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ABSTRACT
RowHammer stands out as a prominent example, potentially the
pioneering one, showcasing how a failure mechanism at the circuit
level can give rise to a significant and pervasive security vulnera-
bility within systems. Prior research has approached RowHammer
attacks within a static threat model framework. Nonetheless, it
warrants consideration within a more nuanced and dynamic model.
This paper presents a low-overhead DRAM RowHammer vulner-
ability profiling technique termed DRAM-Profiler, which utilizes
innovative test vectors for categorizing memory cells into distinct
security levels. The proposed test vectors intentionally weaken
the spatial correlation between the aggressors and victim rows
before an attack for evaluation, thus aiding designers in mitigating
RowHammer vulnerabilities in the mapping phase. While there has
been no previous research showcasing the impact of such profiling
to our knowledge, our study methodically assesses 128 commercial
DDR4 DRAM products. The results uncover the significant vari-
ability among chips from different manufacturers in the type and
quantity of RowHammer attacks that can be exploited by adver-
saries.

1 INTRODUCTION
Recent research has demonstrated that adversaries can exploit the
RowHammer vulnerability present in DRAM to systematically and
precisely manipulate bits across diverse applications, including
proficiently trained neural networks, resulting in a notable impact
on accuracy [12, 28]. Illustrated in Fig. 1(a), such so-called Bit-Flip
Attacks (BFAs) can reduce the accuracy of an 8-bit quantized ResNet-
34 on the ImageNet dataset from 73.1% to 0% by targeting only 5 bits.
Fig. 1(b) reports that the RowHammer threshold has experienced a
notable decline in recent years. For instance, on LPDDR4 (new), the
attacker requires approximately 4.5 times fewer Hammer Counts
(HC) compared to DDR3 (new) [33]. This threshold is anticipated
to nearly vanish with the introduction of DDR5 [23].

To effectively mitigate RowHammer attacks, comprehensive in-
vestigation, and analysis of pertinent influencing factors are imper-
ative. As research progresses, Error Correction Code (ECC) tech-
niques [20, 24] have been developed across various directions to
combat RowHammer attacks. Nonetheless, we cannot get detailed
parameters of the organization from manufacturers because they
defend the secrecy of chip structures, which means even the same
RowHammer attack model has different performance to different
chips. System manufacturers such as Apple [1] and HP [2] com-
monly employ a standard RowHammer mitigation approach by
elevating the refresh rate, albeit at the cost of significant power con-
sumption and susceptibility to compromise [24]. Intel’s pTRR [14]
and various research work propose a proactive strategy involving
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Figure 1: (a) Targeted bit-flipping vs. random bit-flipping for
an 8-bit quantized ResNet-34 on ImageNet [7] dataset, (a)
RowHammer thresholds [23, 33].

the monitoring of row activations, termed HC. The memory con-
troller tracks HC and initiates refresh cycles on victim rows once
the number of row activations surpasses a predefined Maximum
Activate Count (MAC) threshold (𝑇𝑀𝐴𝐶 ), typically stored on the
Serial Presence Detect (SPD) chip within the DRAM module [8].

Previous studies have predominantly addressed RowHammer
attacks under a static threat model, emphasizing fixed parameters.
However, we advocate for a more sophisticated and adaptable ap-
proach, acknowledging the evolving nature of security threats. In
contrast to static models, a dynamic framework accommodates the
fluidity of attack vectors and defense mechanisms, thus providing
a more comprehensive understanding of RowHammer vulnera-
bilities. By embracing this nuanced perspective, researchers can
better anticipate emerging threats and devise effective countermea-
sures to safeguard against RowHammer and similar exploits. In
this work, we introduce DRAM-Profiler, a novel technique for pro-
filing DRAM RowHammer vulnerabilities with minimal overhead.
DRAM-Profiler employs innovative test vectors to classify memory
cells into different security levels. The main contributions of this
paper are as follows:

