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Abstract

Network coordination is considered in three basic settings, characterizing the generation of separable and classical-quantum
correlations among multiple parties. First, we consider the simulation of a classical-quantum state between two nodes with rate-
limited common randomness (CR) and communication. Furthermore, we study the preparation of a separable state between multiple
nodes with rate-limited CR and no communication. At last, we consider a broadcast setting, where a sender and two receivers
simulate a classical-quantum-quantum state using rate-limited CR and communication. We establish the optimal tradeoff between
communication and CR rates in each setting.

Index Terms

Quantum communication, coordination, reverse Shannon theorem.

I. INTRODUCTION

Coordination is essential in communication systems, as it ensures that different components can work together in harmony to
achieve a common goal. For example, in sensor networks, the sensors do not just share information in the conventional sense,
but also collaborate in the transmission of data [1]. Furthermore, coordination plays a major role in cooperative computing
between distributed systems [2], rate-distortion theory for secrecy systems [3], simulation of distributed quantum measurements
[4], and quantum nonlocal games [5]. It is envisioned that quantum information technology will enhance future communication
systems from different perspectives, such as efficiency [6, 7], security [8–10], and computing [11]. These advances motivate
the study of coordination in quantum networks [12].

Cuff et al. [13] studied classical coordination in various communication networks with different topologies, and considered
two coordination types, empirical coordination and strong coordination. Empirical coordination requires that the average
frequency of joint actions in the network approaches a desired distribution with high certainty. On the other hand, strong
coordination sets a requirement on the joint distribution of all actions. Efficient coordination codes are constructed in [14].
Source coding [15–18], state coordination [19], channel simulation [20–25], and distributed source simulation [26, 27] can be
viewed as instances of network coordination. In particular, Bennet et al. [22] considered simulation of a quantum channel,
under the assumption that pre-shared entanglement is available to the sender and the receiver, and derived the quantum reverse
Shannon theorem [28, 29]. The optimal simulation rate turns out to be identical to the entanglement-assisted quantum capacity
[22]. Recently, the authors [30] considered entanglement coordination using quantum communication links.

The general problem of quantum coordination can be formulated as follows. Consider a quantum network that consists of
m nodes, where Node i performs an encoding operation Ei on a quantum system Ai, which is required to be in a certain
desired correlation with the rest of the network. In other words, the goal is to simulate a particular joint state, ωA1A2···Am . In
general, some of the nodes are not free to choose their encoding, but rather their state is dictated by Nature, according to a
certain physical process. Node i can also send a sequence of bits or qubits to Node j via a communication link of a limited
rate, Ri,j . The ultimate performance is defined by the set of rates {Ri,j} that are necessary and sufficient in order to simulate
the quantum correlation.

Cuff et al. [13] introduced the classical version of this problem, where the encoders, decoders, and rates are all classical, and
the goal is to simulate a prescribed probability distribution. In the basic two-node setting, the simulation of a joint distribution
pXY requires a rate R1,2 ≥ C(X;Y ), where C(X;Y ) is Wyner’s common information [31]. The quantum analog was recently
established by George et al. [27], in the context of distributed source simulation. Under the assumption that Alice and Bob
share unlimited common randomness (CR) a priori, simulation can be performed at a lower rate, R1,2 ≥ I(X;Y ), where
I(X;Y ) is the mutual information. The capacity region describes the optimal tradeoff between the communication and CR
rates [32].

In this paper, we consider three coordination settings. Our models are motivated by quantum-enhanced Internet of Things
(IoT) networks in which the communication links are classical [33–36], as opposed to our work in [30]. First, we consider the
simulation of a classical-quantum state ωXB between two nodes with rate-limited CR. We characterize the optimal tradeoff
between the required rate of description and the amount of CR used. Our second model is a quantum no-communication
network. The network comprises three nodes, where no-communication is allowed between the nodes, yet CR is available at
a classical rate R0. Thereby, only separable states can be simulated. We show that a joint state ωABC can be simulated at
a CR rate of R0 ≥ I(ABC;U)σ , with respect to an extension σUABC of ωABC , where U is an auxiliary classical random
variable that satisfies a Markov property. At last, we consider a broadcast setting, where a sender and two receivers simulate a
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Fig. 1. Two-node network.
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Fig. 2. No-communication network

classical-quantum-quantum (c-q-q) state using rate-limited CR and communication. We establish the optimal tradeoff between
communication and CR rate. In the analysis, we use random coding and apply quantum resolvability results [37–39].

