available on demand.

IT is the most reliable source of trust information because it reflects the evaluator’s

satisfaction. However, in case that the evaluator has no previous interactions with the target

agent, FIRE cannot utilize IT module, and relies on the other three modules, mainly on WR.

Nevertheless, in conditions of high flows of witnesses out of the system, WR cannot work

properly and FIRE is based mainly on CR module for trust assessments. Yet, CR is not a very

reliable source of trust information, since the trustees may choose to store only the best

third-party references, resulting in overestimation of their performance.

2.1.2. CA model

We have formally described CA model in [8], as a new computational trust model, inspired

by synaptic plasticity, a biological process in human brain. Synaptic plasticity is responsible

for the creation of coherent groups of neurons called assemblies (which is why we call our

model “Create Assemblies”).

CA views trust from the perspective of the trustee, i.e. the trustee decides whether it has the

skills to successfully execute a required task. This is opposed to the conventional trust

modeling approach, in which the trustor, after gathering and processing behavioral

information about possible trustees, finally selects the most reliable one to interact with. As

we have previously discussed [8], the idea that the trustor does not select a trustee,

provides several advantages to CA approach in open multi-agent systems. The fact that the

trustee can carry trust information (stored in the form of connection weights) and use it in

every new application it joins, gives CA an advantage in coping with the issue of mobility,

which continuous to be recognized as an open challenge [6]. Choosing trustees by trustors

increases communication time, because of the apparent need for extensive trust

information exchange [12]. Agents may be unwilling to share trust information [11], while

revealing an agent’s private opinion about others’ services may have a detrimental effect

[5]. Finally, in CA approach, agents do not share trust information. This creates the

expectation that CA is invulnerable to various types of disinformation, an ongoing problem

in most agent societies.

According to CA model, the trustor (the agent requesting the task) broadcasts a request

message to all nearby trustees, including the following information: a) the task category (i.e.

the type of work to be done), and b) a list of task requirements. When a trustee receives a

request message, it creates a connection with a weight w ∈ [0,1), which represents the

connection’s strength, i.e. the trust value expressing the trustee’s likelihood of successfully

performing the task.

After completing the task, the trustee adjusts the weight. If it successfully completes the

task, it increases the weight according to equation (1). If the trustee fails, it decreases the

weight according to equation (2).

w = Min 1, w + α 1 − w (1)

w = Max 0, w − β 1 − w (2)

Positive factors α, β control the rate of increase and decrease, respectively. The trustee

takes the decision to execute a task by comparing the connection’s weight to a

predetermined Threshold ∈ 0,1 ; it executes the task only when the weight is not less than

the Threshold value.

For our simulation experiments we used CA algorithm for dynamic trustee profiles, as

described in [9].

2.2. Reinforcement learning

In this setting, the agent interacts with the environment by taking actions and observing

their effect (by for example, measuring some environmental quantities). Single-agent RL

under full observability is formalized by Sutton & Barto [13], defined as tuple 𝑆, 𝐴, 𝑇, 𝑅, 𝛾 .

At timestep t, the agent observes current state 𝑠 ∈ 𝑆, chooses action 𝑎 ∈ 𝐴 based on policy

𝜋(𝑎|𝑠), and receives reward 𝑟𝑡 = 𝑅 𝑠 ∈ ℝ. Then, with probability 𝑃 𝑠′ |𝑠, 𝑎 = 𝑇 𝑠, 𝑎, 𝑠′ ,

the environment transits to a new state 𝑠′ ∈ 𝑆. The agent’s goal is to learn optimal policy 𝜋∗

maximizing discounted return (future rewards) 𝑅𝑡 = 𝛾𝑡 ′ −𝑡𝑟𝑡
𝐻
𝑡 ′ =𝑡 , where 𝐻 is the horizon

and 𝛾 ∈ [0,1) is a discount factor. The action-value function 𝑄 of a policy 𝜋 is defined as

𝑄𝜋∗
 𝑠, 𝑎 = 𝔼 𝑅𝑡|𝑆𝑡 = 𝑆, 𝑎𝑡 = 𝑎 . Then, optimal policy 𝜋∗ maximizes the Q-value function

𝑄𝜋∗
 𝑠, 𝑎 = max𝜋 𝑄(𝑠, 𝑎).

Usually in RL, the agent tries to learn 𝜋∗ without being explicitly given the MDP model.

Model-based methods learn 𝑇 and 𝑅 and then use a planner to determine 𝑄𝜋∗
. On the

contrary, model-free methods are more efficient in terms of space and computation,

because they directly learn Q-values or policies.

Q-learning is a model-free method introduced by Watkins and Dayan [14]. It uses backups

𝑄 𝑠, 𝑎 = 𝑄 𝑠, 𝑎 + 𝑎 𝑟 + 𝛾 max𝛼′ 𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎 to iteratively calculate the optimal

Q-value function, where 𝑎 ∈ 0,1 denotes the learning rate. The term

𝑟 + 𝛾 max𝛼′ 𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎 is the temporal difference (TD) error. In the tabular case,

convergence to 𝑄𝜋∗
is guaranteed, provided adequate state/action space, where other

methods using function approximators, such as neural networks are more suitable.

Deep Q-learning [10] is a state-of-the-art method that uses Deep Q-Network (DQN) for Q-

value approximation. For any experience < 𝑠, 𝑎, 𝑟, 𝑠′ >, DQN uses two separate neural

networks: a) a target neural network 𝑄 ∙,∙; 𝜃
𝑡 to calculate the target

𝑟𝑡 + 𝛾 max𝛼′ 𝑄 𝑠′ , 𝑎′ ; 𝜃
𝑡 , and b) an online neural network 𝑄(∙,∙; 𝜃) to calculate the

estimation 𝑄(𝑠, 𝑎; 𝜃𝑡). Then, the loss 𝑟𝑡 + 𝛾 max𝛼′ 𝑄 𝑠′ , 𝑎′ ; 𝜃
𝑡 − 𝑄(𝑠, 𝑎; 𝜃𝑡) 2 is calculated.

DQN stores the experiences in a replay memory and updates the online network’s

parameters at random, taking mini-batches of experiences and minimizing loss using

stochastic gradient descent. The target network parameters are updated less frequently to

match the online network parameters, allowing a more stable learning.

