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CP violation in the CKM mixing for degenerate quark masses

Ying Zhang∗

School of Science, Xi’an Jiaotong University, Xi’an, 710049, China

CP violation in the CKM mixing is discussed for the case of quark mass degeneracy that is

approximate in the quark mass hierarchy limit. Differing from the traditional understanding of

CP vanishing for degenerate masses, we find degenerate symmetry plays a non-trivial role in CP

violation. The minimal flavor structure model is reviewed to demonstrate the role of degenerate

symmetry in quark flavor mixing, particularly in CP violation. This relation between mass hierarchy

and CP violation helps us understand the origin of CP violation and assists the construction of the

flavor model.

PACS numbers: 12.15.Hh, 11.30.Hv, 11.30.Er

I. MOTIVATION

The standard model (the SM) has successfully described SU(3)c×SU(2)L×U(1)Y gauge interactions of the strong

and electroweak interactions in a concise mathematical form with simple guage couplings. However, the grace of

gauge interactions does not apply to Yukawa interactions [1–3]. Yukawa couplings in the SM are a 3-order complex

matrix for each kind of quarks and charged leptons, which govern all flavor phenomenology: mass spectrum and

flavor mixing. Due to these unclear and redundant Yukawa couplings, the relation between fermion masses and flavor

mixing is still unknown.

In the quark sector, up-type/down-type quark masses have a hierarchal structure

hq
12 ≡ mq

1

mq
2

≪ 1, hq
23 ≡ mq

2

mq
3

≪ 1, for q = u, d

This is a good approximation to explore quark flavor structure. The CKMmatrix should keep its values approximately

in the hierarchy limit, providing a key clue to decoding quark mixing and CP violation. (A similar case is also discussed

in the lepton sector [4].) Frequently, it is cursorily believed that the presence of degenerate mass is a sufficient condition

for CP violation to vanish [5]. This point of view inevitably meets a challenge in explaining why the CP violating

phase in CKM mixing has a large value rather than a small one as a perturbation correction from the mass hierarchy.

In the paper, we focus on the relation between mixing matrix and CP violation in the case of mass degeneracy.

After briefly reviewing Jarlskog’s original 1986 work in Sec. II, we highlight two problems that require attention

regarding CP vanishing in mass degeneracy. In Sec. III, we illustrate how a degenerate SU(2) symmetry contributes

non-trivially to CKM mixing. Discussion on generating CP violating phase from a real mixing matrix is presented,

expressing non-vanishing CP violation in case of mass degeneracy. We also review the minimal flavor structure

proposed in recent research on flavor structure in Sec. IV. The role of degenerate symmetry in the CP violating phase

is discussed. A summary is provided in Sec. V.
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II. QUARK MIXING FOR DEGENERACY

Considering the squared mass matrix M q
SQ ≡ M q(M q)† with q = u, d for up-type and down-type quarks, it can be

diagonalized by left-handed transformation U q
L as

U q
LM

q
SQ(U

q
L)

† = diag
(

(mq
1)

2, (mq
2)

2, (mq
3)

2
)

(1)

Defining a commutator

[

Mu
SQ,M

d
SQ

]

= iC (2)

the determinant of C has been given in [5] as

det[C] =−2[(mu
3)

2 − (mu
2 )

2][(mu
3 )

2 − (mu
1 )

2][(mu
2 )

2 − (mu
1 )

2]

×[(md
3)

2 − (md
2)

2][(md
3)

2 − (md
1)

2][(md
2)

2 − (md
1)

2]JCP (3)

with Jarlskog invariant

JCP = Im[V11V22V
∗
12V

∗
21] (4)

Here, Vij is an element of quark CKM mixing matrix defined by V = Uu
L(U

d
L)

†. Using the invariance of det[C], JCP

can be expressed by the standard CKM mixing angles and CP violating phase as

JCP = s13c
2
13s23c23s12c12sδ (5)

with sij = sin θij , cij = cos θij , sδ = sin δCP . Here, the standard CKM matrix is expressed by

V =









1 0 0

0 c23 s23

0 −s23 c23

















c13 0 s13e
−iδCP

0 1 0

−s13e
iδCP 0 c13

















c12 s12 0

−s12 c12 0

0 0 1









(6)

Using Eqs. (3) and (5), CP conservation, i.e. δCP = 0, can lead to a vanishing det[C]. However, the latter is

not a sufficient condition of no CP violation. An actual situation appears in mass degeneracy as an approximation

of the mass hierarchy limit. If quark mass degeneracy leads to vanishing CP violation, then δCP must be a small

quantity resulting from quark mass hierarchy correction. In mathematical, δCP can generally be expanded in terms

of hierarchy hq
23

δCP = c0 + c1h
q
23 +O(h2) (7)

with cofficient ci. In a traditional perspective, the coefficient c0 must approach zero as quark masses become degen-

erate, which leads to a small value of δCP as a perturbation from mass hierarchy. However, the current experiment

value of δCP is about 65◦ [6], which is too large to be regarded as a small one coming from the hierarchy contribution.

