
Machine Learning Interatomic Potentials with Keras API

J. P. Rili∗

Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
(Dated: April 3, 2024)

A neural network is used to train, predict, and evaluate a model to calculate the energies of
3-dimensional systems composed of Ti and O atoms. Python classes are implemented to quantify
atomic interactions through symmetry functions, and to specify prediction algorithms. The hy-
perparameters of the model are optimised by minimising validation RMSE, which then produced
a model that is accurate to within 100 eV. The model could be improved by proper testing of
symmetry function calculations and addressing properties of features and targets.

I. INTRODUCTION

Density functional theory (DFT) is a widely-used
method for calculating properties of atomic structures,
which typically contain a significant number of atoms,
such as the arrangement of crystals and sizable molecules
[1]. While accurately predicting the structural be-
haviours, it has been observed that DFT is computa-
tionally expensive [1], and effort has been made in the
past years into optimising algorithms for faster and more
accurate computation [2].

Some studies have proposed that the use of machine
learning methods can improve performance when calcu-
lating inter-atomic potentials [3, 4]. Behler and Parinello
(2007), suggested the use of a neural-network (NN) model
that predicts the energy of a set of atoms in bulk silicon.
It was shown to be more accurate and has faster pre-
dicting times than DFT. In 2015, Artrith and Urban im-
plemented the Behler-Parinello neural-network (BPNN)
architecture in Fortran, predicting the total energies in
TiO2 crystals. In this paper, we implement and evaluate
a similar, but smaller, NN through the Keras API [5]
in Python and using the Atomic Energy network (aenet)
TiO2 dataset [6].

II. THEORY

The BPNN utilises a set of functions called the radial
(RSF, denoted as G1) and angular symmetry functions
(ASF, G2) to detail two and three-body atomic interac-
tions respectively. For a system with n atoms, the radial

symmetry function for an atom i with coordinates R⃗i is
written as

G1
i (η,Rs) =

n∑
j ̸=i

exp(−η(Rs −Rij)
2)fc(Rij) (1)

∗ Email: jprili@student.ubc.ca

and the angular symmetry function is

G2
i (η, λ, ζ) =21−ζ

n∑
j ̸=i

n∑
k>j

(1 + λ cos(θijk))
ζ

· exp(−η(R2
ij +R2

ik +R2
jk))

· fc(Rij)fc(Rik)fc(Rjk)

(2)

The arguments are free parameters, η can be different for
(1) and (2), and λ = ±1. The parameters vary depend-
ing on the chemical composition, and therefore bonding,
of the crystals. Here, the cutoff function fc(R) is intro-
duced, where it describes how physically significant the
atomic interaction is, written as

fc(R) =

{
1
2

(
1 + cos

(
πR
Rc

))
R < Rc

0 otherwise

with Rc as the cutoff parameter.
These sets of SFs are the inputs for the NN, which is

composed of n identical subnets. For each atom i in the
system, its associated ASF and RSF is “fed-forward” to
the layers in the network to obtain an associated energy
Ei, the contribution of that atom to the entire system.
Then the total energy E is the linear sum of the contri-
butions, i.e.:

E =

n∑
i

Ei

It is also important to take account of different possi-
bilities of chemical bonds [6] like Ti–O, Ti–Ti, and O–O,
which means that the parameters in the SFs may vary.
To mitigate, different parameter values and combinations
are added to the input, where instead of just a pair of
ASF and RSF, it is a set of each; that is, the NN op-
timises which of the symmetries contribute more to the
total energy. A schematic diagram for a subnet can be
seen in Figure 1.

III. METHODS

A. Data Preprocessing

Before training and evaluating the model, the data un-
dergoes extensive data processing. The energies (our tar-

ar
X

iv
:2

40
4.