2.3. Towards an adaptable trust mechanism

Can trustor-based and trustee-based schemes co-exist? As stated briefly in the introduction,

we can put the burden on trustors to try to detect whether the environment they operate in

is one that favors a trustor-based or a trustee-based approach and, based upon that

detection, decide what it’s the approach they will adopt with the objective to maximize a

measure of utility. Of course, as trustors do not necessarily communicate with each other

and, when they do so, cannot be guaranteed to communicate in good faith, the question of

how to select one’s action bears a remarkable affinity to a reinforcement learning context,

and, particularly, one in a partially observable environment. Of course, to do so, one has to

decide which measurable features will be utilized to describe the environment (more

accurately, the allowable state space) and, additionally, how one can use these features to

formulate a reward (or, penalty) scheme, that will render the problem solvable by a

reinforcement learning technique.

3. Experimental setup

This section describes the setup for our simulations. First, in section 3.1, we describe the

testbed we designed to meet the needs of our experiments. The DQN architecture and

hyper-parameters setup are specified in section 3.2, followed by a description of the

features used for state representation in section 3.3.

3.1. The testbed

For our simulations, we implemented a testbed similar to the one described in [5]. This

section describes its main features and specifications.

The testbed’s environment contains agents who deliver services (referred to as trustees or

providers) and agents who use these services (referred to as trustors or consumers). For

simplicity, all providers offer the same service. The agents are randomly distributed in a

spherical world with a radius of 1.0. Radius of operation (r0) indicates the agent’s capacity

for interactions with other agents, and each agent has other agents situated within its radius

of operation, referred to as acquaintances.

A provider’s performance varies, determining the utility gain (UG) that a consumer gets from

each interaction, calculated as follows. There are four types of providers: bad, ordinary,

intermittent, and good. Apart from the intermittent, each provider’s actual performance is

normally distributed around a mean level of performance μP . The values of μP and the

related standard deviation σP for each provider type are shown in Table 1. Intermittent

provider has a random performance within the range [PL_BAD, PL_GOOD]. Providers’ radius

of operation also corresponds to the normal operational range within which they can

provide a service without quality loss. In case a consumer is outside that range, the provided

service quality decreases linearly in proportion to the distance between the consumer and

the provider, but the final calculated performance is always within [-10, +10], and equal to

the utility the consumer acquired as an interaction result.

Simulations run in rounds. As in real world, a consumer does not need the service in every

round. The probability that the consumer will require the service (activity level 𝑎) is

determined randomly at the agent’s creation time. There is no other factor restricting the

number of agents eligible to participate in a round. A consumer always requires the service

in the round it needs it. The round number is also used as the time value for any event.

There are three consumer groups: a) consumers using only FIRE trust model, b) consumers

using only CA, and c) adaptable consumers able to use both models. If a consumer needs the

service, first it finds all available nearby providers. FIRE consumers select a provider

following the four-step process outlined in [5]. After selecting a provider, FIRE consumers

use the service, gain some utility, and rate the service with a rating value equal to the

received UG. The rating is then recorded by the consumer for future trust evaluations and

the provider is also informed about the rating, which may be stored as evidence of its

performance available on demand.

On the contrary, CA consumers that need the service, do not select a provider, but they

broadcast a request message, specifying the required service quality. Table 2 presents the

five performance levels reflecting the possible qualities of the service. A CA consumer first

broadcasts a message requesting the service at the best quality (PERFECT). After sufficient

amount of time (WT), all CA consumers, which have not been provided with the service,

broadcast a new message requesting the service at the next lower performance level

(GOOD). This procedure goes on as long as there exist consumers who have not been served

and the requested performance remains above the lowest level. On receiving a request

message, a provider saves it locally in a list and runs CA algorithm. WT is a testbed

parameter indicating the maximum time needed for all requested services of one round to

be delivered.

Adaptable consumer agents first calculate the nine features for the state representation and

then use DQN algorithm to decide the trust model (FIRE or CA) that they will use in each

simulation round.

In open MAS agents enter and leave the system at any time. This is simulated by replacing a

random number of agents, at the end of each round. This number varies, but it is not

allowed to exceed a given percentage of the total population. pCPC denotes the consumer

population change limit, and pPPC denotes the provider population change limit. The

newcomer agents’ characteristics are randomly chosen, but the proportions of different

consumer groups and provider profiles are maintained.

Altering an agent’s location has an effect on both its own situation and its relationship with

other agents. Polar coordinates (r, φ, θ) specify an agent’s location in the spherical world. To

change location, amounts of angular changes Δφ and Δθ are added to φ and θ, respectively.

Δφ and Δθ are chosen at random in −Δϕ, +Δϕ . Providers and consumers change locations

at the end of a round, with probabilities denoted by pPLC and pCLC , respectively.

At the end of each round, the performance μ of a provider can be changed by an amount Δμ

randomly chosen in −M, +M , with a probability of pμC . A provider may also switch to a

different profile with a probability of pProfileSwitch .

Table 1 Providers’ profiles (performance constants defined in Table 2)

Profile Range of μp σp

Good [PL_GOOD, PL_PERFECT] 1.0
Ordinary [PL_OK, PL_GOOD] 2.0
Bad [PL_WORST, PL_OK] 2.0

Table 2 Performance level constants

Performance level Utility gained

PL_PERFECT 10
PL_GOOD 5
PL_OK 0
PL_BAD -5
PL_WORST -10

3.2. DQN architecture and hyper-parameters setup

We used neural networks consisting of three fully-connected layers. The input to the neural

network is a state representation of nine features’ values (section 3.3), thus the input layer

has nine neurons, one for each feature. The second, hidden layer has six neurons and the

third is the output layer with two distinct neurons, one for each of the two possible actions:

push (use CA trust model) and pull (use FIRE trust model). The choice of activation function

for the input and hidden layer is sigmoid, while for the output layer we used linear activation

function.

The combinatorial space of hyper-parameters is too large for an exhaustive search. Due to

the high computational cost, we have not conducted a systematic search. Instead, an

informal search was performed. The values of all hyper-parameters are displayed in Table 3.