(1) We demonstrate that the bit-flip induced by RowHammer
attacks is intricate and variable, necessitating varied analyses as-
sociated with different patterns applied in the RowHammer attack
model; (2) We propose a comprehensive classification of DRAM
cells referred to as cell’s security level within the chip to enhance the
visibility of the impact of RowHammer attacks; and (3) Our experi-
mental findings reveal substantial variability in the robustness of
cells across 128 chips sourced from 7 major DRAM manufacturers.
Consequently, we recommend the adoption of targeted defense
mechanism designs as a more effective approach.
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2 OVERVIEW
DRAM Organization & Commands. The DRAM chip is a hierar-
chical structure consisting of several memory banks, as shown in
Fig. 2(a). Each bank comprises 2D sub-arrays of memory bit-cells
virtually ordered in memory matrices, with billions of DRAM cells
on modern chips. Each DRAM bit-cell consists of a capacitor and an
access transistor. The charge status of the bit-cell’s capacitor is used
to represent binary “1” or “0” [36]. In idle mode, the memory con-
troller turns off all enabled DRAM rows by sending the Precharge
(PRE) command on the command bus. This will precharge the Bit-
Line (BL) voltage to 𝑉𝐷𝐷

2 . In the active mode, the memory controller
will send an Activate (ACT) command to the DRAM module to acti-
vate the Word-Line (WL). Then, all DRAM cells connected to the
WL share their charges with the corresponding BL. Through this
process, BL voltage deviates from the precharged 𝑉𝐷𝐷

2 . The sense
amplifier then senses this deviation and amplifies it to 𝑉𝐷𝐷 or 0 in
the row buffer. Thememory controller can then send read (RD)/write
(WR) commands to transfer data from/to the sense amplifier array.
DRAM Timing Parameters. In the context of DRAM standards, a
comprehensive array of timing parameters is established, with each
parameter prescribing the minimum temporal separation between
two successive DRAM commands to uphold seamless operational
integrity. The most basic parameter is the clock cycle (𝑡𝐶𝐾 ) used
to measure all parameters. Row Active Time (𝑡𝑅𝐴𝑆 ) encompasses
the temporal window demarcating an ACT command and the sub-
sequent PRE command. During this prescribed 𝑡𝑅𝐴𝑆 interval, the
restoration of charge within the DRAM cells on the open DRAM
row is effectuated to ensure optimal performance. Row Precharge
Time (𝑡𝑅𝑃 ) signifies the temporal gap between the issuance of a PRE
command and the subsequent ACT command. The imposition of
𝑡𝑅𝑃 is instrumental in closing the open WL and initiating the pre-
charging of the DRAM BLs to the voltage level of 𝑉𝐷𝐷

2 . Retention
time in DRAM refers to the duration for which a memory cell can
hold its stored data without requiring a refresh operation. It can be
influenced by various factors, including the density of cells, elec-
tromagnetic interference, and so on. The critical timing parameters
are fundamental in ensuring the reliable and efficient operation
of DRAM modules across different standards. In the RowHammer
model, the retention time of certain victim rows may experience a
substantial reduction. The Refresh Window (𝑡𝑅𝐸𝐹𝑊 ) is essentially
the interval within which all DRAM cells must be refreshed to
prevent data loss or corruption.
RowHammer in DDR4 & Protection Mechanisms. Kim et al.
[18] were the pioneers in conducting an extensive study on the
characteristics of RowHammer bit-flips in DDR3 modules. They
observed that approximately 85% of the tested modules were sus-
ceptible to RowHammer attack. Therefore, the majority of earlier
RowHammer research is centered on DDR3 systems [29]. With
the prospect of having a RowHammer-less landscape, DDR4 mod-
ules have been introduced. While there are documented instances
of RowHammer on DDR4 chips in previous studies [9, 21], these
findings pertain to earlier generations of DDR4. To the best of our
knowledge, the only recent and established work exploring the
multi-sided fault injection model is TRRespass [8].

Multiple software and hardware mitigation mechanisms have
been proposed to reduce the impact of RowHammer-based attacks
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Figure 2: (a) Hierarchical organization of DRAM, (b) Double-
sided RowHammer attack [18].