There is additional doubt of δCP vanishing for degenerate masses, which comes from a theoretical analysis of

the CKM matrix. Quark mixing matrix V is symmetrically determined by up-type quark transformation Uu
L and

down-type one Ud
L as

V = Uu
L(U

d
L)

†
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Here, transformation U q
L transforms gauge basis to mass basis (labelled by superscript (m)) qL = (UL)

†q
(m)
L . If

assuming a mass degeneracy only in up-type quarks rather than down-type quarks, we can choose a basis on which

Mu
SQ is diagonal and the CKM mixing matrix can be expressed by V = (Ud

L)
†, which is not relative to up-type quark

Uu
L. The information about the degeneracy of up-type quarks is shielded, and V is not affected by it. So, we have to

seek a new way to explain the relation between the current large CP violating phase and quark mass hierarchy.

III. DEGENERATE SYMMETRY

For degenerate eigenvalues in M q
SQ, there exists a transformation Gq that keeps the mass eigenvalues invariant in

degenerate subspace

Gqdiag
(

(mq
1)

2, (mq
2)

2, (mq
3)

2
)

Gf †
= diag

(

(mq
1)

2, (mq
2)

2, (mq
3)

2
)

(8)

In this section, we discuss the role of Gq on the CKM mixing matrix and emphasize δCP .

Using Eqs. (1) and (8), M q
SQ is generally diagonalized by transformation GqU q

L as

[

GqU q
L

]

M q
SQ

[

GqU q
L

]†

= diag
(

(mq
1)

2, (mq
2)

2, (mq
3)

2
)

The mixing matrix can be expressed

V = GuUu
LU

d
L

†
Gd† (9)

The formula shows the contributions of Gu and Gd to quark mixing. Even in a stricter condition, i.e., the commutator

C = 0 in Eq. (2) instead of det[C] = 0, the degenerate symmetry Gq can still cause significant mixing of quarks.

Assuming C = 0, Mu
SQ and Md

SQ have common eigenstates, labeled by column vector vi for i = 1, 2, 3. We have

(

v1, v2, v3

)†

M q
SQ

(

v1, v2, v3

)

=
(

v1, v2, v3

)†









(mq
i )

2

(mq
i )

2

(mq
i )

2









(

v1, v2, v3

)

(10)

So, diagonalization transformations Uy
L and Ud

L are determined by

Uu
L = Ud

L =
(

v1, v2, v3

)†

(11)

and Eq. (9) becomes

V = Gu(Gd)† (12)

Due to the non-equality of Gu and Gd, the quark mixing matrix V does not become a unit matrix.

The role of degenerate symmetry in quark mixing gives a new understanding of the difference between flavor basis

and mass basis. The charged current weak interaction is introduced in the flavor basis in terms of gauge fields

Lcc =
g√
2
ūLγµdLW

+
µ + h.c. (13)

However, we need to diagonalize complex quark mass matrixes to obtain quark mass eigenvalues q = (UL)
†(Gq)†q(m).

The Charged current weak interaction becomes

Lcc =
g√
2
ū
(m)
L

[

GuUu
L(U

d
L)

†(Gd)†
]

γµd
(m)
L W+

µ + h.c. (14)
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Notice that GuUu
L(U

d
L)

†(Gd)† is fixed by the CKM measurement. So, the Gu,d is not a free transformation, i.e. only

a special Gu,d is chosen by experiments. It means that in the case of mass degeneracy, the CKM matrix is built on a

specially chosen mass basis, not any mass basis. Due to this reason, the Gq in the degeneracy case is not treated as

identity or free parameters. This is just the source of misunderstanding on δCP vanishing for quark mass degeneracy.

Generally, Gq is a SU(2) transformation between two degenerate mass states. If treating the SU(2) symmetry as

a free transformation, CP violation in the CKM matrix can be eliminated by a suitable SU(2) transformation. A

detailed calculation on this procession has been given in Appendix A.

The transformation Gq can provide CP violation. Let us start from a real mixing matrix Uu
L(U

d
L)

† and consider Gq

role in generating δCP .