Table 3 List of hyper-parameters and their values

Parameter Value

n (the width of consecutive rounds in features’ calculation) 10

Constant ϵ for exploration 0.05
λ for L2 regularization 0.01
Learning rate in DQN algorithm 0.3
Backward propagation learning rate 0.15
Discount factor γ 0.95
Replay memory size 50
Minibatch size 5
Steps between target network updates 5

3.3. Features

In this section, we describe the nine features we used for state representation, which are

summarized in Table 4.

Table 4 Selected Features for the DQN

Feature

ProvidersPopulationDirectChangeEstimate
MeanProvidersPopulationDirectChangeEstimate
ProvidersPopulationIndirectChangeEstimate
MeanProvidersPopulationIndirectChangeEstimate
NewcomerEstimate
ConsumersPopulationIndirectChangeEstimate
MeanConsumersPopulationIndirectChangeEstimate
ProvidersPerformanceChangeEstimate
ConsumersLocationChangeEstimate

The trustor’s decision on which model is most appropriate at any given time is based on the

accuracy of its assessment about the environment’s current state, which is determined by

the presence of the following factors:

 The provider population change

 The consumer population change

 The provider’s average level of performance change

 The provider’s change into a different performance profile

 The provider’s move to a new location on the spherical world

 The consumer’s move to a new location on the spherical world

Since we assume partially observable environment, meaning that the trustor has no

knowledge of the aforementioned factors, the trustor can only utilize the following available

data:

 A local rating database. After each interaction, the trustor rates the provided service

and each rating is stored in its local rating database.

 The trustor’s acquaintances: the agents situated in the trustor’s radius of operation.

 The trustor’s nearby provider agents: the providers situated in the trustor’s radius of

operation.

 The trustor is able to evaluate the trustworthiness of all nearby providers using the

FIRE model. Providers whose trustworthiness cannot be determined (for any reason)

are placed in the set NoTrustValue. The rest, whose trustworthiness can be

determined are placed in the set HasTrustValue.

 The trustor’s location on the spherical world, i.e. its polar coordinates (𝑟, 𝜑, 𝜃).

 The acquaintances’ ratings or referrals, according to the process of Witness

Reputation (WR): when consumer agent a evaluates agent 𝑏’s WR, it sends a request

for ratings to 𝑛𝐵𝐹 acquaintances, that are likely to have ratings for agent b. Upon

receiving the query, each acquaintance will attempt to match it to its own ratings

database and return any relative ratings. In case acquaintance cannot find the

requested ratings (because it has had no interactions with b), it will only return

referrals identifying its 𝑛𝐵𝐹 acquaintances.

 Nearby providers’ certified ratings, according to the process of Certified Reputation

(CR): After each interaction, provider 𝑏 requests from its partner consumer 𝑐 to

provide certified ratings for its performance. Then, 𝑏 selects the best ratings to be

saved in its local rating database. When 𝑎 expresses its interest for 𝑏’s services, it

asks 𝑏 to give references about its previous performance. Then, agent 𝑎 receives 𝑏’s

certified rating set and uses it to calculate 𝑏’s CR.

Next, we elaborate on how the trustor can approximate the real environment’s conditions.

We enumerate indicative changes in the environment and analyze on how the trustor could

sense this particular change and measure the extent of the change.

1. The provider population changes at maximum X% in each round.

Given that 𝑛𝑒𝑎𝑟𝑏𝑦𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟𝑠𝑡 is the list of nearby providers in round 𝑡, and

𝑛𝑒𝑎𝑟𝑏𝑦𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟𝑠𝑡−1 is the list of nearby providers in round 𝑡 − 1, the consumer can

calculate the list of the newcomer nearby provider agents 𝑛𝑒𝑤𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟𝑠𝑡 , as the providers

that exist in 𝑛𝑒𝑎𝑟𝑏𝑦𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟𝑠𝑡 (𝑛𝑒𝑤𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟𝑠𝑡 ∈ 𝑛𝑒𝑎𝑟𝑏𝑦𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟𝑠𝑡), but not in

𝑛𝑒𝑎𝑟𝑏𝑦𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟𝑠𝑡−1 (𝑛𝑒𝑤𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟𝑠𝑡 ∉ 𝑛𝑒𝑎𝑟𝑏𝑦𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟𝑠𝑡−1). Then, the following

feature can be calculated by the consumer agent as an index of the provider population

change in each round:

ProvidersPopulationDirectChangeEstimate𝑡 =
 𝑛𝑒𝑤𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟𝑠 𝑡

 𝑛𝑒𝑎𝑟𝑏𝑦𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟 𝑠𝑡
 (3)

where the meaning of ∙ is cardinality of. Intuitively, this ratio expresses how changes in the

total provider population can be reflected in changes in the provider population situated in

the consumer’s radius of operation. However, in any given round, newcomer providers may

not be located within a specific consumer’s radius of operation, even if new providers have

entered the system. In this case, the total change of the providers’ population in the system

can be better assessed in a window of consecutive rounds.

Given that a window of rounds 𝑊 is defined as a set of 𝑛 consecutive rounds 𝑊 =

 𝑡1 , 𝑡2 , ⋯ , 𝑡𝑛 , the consumer can calculate feature

𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟𝑠𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝐷𝑖𝑟𝑒𝑐𝑡𝐶𝑕𝑎𝑛𝑔𝑒𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 for each round 𝑡𝑖 ∈ 𝑊, as follows.

ProvidersPopulationDirectChangeEstimate𝑡𝑖
=

 𝑛𝑒𝑤𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟𝑠 𝑡𝑖

 𝑛𝑒𝑎𝑟𝑏𝑦𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟𝑠 𝑡𝑖

 (4)

Then, a more accurate index of the provider population change in each round can be

calculated as the following mean:

MeanProvidersPopulationDirectChangeEstimate𝑡𝑛
=

 𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟𝑠𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝐷𝑖𝑟𝑒𝑐𝑡𝐶 𝑕𝑎𝑛𝑔𝑒𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑡𝑖
𝑛
𝑖=1

𝑛
 (5)

Note that 𝑛𝑒𝑤𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟𝑠𝑡 can include providers that are not really newcomers, but they

previously existed in the system and appear as new agents in 𝑛𝑒𝑎𝑟𝑏𝑦𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟𝑠𝑡 , either due

to their own movement in the world, or due to the consumer’s movement, or both. In other

words, agents’ movement in the world introduce noise in the measurement of

𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟𝑠𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝐷𝑖𝑟𝑒𝑐𝑡𝐶𝑕𝑎𝑛𝑔𝑒𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒.