[18, 22, 35, 37–39]. The hardware-based research efforts can be
classified into two categories, i.e., victim-focused mechanism with
probabilistic refreshing (e.g., PRA [15], PARA [18], ProHIT [32],
ProTRR [22]) and aggressor-focused mechanism by counting acti-
vations (e.g., TRR [10], Hydra [27], CBT [31], Panopticon [5], CRA
[15], TWiCe [20], Graphene [26], Mithril [17]). The system man-
ufacturers tend to follow the mechanisms that explicitly detect
RowHammer conditions and intervene, such as increasing refresh
rates and access counter-based approaches. Along this line, Tar-
get Row Refresh (TRR) [8] and counter-based detection methods
[15, 27, 30] require add-on hardware to calculate rows’ activation
and record it to other fast-read-memory (SRAM [20]/CAM [26]).
The controller will then refresh the target row if the number reaches
MAC [8]. TWiCe [20] is a per-row counter-based RowHammer pre-
vention solution based on the idea that the number of ACTs within
𝑡𝑅𝐸𝐹𝑊 is limited. Instead of detecting the rows, TWiCe only checks
the number of ACTs. However, inserting a counter for each memory
row imposes a substantial burden both from latency and power con-
sumption perspectives [30]. To tackle this issue, recent works [30]
consider the storage of counters in a dedicated section of DRAM or
use a set-associative counter cache implemented within the mem-
ory controller to enhance the efficiency of accessing frequently
utilized counters [15]. CAT [31] is a counter-based solution that
keeps track of the number of ACTs performed on a set of DRAM
rows and initiates a refresh operation for the entire group of rows,
once the HC reaches the MAC. The counter-based solutions have
been enabled by adding a new DRAM command called Nearby Row
Refresh (NRR) [20, 26] that will be issued to refresh the relevant
victim rows.

The JEDEC standard outlines three potential configurations for
the MAC value: (1) unlimited, if the DRAM module claims to be
RowHammer-free; (2) untested, if the DRAMmodule has not under-
gone post-production inspection; or (3)𝑇𝑀𝐴𝐶 indicating the specific
number of ACTs the DRAM module can withstand (e.g., 1M). It has
been revealed [8] that, irrespective of the DRAM manufacturer, the
majority of DDR4 modules assert unlimited MAC value.

3 DRAM-PROFILER
3.1 Formulating the Problem
A bit-flip occurs exclusively when there is a disparity in the bit
values of adjacent rows. This raises the query regarding the differen-
tiation of data among DRAM rows, a consequence of manufacturers’
topology techniques. Consequently, the likelihood of adjacent rows
differing from the target row on every bit is exceedingly low, re-
sulting in numerous bits within the victim row sharing identical
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Figure 3: Single-Sided (SG), Double-Sided (DB), and Victim-
Clone (VC) attack models.

values with those in the adjacent row. According to this hypothesis,
certain bits remain immune to flipping when adversaries employ
an SG attack strategy. Nonetheless, in the DB attack model, the
scenario becomes intricate. Ideally, the two assailant rows would
exhibit diversity, each contrasting with the victim row on every bit.
However, in specific instances, the sheer abundance of distinct bits
complicates this ideal scenario.

Previous studies [13, 20, 30] have overlooked comparable specifics,
and their assessment of RowHammer relies on analyzing the subse-
quent conditions: (𝑖) complete dissimilarity between all bits of the
attack row and the victim row, and (𝑖𝑖) conducting experiments
using real DRAM storage data. However, owing to technical dis-
parities among various manufacturers, this data pattern can be
perceived as random. To enhance comprehension of the factors
contributing to bit-flipping in RowHammer attacks, we decided
to create a new research model As shown in Fig. 3, we assume
the Double-sided (DB) RowHammer attack is based on the ideal
case where each bit of the aggressor rows (A1 & A2) differs from
the victim (V1). Based on our speculation and analysis of previous
research works [16], we hypothesize that both cells in the attacking
row exert a significant charging effect on the cells in the victim
row. According to the previous research in [24], we know that the
RowHammer vulnerability relies on rapid and repeated access to
adjacent rows, causing electromagnetic interference that can lead
to bit-flips in the victim row. However, for bit-flips to occur, there
must be a difference in the charge state between the aggressor and
victim rows.