Generally, a real Uu
L(U

d
L)

† is factorized by 3-dimensional orthogonal rotation

Uu
L(U

d
L)

† =









1 0 0

0 c̄23 s̄23

0 −s23 c̄23

















c̄13 0 s̄13

0 1 0

−s̄13 0 c̄13

















c̄12 s̄12 0

−s̄12 c̄12 0

0 0 1









(15)

with s̄ij = sin θ̄ij , c̄ij = cos θ̄ij . Here, a bar is used just to label mixing angles in the real Uu
L(U

d
L)

† to distinguish the

mixing angles in phenomenology. When Gu = Gd = 1, the CKM mixing matrix is completely determined by Eq.

(15), and there is no CP violation.

In the presence of a degeneracy in the first two families, Gq can generally be parameterized into a SU(2) transfor-

mation

Gq =









e−i(φ′q+φq)/2 cos θq

2 −e−i(φ′q−φq)/2 sin θq

2 0

ei(φ
′q−φq)/2 sin θq

2 ei(φ
′q+φq)/2 cos θq

2 0

0 0 1









(16)

with 1 rotation angle θq and 2 phases φ′q, φq.

In terms of Eq. (9), Jarlskog’s invariant can be written as

JCP = C1 sin(φd) sin θd cos θu + C2 sinφu sin θu cos θd

+C3 sin(φd + φu) sin θd sin θd + C4 sin(φd − φu) sin θd sin θd

Here, coefficients Ci are

C1 =
1

2
c̄213s̄13s̄23c̄23

C2 =
1

2
c̄13c̄23

(

s̄12c̄12 + s̄12c̄12c̄
2
13c̄

2
23 − 2s̄12c̄12c̄

2
23 − 2s̄23c̄23s̄13c̄

2
12 + s̄23c̄23s̄13

)

C3 =
1

4
c̄13c̄23

(

s̄212c̄
2
23 − s̄212c̄

2
13 + c̄212s̄

2
13s̄

2
23 + 2s̄13s̄12c̄12s̄23c̄23

)

C4 = −1

4
c̄13c̄23

(

c̄212c̄
2
13 − c̄212c̄

2
23 − s̄212s̄

2
13s̄

2
23 + 2s̄13s̄12c̄12s̄23c̄23

)

Non-vanishing JCP can be generated by SU(2) transformation from a real orthogonal matrix in Eq. (15). Phases

φ′u and φ′d have no contribution to JCP because they can be eliminated by quark field rephasing. CP violation

requirement to complex phases is provided by φu and φd. Another factor affecting CP violation is SU(2) rotation

angles θu,d. A more accurate requirement for CP violation is that at least one of the phases φu,d and one of the angles

θu,d do not vanish, meaning that Gu or Gd can serve as an independent source of CP violation.
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Even if s̄13 = 0, there is also non-vanishing δCP generated from Gu or Gd. For the sake of simplicity, let us take

Gd = 1 and focus on Gu. The Eq. (17) can be simplified to:

JCP =
1

2
c̄12c̄23s̄12s̄

2
23 sinφ

u sin θu (17)

So, we get the condition of δCP 6= 0 is

θ̄12 6= 0, π/2 and θ̄23 6= 0, π/2 (18)

More further result shows that the condition of generating CP violation from real rotation by Gq is that at least two

of three mixing angles are not 0 or π/2.

Besides the CP violating phase, the contribution of Gq to other mixing angles can be found in Appendix B.

IV. CP VIOLATION IN THE MINIMAL FLAVOR STRUCTURE

Recently, the minimal flavor structure (MFS) has been proposed to address quark mass hierarchy and CKM mixing

in terms of a flat mass pattern [7]. It successfully outputs 10 experimental values, including 6 quark masses, 3 mixing

angles, and 1 CP violation, from just 10 model parameters. In the MFS, the CKM matrix is determined by an

approximate degenerate symmetry. This example helps us understand the relationship between flavor mixing and

mass degeneracy.

As a result of the requirement for mass hierarchy [8], the up-type and down-type quark mass matrices in the MFS

have a common factorized form as

M q = mq
ΣY

q
LI

q(Y q
R)

† (19)

with the total mass of quarks mq
Σ = mq

1+mq
2+mq

3 and diagonal Yukawa matrix Y q
L = diag(eiλ

q
1 , eiλ

q
2 , 1). A significant

aspect of Eq. (19) is that the left-handed Y q
L fully provides the required complex phases for CP violation.