II. PROBLEM DEFINITIONS

We consider three coordination settings as described below. We use standard notation in quantum information theory, as
in [40], X,Y, Z, . . . are discrete random variables on finite alphabets X ,Y,Z, ..., respectively, xn = (xi)i∈[n] denotes a
sequence in Xn. A quantum state is described by a density operator, ρA, on the Hilbert space HA. Denote the set of all
such operators by S(HA). A c-q channel is a map NX→B : X → S(HB). The quantum mutual information is defined as
I(A;B)ρ = H(ρA) + H(ρB) − H(ρAB), where H(ρ) ≡ −Tr[ρ log(ρ)], the conditional quantum entropy as H(A|B)ρ =
H(ρAB)−H(ρB), and I(A;B|C)ρ, accordingly.

A. Two-Node Network

Consider the two-node network in Figure 1. Alice and Bob wish to simulate a c-q state ω⊗n
XB , using the following scheme.

Node 1 (Alice) receives a classical source sequence xn, drawn by Nature according to a given PMF pX . The source sequence
is encoded into an index i at a rate R1. Node 2 (Bob) is quantum. Both nodes have access to a CR element j at a given rate
R0, i.e., j is uniformly distributed over

[
2nR0

]
, and it is independent of Xn.

Formally, a
(
2nR0 , 2nR1 , n

)
coordination code for the simulation of a c-q state ωXB consists of a classical encoding channel,

F : Xn×[2nR0 ] → [2nR1 ], and a c-q decoding channel DIJ→Bn . The protocol works as follows. A classical sequence xn ∼ pnX
is generated by Nature. Given the sequence xn and the CR element j, Alice selects a random index,

i ∼ F (·|xn, j) (1)

and sends it through a noiseless link. As Bob receives the message i and the CR element j, he prepares the state

ρ
(i,j)
Bn = DIJ→Bn(i, j) . (2)

Hence, the resulting joint state is

ρ̂XnBn =
1

2nR0

∑
j∈[2nR0 ]

∑
xn∈Xn

(
pnX(xn) |xn⟩⟨xn|Xn ⊗

∑
i∈[2nR1 ]

F (i|xn, j)ρ
(i,j)
Bn

)
. (3)

Definition 1. A coordination rate pair (R0, R1) is achievable for the simulation of ωXB , if for every ε > 0 and sufficiently
large n, there exists a

(
2nR0 , 2nR1 , n

)
code that achieves∥∥ρ̂XnBn − ω⊗n

XB

∥∥
1
≤ ε . (4)

The coordination capacity region of the two-node network, R2-node(ω), with respect to the c-q state ωXB , is the closure of the
set of all achievable rate pairs.
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Fig. 3. Broadcast Network. The CR element is omitted for simplicity.

The coordination capacity, C(0)
2-node(ω), without CR, is the supremum of rates R1 such that (0, R1) ∈ R2-node(ω). The CR-

assisted coordination capacity, C(∞)
2-node(ω), i.e., with unlimited CR, is the supremum of rates R1 such that (R0, R1) ∈ R2-node(ω)

for some R1 ≥ 0.

B. No-Communication Network

Consider a network that consists of three users: Alice, Bob and Charlie, holding quantum systems A, B, and C, respectively.
The users cannot communicate, but they share a CR element j at a rate R0, as illustrated in Figure 2. Given j, each user
prepares a quantum state separately.

A
(
2nR0 , n

)
coordination code for the no-communication network consists of a CR set [2nR0 ], and three c-q encoding

channels, T (1)
J→An , T (2)

J→Bn , and T (3)
J→Cn . As Alice, Bob, and Charlie receive a realization j of the CR element, each uses

their encoding map to prepare their respective state. prepares a quantum state, ρjAn = T (1)
J→An(j), ρjBn = T (2)

J→An(j), and
ρjCn = T (3)

J→Cn(j), respectively. Hence,

ρ̂AnBnCn =
1

2nR0

∑
j∈[2nR0 ]

T (1)(j)⊗ T (2)(j)⊗ T (3)(j) .

Definition 2. A CR rate R0 is achievable for the simulation of ωABC , if for every ε > 0 and sufficiently large n, there exists
a
(
2nR0 , n

)
coordination code that achieves ∥∥ρ̂AnBnCn − ω⊗n

ABC

∥∥
1
≤ ε . (5)

The coordination capacity CNC(ω), for the no-communication network, is the infimum of achievable rates R0. If there are no
achievable rates, we set CNC(ω) = +∞.