Each newcomer provider agent has not yet interacted with other agents in the system and

therefore its trustworthiness cannot be determined using Interaction Trust and Witness

Reputation modules. If the newcomer provider does not have any certified ratings from its

interactions with agents in other systems, then its trustworthiness cannot be determined

using Certified Reputation module, either. This agent belongs to the 𝑁𝑜𝑇𝑟𝑢𝑠𝑡𝑉𝑎𝑙𝑢𝑒𝑡𝑖
set,

which is a subset of 𝑛𝑒𝑎𝑟𝑏𝑦𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟𝑠𝑡𝑖
.

We can distinguish another category of newcomer provider agents, those whose

trustworthiness can be determined solely by CR, because they own certified ratings from

their interactions with agents in other systems. Let 𝐴𝑡𝑖
 denote the subset of

𝑛𝑒𝑎𝑟𝑏𝑦𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟𝑠𝑡𝑖
 whose trustworthiness can be determined using only the CR module.

The consumer can then calculate the following feature as an alternative index for the

provider population change in a round.

ProvidersPopulationIndirectChangeEstimate𝑡𝑖
 =

 𝑁𝑜𝑇𝑟𝑢𝑠𝑡𝑉𝑎𝑙𝑢𝑒 𝑡𝑖
 + 𝐴𝑡𝑖

 𝑛𝑒𝑎𝑟𝑏𝑦𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟𝑠 𝑡𝑖

 (6)

As previously stated, in any given round, newcomer providers may not be located within a

specific consumer’s radius of operation, even if they have entered the system. Thus, a more

accurate estimate of ProvidersPopulationIndirectChangeEstimate can be calculated in a

window of n consecutive rounds, with the following mean:

MeanProvidersPopulationIndirectChangeEstimate𝑡𝑛
=

 𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟𝑠𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝐼𝑛𝑑𝑖𝑟𝑒𝑐𝑡𝐶 𝑕𝑎𝑛𝑔𝑒𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑡𝑖
𝑛
𝑖=1

𝑛
 (7)

2. The consumer population changes at maximum X% in each round.

If the consumer population has changed, it is possible that the consumer itself is a

newcomer. In this case, the consumer is not expected to have ratings for any of its nearby

providers in its local rating database, and IT module of FIRE cannot work. Thus, estimating

whether it is a newcomer consumer probably helps the agent to decide about which trust

model to employ for maximum benefits. The consumer can calculate feature

NewcomerEstimate as follows. It sets 𝑁𝑒𝑤𝑐𝑜𝑚𝑒𝑟𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 = 1, if there are no available

ratings in its local rating database for any of the nearby providers, otherwise it sets

𝑁𝑒𝑤𝑐𝑜𝑚𝑒𝑟𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 = 0. More formally:

𝑁𝑒𝑤𝑐𝑜𝑚𝑒𝑟𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 =
1, 𝑖𝑓 ∀ 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟 ∈ 𝑛𝑒𝑎𝑟𝑏𝑦𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟𝑠: ∄ 𝑟𝑎𝑡𝑖𝑛𝑔 = 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑟, 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟, _, _, _, _ ∈ 𝑟𝑎𝑡𝑖𝑛𝑔𝐷𝑎𝑡𝑎𝑏𝑎𝑠𝑒𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑟

0, 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒
 (8)

According to WR process, when consumer 𝑎 assesses the WR of a nearby provider 𝑏, it sends

out a query for ratings to 𝑛𝐵𝐹 consumer acquaintances that are likely to have relative ratings

on agent b. Each newcomer consumer acquaintance will try to match the query to its own

(local) rating database, but it will find no matching ratings, because of no previous

interactions with b. Thus, the acquaintance will return no ratings. In this case, the consumer

can reasonably infer that an acquaintance that returns no ratings is very likely to be a

newcomer agent. So, consumer agent a, in order to approximate the consumer population

change, can calculate the following feature:

ConsumersPopulationIndirectChangeEstimate𝑡𝑖
 =

 𝐵𝑡𝑖

 𝐶𝑡𝑖

 (9), where:

𝐶𝑡𝑖
 is the set of consumer acquaintances of 𝑎 to which consumer 𝑎 sends queries (for

ratings), one for each of its nearby providers, at round 𝑡𝑖 , and 𝐵𝑡𝑖
 is the subset of 𝐶

consumer acquaintances that returned no ratings (for any query) to 𝑎 at round 𝑡𝑖 .

As previously stated, in any given round, newcomer consumer acquaintances may not be

located within a specific consumer’s radius of operation, even if newcomer consumers have

entered the system. Thus, a more accurate estimate of

ConsumersPopulationIndirectChangeEstimate can be calculated in a window of 𝑛

consecutive rounds, with the following mean:

MeanConsumersPopulationIndirectChangeEstimatetn
=

 𝐶𝑜𝑛𝑠𝑢 𝑚𝑒𝑟𝑠𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝐼𝑛𝑑𝑖𝑟𝑒𝑐𝑡𝐶 𝑕𝑎𝑛𝑔𝑒𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑡𝑖
𝑛
𝑖=1

𝑛
 (10)

3. The provider alters its average level of performance at maximum X UG units with a

probability of p in each round.

A consumer using FIRE, selects the provider with the highest trust value in the HasTrustValue

set. The quantity 𝑡𝑟𝑢𝑠𝑡𝑉𝑎𝑙𝑢𝑒 ∗ 10 is an estimate of the average performance of the

selected provider whose actual performance can be different. The difference 𝑡𝑟𝑢𝑠𝑡𝑉𝑎𝑙𝑢𝑒 ∗

10 − 𝑎𝑐𝑡𝑢𝑎𝑙𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 expresses the change of the average performance level of a

specific provider. Yet, not all providers alter their average level of performance in each

round. Thus, the consumer can calculate the following feature as an estimate of a provider’s

average level of performance, by using the differences

 𝑡𝑟𝑢𝑠𝑡𝑉𝑎𝑙𝑢𝑒𝑖 ∗ 10 − 𝑎𝑐𝑡𝑢𝑎𝑙𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝑖 of the last N interactions with this provider.