18
39

3v
1 

 [
ph

ys
ic

s.
co

m
p-

ph
] 

 2
9 

A
pr

 2
02

4

mailto:jprili@student.ubc.ca


2

layer 1

layer k

FIG. 1. The Behler-Parinello subnet for atom n. The NN uses
a set of ASF and RSF, with each symmetry function denoted
as Gµ

i,j , where µ is the kind of SF, i the index of the atom in
the system, and j is the index in the parameter set. There
are p number of parameters for each kind of SF in this case.
It is then passed forward to k layers to produce the energy
contribution En

gets) are extracted, and the SFs (the feature space) are
computed. The aenet dataset contains 7815 *.xsf files,
with each containing the total energy in eV, a set of co-
ordinates for the unit cell of the crystal, and its primitive
vectors, which dictates the vector basis of periodicity (i.e.
an atom system with the origin has translational symme-
try when transforming r⃗i into r⃗i + av⃗1 + bv⃗2 + cv⃗3, with
a, b, c ∈ N).
The energies are extracted into a *.csv file through

a Python script called xsf clean.py. Then, a Python
class SymmetryCalculator is used to calculate the SF of
all atoms in each system. Specifically, the class reads the
dataset and for each structure, the positions are dupli-
cated to emulate a periodic structure using the primitive
vectors and positions, then with the parameters, the G1s
and G2s are calculated. The full parameter set is out-
lined in Tables I and II of Ref. [6], however, only 14 out
of the full 70+ parameters are used due to hardware and
computing time limitations. The SFs are then written
to a file with the name symXXXX.csv, with XXXX being a
four-digit index of the structure.

B. Model Implementation

As for the model itself (BPNN), it subclasses from
the keras.Model class. The subnet takes in a list
of keras.layers classes where it is instantiated as
a Sequential object. When calling the object for
fitting or evaluating, the second axis of the feature
space with size (batch size, n atoms, n symmetries)
is split, and passed through the model one row at the
time, where it produces an energy contribution. After
iterating through all the atoms in the structure and fol-

lowing section II, we now then have a collection of con-
tributions, where its sum is taken. All project files can
be found in Ref. [7]

C. Data Analysis

The model is compiled using the mean absolute error
(MAE) as loss and the root mean squared error (RMSE)
as the metric to evaluate model performance. To opti-
mise the weights and biases, we use the adaptive moment
estimation (ADAM) optimisation algorithm as it is adap-
tive and efficient [8]. The GridSearch class from Keras-
Tuner’s hyperparameter (HP) tuning library is used to
find the best NN. The specific values used for each HP is
shown in Table I.

HP values
number of layers 4, 5, 6

number of nodes per layer 16, 32, 64
learning rate 5× 10−4, 1× 10−4, 5× 10−5

dropout True, False

TABLE I. Different values for each hyperparameter.
GridSearch iterates through all the combinations of the val-
ues and evaluates the model to find the best-performing com-
bination for BPNN.

IV. RESULTS

Out of 7815 structures, only 265 symmetry files are
generated due to long computing times. Tuning the

HP values
number of layers 5

number of nodes per layer 64
learning rate 1× 10−4

dropout False

TABLE II. The best HPs after running GridSearch. The best
score for the combination is RMSE = 594.4 eV.

model by minimising validation RMSE, we find the pa-
rameters in Table II. The best HPs obtained have the
RMSE = 594.4 eV. Fitting the best model with batch
size 20 and 80 epochs, it is seen that the model con-
verges by epoch 10 (Figure 2), which appears to have a
validation loss of ∼ 600 eV MAE at higher epochs.

Its residuals have a sample mean of µ̂ = 347.7 eV and
a standard error of σ̂ = 2464.4 eV. µ̂ is also the RMSE
of the testing data. Thus, it is more motivational to
rewrite is as RMSEtest = 327.7 eV Standardising and
normalising the distribution produces the residual plot
figure 3. The proportion of the predictions outside 1.5σ̂ of
the true target values (outlier fraction) is equal to zfrac =
0.075.



3

0 20 40 60 80
epoch

103

6 × 102

2 × 103

3 × 103

4 × 103

RM
SE

history graph for BPNN
rmse train
rmse val
mae train
mae val

103

6 × 102

2 × 103

3 × 103

4 × 103

lo
ss

es
 (M

AE
)

FIG. 2. History plot of the best model. The MAE drops
and stabilises to around 600 eV after a few epochs, and the
validation RMSE drops to 1000 eV.

0 1 2 3 4
standardised residuals

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

de
ns

ity

standardised residual distribution

FIG. 3. Distribution of the residuals. Outliers are found for
values in the 1.5σ̂ to 4σ̂ from the mean.