C. Broadcast Network

Consider the broadcast network in Figure 3. A sender, Alice, and two receivers, Bob 1 and Bob 2, wish to simulate a
c-q-q state ωXB1B2 , using the following scheme. Alice receives a classical source sequence xn ∈ Xn drawn by Nature, i.i.d.
according to a given PMF pX . Alice encodes the source sequence into an index i at a rate R1. The other two nodes, of
Bob 1 and Bob 2, are quantum. The three nodes have access to a CR element j at a rate R0. Similarly, a

(
2nR0 , 2nR1 , n

)
coordination code consists of a classical encoding channel, F : Xn × [2nR0 ] → [2nR1 ] , and two c-q decoding channels,
D(ℓ)

IJ→Bn
ℓ

, for ℓ ∈ {1, 2}. Given xn and the CR element j, Alice generates i ∼ F (·|xn, j), and sends it to both Bob 1 and
Bob 2, who then apply their decoding map.

The coordination capacity region of the broadcast network, RBC(ω), with respect to the c-q state ωXB1B2 , is defined in a
similar manner as in Definition 1.

III. RESULTS

A. Two-Nodes Network

Consider a given c-q state ωXB that we wish to simulate. We now state our main result. Define the following set of c-q
states. Let S2-node(ω) be the set of all c-q states

σXUB =
∑

(x,u)∈
X×U

pX,U (x, u) |x⟩⟨x|X ⊗ |u⟩⟨u|U ⊗ θuB (6a)

such that

σXB = ωXB (6b)



for |U| ≤ |X |2[dim(HB)]
2 + 1. Notice that given a classical value U = u, there is no correlation between X and B.

Theorem 1. The coordination capacity region for the two-node system described in Figure 1 is the set

R2-node(ω) =
⋃

S2-node(ω)

 (R0, R1) ∈ R2 :
R0 ≥ I(X;U)σ ,
R0 +R1 ≥ I(XB;U)σ

 . (7)

The proof for Theorem 1 is given in Subsection IV. The following corollaries immediately follow.

Corollary 2 (Quantum Common Information [27]). The coordination capacity without CR is

R
(0)
2-node(ω) = min

σXUB∈S2-node(ω)
I(XB;U)σ . (8)

Corollary 3. The CR-assisted coordination capacity, i.e., with unlimited common randomness, is given by

R
(∞)
2-node(ω) ≜ min

σXUB∈S2-node(ω)
I(X;U)σ (9)

We note that in order to achieve the CR-assisted capacity, a CR rate of R0 = I(U ;B|X)σ is sufficient. If B ≡ Y is
classical, then we may substitute U = Y , which yields the capacity R

(∞)
2-node(ω) = I(X;Y ), and it can be achieved with CR at

rate R0 = H(Y |X) [32].

B. No-Communication Network

Consider a given quantum state ωABC that we wish to simulate. We now state our main result. Define the following set of
c-q states. Let SNC(ω) be the set of all c-q states

σUABC =
∑
u∈U

pU (u) |u⟩⟨u|U ⊗ θuA ⊗ θuB ⊗ θuC (10a)

such that

σABC = ωABC (10b)

Given U = u, there is no correlation between A,B and C.

Theorem 4. The coordination capacity for the no-communication network described in Figure 2 is

CNC(ω) = inf
σUABC∈SNC(ω)

I(U ;ABC)σ (11)

with the convention that an infimum over an empty set is +∞.

Remark 1. Since the CR is classical, it cannot be used in order to create entanglement. Therefore, as Alice, Bob, and Charlie
do not cooperate with one another, it is impossible to simulate entanglement. That is, we can only simulate separable states.

C. Broadcast Network

Consider a given c-q-q state ωXB1B2
that we wish to simulate. Define the following set of c-q-q states. Let S2-BC(ω) be

the set of all c-q states

σXUB1B2 =
∑

(x,u)∈
X×U

pXU (x, u) |x⟩⟨x|X ⊗ |u⟩⟨u|U ⊗ θuB1
⊗ ηuB2

such that

σXB1B2 = ωXB1B2 .

Note that given X , B1, and B2 are uncorrelated given U = u.

