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Abstract—The aim in this paper is to apply the iLQR, iterative
Linear Quadratic Regulator, to control the movement of a
mobile robot following an already defined trajectory. This control
strategy has proven its utility for nonlinear systems. As follows
up, this work intends to concertize this statement and to evaluate
the extent to which the performance is comparatively improved
against the ordinary, non-iterative LQR. The method is applied
to a differential robot with non-holonomic constraints. The math-
ematical equations, resulting description and the implementation
of this method are explicitly explained, and the simulation studies
are conducted in the Matlab and Simulink environment.

Index Terms—iLQR, LQR, Nonlinear Systems, Nonholonomic
Constraints, Differential Robot.

I. INTRODUCTION

A. Linear Quadratic Regulator

The Linear Quadratic Regulator (LQR) control is a modern
state-space technique for designing optimal dynamic regula-
tors. It refers to a linear system and a quadratic performance
index according to

ẋ(t) = Ax(t) +Bx(t). (1)
x(0) = x0 (2)

It enables a trade-off between the regulation performance and
the control effort via the a performance index when the intial
state

x0 (3)

is given. LQR assumes that the system is linear and hence
expressed by

ẋ = Ax+Bu. (4)

Secondly, it assumes that the cost function, i.e. the perfor-
mance index, is of the form

J =

∫ ∞

0

[(x− x∗)⊺Q(x− x∗) + u⊺Ru]dt. (5)

where,
Q = Q⊺ ≥ 0 (6)

and
R = R⊺ ≥ 0 (7)

x∗ is the target state; Q and R, denote the state and input
weighing matrices, respectively. [1] [4]

B. Why iLQR

Even in cases of non-linearity the LQR can provide opti-
mal control, but its limitation is that the calculation of this
optimal control law is conducted considering the local set of
parameters without consideration of the generated changes in
the future states. From this perspective the strength of the
iterative linear quadratic regulator iLQR can be noticed.

The iLQR is an extension of the LQR control with idea
of providing an optimal control input sequence considering
the whole control sequence rather than only the control point
at the current time-step. So this control strategy allows us to
estimate an overall optimal sequence taking into account the
changing dynamic of the system. The basics of this method
can be described via the following algorithm: [2]

1) Initialization with: initial state x0 and initial control
input U = [u0, ..., u1]

2) Forward Pass: applying the control sequence U starting
from x0 to get the trajectory from the state space x.

3) Backward Pass: in this step the value function and the
dynamics are evaluated for each (x, u) of the state space.

4) Update control sequence calculation and U
′

and eval-
uating the trajectory cost from (x0, U

′
) then proceed

a decision making of adopting U’ based on d =
|cost(U)− cost(U

′
) and a threshold value—:

• If d < threshold ; convergence then we exit.
• If cost(U) < cost(U

′
) ; we set U = U

′
, and change

the update size to be more aggressive, then go to
step 2.

• If cost(U) >= cost(U
′
) ; change the update size

to be more modest, then go to step 3.

As for linear dynamics,in case of non-linearity is described
analogously with the following equation and the non linearity
is manifested via the function f :

xk+1 = f(xk, uk) (8)

The equation describes the evolution of the vector state x ∈ Rn

between times i and i + 1 given the control input u ∈ Rm

at time i. And the resulting trajectory is denoted as {X ,U},
where {X} is the sequence of state X = x1, x2, .., xN and
{U} is the corresponding control inputs U = u1, u2, .., uN−1.
The underlying idea is that the generated input sequence is
updated in every time-step for the to-go path. [2]
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Fig. 1. Differential Mobile Robot Parameters, courtesy of Yacine Ahmine’s
paper [6].

C. Mobile Robot

The aim in this paper is to develop a trajectory tracking con-
troller that follows the a Linear Quadratic Regulator in essence
and simulate its performance while concurrently, developing
an iLQR for the same trajectory tracking problem. The two
controllers are to then be compared as per the global trajectory
tracking for a wheeled mobile robot. The chosen mobile robot
is a differential robot with a castor set of wheels.

The movement of the robot in the configuration space
with respect to a generated global trajectory is denoted as
nominal state sequence Sff = s1, s2, .., sN is controlled via
its coordinates (x, y) in the world frame and its orientation
angle θ as illustrated in fig1.