ProvidersPerformanceChangeEstimate =
 𝑡𝑟𝑢𝑠𝑡𝑉𝑎𝑙𝑢𝑒 𝑖∗10−𝑎𝑐𝑡𝑢𝑎𝑙𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑖

𝑁
𝑖

𝑁
 (11)

4. The providers switch into a different (performance) profile with a probability of p in

each round

A consumer can use ProvidersPerformanceChangeEstimate as an estimate of a provider’s

profile change, as well.

5. Consumers move to a new location on the spherical world with a probability p in

each round.

The list 𝑛𝑒𝑎𝑟𝑏𝑦𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟𝑠 can include providers that appear as new because of the

consumer’s movement on the world. Thus,

𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟𝑠𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝐷𝑖𝑟𝑒𝑐𝑡𝐶𝑕𝑎𝑛𝑔𝑒𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑡𝑖
 can be also be used as an estimate of

consumer’s movement.

Nevertheless, in order to make a more accurate estimate, a consumer can use its polar

coordinates. Given that 𝑟𝑡 , 𝜑𝑡 , 𝜃𝑡 are its polar coordinates in round 𝑡 and 𝑟𝑡−1 , 𝜑𝑡−1 , 𝜃𝑡−1

are its polar coordinates in round 𝑡 − 1, a consumer is able to calculate the following

feature:

ConsumersLocationChangeEstimate =

1, 𝑖𝑓 𝛥𝑟 = 𝑟𝑡 − 𝑟𝑡−1 ≠ 0 ∨ 𝛥𝜑 = 𝜑𝑡 − 𝜑𝑡−1 ≠ 0 ∨ 𝛥𝜃 = 𝜃𝑡 − 𝜃𝑡−1 ≠ 0

0, 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒
 (12)

The consumer estimates that its location has changed, by setting

𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑟𝑠𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐶𝑕𝑎𝑛𝑔𝑒𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 = 1, if at least one of its polar coordinates 𝑟, 𝜑, 𝜃

have changed, compared to the previous round.

6. Providers move to a new location on the spherical world with a probability p in each

round

The list 𝑛𝑒𝑎𝑟𝑏𝑦𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟𝑠 can include providers that appear as new because of their

movement in the world. Thus, 𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟𝑠𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝐷𝑖𝑟𝑒𝑐𝑡𝐶𝑕𝑎𝑛𝑔𝑒𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑡𝑖
 also serves

as an estimate of the providers’ movement.

Note that since a provider does not know other agents’ polar coordinates, it cannot calculate

a feature similar to 𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑟𝑠𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐶𝑕𝑎𝑛𝑔𝑒𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 .

4. Experimental methodology

In our simulation experiments, we compare the performance of the following three

consumer groups:

 Adaptable: consumer agents able to choose a trust model (FIRE or CA) based on

their assessment for the presence of several dynamic factors in their environment.

 FIRE: consumer agents using only FIRE trust model.

 CA: consumers using solely CA trust model.

To accomplish this, we run a number of independent simulation runs (NISR) to ensure more

accurate results and avoid random noise. In order to obtain statistically significant results,

NISR varies in each experiment, as shown in Table 5.

The utility that each agent gained throughout simulations indicates the model’s ability to

identify reliable, profitable providers. Thus, each interaction’s utility gain (UG), along with

the trust model employed are both recorded.

After all simulations runs have finished, we calculate the average UG for each interaction for

each consumer group. The average UG of the three consumer groups are then compared

using the two-sample t-test for means comparison [2] with a 95% confidence level.

The results of each experiment are presented in a separate graph showing the UG means in

each interaction, for each consumer group. In all the simulations the provider population is

“typical”, as defined in *5], consisting of half profitable providers (producing positive UG)

and half harmful providers (producing negative UG, including intermittent providers).

The values for the experimental variables used are shown in Table 6, while the FIRE and CA

parameters used are shown in Table 7 and Table 8, accordingly.

Table 5 Number of independent simulation runs (NISR) per experiment

Experiment NISR

1, 2, 6, 8-11, 17 30
3-5, 7, 12, 14-16, 18 10
13 12

Table 6 Experimental variables

Simulation variable Symbol Value

Number of simulation rounds 𝑁

- Default 500

- Experiments: 7, 13 1000

Total number of provider agents: 𝑁𝑃 100

Good providers 𝑁𝐺𝑃 10

Ordinary providers 𝑁𝑃𝑂 40

Intermittent providers 𝑁𝑃𝐼 5

Bad providers 𝑁𝑃𝐵 45

Total number of consumer agents 𝑁𝐶 500

Range of consumer activity level α [0.25, 1.00]

Waiting Time WT 1000 msec

Table 7 FIRE’s default parameters

Parameters Symbol Value

Local rating history size 𝐻 10

IT recency scaling factor 𝜆 -(5/ln(0.5))

Branching factor 𝑛𝐵𝐹 2

Referral length threshold 𝑛𝑅𝐿 5

Component coefficients

Interaction trust 𝑊𝐼 2.0

Role-based trust 𝑊𝑅 2.0

Witness reputation 𝑊𝑊 1.0

Certified reputation 𝑊𝐶 0.5

Reliability function parameters

Interaction trust 𝛾𝐼 -ln(0.5)

Role-based trust 𝛾𝑅 -ln(0.5)

Witness reputation 𝛾𝑊 -ln(0.5)

Certified reputation 𝛾𝐶 -ln(0.5)

Table 8 CA's default parameters

Parameters Symbol Value

Threshold 𝑇𝑕𝑟𝑒𝑠𝑕𝑜𝑙𝑑 0.5

Positive factor controlling the rate of the increase in strengthening of

a connection
𝛼 0.1

Positive factor controlling the rate of the decrease in weakening of a

connection
𝛽 0.1

5. Simulation results

5.1. Adaptable’s performance in single environmental changes

In this section we compare the performance of three groups of consumers (adaptable, CA,

FIRE), when there is no environmental change (static setting) and when there is one

environmental change at a time, keeping the change constant throughout simulation,

conducting the following experiments:

Experiment 1. The setting is static, with no changes.