Theorem 5. The coordination capacity region of the broadcast channel in Figure 3 network is the set

RBC(ω) =
⋃

SBC(ω)

 (R0, R1) ∈ R2 :
R0 ≥ I(X;U)σ
R0 +R1 ≥ I(XB1B2;U)σ

 . (12)

Remark 2. Since Alice’s encoding is classical, she cannot distribute entanglement. Therefore, as Bob 1 and Bob 2 do not
cooperate with one another, it is impossible to simulate entanglement between Bob 1 and Bob 2. That is, we can only simulate
states such that ωB1B2

is separable, as in the no-communication model (see Remark 1).



IV. TWO NODE ANALYSIS

Consider the two node network in Figure 1. Our proof for Theorem 1 is based on quantum resolvability [37–39].
Theorem 6 (see [37–39]). Consider an ensemble, {pX , ρxA}x∈X , and a random codebook that consists of 2nR independent
sequence, Xn(m), m ∈ [2nR], each is i.i.d. ∼ pX . If R > I(X;A)ρ, then for every δ > 0 and sufficiently large n,

E

∥∥∥∥∥∥ρ⊗n
A − 1

2nR

2nR∑
m=1

ρ
Xn(m)
An

∥∥∥∥∥∥
1

 ≤ δ , (13)

where ρx
n

An ≡
⊗n

k=1 ρ
xk

A , and the expectation is over all realizations of the random codebook.

A. Achievability proof

Assume (R0, R1) is in the interior of R2-node(ω). We need to construct a code that consists of an encoding channel F (i|xn, j)
and a c-q decoding channel DIJ→Bn , such that the error requirement in (4) holds.

By the definition of S2-node(ω), there exists a c-q state

σUXB =
∑
u∈U

pU (u) |u⟩⟨u|U ⊗ σu
XB (14)

such that

σu
XB =

∑
x∈X

pX|U (x|u) |x⟩⟨x|X ⊗ θuB , u ∈ U (15)

σXB =ωXB , (16)
R1 ≥ I (X;U)σ , R0 +R1 ≥ I (XB;U)σ . (17)

Classical codebook generation: Select a random codebook C = {un(i, j)} by drawing 2n(R0+R1) i.i.d. sequences according
to the distribution pnU (un) =

∏n
k=1 pU (uk). Reveal the codebook to Alice and Bob.

Let (i, j) be a pair of random indices, uniformly distributed over [2nR1 ]× [2nR0 ]. Define the following PMF

P̃XnIJ(x
n, i, j) ≡ 1

2n(R0+R1)
pnX|U (xn|un (i, j)) . (18)

Encoder: We define the encoding channel F as the conditional distribution above, i.e., F = P̃I|XnJ .
Decoder: As Bob receives i from Alice, and the random element j, he prepares the output state DIJ→Bn(i, j) = θ

un(i,j)
Bn .

Error analysis: Let δ > 0. The encoder sends i ∼ F (·|xn, j). Given J = j, by the classical resolvability theorem, Cuff
[32] has shown that R0 ≥ I (X;U)σ guarantees

E
∥∥∥P̃JXn − pJ × pnX

∥∥∥
1
≤ δ (19)

for sufficiently large n, where P̃JXn is as in (18). Recall that P̃JXn is random, since the codebook C is random. Hence, the
expectation is over all realizations of C . The resulting state is

ρ̂XnBn =
1

2nR0

∑
j,xn

(
pnX(xn) |xn⟩⟨xn|Xn ⊗

∑
i∈[2nR1 ]

P̃I|XnJ(i|xn, j)θ
un(i,j)
Bn

)
(20)

According to (19), the probability distributions P̃J,Xn and pJ × pnX are close on average. Then, let

τ̂XnBn ≡
∑
j,xn

P̃JXn(jxn) |xn⟩⟨xn|Xn ⊗
∑

i∈[2nR1 ]

P̃I|XnJ(i|xn, j)θ
un(i,j)
Bn . (21)

By (19), it follows that

E ∥τ̂XnBn − ρ̂XnBn∥1 ≤ δ . (22)

Observe that

τ̂XnBn =
∑
i,j,xn

P̃IJXn(i, j, xn) |xn⟩⟨xn|Xn ⊗ θ
un(i,j)
Bn

=
1

2n(R0+R1)

∑
i,j,xn

pnX|U (x
n|un(i, j)) |xn⟩⟨xn|Xn ⊗ θ

un(i,j)
Bn

=
1

2n(R0+R1)