From Sff the nominal control sequence is derived by
computing the needed linear velocity and angular velocity
needed to reach state sk from the preceding state sk−1 as
shown in (x):

uk =

[
vk
ωk

]
=

[√
(xk−xk−1)2+(yk−yk−1)2

dt
ωk−ωk−1

dt

]
(9)

The nominal control sequence is represented by the follow-
ing vector:

uff = u1, u2, .., uN

where its components uk represent the nominal control from
state sk to state sk+1. [3]

D. Approach

The basic approach to a path tracking problem, considering
a robot with non-holonomic constraints, is that the vehicle
detects the environment through its sensors and then positions
itself accordingly, setting the posture. After introducing the
kinematics of the robot, the mathematical formulation is
presented and the path tracking problem is then put forth in

detail, along with the control strategy. In accordance to the
defined path, two control sequences are then produced and
applied on the mobile robot.

II. MATHEMATICAL BACKGROUND

A. Cost Function and Value Function

The total cost function of a nonlinear discrete system is
written in quadratic form as:

J0 =
1

2
(xN − x∗)TQf (xN − x∗)

+
1

2

N−1∑
k=0

(xk
TQxk + uk

TRuk

(10)

It can be alternatively expressed as in equation (11), where
l represents the immediate cost at each state in the trajectory
and lf the final cost:

J(x0, U) =

N−1∑
k=0

l(xk, uk) + lf (xN ), (11)

the x∗ denotes the target state and xN the final state of the
states sequence, Qf and Q represent the state cost-weighting
matrices which are symmetric positive semi-definite, and R
the control cost-weighting matrix which is positive definite.

In iLQR as indicated by its name the algorithm for finding
the optimal trajectory is iterative. The aim is to compute an
improved control input sequence by iterative simulation, from
an initial state and a nominal control until convergence to an
optimal trajectory. The cost function will indicate how the
produced trajectory is deviated from the targeted trajectory by
summing the resulting deviation at each states points. From
linearization process, the locale deviation at state xk satisfy
the following state equation:

δxk+1 = Akδxk +Bkδuk, (12)

So the optimization formulation in iLQR can be written as
follows:

min
u(t)

1

2
(xN − x∗)TQf (xN − x∗)

+
1

2

∑
k=0

N − 1(xk
TQxk + uk

TRuk)
(13)

such that: δxk+1 = Akδxk +Bkδuk

In order to ease the evaluation of ”the minimum”, we define,
from a specific state xt (or at time t) in the trajectory, the cost-
to-go as the sum of costs from time t to the last state xN with
the corresponding input sequence Ut = ut, ut+1, .., uN−1:

Jt(x, Ut) =

N−1∑
k=t

l(xk, uk) + lf (xN ), (14)

The optimal cost-to-go from this given state is denoted as
the value function V at time t, and Thus expressed as follows:
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Vt(x) = min
Ut

Jt(x, Ut); t < N

V (xN ) = lf (xN ); t = N
(15)

as the V (xN ) can be determined independently of the
control input, comes the idea to evaluate the value function in
a sequence starting backward from target state and proceeding
recursively to the preceding state and so on. This second
formulation of the value function shows this possibility, and it
is written as a function of the immediate cost l(x, u) and the
value function in the next time-step:

Vt(x) = min
u

[l(x, u) + V (f(x, u))] (16)

[5]
then the argument of the minimum in last equation is intro-

duced in terms of perturbations in order to find, at each pair
(x, u), the supplement control input δu that would minimize
the perturbations expressed as follows:

Q(δx, δu) = l(x+ δx, u+ δu)

− l(x, u) + V (f(x+ δx, u+ δu))

− V (f(x, u)),

(17)

via Taylor’s expansion it can be approximated under this form

Q(δx, δu) =
1

2

δx
δu

T  0 QT
x QuT

Qx Qxx Qxu
Qu Qux Quu

 1
δx
δu

 (18)

[5]
where the expansion coefficients are :

Qx = lx + fT
x V

′

x

Qu = lu + fT
u V

′

x

Qxx = lxx + fT
x V

′

xxfx + V
′

xfxx

Quu = luu + fT
u V

′

xxfu + V
′

xfuu

Qux = lux + fT
u V

′

xxfx + V
′

xfux

the control updating term is computed as follow :

δu∗ = min
δu

Q(δx, δu) = −Q−1
uu (Qu +Quxδx), (19)

which can be divided into two terms; an open-loop term k =
−Q−1

uuQu and a feedback gain term K = −Q−1
uuQux.Plugging

the policy into the expansion of perturbations we can access
to a quadratic model of the value at time i:

∆V (i) = −1

2
QuQ

−1
uuQu (20)

Vx(i) = Qx −QuQ
−1
uuQux (21)

Vxx(i) = Qxx −QxuQ
−1
uuQux (22)

now we are able to start the process again from time step
i−1. a recursive computing work is then conducted to derive at
each point the local quadratic models of V (i) and the control
modifications k(i),K(i) which represents the output of the
backward pass.After completion a new forward pass computes
a new trajectory with new updated control sequence. [5]

x̂(1) = x(1) (23)
û(i) = u(i) + k(i) +K(i)(x̂(i)− x() (24)

x̂(i+ 1) = f(x̂(i), û(i)) (25)

Fig. 2. Schematisation of the iLQR Working Principle.