Iq is responsible for generating hierarchical masses of quarks, which can be represented by a nearly flat real matrix

Iq = Iq0 +∆q

Iq0 =
1

3









1 1 1

1 1 1

1 1 1









∆q =
1

3









0 δq12 δq13

δq12 0 δq23

δq13 δq23 0









(20)

In the mass hierarchy limit, quark masses can be gotten by diagonalizing the flat matrix Iq0 by transformation S0

Sq
0I

q
0 (S

q
0)

T = diag(0, 0, 1) (21)

with

S0 =
1√
6









√
3 0 −

√
3

−1 2 −1
√
2

√
2

√
2









(22)
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For 2-fold degenerate eigenvalues on the right side of Equation (21), there exists a real SO(2) rotation symmetry Rq
0

Rq
0diag(0, 0, 1)R

q
0
T
= diag(0, 0, 1) (23)

with

Rq
0 =









cos θq sin θq 0

− sin θq cos θq 0

0 0 1









Because all complex phases have been factored into Y q
L in the MFS, the symmetry is only SO(2) rather than SU(2)

[9]. So, we have

(

Rq
0S

q
0

)

Iq0

(

Rq
0S

q
0

)T

= diag(0, 0, 1)

Thus, the CKM matrix in charged current weak interaction is written in terms of two SO(2) transformations of

up-type and down-type quarks as

V = Ru
0S0diag(e

iλ1 , eiλ2 , 1)ST
0 R

d
0

T
(24)

The true hierarchal masses are also addressed by Iq with correction ∆q in Eq. (20) that is responding to generate

two lighter quark masses for three real diagonal perturbations δqij . Up to O(h1), the broken δqij is set as

δq12 = δq23 = −9

4
hq
23, δq13 = 0 (25)

Iq is diagonalized by a corrected Sq
h

Sq
hI

qSq
h
T
=









0

hq
23

1− hq
23









+O(h2) (26)

with

Sq
h = S0 +

hq
23

4
√
3









0 0 0
√
2

√
2

√
2

1 −2 1









+O(h2) (27)

In [8], it has been studied that the SO(2) symmetry is still valid in 1-order hierarchy approximation, i.e., the

eigenvalues diag(0, hq
23, 1− hq

23) is invariant under an SO(2) transformation Rq
h

Rq
hdiag(0, h

q
23, 1− hq

23)R
q
h
T
= diag(0, hq

23, 1− hq
23) +O(h2) (28)

with the transformation

Rq
h = Rq

0 +
hq
23√
2









0 0 sin θq

0 0 cos θq − 1

− sin θq cos θq − 1 0









(29)

So, the CKM mixing matrix in the 1-order hierarchy becomes

V = Ru
hS

u
hdiag(e

iλ1 , eiλ2 , 1)Sd
h

T
Rd

h

T
(30)
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TABLE I: MFS fit the CKM mixing

MFS para. θu = 0.01926, θd = 3.389, λ1 = 0.004102, λ2 = −0.04306

Fit Results s12 = 0.2259, s23 = 0.04172, s13 = 0.003810, δCP = 1.118

CKM exp. [6]
s12 = 0.22500 ± 0.00067, s23 = 0.04182+0.00085

−0.00074

s13 = 0.00369 ± 0.00011, δCP = 1.144 ± 0.027

The MFS has been successfully checked by fitting hierarchal masses of up-type and down-type quarks and the CKM

mixing. A set of fit parameters is listed in Tab. I.

θu and θd listed in Tab. I means that approximate SO(2) symmetry of mass matrix is broken by charged current

weak interaction. And SO(2) rotation angles θu and θd are fixed by the SM. The Sh transforms the quark flavor basis

qL to a mass basis q
(m)
L

qL = ST
h q

(m)
L

And charged current weak interaction decides which mass basis appears in the CKM mixing. So, only the fitted θu,d

is chozen

uL = ST
h R

u
h
Tu

(m)
L , (31)

dL = ST
h R

d
h

T
d
(m)
L (32)

MFS also provides an understanding of the origin of CP violation. CP violation comes from Yukawa phases in Y q
L

and also depends on rotation angles θu, θd. These parameters are independent on mass hierarchy, They do not vanish

in the mass hierarchy limit, which explains why the large CP violating phase does not stem from the mass hierarchy.