∑
i,j

σ
un(i,j)
XnBn (23)



where the second equality is due to the definition of P̃ in (18), and the last line follows from (15).
Thus, according to the quantum resolvability theorem, Theorem 6, when applied to the joint system XB, we have

E
∥∥σ⊗n

XB − τ̂XnBn

∥∥
1
≤ δ (24)

for sufficiently large n. Therefore, by the triangle inequality,

E
∥∥ω⊗n

XB − ρ̂XnBn

∥∥
1
≤ E

∥∥ω⊗n
XB − τ̂XnBn

∥∥
1
+ E∥τ̂XnBn − ρ̂XnBn∥1

≤ 2δ (25)

by (16), (22) and (24).

B. Converse proof

Let (R0, R1) be an achievable rate pair. Then, there exists a sequence
(
2nR0 , 2nR1 , n

)
coordination codes such that the joint

quantum state ρ̂XnBn satisfies ∥∥ω⊗n
XB − ρ̂XnBn

∥∥
1
≤ εn (26)

where εn tends to zero as n → ∞.
Fix an index k ∈ {1, . . . , n}. By trace monotonicity [40], taking the partial trace over Xj , Bj , j ̸= k, maintains the inequality.

Thus,

∥ωXB − ρ̂XkBk
∥1 ≤ εn . (27)

Then, by the AFW inequality [41], ∣∣∣H (XnBn)ρ̂ − nH (XB)ω

∣∣∣ ≤ nβn , (28)

and ∣∣∣H (XkBk)ρ̂ −H (XB)ω

∣∣∣ ≤ βn , (29)

for k ∈ [n], where βn tends to zero as n → ∞. Therefore,∣∣∣∣∣H (XnBn)ρ̂ −
n∑

k=1

H (XkBk)ρ̂

∣∣∣∣∣ ≤ ∣∣∣H (XnBn)ρ̂ − nH (XB)ω

∣∣∣+ ∣∣∣∣∣nH (XB)ω −
n∑

k=1

H (XkBk)ρ̂

∣∣∣∣∣
≤
∣∣∣H (XnBn)ρ̂ − nH (XB)ω

∣∣∣+ n∑
k=1

∣∣∣H (XB)ω −H (XkBk)ρ̂

∣∣∣
≤ 2nβn . (30)

Now, we have

n(R0 +R1) ≥ H(IJ) (31)
≥ I(XnBn; IJ)ρ̂ (32)

since the conditional entropy is nonnegative for classical and c-q states, and the CR element J is statistically independent of
the source Xn. Furthermore, by entropy sub-additivity [40],

I(XnBn; IJ)ρ̂ ≥ H(XnBn)ρ̂ −
n∑

k=1

H(XkBk|IJ)ρ̂

≥
n∑

k=1

I(XkBk; IJ)ρ̂ − 2nβn (33)

where the last inequality follows from (30). Defining a time-sharing variable K ∼ Unif[n], this can be written as

R0 +R1 + 2βn ≥ I(XKBK ; IJ |K)ρ̂ (34)

with respect to the extended state:

ρ̂KIJXKBK
=

1

n

n∑
k=1

|k⟩⟨k| ⊗ ρ̂IJXkBk
. (35)



Observe that by (27) and the triangle inequality,

∥ωXB − ρ̂XKBK
∥1 =

∥∥∥∥∥ωXB − 1

n

n∑
k=1

ρ̂XkBk

∥∥∥∥∥
1

≤ εn . (36)

Thus, by the AFW inequality,

I(XKBK ;K)ρ̂ = H(XKBK)ρ̂ −
1

n

n∑
k=1

H(XkBk)ρ̂

≤ γn , (37)

where γn tends to zero. Together with (34), it follows that

R0 +R1 + 2βn + γn ≥ I(XKBK ; IJK)ρ̂ (38)

By similar arguments,

R1 + 2βn + γn ≥ I(XK ; IJ) (39)

To complete the converse proof, we identify U , X , and B with (I, J,K), XK , and BK , respectively. Observe that given
(i, j, k), the joint state of XK and BK is

(∑
xk∈X pXk|IJ(xk|i, j) |xk⟩⟨xk|XK

)
⊗ ρ

(i,j)
Bk

, where pXn|IJ is the a posteriori
probability distribution. Thus, there X and B are uncorrelated when conditioned on U , as required.