Experiment 2. The provider population changes at maximum 2% in every round (𝑝𝑃𝑃𝐶 =

0.02).

Experiment 3. The provider population changes at maximum 5% in every round (𝑝𝑃𝑃𝐶 =

0.05).

Experiment 4. The provider population changes at maximum 10% in every round (

𝑝𝑃𝑃𝐶 = 0.10).

Experiment 5. The consumer population changes at maximum 2% in every round (

𝑝𝐶𝑃𝐶 = 0.02).

Experiment 6. The consumer population changes at maximum 5% in every round (

𝑝𝐶𝑃𝐶 = 0.05).

Experiment 7. The consumer population changes at maximum 10% in every round (

𝑝𝐶𝑃𝐶 = 0.10).

Experiment 8. A provider may alter its average level of performance at maximum 1.0 UG unit

with a probability of 0.10 each round (pμC = 0.10, M = 1.0).

Experiment 9. A provider may switch into a different (performance) profile with a probability

of 2% in every round (pProfileSwitch = 0.02).

Experiment 10. A consumer may move to a new location on the spherical world at a

maximum angular distance of π/20 with a probability of 0.10 in every round (pCLC =

0.10, ΔΦ = π/20).

Experiment 11. A provider may move to a new location on the spherical world at a maximum

angular distance of π/20 with a probability of 0.10 in every round (pPLC = 0.10, ΔΦ =

π/20).

The experiments’ results are presented in figures Fig. 1 - Fig. 11. Overall, the performance of

the adaptable consumer is satisfactory in all the experiments and follows the performance

of the best-choice model in each situation.

This conclusion is drawn more easily, if we consider experiments 3-7 (figures Fig. 3 - Fig. 7),

where the performance of the adaptable consumer is always between the performance of

the other two models. Specifically, when the provider population changes (figures Fig. 3Fig.

4), the adaptable’s performance is always higher than CA, the worst choice in this case. On

the contrary, when the consumer population is volatile (figures Fig. 5 - Fig. 7), the adaptable

maintains a performance higher than that of FIRE’s.

Fig. 1 Experiment 1. Performance of the adaptable consumer in the static setting

Fig. 2 Experiment 2: Provider population change 𝐩𝐏𝐏𝐂 = 𝟐%

Fig. 3 Experiment 3: Provider population change 𝐩𝐏𝐏𝐂 = 𝟓%

Fig. 4 Experiment 4: Provider population change 𝐩𝐏𝐏𝐂 = 𝟏𝟎%

Fig. 5 Experiment 5: Consumer population change 𝐩𝐂𝐏𝐂 = 𝟐%

Fig. 6 Experiment 6: Consumer population change 𝐩𝐂𝐏𝐂 = 𝟓%

Fig. 7 Experiment 7: Consumer population change 𝐩𝐂𝐏𝐂 = 𝟏𝟎%

Fig. 8 Experiment 8: Providers change their performance: 𝐩𝛍𝐂 = 𝟏𝟎%, 𝐌 = 𝟏. 𝟎

Fig. 9 Experiment 9: Providers switch their profiles: 𝐩𝐏𝐫𝐨𝐟𝐢𝐥𝐞𝐒𝐰𝐢𝐭𝐜𝐡 = 𝟐%

Fig. 10 Experiment 10: Consumers change their locations: 𝐩𝐂𝐋𝐂 = 𝟏𝟎%, 𝚫𝚽 = 𝛑/𝟐𝟎

Fig. 11 Experiment 11: Providers change their locations: 𝐩𝐏𝐋𝐂 = 𝟏𝟎%, 𝚫𝚽 = 𝛑/𝟐𝟎

5.2. Adaptable’s performance in various combinations of changes

The experiments of this section aim to demonstrate that the adaptable consumer can find

the optimal policy when there are multiple, concurrently acting environmental changes and

it is difficult to predict (using previous section’s results) which of the two models FIRE or CA,

is the best option. Note, that all changes are maintained the same throughout simulation

rounds of the experiment. The experiments we conducted are described as follows.

Experiment 12. The provider population changes at maximum 2% in every round (

𝑝𝑃𝑃𝐶 = 0.02) and the consumer population changes at maximum 5% in every round (

𝑝𝐶𝑃𝐶 = 0.05).

Experiment 13. The provider population changes at maximum 10% in every round (

𝑝𝑃𝑃𝐶 = 0.02), the consumer population changes at maximum 10% in every round (

𝑝𝐶𝑃𝐶 = 0.05).

Experiment 14. The provider population changes at maximum 2% in every round (

𝑝𝑃𝑃𝐶 = 0.02), the consumer population changes at maximum 5% in every round (

𝑝𝐶𝑃𝐶 = 0.05) and consumers may move to a new location on the spherical world at a

maximum angular distance of π/20 with a probability of 0.10 in every round (pCLC =

0.10, ΔΦ = π/20).

Experiment 15. The provider population changes at maximum 2% in every round (

𝑝𝑃𝑃𝐶 = 0.02), the consumer population changes at maximum 5% in every round (

𝑝𝐶𝑃𝐶 = 0.05) and both consumers and providers may move to a new location on the

spherical world at a maximum angular distance of π/20 with a probability of 0.10 in every

round (pCLC = 0.10, pPLC = 0.10, ΔΦ = π/20).

Experiment 16. The provider population changes at maximum 2% in every round (

𝑝𝑃𝑃𝐶 = 0.02), the consumer population changes at maximum 5% in every round (

𝑝𝐶𝑃𝐶 = 0.05), both consumers and providers may move to a new location on the spherical

world at a maximum angular distance of π/20 with a probability of 0.10 in every round (

pCLC = 0.10, pPLC = 0.10, ΔΦ = π/20), and providers may alter their average level of

performance at maximum 1.0 UG unit with a probability of 0.10 each round (𝑝𝜇𝐶 =

0.10, 𝑀 = 1.0).