B. Algorithms

First with LQR Approach:

Fig. 3. Schematizing of the LQR approach.

1: set initial state and target state, x0 and xN .
2: set remaining states and compute corresponding control

sequence: (X∗, U∗) = ([x1, .., xN ], [u∗
1, .., u

∗
N−1]).

*Linearization & Updating control sequence:
3: for i = 1; i < N, i++ do
4: Compute Jacobiens Jx, Ju at operating points Si =

(xi, ui).
5: LQR formulation around Si:Ki =

lqr(Ai, Bi, Ci, Di, Q,R),
with Ai = Jx ; Bi = Ju ; Ci = I ; Di = 0

6: compute control law : δu = Kiδx
7: updating control input at Si : u(i) = u∗

i + δui

8: end for
Then with iLQR Approach :

1: evaluate initial input VN and then VN,x, VN,xx

2: recall the computed values in forward pass of deriva-
tives of local cost dynamic function at time step i :
lx(i), lu(i), lxu(i), .. and fx(i), fu(i), fxu(i), ..
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3: deduction of different derivatives of value perturbation at
time step i Qx(i), Qu(i), Qxu(i), ..

4: compute control input update; feed-forward term k and
feedback term K : ki, ki

5: evaluate Vi,x, Vi,xx

6: set i - -

III. EXAMPLE OF APPLICATION

A. Kinematic Model

the movement of the differential mobile robot can be
described with simple kinematic model emanating from its
principle of manoeuvring. Its movement in the configuration
space is ensured only by the rotation of the wheels around
their axis (no steering). To produce a linear movement the
wheels have to rotate with same velocity and when they
have different angular velocities the robot’s body will rotate
correspondingly to this difference. to quantify it’s movement
in any unknown environment (planar), we need the values
of three parameters: (x, y) indicating the coordinate of the
robot center of mass, and θ the orientation which the angle
between the line perpendicular to the wheel axis and the
X-axis as shown in the fig (1) these parameters are satisfying
the following equations and thus providing the kinematic
model of the differential robot.

ẋ = vcosθ

ẏ = vsinθ

θ̇ = ω

(26)

For tracking, as shown in the equation, the robot is controlled
by the input u, which is composed by the linear velocity v
and angular velocity ω.

u = [v, w]T

since we are dealing with a nonlinear system, the sensors
information about the position will captured as they are re-
quired in the linearization process.As a result, the state vector
x is including extra necessary states: u = [x, y, θ, v, θk+1

, ω, δω]T . [3]

xk+1 =



xk+1

yk+1

θk+1

vk+1

ωk+1

δvk+1

δωk+1


=



xk + vkcosθdt
yk + vksinθdt
θk + ωkdt
uk(0)
uk(1)

uk(0)− vk
uk(0)− ωk


= f(xk, uk) (27)

IV. SIMULATION AND DISCUSSION

In matlab-simulink environment a path in form of inclined
bell shape is constructed to conduct the simulation. it is a
general very encountered form in real application, and a form
with which steering performance can be checked. the two
case scenarios are simulated: in the first scenario the ordinary
LQR strategy is deployed for following the defined path, while
in the second scenario the iLQR approach is considered. the
following figures show the resulting path from both cases.

Both scenarios provide good tracking behavior with optimal
error, with slight improvement with the case of iLQR. The
resulting path using iLQR method is not fully reflecting its
advantage because the optimization calculation are based on
the discrete points represented by the operating points, whereas
the calculation conducted in the LQR case is not quite similar
since the controller is updating the control input within time
between two operating points. A proper comparison would
be by considering same rate of updating control, and this it
would be taken into account in future work. Furthermore, in
simulation we notice the impact of the initial control input
quality and also the impact of the number of points constituting
the path; the higher their number the more the tracking is stable
and approaching the targeted path.

Fig. 4. Resulting Path with LQR approach.

Fig. 5. Resulting Path with iLQR approach.

A. Conclusion

In this work we present the theoretical aspect behind the
iLQR approach for trajectory tracking control in case of non
linear dynamics and see how its concept encompasses the
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concepts of LQR approach by considering the total cost. Works
as [3] and [5] had shown experimentally the powerfulness
of this approach and provide considerable insights for this
work. In this paper a simulation was conducted by taking
the dynamic of a differential mobile robot as an example of
application. The results show that he approach gives stable
solution with minimal errors.
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