The bound on |U| follows by applying the Caratheodory theorem to the real-valued parameteric representation of density
matrices, as in [42, App. B].

V. NO-COMMUNICATION NETWORK ANALYSIS

Consider the no-communication network in Figure 2, of a quantum state ωABC . To prove Theorem 4, we use similar
tools. The achievability proof is straightforward, and it is thus omitted. Then, consider the converse part. Assume that R0 is
achievable. Therefore, there exists a sequence of (2nR0 , n) of coordination codes such that for sufficiently large values of n,∥∥ρ̂AnBnCn − ω⊗n

ABC

∥∥
1
≤ εn , (40)

where εn → 0 as n → ∞.
Applying the chain rule,

nR0 ≥ H(J) (41)
≥ I(AnBnCn; J)ρ̂ (42)

=

n∑
k=1

I(AkBkCk; J |Ak−1Bk−1Ck−1)ρ̂ (43)

For every k ∈ [n], by trace monotonicity [40],∥∥ω⊗k
ABC − ρ̂AkBkCk

∥∥
1
≤ εn . (44)

Then, by the AFW inequality [41] [40, Ex. 11.10.2],∣∣I(AkBkCk;A
k−1Bk−1Ck−1)ρ̂ − I(AkBkCk;A

k−1Bk−1Ck−1)ω⊗k

∣∣ ≤ βn , (45)

where βn tends to zero as n → ∞. That is,

I(AkBkCk;A
k−1Bk−1Ck−1)ρ̂ ≤ βn (46)

since AkBkCk and (AjBjCj)j<k are in a product state ω ⊗ ω⊗(k−1). Hence, by (43),

nR0 ≥
n∑

k=1

I(AkBkCk; JA
k−1Bk−1Ck−1)ρ̂ − nβn

≥
n∑

k=1

I(AkBkCk; J)ρ̂ − nβn

≥ n

(
inf

σUABC∈SNC(ω)
I(U ;ABC)σ − 2βn

)
(47)

taking U ≡ J , as the encoders are uncorrelated given J .



VI. BROADCAST NETWORK ANALYSIS

Consider coordination in broadcast network, as in Figure 3 in the main text, of a classical-quantum-quantum state ωXB1B2
.

To prove the capacity theorem, Theorem 5, we use similar tools as in Section IV.

A. Achievability proof

Assume (R0, R1) is in the interior of RBC(ω). We need to construct a code that consists of an encoding channel F (i|xn, j)
and a two c-q decoding channels DIJ→Bn

1
and DIJ→Bn

2
,such that∥∥∥ω⊗n

XB − 1

2nR0

∑
j∈[2nR0 ]

∑
xn∈Xn

pnX(xn) |xn⟩⟨xn|Xn ⊗
∑

i∈[2nR1 ]

F (i|xn, j)DIJ→Bn
1
(i, j)⊗DIJ→Bn

2
(i, j)

∥∥∥
1
≤ ε . (48)

According to the definition of SBC(ω) (see Subsection III-C), there exists a c-q state σXUB1B2
that can be written as

σXUB1B2
=

∑
(x,u)∈X×U

pX,U (x, u) |x⟩⟨x|X ⊗ |u⟩⟨u|U ⊗ θuB1
⊗ ηuB2

(49)

and satisfy

σXB1B2
= ωXB1B2

(50)

We will also consider conditioning on U = u, and denote

σu
XB1B2

=
∑
x∈X

pX|U (x|u) |x⟩⟨x|X ⊗ θuB1
⊗ ηuB2

. (51)

Classical codebook generation: Select a random codebook CBC = {un(i, j)} by drawing 2n(R0+R1) i.i.d. sequences
according to the distribution pnU . Reveal the codebook.

Encoder: Define the encoding channel as F = P̃I|XnJ , where P̃XnIJ be a joint distribution as in (18).
Decoders: As Bob 1 and Bob 2 receive i from Alice, and the random element j, they prepare the following output states,

D(1)
IJ→Bn

1
(i, j) = θ

un(i,j)
B1

, (52)

D(2)
IJ→Bn

2
(i, j) = η

un(i,j)
B2

. (53)

Error analysis: Let δ > 0. The encoder sends i ∼ F (·|xn, j). As in Subsection IV-A, given j, if R1 ≥ I (X;U), then

E
∥∥∥P̃JXn − pJ × pnX

∥∥∥
1
≤ δ (54)

for sufficiently large n. As P̃JXn depends on the random codebook CBC, the expectation is over all realizations of CBC. The
resulting state is