Experiment 17. The provider population changes at maximum 2% in every round (

𝑝𝑃𝑃𝐶 = 0.02), the consumer population changes at maximum 5% in every round (

𝑝𝐶𝑃𝐶 = 0.05), both consumers and providers may move to a new location on the spherical

world at a maximum angular distance of π/20 with a probability of 0.10 in every round (

pCLC = 0.10, pPLC = 0.10, ΔΦ = π/20), providers may alter their average level of

performance at maximum 1.0 UG unit with a probability of 0.10 each round (𝑝𝜇𝐶 =

0.10, 𝑀 = 1.0) and providers may switch into a different (performance) profile with a

probability of 2% in every round (pProfileSwitch = 0.02).

Overall, in no experiment does the performance of the adaptable fall below the

performance of the model with the worst performance, which supports the conclusion that

the adaptable indeed succeeds in finding the optimal policy in all the experiments.

Interestingly, in Experiment 12 (figure Fig. 12) the performance of the adaptable consumer

group outperforms the other two consumer groups (FIRE and CA).

Fig. 12 Experiment 12: 𝒑𝑷𝑷𝑪 = 𝟐% and 𝒑𝑪𝑷𝑪 = 𝟓%.

Fig. 13 Experiment 13: : 𝒑𝑷𝑷𝑪 = 𝟏𝟎% and 𝒑𝑪𝑷𝑪 = 𝟏𝟎%.

Fig. 14 Experiment 14: 𝐩𝐏𝐏𝐂 = 𝟐%, 𝐩𝐂𝐏𝐂 = 𝟓% , 𝐩𝐂𝐋𝐂 = 𝟏𝟎%, 𝚫𝚽 = 𝛑/𝟐𝟎

Fig. 15 Experiment 15: 𝒑𝑷𝑷𝑪 = 𝟐%, 𝒑𝑪𝑷𝑪 = 𝟓% , 𝒑𝑪𝑳𝑪 = 𝟏𝟎%, 𝒑𝑷𝑳𝑪 = 𝟏𝟎%, 𝜟𝜱 = 𝝅/𝟐𝟎

Fig. 16 Experiment 16: 𝒑𝑷𝑷𝑪 = 𝟐%, 𝒑𝑪𝑷𝑪 = 𝟓% , 𝒑𝑪𝑳𝑪 = 𝟏𝟎%, 𝒑𝑷𝑳𝑪 = 𝟏𝟎%, 𝜟𝜱 = 𝝅/𝟐𝟎, 𝒑𝝁𝑪 = 𝟏𝟎%, 𝑴 =

𝟏. 𝟎

Fig. 17 Experiment 17: 𝒑𝑷𝑷𝑪 = 𝟐%, 𝒑𝑪𝑷𝑪 = 𝟓% , 𝒑𝑪𝑳𝑪 = 𝟏𝟎%, 𝒑𝑷𝑳𝑪 = 𝟏𝟎%, 𝜟𝜱 = 𝝅/𝟐𝟎, 𝒑𝝁𝑪 = 𝟏𝟎%, 𝑴 =

𝟏. 𝟎, 𝒑𝑷𝒓𝒐𝒇𝒊𝒍𝒆𝑺𝒘𝒊𝒕𝒄𝒉 = 𝟐%

5.3. Adaptable’s performance in changes that vary during simulation

In this section, we report the results of one final experiment, in which the environmental

changes vary during simulation, which makes it even more difficult to predict which model

(FIRE or CA) is the best choice. The environmental changes applied in each simulation round

are shown in Table 9.

Table 9 Environmental changes applied in each simulation round. PPC stands for Provider

Population Change, and CPC stands for Consumer Population Change.

Simulation round Changes applied

1-200 PPC 2%, CPC 5%
201-250 PPC 2%
251-300 PPC 5%
301-350 PPC 10%
351-400 CPC 2%
401-450 CPC 5%
451-500 CPC 10%

The experiment’s results shown in figure Fig. 18 show that the adaptable consumers manage

to find the optimal policy. During the initial interactions, adaptable consumers clearly

choose CA as the best option, but when CA shows its worst performance, the adaptable

consumers manage to keep their performance at higher levels. During the last interactions,

when CA regains its good performance, adaptable consumers again adopt CA as the optimal

choice.

Fig. 18 Experiment 18

6. Discussion

In the majority of the experiments reported in section 5, the group of adaptable consumers

manage to maintain performance levels between those of FIRE and CA consumer groups.

This is to be expected, of course; learning to adapt in an environment is suggestive of

performance that attempts, but cannot quite manage, to match the best alternative.

However, there are a few experiments, in which the adaptable consumer outperforms the

best alternative. We now discuss possible reasons for these findings.

In experiments 12 and 14, where the adaptable consumer outperforms the non-adaptable

alternatives, there are two types of change which are in effect simultaneously (PPC 2%, CPC

5%). In the first type of change, the providers’ population change (PPC), FIRE has the

advantage, while in the second change, the consumers’ population change (CPC), CA

prevails. However, locally there are varying degrees of changes in several neighborhoods of

agents. For example, some consumers may be newcomers in the system, while others are

not, or new providers may exist in the operational range of only a few consumers. Unlike

conventional, non-adaptable, consumers who exclusively apply one of the two models (FIRE

or CA), adaptable consumers can detect locally which of the two types of behavior may be

more warranted, try it and, maybe, revert back to the original one, thus demonstrating a

greater agility to exploit the environmental conditions, leading to the superiority of the

adaptable consumer in experiments 12 and 14.

What is the reason for the adaptable superiority in experiment 12, but not in experiment 13,

where the change becomes more severe rising to 10%? We do not yet have a clear answer

to this question, which hopefully will be the subject of future work. Nevertheless,

adaptability is a property of the consumers; the longer they stay in the system, the more

they learn to adapt. In experiment 13, increasing the rate of change of the consumer

population (CPC) to 10%, has a negative effect on the performance of the adaptable

consumers, as the newcomer adaptable consumers must learn to adapt from scratch and an

increased rate of change does not allow for successful learned behaviors to be applied long

enough to raise performance.

7. Conclusions and future work

Current trust and reputation models continue to have several unresolved issues, such as the

inability to cope with agents’ frequent entries and exits, as well as constantly changing

behaviors. CA is a novel trust model, from the trustee’s perspective, which aims to address

these problems.