Victim-Clone (VC) is our proposed attack model to make the
victim row suffer less when the DRAM is under the DB attack.
Leveraging this model, we can focus on a more detailed study of
the effects of leakage between cells and prolong the stability of
cells within the victim’s row, preventing them from experiencing
bit-flips for an extended period. The VC model essentially copies
the victim row to one of the aggressor rows to ensure that each bit
of the victim row is only affected by one adjacent flipped bit. As
shown in Fig. 3, in this model, the cell in A1 has a low charge effect,
and that in A2 has a high charge effect.

3.2 DRAM Security Level
Based on the findings reported in our preceding study [Omitted for
review purposes], a direct correlation exists between the increment
of HC and the observed rise in bit-flip occurrences in DRAM This
phenomenon signifies an escalating number of cells susceptible
to charge leakage as HC values increase. Alternatively, a granular
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Figure 4: The vulnerability of cells associated with the HC

examination of individual HC values unveils distinct patterns in cell
presence across different levels. Some cells demonstrate consistent
presence across multiple HC levels, while others exhibit sporadic
or negligible presence. Utilizing a color-coded scheme to repre-
sent DRAM cell frequencies at varying HC levels allows for the
visualization of these patterns, facilitating a more comprehensive
understanding of DRAM vulnerability to RowHammer attacks. As
shown in Fig. 4, assume we collect samples from the same chip
subjected to RowHammer attacks at various HC levels. In every tier,
we emphasize the cells where bit-flips occur. As the HC escalates
from upper to lower tiers, the number of these cells generating
bit-flips rises. Concurrently, we note that cells causing bit-flips at
lower HC levels persist in generating bit-flips at higher HC levels,
implying their consistency across varying HC levels. Therefore,
the more frequently a flipped cell appears at all levels, the more
vulnerable it is. In other words, if some cells appear in different HC
levels simultaneously, the highlighted color will be darker. Thus,
the color bars in Fig. 4 can represent the vulnerability of cells. The
four colors from left to right (from bright yellow to dark red) repre-
sent the degree of vulnerability from low to high. This model can
be exploited for the following reasons:
(𝑖) To empirically analyze significant variability among chips

from different manufacturers. Consequently, we aim to investigate
whether this discrepancy correlates with the quantity of highly
vulnerable cells within the chip.
(𝑖𝑖) To investigate variations in the rate at which the number

of bit-flips increases with rising HC levels. Therefore, this model
facilitates a more detailed examination of the differences between
cells from different manufacturers.
(𝑖𝑖𝑖) To explore RowHammer attack modes yield outcomes. This

model enables us to evaluate the resilience of cells from different
manufacturers to various attack modes.

4 EXPERIMENTS
In this section, we will design and conduct experiments to validate
the hypotheses posited in the preceding section.

4.1 Prerequisites
Framework Setup & Testing Infrastructure.We test the DRAM
chips by extensively modifying the DRAM-Bender [25] to have
a versatile FPGA-based DRAM attack exploration framework for
DDR4with an in-DRAMcompiler API installed on our hostmachine.
Our testing infrastructure, as shown in Fig. 5, consists of the Alveo
U200 Data Center Accelerator Card [4] as the FPGA that accepts
DDR4 modules and runs the test programs based on Algorithm 1 by
sending DDR4 command traces generated by the host machine. The
key idea is to take control of memory modules for DDR4 interfaces
with straightforward high-level programming to test, characterize,



Figure 5: Our testing infrastructure for DDR4 modules.

and run the generated programs on the host machine. The driver is
designed to send instructions across the PCIe bus to the FPGA to
be stored on the board. Besides, to have a fair comparison among
various under-test DRAM chips, the temperature is kept below
30◦C with INKBIRDPLUS 1800W temperature controller.
Minimizing Interference. Before implementing the proposed
attack scenario, DRAM refresh [3] and rank-level ECC are disabled
to minimize their interference with RowHammer bit-flips. However,
proprietary RowHammer protection techniques (e.g., Target Row
Refresh [8, 10]) are in place.
Chips Tested. To profile DRAM cell vulnerabilities, the experi-
ments are conducted on a range of 128 commercialized DRAM
chips from eight different manufacturers (mf.) as listed in Table 1
with various die densities and die revisions.