ρ̂XnBn
1 Bn

2
=

1

2nR0

∑
j∈[2nR0 ]

∑
xn∈Xn

(
pnX(xn) |xn⟩⟨xn|Xn ⊗

∑
i∈[2nR1 ]

F (i|xn, j)DIJ→Bn
1
(i, j)⊗DIJ→Bn

2
(i, j)

)
=

1

2nR0

∑
j,xn

(
pnX(xn) |xn⟩⟨xn|Xn ⊗

∑
i∈[2nR1 ]

P̃I|XnJ(i|xn, j)θ
un(i,j)
B1

⊗ η
un(i,j)
B2

)
. (55)

According to (54), the probability distributions P̃JXn and pJ × pnX are close on average. Then, let

τ̂XnBn
1 Bn

2
≡
∑
j,xn

P̃JXn(j, xn) |xn⟩⟨xn|Xn ⊗
∑

i∈[2nR1 ]

P̃I|XnJ(i|xn, j)θ
un(i,j)
B1

⊗ η
un(i,j)
B2

. (56)

Then, it follows that

E
∥∥τ̂XnBn

1 Bn
2
− ρ̂XnBn

1 Bn
2

∥∥
1
≤ δ , (57)

by (54). Observe that

τ̂XnBn
1 Bn

2
=
∑
i,j,xn

P̃IJXn(i, j, xn) |xn⟩⟨xn|Xn ⊗ θ
un(i,j)
B1

⊗ η
un(i,j)
B2

=
1

2n(R0+R1)

∑
i,j,xn

pnX|U (x
n|un(i, j)) |xn⟩⟨xn|Xn ⊗ θ

un(i,j)
B1

⊗ η
un(i,j)
B2

=
1

2n(R0+R1)

∑
i,j

σ
un(i,j)
XnBn

1 Bn
2
, (58)



where the second equality is due to the definition of P̃ in (18), and the last line follows from (51).
Thus, according to the quantum resolvability theorem 6, when applied to the joint system XB1B2, we have

E
∥∥∥σ⊗n

XBn
1 Bn

2
− τ̂XnBn

1 Bn
2

∥∥∥
1
≤ δ (59)

for sufficiently large n. Therefore, by the triangle inequality,

E
∥∥ω⊗n

XB1B2
− ρ̂XnBn

1 Bn
2

∥∥
1
≤ E

∥∥∥ω⊗n
XBn

1 Bn
2
− τ̂XnBn

1 Bn
2

∥∥∥
1
+ E

∥∥τ̂XnBn
1 Bn

2
− ρ̂XnBn

1 Bn
2

∥∥
1

≤ 2δ (60)

by (50), (57) and (59).

B. Converse proof

Let (R0, R1) be an achievable coordination rate pair for the simulation of a c-q-q state ωXB1B2 in the broadcast setting.
Then, there exists a sequence of

(
2nR0 , 2nR1 , n

)
coordination codes such that the joint quantum state ρ̂XnBn

1 Bn
2

satisfies∥∥∥ω⊗n
XBn

1 Bn
2
− ρ̂XnBn

1 Bn
2

∥∥∥
1
≤ εn , (61)

where εn tends to zero as n → ∞. Fix an index k ∈ {1, . . . , n}. By trace monotonicity [40], taking the partial trace over Xj ,
B1j , B2j , for j ̸= k, maintains the inequality, thus Thus,

∥ωXB1B2
− ρ̂XkB1kB2k

∥1 ≤ εn . (62)

Then, by the AFW inequality [41], ∣∣∣H (XnBn
1B

n
2 )ρ̂ − nH (XB1B2)ω

∣∣∣ ≤ nβn , (63)

and ∣∣∣H (XkB1kB2k)ρ̂ −H (XB1B2)ω

∣∣∣ ≤ βn , (64)

for k ∈ [n], where βn tends to zero as n → ∞. Therefore,∣∣∣∣∣H (XnBn
1B

n
2 )ρ̂ −

n∑
k=1

H (XkB1kB2k)ρ̂

∣∣∣∣∣ ≤ 2nβn . (65)

Now, we also have

n(R0 +R1) ≥ H(IJ)

≥ I(XnBn
1B

n
2 ; IJ)ρ̂ , (66)

since the conditional entropy is nonnegative for classical and c-q-q states, and the CR element J is statistically independent
of the source Xn. Furthermore, by entropy sub-additivity [40],