V. DISCUSSION & SUMMARY

Comparing RMSEtest and the magnitude of values for
the targets, it can be said that the energy calculations are
accurate up to a hundred eV. The inaccuracy could be
caused by several issues in the symmetry calculation or
parameter fitting. Firstly, the amount of data processed
is only approximately 3% of the total dataset, containing
only 25 atoms per structure, whereas the dataset contains

structures with 6, 25, 47, and 95 atoms. The BPNN pre-
dicting other systems with differing unit cell size would
yield great errors as uncertainties would come from ex-
trapolation.

Another is the inaccuracy of the ASF calculation. Due
to time constraints, SymmetryCalculator lacks proper
testing so there is a possibility that the calculated RSFs
and ASFs are incorrect. In the future, more optimisa-
tion should be made to the implementation such as in-
troducing multiprocessing, rewriting the code in a com-
piled, lower-level language like C/C++, or integrating
well-tested libraries to the implementation. Another con-

19960 19950 19940 19930
energy [eV]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

de
ns

iti
es

energy data distribution

FIG. 4. Distribution of the energies in the entire dataset.

cerns the number of parameters used in the symmetry
calculation. The parameters for this implementation are
reduced, and this reduction makes it seem that only one
chemical species is present, which will also introduce er-
rors in prediction.

More importantly, the data imbalance that the set has
affects the quality of the fitting. Standardising and nor-
malising the distribution produces the residual plot figure
3. Inspecting the energy distribution of the dataset (see
Figure 4), we see a significant amount of values that lie
just under −19960 eV. This will introduce unwanted bias
to the data towards its most common target value.

In summary, the BPNN is implemented in Python
through the Keras API. Using radial and angular interac-
tions of atoms, crystalline structures composed of Ti and
O atoms are regressed to predict the energies of their cor-
responding unit cells. Tuning the hyperparameters gives
predictions with accuracy up to 100 eV, which can be im-
proved by the processing more structures and accounting
for the imbalanced distribution of the energy data.



4

[1] J.-L. Bretonnet, Basics of the density functional theory,
AIMS Materials Science 4, 1372 (2017).

[2] W. Hu and M. Chen, Editorial: Advances in density func-
tional theory and beyond for computational chemistry,
Frontiers in Chemistry 9, 10.3389/fchem.2021.705762
(2021).

[3] J. Behler and M. Parrinello, Generalized neural-network
representation of high-dimensional potential-energy sur-
faces, Phys. Rev. Lett. 98, 146401 (2007).

[4] G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris,
S. Wang, and L. Yang, Physics-informed machine learning,
Nature Reviews Physics 3, 422 (2021).

[5] T. O’Malley, E. Bursztein, J. Long, F. Chollet, H. Jin,
L. Invernizzi, et al., Kerastuner, https://github.com/

keras-team/keras-tuner (2019).
[6] N. Artrith and A. Urban, An implementation of artificial

neural-network potentials for atomistic materials simula-
tions: Performance for tio2, Computational Materials Sci-
ence 114, 135 (2016).

[7] J. P. Rili, Machine Learning Interatomic Potentials with
Keras API.

[8] D. P. Kingma and J. Ba, Adam: A method for stochastic
optimization (2017), arXiv:1412.6980 [cs.LG].

https://doi.org/10.3934/matersci.2017.6.1372
https://doi.org/10.3389/fchem.2021.705762
https://doi.org/10.1103/PhysRevLett.98.146401
https://github.com/keras-team/keras-tuner
https://github.com/keras-team/keras-tuner
https://doi.org/https://doi.org/10.1016/j.commatsci.2015.11.047
https://doi.org/https://doi.org/10.1016/j.commatsci.2015.11.047
https://github.com/jprili/gnn-mlip/
https://github.com/jprili/gnn-mlip/
https://arxiv.org/abs/1412.6980

	Machine Learning Interatomic Potentials with Keras API
	Abstract
	Introduction
	Theory
	Methods
	Data Preprocessing
	Model Implementation
	Data Analysis

	Results
	Discussion & Summary
	References