Previous research comparing CA to FIRE, an established trust model, found that CA

outperforms in consumer population changes, whereas FIRE is more robust to provider

population changes. The purpose of this research work is to investigate how to create an

adaptable consumer agent, capable of learning when to use each model (FIRE or CA), so as

to acquire maximum utility. This problem is framed as a reinforcement learning problem in a

partially observable environment, in which the learning agent is unaware of the current

state, able to learn through utility gained for choosing a trust model. We describe how the

adaptable agent can measure a few features so as assess the current state of the

environment and then use Deep Q learning to learn when to use the most profitable trust

model. Our simulation experiments demonstrate that the adaptable consumer is able of

finding the optimal policy in several simulated environmental conditions.

The ability to keep performance above that of the worst-choice model indicates the

adaptable consumer’s ability to learn the optimal policy. However, its performance usually

falls below that of the best-choice model. This makes sense if we consider that the

adaptable consumer chooses an action (push or pull) using an ϵ − greedy policy, a simple

method to balance exploration and exploitation. The exploration-exploitation dilemma is

central to Reinforcement Learning problems. Early in training, an agent has not learned

anything meaningful in terms of associating higher Q-values with specific actions in different

states, primarily due to lack of experience. Later on, once adequate experience has been

accumulated, it should begin exploiting its knowledge to act optimally in the environment.

The 𝜖 − 𝑔𝑟𝑒𝑒𝑑𝑦 policy is a policy that chooses the best action (exploits) with probability

1 − 𝜖, and a random action with probability 𝜖. In our experiments, we use a constant

𝜖 = 0.05. It might be the case that the adaptable consumer explores too much and using a

strategy for decaying epsilon would result in better utility gain for the adaptable consumer.

We reserve investigating this as a future work.

Unwillingness and dishonesty in reporting of trust information is a persistent problem in

agent societies. Yet, in the CA approach, agents do not share trust information, creating the

expectation that CA is immune to various kinds of disinformation. Future research could look

into how a trustor detects trust disinformation and learns to use the most appropriate trust

model.

Ideally, a best performing machine learning model, i.e. its parameters and architecture,

should be determined automatically by using a hyper-parameter tuning process. We only

conducted an informal search due to the anticipated high computational cost. Computing

the most accurate model on a node with limited resources may be impractical. Finding

acceptable trade-offs between resource consumption and model accuracy to allow the

deployment of a machine learning model capable of selecting the most suitable trust model

in a resource-constrained environment is another interesting area of future research. In

resource-constrained environments, being an adaptable agent using deep Q learning to

select the optimal trust mechanism may be prohibitively expensive and should be an

informed weighted choice.

References

1. Alghofaili, Y., & Rassam M. A. (2022). A Trust Management Model for IoT Devices and

Services Based on the Multi-Criteria Decision-Making Approach and Deep Long Short-

Term Memory Technique. Sensors, 22, 634. https://doi.org/10.3390/s22020634.

2. Cohen, P,. R. (1995). Empirical methods for artificial intelligence. The MIT Press.

3. Granatyr, J., Botelho, V., Lessing, O., R., Scalabrin, E., E., Barthes, J., & Enembreck, F.

(2015). Trust and reputation models for multiagent systems. ACM Comput. Surv. 48, 2.

http://dx.doi.org/10.1145/2816826.

4. Hattab, S., & Chaari, W. L. (2021). A generic model for representing openness in multi-

agent systems. Knowledge Engineering Review, 36.

https://doi.org/10.3390/s22020634

5. Huynh, T., D., Jennings, N. R., & Shadbolt, N. R. (2006). An integrated trust and

reputation model for open multi-agent systems. Autonomous Agents and Multi-Agent

Systems 13, 119-154. https://doi.org/10.1007/s10458-005-6825-4.

6. Jelenc, D. (2021). Toward unified trust and reputation messaging in ubiquitous

systems. Annals of Telecommunications 76, 119–130. https://doi.org/10.1007/s12243-

020-00792-1.

7. Keung, S., & Griffiths, N. (2008). Using Recency and Relevance to Assess Trust and

Reputation. In the Proceedings of the AISB 2008 Symposium on Behaviour Regulation in

Multi-agent Systems.

8. Lygizou, Z., & Kalles, D. (2022). A Biologically Inspired Computational Trust Model

based on the Perspective of the Trustee. In 12th Hellenic Conference on Artificial

Intelligence (SETN 2022). https://doi.org/10.1145/3549737.3549748.

9. Lygizou, Z., & Kalles, D. (2024). A biologically inspired computational trust model for

open multi-agent systems which is resilient to trustor population changes.

arXiv:2404.10014 [cs.MA].

10. Mnih, V., Kavukcuoglu, K., Silver, D. et al. (2015). Human-level control through deep

reinforcement learning. Nature 518, 529–533. https://doi.org/10.1038/nature14236.

11. Nguyen, M., & Tran, D. (2015). A Trust-based Mechanism for Avoiding Liars in

Referring of Reputation in Multiagent System. International Journal of Advanced

Research in Artificial Intelligence, 4(2).

12. Sato, K., & Sugawara, T. (2021). Multi-Agent Task Allocation Based on Reciprocal Trust

in Distributed Environments. In: Jezic, G., Chen-Burger, J., Kusek, M., Sperka, R.,

Howlett, R.J., Jain, L.C. (eds) Agents and Multi-Agent Systems: Technologies and

Applications 2021. Smart Innovation, Systems and Technologies, vol 241. Springer,

Singapore. https://doi.org/10.1007/978-981-16-2994-5_40.

13. Sutton, R., & Barto, A. (1998). G. Reinforcement learning: An introduction, volume 1.

MIT press Cambridge.

14. Watkins, C., & Dayan, P. (1992). Q-learning. Machine learning, 8(3-4):279–292.

https://doi.org/10.1007/s10458-005-6825-4
https://doi.org/10.1007/s12243-020-00792-1
https://doi.org/10.1007/s12243-020-00792-1
https://doi.org/10.1145/3549737.3549748
https://arxiv.org/abs/2404.10014
https://doi.org/10.1007/978-981-16-2994-5_40