I(XnBn
1B

n
2 ; IJ)ρ̂ ≥ H(XnBn

1B
n
2 )ρ̂ −

n∑
k=1

H(XkB1kB2k|IJ)ρ̂

≥
n∑

k=1

I(XkB1kB2k; IJ)ρ̂ − 2nβn (67)

where the last inequality follows from (65).
Defining a time-sharing variable K ∼ Unif[n], this can be written as

R0 +R1 + 2βn ≥ I(XKB1KB2K ; IJ |K)ρ̂ (68)

with respect to the extended state

ρ̂KIJXkB1kB2k
=

1

n

n∑
k=1

|k⟩⟨k| ⊗ ρ̂IJXkB1kB2k
. (69)

Observe that

∥ωXB1B2 − ρ̂XKB1KB2K
∥1 =

∥∥∥∥∥ωXB1B2 −
1

n

n∑
k=1

ρ̂XkB1kB2k

∥∥∥∥∥
1

≤ εn (70)



by the triangle inequality (see (62)). Thus, by the AFW inequality,

I(XKB1KB2K ;K)ρ̂ = H(XKB1KB2K)ρ̂ −
1

n

n∑
k=1

H(XkB1kB2k)ρ̂

≤ γn , (71)

where γn tends to zero as n → ∞. Together with (67), it implies

R0 +R1 + 2βn + γn ≥ I(XKB1KB2K ; IJK)ρ̂ . (72)

By similar arguments,

R1 + 2βn + γn ≥ I(XK ; IJ) . (73)

To complete the converse proof, we identify U , X , and B1B2 with (I, J,K), XK , and B1KB2K , respectively. Observe that
given (i, j, k), the joint state of XK and B1KB2K is(∑

xk∈X
pXk|IJ(xk|i, j) |xk⟩⟨xk|XK

)
⊗ ρ

(i,j)
B1K

⊗ ρ
(i,j)
B2K

, (74)

where pXn|IJ is the a posteriori probability distribution. Thus, there is no correlation between X , B1, and B2 when conditioned
on U , as required.

VII. SUMMARY AND DISCUSSION

We study coordination in three network models with classical communication links: 1) two-node network simulating a c-q
state, 2) no-communication network simulating a separable state, and 3) a broadcast network simulating a c-q-q state. Our
models are motivated by quantum-enhanced Internet of Things (IoT) networks in which the communication links are classical
[33–36]. In our previous work [30], we considered entanglement coordination using quantum communication links, and our
analysis therein was based on different tools compared to those used here.

Our findings generalize classical results from [32] and [13], and also quantum results from [27]. The no-communication
and broadcast networks can easily be extended to m encoders and decoders, respectively. The results are relevant for various
applications, where the network nodes could represent classical-quantum sensors [43], computers performing a joint computation
task [11, 44], or players in a nonlocal game [45, 46]. Both this work and the previous work [30] can be viewed as a step
forward in understanding coordination in networks that may comprise either classical or quantum resources.
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[43] S.-Y. Wang, T. Erdoğan, U. Pereg, and M. R. Bloch, “Joint quantum communication and sensing,” in Proc. IEEE Inf.
Theory Workshop(ITW’2022). IEEE, 2022, pp. 506–511.

[44] U. Pereg, C. Deppe, and H. Boche, “Classical state masking over a quantum channel,” Phys. Rev. A, vol. 105, no. 2, p.
022442, 2022.

[45] A. Seshadri, F. Leditzky, V. Siddhu, and G. Smith, “On the separation of correlation-assisted sum capacities of multiple
access channels,” IEEE Trans. Inf. Theory, vol. 69, no. 9, pp. 5805–5844, 2023.

[46] U. Pereg, C. Deppe, and H. Boche, “The multiple-access channel with entangled transmitters,” in Proc. Global Commun.
Conf. (GLOBECOM’2023). IEEE, 2023, pp. 3173–3178.


	Introduction
	Problem Definitions
	Two-Node Network
	No-Communication Network
	Broadcast Network

	Results
	Two-Nodes Network
	No-Communication Network
	Broadcast Network

	Two Node Analysis
	Achievability proof
	Converse proof

	No-Communication Network Analysis
	Broadcast Network Analysis
	Achievability proof
	Converse proof

	Summary and discussion