V. SUMMARY

The study of degenerate symmetry as an approximation of mass hierarchy has been studied in quark CKM mixing,

particularly in CP violation. Degenerate symmetry Gq plays a non-trivial role in CKM mixing and picks up a special

mass eigenstate as the state of the CKM mixing matrix in charged current weak interaction. It explains why CP

violation may not vanish for mass degeneracy and also why a large CPV can exist in the hierarchy limit. As an

example, the role of degenerate symmetry is shown in the MFS. The relation between CP violation and degenerate

symmetry is also illustrated in the MFS. These results assist in improving the understanding of CP violation and aid

in constructing a final flavor structure in the future.
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Appendix A: Elimination of δCP by a free SU(2) transformation

Phenomenology, the CKM mixing matrix V can be expressed by 3 mixing angles and 1 CP violating phase by

redefining quark fields. This process is known as rephasing. For degenerate masses, there is a SU(2) symmetry to

keep mass eigenvalues invariant. As we have mentioned in Sec. III, these SU(2) transformations, Gu and Gd, are

decided by experiments. However, if Gu,d is regarded as free transformation, it can be utilized to eliminate some

d.o.f. in the CKM mixing. In the appendix, we adopt the standard CKM matrix in Eq. (6) and demonstrate the

elimination of δCP through a free SU(2) transformation. Without the loss of generality, we only consider up-type

quark degeneracy between the first two families. Degenerate symmetry Gu is parameterized by θu, φu and φ′u as

shown in Eq. 16.

To obtain a vanishing CP violation, a transformed CKM matrix GuV must have a vanishing Jarlskog invariant.

After a tedious calculation, JCP is expressed by

JCP = Ca cos θu + Cb sinφu sin θu + Cc cosφu sin θu (A1)

with coefficients

Ca = c213s13c23s23c12s12sδ

Cb =
1

2
c13c23

[

s12c12(c
2
13 − c223 + s213s

2
23 − 2s2δs

2
13s

2
23)− cδ(2c

2
12 − 1)s13s23c23

]

Cc =
1

2
c13c23s13sδ

[

2s12c12s13s
2
23cδ − s23c23(2c

2
12 − 1)

]

Here, mixing angles θij and δCP are ones before SU(2) transformation.

Vanishing JCP requires θu and φu meet

tan θu = − Ca
Cb sinφu + Cc cosφu

(A2)

Appendix B: Gq roles to mixing angles

Eq. (17) has expressed degenerate symmetry Gq contribution to Jarlskog invariant initializing from a real mixing

matrix. We will now examine the influence of Gq on the remaining three mixing angles. Three CKM mixing angles

can be calculated from mixing matrix V

s13 = |V13| (B1)

s212 =
|V12|2

1− |V13|2
(B2)

s223 =
|V23|2

1− |V13|2
(B3)
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Let us consider a real Uu
L(U

d
L)

† as shown in Eq. (15). Using Eq. (9) and Eq. (16), three mixing angles are determined

by

s213 =
1

2
(1 + c̄u)s̄

2
13 + c̄13s̄23

[

c̄13s̄23
1

2
(1− cu)− s̄13su cosφ

u
]

s212(1− s213) = CA1 + CA2cd + CA3sd + CA4cu + CA5cucd + CA6cusd

+CA7su + CA8sucd + CA9susd

s223(1− s213) =
1

2

[

s̄213 + c̄213s̄
2
23 + (c̄213s̄

2
23 −−s̄213)cu + 2s̄13c̄13s̄23su cosφ

u
]

Here, coefficients CAi are listed in the following

CA1 =
1

4
(2− s̄223 − s̄213c̄

2
23)

CA2 = −c̄12c̄23s̄12s̄13s̄23 +
1

4
(1− 2s̄212)(s̄

2
13 − s̄223 − s̄213s̄

2
23)

CA3 =
1

2

[

c̄23(−1 + 2s̄212)s̄13s̄23 + c̄12s̄12(s̄
2
23 − s̄213 + s̄213s̄

2
23)

]

cosφd

CA4 =
1

4
(s̄223 − s̄213 − s̄213s̄

2
23)

CA5 = c̄12c̄23s̄12s̄13s̄23 −
1

4
(−1 + 2s̄212)(−2 + s̄223 + s̄213 + s̄213s̄

2
23)

CA6 =
1

2

[

c̄23(1 − 2s̄212)s̄13s̄23 + c̄12s̄12(2− s̄223 − s̄213 − s̄213s̄
2
23)

]

cosφd

CA7 =
1

2
c̄13s̄13s̄23 cosφ

u

CA8 = −1

2
c̄13

[

2c̄12c̄23s̄12 + (1− 2s̄212)s̄13s̄23

]

cosφu

CA9 =
1

2
c̄13(2c̄23s̄

2
12 − c̄23 + 2c̄12s̄12s̄13s̄23) cosφ

d cosφu − 1

2
c̄13c̄23 sinφ

d sinφu
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