Table 1: Under-test DRAM chips.
Vendor #Chips Freq (MHz) Die rev. Org. Date

mf-A (Crucial 16 GB) 16 3200 C x8 N/A
mf-B (Kingston 16GB) 16 2666 G x8 2152
mf-C (Micron 16GB) 16 2133 B x4 2126
mf-D (NEMIX 16GB) 16 2133 B x4 1733
mf-E (SK Hynix 16GB) 16 2400 A x8 1817
mf-F (Patriot Viper 16GB) 16 3600 C x8 N/A
mf-G (Samsung 16GB) 16 2400 B x8 2053

4.2 Programming
We devise the following RowHammer test procedure in Algorithm
1 to conduct experiments, aimed at characterizing various DDR4
DRAM modules and implementing three fault injection models
by enabling control over the HC. We start by initializing both
the FPGA and the testing framework to introduce disruptions in
DRAM timing, enabling the insertion of instructions into the DRAM
chip. Then, we initialize the row address denoted by 𝐼𝑛𝑖𝑡𝑖𝑎𝑙_𝑅𝑜𝑤 ,
whereby the data pattern will be allocated in line-4, and load the
prepared 𝐷𝑎𝑡𝑎_𝑝𝑎𝑡𝑡𝑒𝑟𝑛 and 𝐷𝑎𝑡𝑎_𝑝𝑎𝑡𝑡𝑒𝑟𝑛_𝑖𝑛𝑣 in line-5. We set
all bits in 𝐷𝑎𝑡𝑎_𝑝𝑎𝑡𝑡𝑒𝑟𝑛 and 𝐷𝑎𝑡𝑎_𝑝𝑎𝑡𝑡𝑒𝑟𝑛_𝑖𝑛𝑣 to “1” and “0”, re-
spectively. This initialization establishes a straightforward state,
facilitating a clearer observation of the attack intensity. The initial-
ization is completed at this point. We will further allocate different
patterns according to different cases. In the case of Single-sided
attack (SG) and DB, we utilize the traditional allocation method to
guarantee that the aggressor row and the victim row store data in a
precisely opposite manner. In the case of the VC, one of the aggres-
sor rows replicates the data from the victim row, while the other
row contains data that is the opposite, effectively simulating the
duplication of the victim row onto one of the aggressor rows. Lines
9, 14, and 19 provide the hammering instructions applied to the
DRAM rows. We hammer 𝐼𝑛𝑖𝑡𝑖𝑎𝑙_𝑅𝑜𝑤 +1 in SG and 𝐼𝑛𝑖𝑡𝑖𝑎𝑙_𝑅𝑜𝑤 &
𝐼𝑛𝑖𝑡𝑖𝑎𝑙_𝑅𝑜𝑤 +2 in both VC and DBmodels. Following the execution

of all RowHammer reaching the pre-set HC, we retrieve the data
from all rows. Ultimately, we ascertain the number of bit-flips by
comparing the read data with the initially stored data.
Algorithm 1 RowHammer test procedure for SG, VC, and DB

1: Procedure: RHtest
2: Input 𝐻𝐶

3: Initialize 𝐹𝑃𝐺𝐴() & 𝑃𝑙𝑎𝑡 𝑓 𝑜𝑟𝑚()
4: Define 𝐼𝑛𝑖𝑡𝑎𝑙_𝑅𝑜𝑤
5: 𝐿𝑜𝑎𝑑 𝐷𝑎𝑡𝑎_𝑝𝑎𝑡𝑡𝑒𝑟𝑛 & 𝐷𝑎𝑡𝑎_𝑝𝑎𝑡𝑡𝑒𝑟𝑛_𝑖𝑛𝑣
6: Case SG:
7: 𝐼𝑛𝑖𝑡𝑖𝑎𝑙_𝑅𝑜𝑤 ← 𝐷𝑎𝑡𝑎_𝑝𝑎𝑡𝑡𝑒𝑟𝑛
8: 𝐼𝑛𝑖𝑡𝑖𝑎𝑙_𝑅𝑜𝑤 + 1← 𝐷𝑎𝑡𝑎_𝑝𝑎𝑡𝑡𝑒𝑟𝑛_𝑖𝑛𝑣
9: 𝐻𝑎𝑚𝑚𝑒𝑟 𝐼𝑛𝑖𝑡𝑖𝑎𝑙_𝑅𝑜𝑤 + 1 𝑓 𝑜𝑟 (𝐻𝐶)
10: Case VC:
11: 𝐼𝑛𝑖𝑡𝑖𝑎𝑙_𝑅𝑜𝑤 ← 𝐷𝑎𝑡𝑎_𝑝𝑎𝑡𝑡𝑒𝑟𝑛
12: 𝐼𝑛𝑖𝑡𝑖𝑎𝑙_𝑅𝑜𝑤 + 1← 𝐷𝑎𝑡𝑎_𝑝𝑎𝑡𝑡𝑒𝑟𝑛_𝑖𝑛𝑣
13: 𝐼𝑛𝑖𝑡𝑖𝑎𝑙_𝑅𝑜𝑤 + 2← 𝐷𝑎𝑡𝑎_𝑝𝑎𝑡𝑡𝑒𝑟𝑛_𝑖𝑛𝑣
14: 𝐻𝑎𝑚𝑚𝑒𝑟 𝐼𝑛𝑖𝑡𝑖𝑎𝑙_𝑅𝑜𝑤 & 𝐼𝑛𝑖𝑡𝑖𝑎𝑙_𝑅𝑜𝑤 + 2 𝑓 𝑜𝑟 (𝐻𝐶)
15: Case DB:
16: 𝐼𝑛𝑖𝑡𝑖𝑎𝑙_𝑅𝑜𝑤 ← 𝐷𝑎𝑡𝑎_𝑝𝑎𝑡𝑡𝑒𝑟𝑛
17: 𝐼𝑛𝑖𝑡𝑖𝑎𝑙_𝑅𝑜𝑤 + 1← 𝐷𝑎𝑡𝑎_𝑝𝑎𝑡𝑡𝑒𝑟𝑛_𝑖𝑛𝑣
18: 𝐼𝑛𝑖𝑡𝑖𝑎𝑙_𝑅𝑜𝑤 + 2← 𝐷𝑎𝑡𝑎_𝑝𝑎𝑡𝑡𝑒𝑟𝑛
19: 𝐻𝑎𝑚𝑚𝑒𝑟 𝐼𝑛𝑖𝑡𝑖𝑎𝑙_𝑅𝑜𝑤 & 𝐼𝑛𝑖𝑡𝑖𝑎𝑙_𝑅𝑜𝑤 + 2 𝑓 𝑜𝑟 (𝐻𝐶)
20: 𝑅𝑒𝑐𝑒𝑖𝑣𝑒_𝐷𝑎𝑡𝑎(𝑃𝑙𝑎𝑡 𝑓 𝑜𝑟𝑚); //𝑊𝑟𝑖𝑡𝑒 𝑑𝑎𝑡𝑎 𝑏𝑎𝑐𝑘 𝑡𝑜 ℎ𝑜𝑠𝑡𝑃𝐶

21: 𝐷𝑒𝑡𝑒𝑐𝑡_𝐵𝑖𝑡𝐹𝑙𝑖𝑝𝑠 (𝑉𝑖𝑐𝑡𝑖𝑚_𝑅𝑜𝑤)
22: end Procedure

4.3 Analysis of the Results
Fig. 6 represents the comprehensive analysis results of the secu-
rity levels of DRAM cells. In every plot, there are three curves for
different RowHammer attack models, i.e., DB, SG, and VC. The
X-axis denotes HC, and the Y-axis represents the number of cells at
which bit-flip occurred. The typical 𝑡𝑅𝐴𝑆 values for DDR4 memory
modules can range from approximately 36 to 48 𝑡𝐶𝐾 [6], although
these values may vary depending on the module’s speed rating
(e.g., DDR4-2133, DDR4-2400, DDR4-3200, etc.). For example, the
duration of a clock cycle for DDR4-2400 memory can be calculated
as 𝑡𝐶𝐾 = 1

2400𝑀𝑇 /𝑠 . In our design, each 𝑡𝑅𝐴𝑆 comprises three com-
ponents: ACT, Sleep, and PRE, where Sleep is set to 5𝑡𝐶𝐾 . In order
to more accurately emulate real-world scenarios, we set a maxi-
mum limit of 1M for the HC. Given that we suspended the DRAM
refresh command in this experiment, it became necessary to manu-
ally account for retention time. So in a refresh window (𝑡𝑅𝐸𝐹 ) the
maximum number of HC must be less than 𝑡𝑅𝐸𝐹

𝑡𝑅𝐴𝑆
=1.37M. Practically,

the application cannot be composed entirely of activations, so we
limit the number of activations used for RowHammer to 1M. Here
we list our key observations regarding the under-test chips.

Obs.#1. Compared with DB model, VC model cannot effec-
tively reduce the number of bit-flips.

As discussed, the VC attack model is a way to make the victim
row less vulnerable by copying the victim row to one of the aggres-
sor rows. Therefore, the number of bit-flips produced by the final
cell should be hypothetically close to that created by the SG attack.
However, based on the empirical findings, it is evident that only
chips from three manufacturers exhibit improvement following
the implementation of the VC. As depicted in Fig. 6(b)(e)(f), upon
reaching the HC limit (1M), the bit-flips induced by VC decreased by
approximately 25% compared to DB yet remained over four times
more than those induced by SG. This observation contradicts our
initial hypothesis: within the DB model, replicating the victim row
onto one of the aggressor rows does not significantly decrease the
frequency of bit-flips. We can draw a new conclusion from this:
when the attacker ensures that one bit in the aggressor rows differs
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Figure 6: Analysis of the security levels of cells on (a) mf-A, (b) mf-B, (c) mf-C, (d) mf-D, (e) mf-E, (f) mf-F, (g) mf-G.

from the victim row, they can efficiently flip the one in the victim
row. Confirming the prior reports, the DB attack is more likely to
produce a bit-flip than the SG attack. As shown in Fig. 6(a)(d)(g),
the results of VG and DB almost overlap, meaning that these cells
can produce bit-flip as long as at least one cell in the adjacent row
differs from it. Fig. 6(c) represents a special case, in which the VC
model generates more bit-flips than DB. The factors contributing
to this observation remain unknown.

Obs.#2.Various cells demonstrate diverse levels of resistance
to various attack models.

Undoubtedly, within the same chip, certain cells are susceptible
to RowHammer attacks, whereas others remain unaffected. How-
ever, determining the susceptibility of a cell poses a challenge. To
address this, we employ a visual approach for classification. We
have opted to use a four-level scale, ranging from level 1 to level
4, to denote the extent of cell vulnerability. Lower levels indicate
a lower likelihood of bit-flips, while higher levels suggest greater
susceptibility. Take Fig. 6(b)(e)(f) as examples, among these chips,
we posit that if a cell succumbs to SG, it can be deemed the most
vulnerable to attack. Consequently, when HC is 1M, we classify all
cells that induce bit-flips as level 4. Next, we consider cells that do
not induce bit-flips in SG but exhibit them in VC. We categorize
these cells as level 3. As previously discussed, if cells with high
vulnerability manifest bit-flips in low-threat attacks, they are also
likely to experience bit-flips in high-threat attacks. Consequently,
when HC is 1M, we derive the level 3 count by subtracting the total
number of bit-flips in VC from the total number of bit-flips in SG.
Applying the same principle, we classify cells exhibiting behaviors
between DB and VC as level 2. Finally, if cells withstand even the
DB attack, we classify them as level 1. Excluding the chips from
these three manufacturers, as shown in Fig. 6(a)(d)(g), due to the
scarcity of cells between DB and VC, we delete level 2 and keep
level 3. Figure 6(c) presents an exception; we cannot classify level 2

and level 3 using the previous rules. Therefore, in this scenario, we
can only classify cells as level 1 and level 4.

Obs.#3. Tailored DRAM protection mechanisms, designed
according to specific chip topologies, will be necessary and
more efficient.

From our experiments, we discovered significant variations in
RowHammer attacks across chips from different manufacturers,
likely due to distinct manufacturing processes. Consequently, we
contend that designing tailored defense mechanisms based on the
specific characteristics of individual chips may yield greater ef-
fectiveness. For example, considering Fig. 6(c)(d)(g), which has a
significant proportion of level 1 cells, it may opt to employ a de-
fense strategy targeting levels 3, 2, and 1. In Fig. 6(b)(e)(f), the
primary characteristic is the exceedingly low number of cells in
level 4, coupled with a larger number of cells in levels 3 and 2.
As such, implementing a defense mechanism against DB attacks
could be appropriate. Finally, in Fig. 6(a), all the levels are average,
so the counter-based defense mechanisms can be recommended.
While there are multiple approaches to defending against RowHam-
mer attacks, the most straightforward method involves identifying
the factors that render cells deferentially vulnerable to attack. En-
hancing these influencing factors will represent the most effective
defense against RowHammer attacks.

Obs.#4. The stability of cells in chips varies among different
manufacturers.

Here, we introduced a cell classification method, yet the stability
of cells also influences our classification to some extent. Stability
refers to the fluctuation range in the number of cells that induce
bit-flips when HC is at a specific value. A broader range indicates
lower stability. For instance, in real-world scenarios, cells may
occasionally trigger bit-flips once HC reaches a particular value



due to interference from various factors. However, in experimental
settings, no bit-flips occur. Fig. 6(d) and (g) serve as prime examples
of low stability. We observe that the curves for these two chips
exhibit irregular fluctuations, indicating significant variability in
the number of bit-flips at certain HC values. In comparison, other
chips are relatively stable.
4.4 DNNWeight Attack
To further analyze the effectiveness of the conducted study in DNN
application, we incorporate the three different attack models/levels,
i.e., SG, VC, and DB, into the popular BFA attack framework [28, 34]
via only targeting cells that will succumb to the corresponding at-
tack levels, and conduct the adjusted BFA attack on a quantized
ResNet-20 [11] trained on CIFAR-10 [19]. Table 2 displays the num-
ber of iterations needed to degrade model accuracy to a random
guess level (i.e., 10%) under the three distinct attack strategies across
all under-test DRAMchips.We observe that the numbers of required
iterations vary extraordinarily across different chips. Echoing the
observations from Fig. 6(a)(d)(g), where the curves of VC and DB
overlap, the number of required iterations are identical (15, 27, and
19, respectively). Generally, a single-sided row hammer requires
more bit-flips to achieve the attacker’s objective on most chips.
Table 2: Number of required iterations for BFA attack [28] to
degrade a quantized ResNet-20 [11] trained on CIFAR-10 [19]
to a random guess level.

Vendor Single-sided attack Victim-Clone attack Double-sided attack
mf-A 18 15 15
mf-B 50 17 14
mf-C 20 46 55
mf-D 40 27 27
mf-E 74 34 20
mf-F 49 14 15
mf-G 28 19 19

5 CONCLUSION
This paper introduces a mechanism, DRAM-Profiler, for experimen-
tal DRAM RowHammer vulnerability profiling. This mechanism is
proposed to make the analysis of the RowHammer attack model
more comprehensive and visible. We explore various RowHam-
mer models to reintroduce a more authentic setting, addressing a
previously overlooked aspect in prior research. The revised model
provides a more nuanced understanding of performance variations
across different manufacturers’ chips, highlighting the necessity for
a dynamic, rather than static, approach to the RowHammer prob-
lem. Additionally, our investigation delved into the phenomenon of
cell flipping triggered by varying activation frequencies. This led
us to classify cells based on their activation frequency, as the crux
of bit-flip occurrences lies in charge alterations within the cells.
By categorizing cells in this manner, we can effectively gauge the
resilience of different chips against specific activation frequencies.
Armed with these insights, we are poised to develop more targeted
defense strategies against RowHammer attacks in future designs.
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